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Abstract

A study of xp, meson production at LHCb is performed on proton-proton collision
data, corresponding to 3.0fb™! of integrated luminosity collected at centre-of-mass
energies /s = 7 and 8 TeV. The fraction of Y(nS) mesons originating from x}, decays
is measured as a function of the T transverse momentum in the rapidity range
2.0 < y¥ < 4.5. The radiative transition of the x},(3P) meson to Y(3S) is observed
for the first time. The xp1(3P) mass is determined to be

My, (3p) = 10511.3 & 1.7 & 2.5 MeV/c?,

where the first uncertainty is statistical and the second is systematic.
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1 Introduction

The production of quarkonia states in high-energy hadron collisions is described in the frame-
work of non-relativistic quantum chromodynamics (NRQCD), as two-step process: a heavy
quark-antiquark pair is first created perturbatively at short distances, then it evolves
non-perturbatively into quarkonium at long distances. The NRQCD framework makes
use of a combination of colour-singlet and colour-octet mechanisms [1}5]. Recent calcula-
tions [6110] support the leading role of the colour-singlet mechanism. The comparison of
experimental data for prompt production of S-wave quarkonia, e.g. JAp or T(1S) mesons,
with theory predictions requires knowledge of feed-down contributions from P-wave quarko-
nia states, e.g. radiative x, — Y7y decays. This contribution could significantly influence
the interpretation of the measured polarization of S-wave vector quarkonia. In addi-
tion, measurements of the relative production rates of P-wave to S-wave quarkonia, as
well as the tensor-to-vector ratios, provide valuable information on colour-octet matrix
elements [10-12].

The production of P-wave charmonia, jointly refered to as x. states, has been studied
by the CDF |13], HERA-B [14] and LHCb [15-17] collaborations; measurements involving
Xb states have been performed by the CDF [18]|, ATLAS [19], CMS [20] and LHCb [21}[22]
experiments.

This paper presents a measurement of the fractions of T mesons originating from
radiative decays of x, mesons. Depending on the relative orientation of the quark spins,
the xp, states can be either scalar, vector or tensor mesons, denoted by x,; with total
angular momentum J = 0,1,2. The analysis proceeds through the reconstruction of
T candidates via their dimuon decays. The fractions of Y(nS) decays originating from
Xb(mP) decays, where n and m are radial quantum numbers of the bound states are
defined as

rxomp) _ 0P = xp1(mP)X) 0 (PP = xp2(mP)X)
08 T o (pp— Y(mS)X) "~ o (pp— T(nS)X)

where Bj(9) denotes the branching fraction for the decay Xpi(2)(mP)— Y (nS)y. Possible
contributions from xpo(mP)— Y (nS)y decays are neglected because of the small branching
fraction for the corresponding radiative decays [23].

The results presented in this paper supersede earlier LHCb measurements [21,22].
In particular, the full data sample collected by LHCb at /s =7 and 8 TeV has been

used and the measured fractions R’;b(ggf) are reported for all six kinematically allowed

transitions: x,(1P)— T(1S)y, x»(2P)— YT(1S)y, xu(2P)— Y(2S)y, xun(3P)— Y(1S)y,
xb(3P) — T (2S)y and x,(3P) — T(3S)y in bins of transverse momentum of the T mesons
in the rapidity range 2.0 < y < 4.5. The last transition, which is usually not considered in
theory predictions, is observed for the first time. A precise measurement of the mass of
the xp1(3P) meson, which was recently observed by the ATLAS [19], DO [24] and LHCb [22]
collaborations, is also performed.
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2 The LHCDb detector and data samples

The LHCD detector [25] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < n < 5, designed for the study of heavy-flavoured particles. The detector
includes a high-precision tracking system consisting of a silicon-strip vertex detector
surrounding the interaction region, a large-area silicon-strip detector located upstream of
a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip
detectors and straw drift tubes placed downstream of the magnet. The combined tracking
system provides a momentum measurement with a relative uncertainty that varies from
0.4% at low momentum to 0.6% at 100 GeV/¢, and an impact parameter measurement
with a resolution of 20 um for charged particles with large transverse momentum, pr.
Different types of charged hadrons are distinguished using information from two ring-
imaging Cherenkov detectors (RICH) [26]. Photon, electron and hadron candidates are
identified by a calorimeter system consisting of scintillating-pad (SPD) and preshower (PS)
detectors, an electromagnetic calorimeter (ECAL) and a hadronic calorimeter [27]. Muons
are identified by a system composed of alternating layers of iron and multiwire proportional
chambers [28]. The trigger [29] consists of a hardware stage, based on information from
the calorimeter and muon systems, followed by a software stage, which applies a full event
reconstruction.

