Precision measurement of the mass and lifetime of the $\boldsymbol{\Xi}_{b}^{0}$ baryon

The LHCb collaboration

Abstract

Using a proton-proton collision data sample corresponding to an integrated luminosity of $3 \mathrm{fb}^{-1}$ collected by LHCb at center-of-mass energies of 7 and 8 TeV , about $3800 \Xi_{b}^{0} \rightarrow \Xi_{c}^{+} \pi^{-}, \Xi_{c}^{+} \rightarrow p K^{-} \pi^{+}$signal decays are reconstructed. From this sample, the first measurement of the Ξ_{b}^{0} baryon lifetime is made, relative to that of the Λ_{b}^{0} baryon. The mass differences $M\left(\Xi_{b}^{0}\right)-M\left(\Lambda_{b}^{0}\right)$ and $M\left(\Xi_{c}^{+}\right)-M\left(\Lambda_{c}^{+}\right)$are also measured with precision more than four times better than the current world averages. The resulting values are $$
\begin{aligned} \frac{\tau_{\Xi_{b}^{0}}}{\tau_{b}^{0}} & =1.006 \pm 0.018 \pm 0.010, \\ M\left(\Xi_{b}^{0}\right)-M\left(\Lambda_{b}^{0}\right) & =172.44 \pm 0.39 \pm 0.17 \mathrm{MeV} / c^{2}, \\ M\left(\Xi_{c}^{+}\right)-M\left(\Lambda_{c}^{+}\right) & =181.51 \pm 0.14 \pm 0.10 \mathrm{MeV} / c^{2}, \end{aligned}
$$ where the first uncertainty is statistical and the second is systematic. The relative rate of Ξ_{b}^{0} to Λ_{b}^{0} baryon production is measured to be $$
\frac{f_{\Xi_{b}^{0}}}{f_{\Lambda_{b}^{0}}^{0}} \cdot \frac{\mathcal{B}\left(\Xi_{b}^{0} \rightarrow \Xi_{c}^{+} \pi^{-}\right)}{\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}\right)} \cdot \frac{\mathcal{B}\left(\Xi_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)}{\mathcal{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)}=(1.88 \pm 0.04 \pm 0.03) \times 10^{-2},
$$ where the first factor is the ratio of fragmentation fractions, $b \rightarrow \Xi_{b}^{0}$ relative to $b \rightarrow \Lambda_{b}^{0}$. Relative production rates as functions of transverse momentum and pseudorapidity are also presented.

> Submitted to Phys. Rev. Lett.
(c) CERN on behalf of the LHCb collaboration, license CC-BY-3.0.

