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Quantum experiments with nanomechanical oscillators are regarded as a test bed for hypothetical
modifications of the Schrödinger equation, which predict a breakdown of the superposition principle
and induce classical behavior at the macroscale. It is generally believed that the sensitivity to these
unconventional effects grows with the mass of the mechanical quantum system. Here we show that the
opposite is the case for optomechanical systems in the presence of generic noise sources, such as thermal
and measurement noise. We determine conditions for distinguishing these decoherence processes from
possible collapse-induced decoherence in continuous optomechanical force measurements.
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Introduction.—The observation of quantum behavior in
a growing number of macroscopic systems of light or
matter has demonstrated the validity of the superposition
principle at impressively large scales [1–4]. Within the
framework of quantum mechanics the disappearance of
coherent superposition states at macroscopic scales is
attributed entirely to the interaction with uncontrolled
and unobserved degrees of freedom. This is the paradigm
of decoherence theory [5–7]. According to alternative
approaches, quantum theory must be modified at a funda-
mental level to explain the emergence of macroscopic
realism [8] and to solve the measurement problem [9]. Such
modifications are designed to induce an objective collapse
of the wave function above a critical mass scale of a given
quantum system, thereby restoring classicality.
The most widely studied modification is the model of

continuous spontaneous localization (CSL) [9–11], which
introduces a nonlinear stochastic addition to the Schrödinger
equation. The delocalizedwave function of amassive particle
gets gradually and randomly localized down to amicroscopic
length scale of about 100 nm, at a rate that amplifies with
the particle’s mass. In many respects, the CSL model can be
regarded as the prime example of a broad generic class of
macrorealist modifications; it is compatible with all exper-
imental observations to date and with most of the symmetry
principles underlying both quantum and classical mechanics
[9,12,13]. Another important macrorealist model is the
Diósi-Penrose (DP) collapse mechanism [11,14–16], which
explains the effect by gravitational self-interaction.
The main prediction of these models is the objective

breakdown of the quantum superposition principle with
growing mass. This would be directly observable by a
specific mass-dependent loss of visibility in interference
experiments with nanoparticles [17–21]. However, the
mass range where macrorealistic collapse should become
effective has yet to be reached in experiments.

At the same time, the random localization process
predicted by the CSL (and the DP) model inherently implies
momentum diffusion, i.e., a Brownian-like background
noise, which also affects the classical motion of macroscopic
matter. No quantum coherence is required to detect these
hypothetical sources of noise [22]. In fact, the necessary
tools are being used in optomechanics labs worldwide:
nano- and micromechanical oscillators manipulated and
readout by optical fields are the most sensitive measurement
devices for forces [23–26]. Recent experiments have dem-
onstrated measurement sensitivities limited by radiation-
pressure backaction noise [27–30], a necessary condition for
reaching the standard quantum limit of continuous force
measurements [31,32]. Such measurements can give rise to
Gaussian entangled states of macroscopic masses [33],
which can be used to test DP models [34].
In this Letter, we assess the requirements for detecting

the force noise postulated by macrorealistic models in
optomechanical devices. We show that ultrasensitive force
measurements at cryogenic temperatures using oscillators
with low (sub-Hz) resonance frequencies, subgram masses,
and high mechanical quality factors can test significant
and unexplored parameter regimes of those models.
Surprisingly, we find that higher masses will in general
imply lower sensitivities.
Our results serve also as a benchmark for optomechanical

superposition experiments [17–19,21]. The tiny oscillation
amplitudes of such oscillators (on the scale of femto- to
picometers) allow the collapse modification to be approxi-
mated by a linear diffusion term. The coherence loss rate for
all superposition states is therefore determined by the same
momentum diffusion rate that governs motional noise [35].
In the following, we focus on the CSL model, and state the
analogous DP results only in the end.
Noise induced by localization.—The CSL model is

characterized by two parameters, the localization length
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rCSL and the localization rate λCSL. The former, convention-
ally set to the value rCSL ¼ 100 nm, determines the size
down to which delocalized quantum states get localized. The
latter gives the average localization rate at one proton mass;
it is currently believed not to exceed 10−8�2 Hz [11,36,37].
The challenge is to identify experimental test beds where the
localization rate λCSL can be sensed at this level [38].
The effective localization and diffusion rates of many-