Candidate events used in this analysis must pass the hardware trigger, with the specific
requirement that the product of the pr of two muon candidates be greater than (1.3 GeV/c)?
and (1.6 GeV/c)? for data collected at /s = 7 and 8 TeV, respectively. The first stage of
the software trigger selects candidate events with two well-reconstructed tracks with hits
in the muon system, pr greater than 500 MeV/c and momentum greater than 6 GeV/c
for each track. The two tracks are required to originate from a common vertex and
to have an invariant mass greater than 2.7 GeV/c?. Events are required to pass a second
software trigger stage, where the previous trigger decision is confirmed using improved
track reconstruction algorithms, and the requirement that the invariant mass of the dimuon
pair exceeds 4.7 GeV/c? is applied.

The data samples used in this paper have been collected by the LHCb detector in
pp collisions at /s = 7 and 8 TeV with integrated luminosities of 1.0fb™" and 2.0fb™ !,
respectively. Simulated samples are used to determine signal efficiencies. In these samples,
T and X}, mesons are produced unpolarized. The effect of the unknown initial polarization
on the efficiencies, and therefore on the results, is taken into account as a systematic
uncertainty. In the simulation, pp collisions are generated using PYTHIA [30] with a specific
LHCD configuration [31]. Decays of hadrons are described by EVTGEN [32], in which
final-state radiation is generated using PHOTOS [33]. The interaction of the generated
particles with the detector and its response are implemented using the GEANT4 toolkit [34]
as described in Ref. [35]. A comparison of the distributions of the relevant variables used in
this analysis is performed on data and simulated samples, in order to assess the reliability
of the simulation in computing signal efficiencies and good agreement is found.



3 Event selection and signal extraction

This analysis proceeds through the reconstruction of T (nS) candidates via their dimuon
decaysand their subsequent pairing with a photon candidate to reconstruct x, — Ty decays.

The YT candidates are selected from pairs of oppositely charged tracks identified as
muons and originating from a common vertex. The muons are required to have pr
larger than 1GeV/c. Good track quality is ensured by requiring a x? per degree of
freedom, x?/ndf, of the track fit to be less than 4 [36]. A multivariate estimator, based on
information from the tracking, muon and RICH systems, as well as compatibility with
the hypothesis of a minimum ionizing particle in the calorimeter system [37-39], is used
to improve the muon identification purity. The identification efficiency for muons from
T — putu decays rises from 75% to 98% as the transverse momentum of the muon
increases from 1GeV/c to 3GeV/e. A good quality of the two-prong common vertex
is ensured by requiring the p-value of the common vertex fit to be greater than 0.5%.
To improve the dimuon mass resolution and to suppress combinatorial background from
muons originating in semileptonic decays of heavy-flavoured hadrons, the dimuon vertex
is refitted using the position of the reconstructed pp collision vertex as an additional
constraint [40]. The p-value for this fit is required to be larger than 0.05%. When several
collision vertices are reconstructed in the event, the one closest to the dimuon vertex is
used.

The invariant mass distributions for selected dimuon candidates in the kinematic
range of transverse momentum 6 < pﬁﬁ”f < 40 GeV/c and rapidity 2.0 < ym T < 4.5 are
shown in Fig. (1| for data collected at /s = 7 and 8 TeV. Three clear peaks are visible,
corresponding to the T(1S), T(2S) and Y (3S) signals (low-mass to high-mass). The yields of
the Y (nS) signals are determined using an extended maximum likelihood fit to the unbinned
dimuon mass distributions. The fit function is parameterised as the sum of three signal
components and combinatorial background. Each T signal has been modelled with
a modified Gaussian function with power-law tails on both sides. The combinatorial
background is modelled with an exponential function. The tail parameters of the signal
functions are fixed using simulated events, whereas the mean and resolution are allowed to
vary in the fit. The fit results are superimposed in Fig. [l and the signal fit parameters are
summarized in Table [I The peak positions and mass resolutions are found to be in good
agreement for the data collected at /s = 7 and 8 TeV, and in agreement with the known
T(nS) masses [23] and the resolutions expected from simulated samples.