[^0]
LHCb collaboration

R. Aaij ${ }^{41}$, B. Adeva ${ }^{37}$, M. Adinolfi ${ }^{46}$, A. Affolder ${ }^{52}$, Z. Ajaltouni ${ }^{5}$, S. Akar ${ }^{6}$, J. Albrecht ${ }^{9}$, F. Alessio ${ }^{38}$, M. Alexander ${ }^{51}$, S. Ali ${ }^{41}$, G. Alkhazov ${ }^{30}$, P. Alvarez Cartelle ${ }^{37}$, A.A. Alves Jr ${ }^{25,38}$, S. Amato ${ }^{2}$, S. Amerio ${ }^{22}$, Y. Amhis ${ }^{7}$, L. An ${ }^{3}$, L. Anderlini ${ }^{17, g}$, J. Anderson ${ }^{40}$, R. Andreassen ${ }^{57}$, M. Andreotti ${ }^{16, f}$, J.E. Andrews ${ }^{58}$, R.B. Appleby ${ }^{54}$, O. Aquines Gutierrez ${ }^{10}$, F. Archilli ${ }^{38}$, A. Artamonov ${ }^{35}$, M. Artuso ${ }^{59}$, E. Aslanides ${ }^{6}$, G. Auriemma ${ }^{25, n}$, M. Baalouch ${ }^{5}$, S. Bachmann ${ }^{11}$, J.J. Back ${ }^{48}$, A. Badalov ${ }^{36}$, V. Balagura ${ }^{31}$, W. Baldini ${ }^{16}$, R.J. Barlow ${ }^{54}$, C. Barschel ${ }^{38}$, S. Barsuk ${ }^{7}$, W. Barter ${ }^{47}$, V. Batozskaya ${ }^{28}$, V. Battista ${ }^{39}$, A. Bay ${ }^{39}$, L. Beaucourt ${ }^{4}$, J. Beddow ${ }^{51}$, F. Bedeschi ${ }^{23}$, I. Bediaga ${ }^{1}$, S. Belogurov ${ }^{31}$, K. Belous ${ }^{35}$, I. Belyaev ${ }^{31}$, E. Ben-Haim ${ }^{8}$, G. Bencivenni ${ }^{18}$, S. Benson ${ }^{38}$, J. Benton ${ }^{46}$, A. Berezhnoy ${ }^{32}$, R. Bernet ${ }^{40}$, M.-O. Bettler ${ }^{47}$, M. van Beuzekom ${ }^{41}$, A. Bien ${ }^{11}$, S. Bifani ${ }^{45}$, T. Bird 54, A. Bizzeti ${ }^{17, i}$, P.M. Bjørnstad ${ }^{54}$, T. Blake ${ }^{48}$, F. Blanc ${ }^{39}$, J. Blouw ${ }^{10}$, S. Blusk 59, V. Bocci 25, A. Bondar ${ }^{34}$, N. Bondar ${ }^{30,38}$, W. Bonivento ${ }^{15,38}$, S. Borghi ${ }^{54}$, A. Borgia ${ }^{59}$, M. Borsato ${ }^{7}$, T.J.V. Bowcock ${ }^{52}$, E. Bowen ${ }^{40}$, C. Bozzi 16, T. Brambach ${ }^{9}$, J. van den Brand ${ }^{42}$, J. Bressieux ${ }^{39}$, D. Brett ${ }^{54}$, M. Britsch ${ }^{10}$, T. Britton ${ }^{59}$, J. Brodzicka ${ }^{54}$, N.H. Brook ${ }^{46}$, H. Brown ${ }^{52}$, A. Bursche ${ }^{40}$, G. Busetto ${ }^{22, r}$, J. Buytaert ${ }^{38}$, S. Cadeddu ${ }^{15}$, R. Calabrese ${ }^{16, f}$, M. Calvi ${ }^{20, k}$,
M. Calvo Gomez ${ }^{36, p}$, A. Camboni ${ }^{36}$, P. Campana ${ }^{18,38}$, D. Campora Perez ${ }^{38}$, A. Carbone ${ }^{14, d}$, G. Carboni ${ }^{24, l}$, R. Cardinale ${ }^{19,38, j}$, A. Cardini ${ }^{15}$, H. Carranza-Mejia ${ }^{50}$, L. Carson ${ }^{50}$, K. Carvalho Akiba ${ }^{2}$, G. Casse ${ }^{52}$, L. Cassina ${ }^{20}$, L. Castillo Garcia ${ }^{38}$, M. Cattaneo ${ }^{38}$, Ch. Cauet ${ }^{9}$, R. Cenci ${ }^{58}$, M. Charles ${ }^{8}$, Ph. Charpentier ${ }^{38}$, S. Chen ${ }^{54}$, S.-F. Cheung ${ }^{55}$, N. Chiapolini ${ }^{40}$, M. Chrzaszcz ${ }^{40,26}$, K. Ciba ${ }^{38}$, X. Cid Vidal ${ }^{38}$, G. Ciezarek ${ }^{53}$, P.E.L. Clarke ${ }^{50}$, M. Clemencic ${ }^{38}$, H.V. Cliff ${ }^{47}$, J. Closier ${ }^{38}$, V. Coco ${ }^{38}$, J. Cogan ${ }^{6}$, E. Cogneras ${ }^{5}$, P. Collins ${ }^{38}$, A. Comerma-Montells ${ }^{11}$, A. Contu ${ }^{15}$, A. Cook ${ }^{46}$, M. Coombes ${ }^{46}$, S. Coquereau ${ }^{8}$, G. Corti ${ }^{38}$, M. Corvo ${ }^{16, f}$, I. Counts ${ }^{56}$, B. Couturier ${ }^{38}$, G.A. Cowan ${ }^{50}$, D.C. Craik ${ }^{48}$, M. Cruz Torres ${ }^{60}$, S. Cunliffe ${ }^{53}$, R. Currie ${ }^{50}$, C. D'Ambrosio ${ }^{38}$, J. Dalseno ${ }^{46}$, P. David ${ }^{8}$, P.N.Y. David ${ }^{41}$, A. Davis ${ }^{57}$, K. De Bruyn ${ }^{41}$, S. De Capua ${ }^{54}$, M. De Cian ${ }^{11}$, J.M. De Miranda ${ }^{1}$, L. De Paula ${ }^{2}$, W. De Silva ${ }^{57}$, P. De Simone ${ }^{18}$, D. Decamp ${ }^{4}$, M. Deckenhoff ${ }^{9}$, L. Del Buono ${ }^{8}$, N. Déléage ${ }^{4}$, D. Derkach ${ }^{55}$, O. Deschamps ${ }^{5}$, F. Dettori ${ }^{38}$, A. Di Canto ${ }^{38}$, H. Dijkstra ${ }^{38}$, S. Donleavy ${ }^{52}$, F. Dordei ${ }^{11}$, M. Dorigo ${ }^{39}$, A. Dosil Suárez ${ }^{37}$, D. Dossett ${ }^{48}$, A. Dovbnya ${ }^{43}$, K. Dreimanis ${ }^{52}$, G. Dujany ${ }^{54}$, F. Dupertuis ${ }^{39}$, P. Durante ${ }^{38}$, R. Dzhelyadin ${ }^{35}$, A. Dziurda ${ }^{26}$, A. Dzyuba ${ }^{30}$, S. Easo ${ }^{49,38}$, U. Egede ${ }^{53}$, V. Egorychev ${ }^{31}$, S. Eidelman ${ }^{34}$, S. Eisenhardt ${ }^{50}$, U. Eitschberger ${ }^{9}$, R. Ekelhof ${ }^{9}$, L. Eklund ${ }^{51,38}$, I. El Rifai ${ }^{5}$, Ch. Elsasser ${ }^{40}$, S. Ely ${ }^{59}$, S. Esen ${ }^{11}$, H.-M. Evans ${ }^{47}$, T. Evans ${ }^{55}$, A. Falabella ${ }^{16, f}$, C. Färber ${ }^{11}$, C. Farinelli ${ }^{41}$, N. Farley ${ }^{45}$, S. Farry ${ }^{52}$, RF Fay ${ }^{52}$, D. Ferguson ${ }^{50}$, V. Fernandez Albor ${ }^{37}$, F. Ferreira Rodrigues ${ }^{1}$, M. Ferro-Luzzi ${ }^{38}$, S. Filippoy ${ }^{33}$, M. Fiore ${ }^{16, f}$, M. Fiorini ${ }^{16, f}$, M. Firlej ${ }^{27}$, C. Fitzpatrick ${ }^{38}$, T. Fiutowski ${ }^{27}$, M. Fontana ${ }^{10}$, F. Fontanelli ${ }^{19, j}$, R. Forty ${ }^{38}$, O. Francisco ${ }^{2}$, M. Frank ${ }^{38}$, C. Frei ${ }^{38}$, M. Frosini ${ }^{17,38, g}$, J. Fu ${ }^{21,38}$, E. Furfaro ${ }^{24, l}$, A. Gallas Torreira ${ }^{37}$, D. Galli ${ }^{14, d}$, S. Gallorini ${ }^{22}$, S. Gambetta ${ }^{19, j}$, M. Gandelman ${ }^{2}$, P. Gandini ${ }^{59}$, Y. Gao ${ }^{3}$, J. Garofoli ${ }^{59}$, J. Garra Tico ${ }^{47}$, L. Garrido ${ }^{36}$, C. Gaspar ${ }^{38}$, R. Gauld ${ }^{55}$, L. Gavardi ${ }^{9}$, G. Gavrilov ${ }^{30}$, E. Gersabeck ${ }^{11}$, M. Gersabeck ${ }^{54}$, T. Gershon ${ }^{48}$, Ph. Ghez ${ }^{4}$, A. Gianelle ${ }^{22}$, S. Giani ${ }^{\prime 39}$, V. Gibson ${ }^{47}$, L. Giubega ${ }^{29}$, V.V. Gligorov ${ }^{38}$, C. Göbel ${ }^{60}$, D. Golubkov ${ }^{31}$, A. Golutvin ${ }^{53,31,38}$, A. Gomes ${ }^{1, a}$, H. Gordon ${ }^{38}$, C. Gotti ${ }^{20}$, M. Grabalosa Gándara ${ }^{5}$, R. Graciani Diaz ${ }^{36}$, L.A. Granado Cardoso ${ }^{38}$, E. Graugés ${ }^{36}$, G. Graziani ${ }^{17}$, A. Grecu ${ }^{29}$, E. Greening ${ }^{55}$, S. Gregson ${ }^{47}$, P. Griffith ${ }^{45}$, L. Grillo ${ }^{11}$, O. Grünberg ${ }^{62}$, B. Gui ${ }^{59}$, E. Gushchin ${ }^{33}$, Yu. Guz ${ }^{35,38}$, T. Gys ${ }^{38}$, C. Hadjivasiliou ${ }^{59}$, G. Haefeli ${ }^{39}$, C. Haen 38, S.C. Haines ${ }^{47}$, S. Hall ${ }^{53}$, B. Hamilton ${ }^{58}$, T. Hampson ${ }^{46}$, X. Han ${ }^{11}$,