body systems amplify with mass, and they depend on the
spatial extension of both the quantum state of motion and
the mass distribution. Two regimes can be considered:
For nanoparticles smaller than rCSL prepared in super-
position states with separations larger than rCSL, as relevant
to matter-wave interferometry, the effective coherence
loss rate grows in proportion to the squared mass [9,19,39].
On the other hand, for micrometer-sized mechanical
resonators delocalized over amplitudes much smaller than
rCSL, as relevant in optomechanics, we find a sublinear
mass scaling of the effective localization and diffusion rate.
To be specific, let us focus on cantilever configurations,
where the center of mass of a rigid body of mass m
oscillates linearly, say, along the x axis with an amplitude
x0 ≪ rCSL. This could be a cubic mirror [17], an optically
trapped nanosphere [40,41], or a micromembrane [42,43].
In this limit, the observable consequences of the CSL
model are approximated by a quantum master equation
_ρ ¼ ðLþ LCSLÞρ, where L is a Liouvillian associated to
standard quantum mechanics. The Lindblad term LCSLρ ¼
−DCSL½x; ½x; ρ��=ℏ2, with x the center-of-mass position
operator, describes the momentum diffusion implied by
the CSL modification. It can be viewed as arising from a
stochastic force fCSLðtÞ characterized by the two-time
correlation function hfCSLðtÞfCSLðt0Þi ¼ DCSLδðt − t0Þ.
The associated diffusion rate DCSL ¼ λCSLðℏ=rCSLÞ2α
involves a mass-dependent geometry factor [44],

α ¼ r5CSL
π3=2 amu2

Z
d3kk2xe−r

2
CSLk

2 j~ϱðkÞj2: ð1Þ

Here, ~ϱðkÞ ¼ R
d3rϱðrÞe−ik·r denotes the Fourier transform

of the mass density, normalized to the total mass,
~ϱð0Þ ¼ m. The cantilever can safely be described as a
homogeneous rigid body since the dynamics and structure
of the underlying crystal lattice vary well below the scale
of rCSL ¼ 100 nm. Simple expressions for the geometry
factor (1) are then obtained for materials with a constant
mass density ϱ and dimensions greater than rCSL [44]. In
the case of spheres and cubes with radii R ≫ rCSL and side
lengths b ≫ rCSL, we find

αsphðRÞ≈
16π2ϱ2r4CSL
3 amu2

R2; αcubeðbÞ≈
8πϱ2r4CSL
amu2

b2; ð2Þ

both proportional tom2=3 at fixed ϱ. For the motion of a thin
membrane (thickness d ≪ rCSL, radius R ≫ rCSL) along its
symmetry axis, we obtain

αdiskðRÞ ≈
2π2ϱ2r2CSL
amu2

d2R2: ð3Þ

Keeping the density and thickness fixed, the radius scales
like R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m=πϱd
p

, and the geometry factor is at best
proportional to mass. Exact geometry factors are derived in
the Supplemental Material [44,45].
CSL in the presence of thermal diffusion.—The overall

sublinear increase of the geometry factors with mass must
be put into perspective by comparing CSL diffusion to
standard sources of noise, most prominently, thermal
noise. The mechanical motion in a thermal environment,
and including the CSL effect, is sketched in Fig. 1. It is
described by the Langevin equations of motion

_x ¼ p=m; _p ¼ −mΩ2x − γpþ fTðtÞ þ fCSLðtÞ; ð4Þ

where Ω and γ are the mechanical resonance frequency
and line width, respectively. The thermal noise force
fTðtÞ is characterized by hfTðtÞfTðt0Þi ¼ DTδðt − t0Þ and
DT ¼ 2γmkBT, valid in the relevant high-temperature limit
kBT ≫ ℏΩ of the environmental bath.
The CSL momentum diffusion would dominate over

thermal diffusion, and would thus be detectable in the noise
spectrum, if DCSL > DT , i.e.,