Muon pairs with invariant mass in the intervals 9310 < my+,- < 9600 MeV/c?,
9860 < my+,~ < 10155 MeV/c? and 10220 < my+,- < 10520 MeV/c? are used as Y(1S),
T(2S) and Y(3S) candidates, respectively, when reconstructing xj, particles. The selected
T candidates are combined with photons reconstructed using the electromagnetic calorime-
ter and identified using a likelihood-based estimator, constructed from variables that rely
on calorimeter and tracking information [16,27,41,42]. Candidate photon clusters must not
be associated with the position of any reconstructed track extrapolated to the calorimeter.
The photon selection is further refined by using information from the PS and SPD detectors.
The photon transverse energy is required to be greater than 600 MeV.
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Figure 1: Invariant mass distributions for selected dimuon candidates in the kinematic
range 6 < p?”i < 40GeV/c and 2.0 < y* M < 4.5 for (left) data collected at /5 = 7 TeV and
(right) 8 TeV. The three peaks on each plot correspond to the Y(1S), Y(2S) and Y(3S) sig-
nals (low-mass to high-mass). The result of the fit, described in the text, is illustrated with a red
solid line, while the background component is shown with a blue dashed line.

Table 1: Yields of T(nS) mesons, determined by fitting the dimuon invariant mass in the range

6 < pf“i < 40 GeV/c and 2.0 < y”ﬂl_ < 4.5, for data collected at /s =7 and 8 TeV. Only
statistical uncertainties are shown.

Signal yield /s =7TeV Vs =8TeV

Nrqs) 326 300 + 638 747610 + 969
Nr(2s) 100620 + 395 229950 4+ 576
Nryss) 57613 + 312 129450 + 459

The x;, signals are searched for in the invariant mass of Ty combinations. To improve
the T (nS)y mass resolution and to remove any residual bias, the corrected mass

mymsyy = Mu+tp-y — (muﬂl— - mT(HS)> (2)

is used, where mvy(,g) is the known mass of the T(nS) meson [23]. The resolution improves
by a factor between two and four with respect to the one obtained by simply computing
the invariant mass of the Ty pair. The distributions of the corrected masses my(,g)yy
are shown in Fig. [2 for T(1S), T(2S) and Y(3S) candidates in the transverse momentum
ranges 14 < pi(ls) < 40GeV/e, 18 < qumS) < 40GeV/c and 24 < pijS) < 40 GeV/e.

The yields of x,(mP) mesons are determined from an extended maximum likelihood fit
to the unbinned my(,g), distributions. The fit model consists of the sum of signal compo-
nents for all kinematically allowed x,(mP) — T(nS)y decays and combinatorial background.
Neglecting a possible contribution due to Xpo(mP) — YT (nS)y decays, the signal from
each x,(mP) multiplet is parameterised as the sum of two overlapping Crystal Ball (CB)
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Figure 2: Distributions of the corrected mass mxy(,g), for the selected xp, candidates (black points)
decaying into (top row) Y(1S), (middle row) T(2S) and (bottom row) Y(3S), in the transverse
momentum ranges given in the text, for (left) /s = 7TeV and (right) 8 TeV data. Each plot
shows also the result of the fit (solid red curve), including the background (dotted blue curve) and
the signal (dashed green and magenta curves) contributions. The green dashed curve corresponds
to the xp1 signal and the magenta dashed curve to the Xy signal.

functions [43] with high-mass tails. The peak positions are separated by the known mass-
splitting between the tensor and vector states in the x,(1P) and x;,(2P) multiplets [23].
For the xp,(3P) multiplet the expected splitting of 10.5MeV/c? [44,145] is used. The tail
parameters of the CB functions and the resolutions are fixed to the values determined
using simulated samples. The yield fractions N,,,/N,,, of the tensor and vector states
in each x,(mP) multiplet are assumed to be equal to 0.5 according to expectations from
Refs. [11,44]. For the x1,(1P) and x;,(2P) cases, this choice agrees with direct measurements
of the relative productions of xp2(1P)/xp1(1P) and xp2(2P)/xp1(2P) [20,/46]. This assump-



Table 2: Signal yields resulting from fits to the corrected mass my(,g), distributions

in the transverse momentum ranges 14 < p?ls) <40GeV/e, 18 < p%as) < 40GeV/c and

24 < p;{(:gs) < 40 GeV/c. Only statistical uncertainties are shown.

Decay mode Vs =T7TeV Vs =8TeV

Ny, (1P (18)y 1908 £+ 71 4608 £ 115
Ny, (2Pys1(18)y 390 + 41 904 + 68
Ny, (3Py>1(18)y 133 + 31 196 + 50
Ny, (2Py1(28)y 265 £+ 30 660 + 46
Ny, 3Py 1 (28)y 48 + 17 73 + 26
Ny, 3Py 1(38)y 56 + 12 126 + 20

tion is necessary for the determination of signal yields, since the ¥y, and Xp2 states cannot
be resolved given the limited invariant mass resolution for the Y (nS)y system. The impact
of this assumption is quantified as a systematic uncertainty. With this parameterisation
for the twelve 3, signal components, the free parameters are the three masses of the x,;
states and the six overall yields of 1 and X2 signals. The combinatorial background is
parameterised as the product of an exponential and polynomial functions up to the fourth
order. The fit results are superimposed on Fig. [2| and the signal yields are summarized in
Table 2

To perform a precise measurement of the xy;(3P) mass, the data samples collected
at /s =7 and 8 TeV are combined. A fit to the combined sample of x;,(3P)— T(3S)y de-
cays gives

My, 3Py = 10511.3 &+ 1.7 MeV/c?,

where the uncertainty is statistical only.
For the determination of the X, signal yields in pX bins, the masses of the xy,; states in
the fits are fixed to the values obtained in the fits to the full pr ranges. For each pl bin

the fractions R@"(EIIIS“)P), defined by Eq. , are calculated separately for /s =7 and 8 TeV

data samples as

N m. ot
Xp(mP) % €T( S) (3)

RXb (mP) — ,
Nyms) — Exy(mP)

T (nS)

where €y, mp) and ey (s) denote the total efficiencies, and Ny, upy and Ny(,g) are the fitted
yields for the x,(mP) and Y (nS) states for the respective pf bin. The ratio of the efficien-
cies €y, (mp) and ey (ng) is largely determined by the reconstruction efficiency for photons
from x;, decays. It is close to 25% for x;, mesons with transverse momentum larger
than 20 GeV/¢, and it drops to approximately 10% for the lowest pr considered in this
analysis. The dominant sources of inefficiency are the geometrical acceptance of the electro-
magnetic calorimeter, photon conversions in the detector material, the accidental overlap
of clusters in the ECAL and the selection requirement on the photon transverse energy.
The measurements are performed in six bins of ppls) in the range 6 < qumS) < 40GeV/e,



five bins of p}mS) in the range 18 < p%f(ls) < 40 GeV/c and two bins of prr(:aS) in the range

24 < p}f(ls) < 40 GeV/e.

4 Systematic uncertainties

The systematic uncertainties on the fractions R’;‘“(ng), calculated using Eq. , are related
to the determination of the signal yields and the evaluation of the efficiency ratios. The main
contributions to the former are due to fit modeling, whereas the photon reconstruction
efficiency and the knowledge of the initial state polarization dominate the uncertainty
on the ratios of efficiencies €, mp) / €x(ns)- The contributions due to other effects largely
cancel in these ratios.

Based on studies from Refs. [21,47-49] the systematic uncertainty associated with
the T signal yields determination is taken to be 0.7% for all pY bins.

In the x;, fit model several sources of uncertainty are taken into account. The yield
ratio N (Xpz2)/N (Xb1), which is fixed in the fit to be 0.5 as predicted by theory, is varied
from 0.3 to 1.0. These limits are obtained by following the prescription of Ref. |11],
where the experimentally measured cross-section ratio of x. mesons is rescaled to predict
the corresponding ratio for x;, mesons. The ratio of cross-sections is then converted to
a ratio of yields by taking into account the xy,; and X2 radiative branching fractions
and reconstruction efficiencies. For the x;,(1P) and the x;,(2P) mesons, the variation
obtained agrees within uncertainties with the direct measurements of relative productions
of xp2(1P) and xp1(1P) mesons and xu2(2P) and xp1(2P) mesons [46]. The corresponding

systematic uncertainty on R)%’(Srsl;))

varies between 0.1% and 15% across pt bins. The sys-
tematic uncertainty due to a slight dependence of the mass fit results on pi is estimated
by taking the minimum and the maximum values of the x;,; masses, repeating the fit
and taking the maximum difference in the yields. The assigned uncertainty varies be-
tween 0.3% and 20% for various pr bins. The smaller values corresponds to the low-Q
transitions: xp(1P)— Y(1S)y, x»(2P) — T(2S)y and x,(3P) — T(3S)y. To assess the sys-
tematic uncertainty related to possible mismodelling of the mass resolution, the mass
resolution is varied by +£10% around the values obtained using simulated samples, and
the difference between the obtained R’%’(Elnslf) is treated as the corresponding systematic
uncertainty. The maximum deviation in the results obtained from varying by +1 the order
of the polynomial function used in the fit model to describe the combinatorial background,
is assigned as the systematic uncertainty associated with the background parameterisation.
For the x,(3P) case, a systematic uncertainty stems from the assumption on the mass