ΛT ≡ 2r2CSLγkBT
ℏ2

m
α
< λCSL: ð5Þ

This condition gives a lower bound ΛT of CSL rate
parameters for which the localization effect would be
observable on top of the thermal noise spectrum; a
significant test should aim for values between 0.1 nHz
and 1 μHz.
Quite remarkably, the generally sublinear mass scaling

of the geometry factors implies that more sensitive tests of
the rate parameter require smaller test masses (as long as
the object stays larger than rCSL ¼ 100 nm). This is in
strong contrast to the quadratic enhancement of CSL

FIG. 1 (color online). Sketch of an optomechanical setup for
measuring macrorealistic noise forces. The harmonic motion xðtÞ
of a cantilever, monitored by means of an optical cavity field, is
subject to thermal noise fTðtÞ, optical amplitude noise xinðtÞ, and
a hypothetical collapse-induced noise force fCSLðtÞ. All three
contributions are reflected in the noise spectrum of the phase
quadrature poutðtÞ of the outgoing light field, as monitored by
homodyne detection.
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detectability in conventional matter-wave interferometry
[9,19], where the particle is smaller than the delocalization
of its motional quantum state. Moreover, our results
illustrate that, for truly macroscopic bodies, the CSL
scaling is carefully balanced: it rapidly restores classicality,
while going practically unnoticed in the presence of a
thermal environment.
It is clear from Eq. (5) that a narrow linewidth (i.e., a low

frequency Ω and a high quality factor Q ¼ Ω=γ) is crucial
for observing CSL noise against the thermal background.
In addition, one must maintain a low temperature of the
environment and monitor it precisely and independently of
the noise level. Figure 2 illustrates which masses m and
linewidths γ are required to test given values of the
localization rate λCSL. We choose a cubic silicon oscillator
(side length b, mass density ϱ ¼ 2300 kg=m3) at the
temperature T ¼ 1 K. With a Ω ¼ 1 Hz, Q ¼ 106, 1 μg
oscillator, one could test λCSL values as small as 1 nHz,
which matches currently estimated bounds. The best
sensitivity is obtained with oscillators of roughly the same
size as rCSL. Since the approximation (2) for the geometry
factor αcube fails in this case, we used the exact expression
given in Ref. [44].
Effect of measurement noise.—Thermal noise is not the

only limitation for detecting collapse-induced diffusion.
The measurement process itself contributes backaction and
shot noise to the readout signal [23–26]. In optomechanics
the mechanical resonator acts as a refractive (or reflective)
element for optical fields. Its quadratures can thus be
monitored by coupling the mechanical mode to a driven
high-finesse cavity light mode. The momentum diffusion
of the oscillator can then be inferred from a continuous
interferometric measurement of its position [23]. In
the simplest scenario, as sketched in Fig. 1, the phase

quadrature of a light field (relative to its coherent
steady-state amplitude) will receive a signal linear in the
oscillator’s position, poutðtÞ ¼ pinðtÞ þ gxðtÞ. Here pinðtÞ
is white measurement shot noise, hpinðtÞpinðt0Þi ¼
1
2
δðt − t0Þ. The strength of position transduction (of dimen-

sion Hz1=2 m−1) is given by g ¼ k
ffiffiffiffiffiffiffiffi
FΦ

p
in a typical

optomechanical setup, where k is the wave number of
light, F is the finesse of the cavity, and Φ ¼ P=ℏωopt is
the photon flux for a power P injected into the interfer-
ometer [23].
The mechanical oscillator will in turn be affected by a

measurement backaction force proportional to the ampli-
tude quadrature fluctuations xinðtÞ of the light (again
white noise), so that the momentum Langevin equation (4)
becomes