splitting between Xp2(3P) and xp1(3P) states. This parameter is varied in the range be-

tween 9 and 12 MeV/c?. The obtained uncertainty for R’;b(g?’;))) is found to be much smaller

than the one obtained for R’;‘f’;) and R’é’}%ﬁ). The assigned uncertainty on R@’(fg;)

between 0.1% and 2%.
The uncertainty due to possible imperfections in the simulation in the determination
of the photon reconstruction efficiency is studied by comparing the relative yields between

varies



Table 3: Summary of the relative systematic uncertainties for the fractions R);b((nnslf).

Source Uncertainty [%)]

T fit model 0.7

Xp fit model
Xb1/Xp2 ratio 0.1 15
Xp1 mass variation 0.3 -20
X mass resolution 2.0 -12
background model 2.0 -10
Mrx2(3P) — M1, (3P) 0.1 - 2

v reconstruction 3.0

Xp polarization 09- 9

data and simulation for BT — JApK** and BT — JAp K™ decays, where the K** meson
is reconstructed using the K7 final state [21}142]/50-52]. According to these studies,
a systematic uncertainty of 3% is assigned for photons in the kinematical range considered in
this analysis. This uncertainty is dominated by the knowledge of the ratio of the branching
fractions for Bt — JADK*t and BT — JADK™ decays.

Another source of systematic uncertainty is associated with the unknown polarization
of X, and Y states. The polarization of T mesons for pt > 10 GeV/c and in the central
rapidity region ’yT| < 1.2 has been found to be small by the CMS collaboration [53].
Therefore in this paper we assume zero polarization of T mesons and no systematic uncer-
tainty is assigned due to this effect. The systematic uncertainty related to the unknown
polarization of x;, mesons was estimated following Refs. [14,/17]. For each p{ bin, the ratios
of efficiencies ¢y,, /ey and &,,, /ey are recomputed using various possible polarizations
scenarios for xp; and Xp2 mesons. The maximum deviation of the efficiency ratio with
respect to the one obtained with unpolarized production of x1,; and xys states is taken as
the systematic uncertainty. The assigned uncertainty on R’%’(nrgf) varies between 0.9% and

9% for various pL. bins.

Systematic uncertainties due to external experimental inputs, e.¢g. the T mass or
the mass splitting of x1,(1P) and x;,(2P) multiplets, are negligible. The systematic uncer-
tainties on the R?”((nnslf) measurements are summarized in Table .

Systematic uncertainties on the measurement of the xp1(3P) mass are due to
the ECAL energy scale, the fit model and the Y(3S) mass [23]. The firs of these is
studied by comparing the reconstructed invariant mass of photons in 7 — vy decays
with the known mass of the neutral pion [54-56], which gives an uncertainty of 1.0 MeV/c?
in x,(3P) — Y(3S)y decays. The effects of possible mismodelling of the mass resolution
and background models are found to be 0.8 MeV/c? and 0.3 MeV/c?, respectively. Other
significant contributions to the systematic uncertainty are related to the assumptions
on N(Xwz2)/N(xp1), and to the mass splitting between x;, multiplet components. The effect
of the unknown value for the mass-splitting is tested by varying my,,@sp) — My, 3p) in



Table 4: Summary of systematic uncertainties for m,,  (3p).

Source Uncertainty [MeV/c?]
Xp fit model
Xp mass resolution 0.8
background model 0.3
M5 (3P) = My, (3P) 0.4
Xb1/Xp2 ratio 2.0
ECAL energy scale 1.0
T(3S) mass uncertainty 0.5

the fit in a range between 9 and 12 MeV/c?, preferred by theory [44,45]; the obtained devi-
ation of 0.4 MeV/c? is assigned as the corresponding systematic uncertainty. The xp,1(3P)
mass exhibits a linear dependence on the assumed fraction of xy,; decays and varies from
10509 to 10513 MeV/c?, when the xp2/Xp1 yield ratio changes from 0.3 to 1.0. The deter-
mination of the xp;(3P) mass is further checked using the large xp,(1P) — T (1S)y signal,
where the measured xp; (1P) mass agrees with the known xp,1(1P) mass |23] to better than
0.5 MeV/c, separately for /s = 7 and 8 TeV data. No additional systematic uncertainty is
assigned. The systematic uncertainties on the xp; (3P) mass measurement are summarized

in Table M.

5 Results and conclusion

The measured fractions R’;b(ilnslf) are presented in Fig. [3[ and Tables and@ The results
are dominated by the statistical uncertainties, and show no dependence on the pp collision
energy. A measurement of the R’éb(%};) fraction is performed for the first time. The large
value of this fraction impacts the interpretation of experimental data on T production
and polarization. When data on YT production and polarization are compared with theory
predictions, as well as when different theory predictions are compared among themselves,
it is often implicitly assumed that the fraction of YT (3S) mesons produced by feed down
from higher states is small. The large measured value of R’é"gg) indicates that these
assumptions need to be revisited.

In conclusion, the fractions of T mesons originating from ¥, radiative decays are
measured using a data sample collected by LHCb at centre-of-mass energies of 7 and
8 TeV, as a function of the Y transverse momentum in the kinematic range 2.0 < y¥ < 4.5.
The results presented in this paper supercede previous LHCb measurements [21] by
increasing the statistical precision and exploiting more decay modes and higher transverse
momentum regions. The measurement of the Y(3S) production fraction due to radiative
Xb(3P) decays is performed for the first time.

Assuming the mass splitting my, , sp)—my,, 3p) = 10.5MeV/c?, the mass of xp1 (3P) state
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Figure 3: Fractions R§“’((III§)) as functions of pY. Points with blue open (red solid) symbols

correspond to data collected at /s = 7(8) TeV, respectively. For better visualization the data
points are slightly displaced from the bin centres. The inner error bars represent statistical
uncertainties, while the outer error bars indicate statistical and systematic uncertainties added
in quadrature.

is measured to be
My, 3Py = 10511.3 & 1.7 £ 2.5 MeV/c?,

where the first uncertainty is statistical and the second systematic. This result
is compatible and significantly more precise than the event yield average mass of
Xp1(3P) and X2(3P) states of 10530 + 54 17MeV/c? and 10551 & 14 + 17 MeV/c?, re-
ported by the ATLAS [19] and DO [24] experiments, respectively.
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Table 5: Fractions RX

T(nng;) ) in bins of p%, measured for data collected at /s = 7TeV. The first

block corresponds to RZ}b((lrg)P ), the second to R)%’((ZI;I)P ) and the third to R)frb(gg)l) ). The first
uncertainty is statistical and the second systematic.
Pt [Gev/] R¥Gs) R RS
6 8 148+1.2+1.3 3.3+06+0.2
810 172+£1.0+14 52+06+0.3
T(18) 10 - 14 21.3+0.8+1.4 4.0+0.5+0.3 1.7+ 0.54+0.1
14 - 18 244+13+1.2 52+0.8+04 1.84+0.64+0.2
18 — 22 272+21+2.1 554+1.0F 92 1.94+0.74+0.3
22 — 40 29.2+25+ 1.7 6.0+127" 52 29+£1.0+£04
18 — 20 31 £6 +4
20 — 22 309 £3
22 — 24 33 £10 £5
T(28) 24 — 28 28 +9 +£3
28 — 40 29 £8 +3
18 — 40 4.44+1.6+0.5
24 — 29 444+12 £10
1(38) 29 — 40 3614 £8
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Table 6: Fractions R’éb((nrg;j )

in bins of p%, measured for data collected at /s = 8 TeV. The first

block corresponds to R@b((lrg)l) ). the second to R)%’((ZI;I)P ) and the third to R)frb(gg)P ). The first
uncertainty is statistical and the second systematic.
1P 2P 3P
qur [GeV/c] R)wcrb(iS)) ,R’)l(‘b(iS)) R)n(rb(gls;))
6 8 15.5+£09+1.3 28+ 0.5+0.2
8 —-10 185+£0.7£1.5 464+04+0.3
T(18) 10 — 14 2324+06+14 3.04+04+0.2 1.4+0.4+0.1
14 - 18 2424+09+1.2 50+0.5+0.3 1.24+0.4+0.1
18 — 22 26.0+1.4+1.2 4.04+0.7+0.3 0.94+054+0.1
22 — 40 285 +1.8+2.1 76+1.0+0.6 2.14+057" 57
18 — 20 31 +4 +4
20 — 22 30 £5 £3
22 — 24 30 £6 =£3
TES) oy ag 37 +5 *1
28 — 40 28 £5 +3
18 — 40 27+1.0+£0.3
24 — 29 34+8 +£7
TGS 99 uo 0+9 *3,
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