_p ¼ −mΩ2x − γpþ fTðtÞ þ fCSLðtÞ þ ℏgxinðtÞ: ð6Þ

The Fourier components of the phase quadrature measured
in the outgoing light field are then

poutðωÞ¼pinðωÞþgχðωÞ½fTðωÞþfλðωÞþℏgxinðωÞ�; ð7Þ

where the mechanical susceptibility at measurement fre-
quency ω takes the known Lorentzian form mχðωÞ ¼
ðΩ2 − ω2 þ iωγÞ−1. From the measured phase quadrature
we can infer the total diffusion force at its Fourier
frequency ω,

fðωÞ ¼ poutðωÞ
gχðωÞ

¼ fCSLðωÞ þ fTðωÞ þ
pinðωÞ
gχðωÞ þ ℏgxinðωÞ: ð8Þ

In this expression, the CSL-induced diffusion force com-
petes with three unavoidable contributions to the signal
fluctuation: thermal noise, shot noise, and measurement
backaction noise. The corresponding noise spectral density,
as obtained from the recorded spectrum of the measurement
signal, is

SfðωÞ ¼ DCSL þ 2γmkBT þ 1

2g2jχðωÞj2 þ
ℏ2g2

2

≥ DCSL þ 2γmkBT þ ℏjχðωÞj−1: ð9Þ

Here, the bound is achieved through optimization with
respect to g (i.e., laser power P); it represents the standard
quantum limit (SQL) of the continuous force measurement
[23–26], achieved for gSQL ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏjχðωÞjp

.
As discussed above, it will be advantageous to work

with a low-frequency (Hz or sub-Hz), high-Q oscillator
to minimize the thermal noise contribution. For suitable
measurement frequencies in the kHz range, we can there-
fore assume ω ≫ Ω, γ, so that the high-frequency (free-
mass) limit of the susceptibility applies, jχðωÞj≃ 1=mω2.
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FIG. 2 (color online). Lower bound ΛT for the detectable CSL
rate parameter λCSL due to thermal noise at 1K, for varyingmassm
and linewidth γ of a cubic silicon cantilever; see Eq. (5). The side
length of the cube is given on the top, the quality factorQ of a 1 Hz
oscillator on the right. The currently estimated upper bound for
λCSL (0.1 nHz − 1 μHz) is indicated by the shaded area.
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Note that this corresponds to the standard limit considered
in gravitational wave detection [25,26]. In order to have the
CSL diffusion dominate over the measurement-induced
diffusion, the first term in Eq. (9) must be larger than the
last SQL term,

ΛSQL ≡ r2CSLω
2

ℏ
m
α
< λCSL; ð10Þ

for the considered measurement frequency ω. As in the case
of the thermal bound (5), this lower bound for detectable
CSL rate parameters increases with mass due to the
sublinear mass scaling of the geometry parameter α.
Figure 3 illustrates when CSL diffusion will be detectable

on top of measurement noise, at given measurement
frequencies ω and masses m of a cubic cantilever. For a
μg oscillator, sensitivities down to λCSL > ΛSQL ≃ 1 nHz
can be maintained at measurement frequencies up to
hundreds of Hz. The SQL coupling frequency in the
free-mass limit, gSQL ¼ ω

ffiffiffiffiffiffiffiffiffi
m=ℏ

p
, is equivalent to a laser

power PSQL ¼ mc2ω2=Fωopt. Several recent experiments

demonstrated backaction noise-limited detection with opto-
mechanical systems [27–29], including a mg-scale mirror
[30]. The SQL will eventually be reached by further
reducing thermal background noise, and possibly be over-
come using Heisenberg-limited measurement strategies [25].
In summary, both the thermal bound (5) and the meas-

urement bound (10) must be taken into account when
probing CSL diffusion in optomechanical systems. The
sum of both sets the achievable sensitivity in a given setup
at SQL. In Table I we list the sensitivities reachable in a
number of existing, proposed, and hypothetical configura-
tions. We find that the current experimental state of the art is
yet incapable of testing the CSL model at the relevant
parameter range of λCSL < 10−8�2 Hz. To reach the desired
sensitivity, one must aim for substantially improved quality
factors and temperature control, rather than for high masses.
Bounds for the DP gravitational collapse model.—

Compared to CSL, the Diósi-Penrose model exhibits a
different mass dependence of the collapse effect, which is
related to the gravitational self-energy of the mass distri-
bution ϱðrÞ [14,16]. The DP counterpart of the CSL
diffusion rate reads as

DDP ¼
Gℏ
2π2

Z
d3k

k2x
k2

j~ϱðkÞj2; ð11Þ

with G the gravitational constant. Although this equation
involves only natural constants, one must introduce a
blurring parameter σDP > 0 to account for the fact that
the DP collapse effect diverges for point masses [9,46].
This implies that the DP effect depends not only on the
macroscopic geometry of a given piece of matter, but is also
highly sensitive to its microscopic lattice structure. That is,
a cantilever can be assumed neither a homogeneous nor a
rigid body.
We model each nucleus in the crystal lattice as a

Gaussian mass distribution of width σDP, which determines
the value of the DP diffusion rate (11) and can therefore be
probed with optomechanical systems. For simplicity, we
focus on monoatomic cubic lattices with lattice constant
a ≫ σDP, where the DP diffusion rate reduces to the mass-
proportional expression [44]
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FIG. 3 (color online). Lower bound ΛSQL for the detectable
CSL rates λCSL due to measurement noise at SQL, as a function of
massm and measurement frequency ω; see Eq. (10). We assume a
cubic silicon cantilever (side length on the top) with frequency
Ω ¼ 1 Hz and quality factorQ ¼ 106. Relevant upper bounds for
the CSL rate are indicated by the shaded area.

TABLE I. CSL sensitivities for a selection of optomechanical setups with density ϱ, massm, mechanical frequencyΩ, quality factorQ,
and temperature T. The thermal sensitivity ΛT and the measurement-induced sensitivity ΛSQL (at measurement frequency ω) are given in
Eqs. (5) and (10), respectively. For simplicity, all systems are assumed to be center-of-mass oscillators, ignoring the specific mode
profiles in Refs. [29,30,43]; the hypothetical setup is extrapolated from Ref. [30], using a disk radius of 0.4 mm and thickness of 0.1 mm.
A significant test of CSL requires ΛT;SQL < 10−8�2 Hz.

System ϱ (g=cm3) m Ω=2π (Hz) Q T (K) ω=2π (Hz) ΛT (Hz) ΛSQL (Hz)

Gravitational wave detector [33] 2.3 40 kg 1 25000 300 1000 2 × 10−1 3 × 10−4

Suspended disk [30] 2.0 5 mg 0.5 5 × 105 300 500 5 × 10−6 1 × 10−7

Hypothetical setup 2.0 100 μg 0.1 106 0.2 100 2 × 10−10 2 × 10−9

SiN membrane [29] 3.4 34 ng 1.6 × 106 1100 4.9 1.6 × 106 4 × 10−1 3 × 10−6

Aluminum membrane [43] 2.7 48 pg 1.1 × 107 3.3 × 105 0.015 1.1 × 107 1 × 10−5 2 × 10−7
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DDP ≈
Gℏ
6

ffiffiffi
π

p
�

a
σDP

�
3

ϱm: ð12Þ

The greatest detectable blurring parameter ΣDP in the
presence of thermal and measurement-induced noise is
then mass independent,

σDP < ΣDP ≡
�

Gℏϱ
6

ffiffiffi
π

p ðℏω2 þ 2γkBTÞ
�
1=3

a: ð13Þ

Hence, also in this case one does not gain sensitivity by
increasing the oscillator’s mass.
Conclusion.—We identified the generic sensitivity

requirements for detecting stochastic collapse models in
optomechanical setups. Since the predicted diffusion com-
petes with inevitable thermal and measurement-induced
noise, a high degree of experimental precision and control
is crucial. A heavy oscillator, on the other hand, does not
improve the sensitivity, even though the collapse-induced
diffusion amplifies with mass: The contributions of ther-
mal, backaction and shot noise grow in proportion to mass,
whereas the growth of collapse-induced noise is generally
weaker.
Our results show that one should rather aim for high

quality factors, low and independently measured temper-
atures, and low oscillation frequencies. Precision experi-
ments with micromechanical oscillators are insofar
complementary to interferometric tests with delocalized
nanoparticles [18–21], where mass always matters.
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