S. Hansmann-Menzemer ${ }^{11}$, N. Harnew ${ }^{55}$, S.T. Harnew ${ }^{46}$, J. Harrison ${ }^{54}$, T. Hartmann ${ }^{62}$, J. He^{38}, T. Head ${ }^{38}$, V. Heijne ${ }^{41}$, K. Hennessy ${ }^{52}$, P. Henrard ${ }^{5}$, L. Henry ${ }^{8}$,
J.A. Hernando Morata ${ }^{37}$, E. van Herwijnen ${ }^{38}$, M. Heß β^{62}, A. Hicheur ${ }^{1}$, D. Hill ${ }^{55}$, M. Hoballah ${ }^{5}$, C. Hombach ${ }^{54}$, W. Hulsbergen ${ }^{41}$, P. Hunt ${ }^{55}$, N. Hussain ${ }^{55}$, D. Hutchcroft ${ }^{52}$, D. Hynds ${ }^{51}$, M. Idzik ${ }^{27}$, P. Ilten ${ }^{56}$, R. Jacobsson ${ }^{38}$, A. Jaeger ${ }^{11}$, J. Jalocha ${ }^{55}$, E. Jans ${ }^{41}$, P. Jaton ${ }^{39}$, A. Jawahery ${ }^{58}$, F. Jing ${ }^{3}$, M. John ${ }^{55}$, D. Johnson ${ }^{55}$, C.R. Jones ${ }^{47}$, C. Joram ${ }^{38}$, B. Jost ${ }^{38}$, N. Jurik ${ }^{59}$, M. Kaballo ${ }^{9}$, S. Kandybei ${ }^{43}$, W. Kanso ${ }^{6}$, M. Karacson ${ }^{38}$, T.M. Karbach ${ }^{38}$, S. Karodia ${ }^{51}$, M. Kelsey ${ }^{59}$, I.R. Kenyon ${ }^{45}$, T. Ketel ${ }^{42}$, B. Khanji ${ }^{20}$, C. Khurewathanakul ${ }^{39}$, S. Klaver ${ }^{54}$, O. Kochebina ${ }^{7}$, M. Kolpin ${ }^{11}$, I. Komarov ${ }^{39}$, R.F. Koopman ${ }^{42}$, P. Koppenburg ${ }^{41,38}$, M. Korolev ${ }^{32}$, A. Kozlinskiy ${ }^{41}$, L. Kravchuk ${ }^{33}$, K. Kreplin ${ }^{11}$, M. Kreps ${ }^{48}$, G. Krocker ${ }^{11}$, P. Krokovny ${ }^{34}$, F. Kruse ${ }^{9}$, W. Kucewicz ${ }^{26, o}$, M. Kucharczyk ${ }^{20,26,38, k}$, V. Kudryavtsev ${ }^{34}$, K. Kurek ${ }^{28}$, T. Kvaratskheliya ${ }^{31}$, V.N. La Thi ${ }^{39}$, D. Lacarrere ${ }^{38}$, G. Lafferty ${ }^{54}$, A. Lai ${ }^{15}$, D. Lambert ${ }^{50}$, R.W. Lambert ${ }^{42}$, E. Lanciotti ${ }^{38}$, G. Lanfranchi ${ }^{18}$, C. Langenbruch ${ }^{38}$, B. Langhans ${ }^{38}$, T. Latham ${ }^{48}$, C. Lazzeroni ${ }^{45}$, R. Le Gac ${ }^{6}$, J. van Leerdam ${ }^{41}$, J.-P. Lees ${ }^{4}$, R. Lefèvre ${ }^{5}$, A. Leflat ${ }^{32}$, J. Lefrançois ${ }^{7}$, S. Leo ${ }^{23}$, O. Leroy ${ }^{6}$, T. Lesiak ${ }^{26}$, B. Leverington ${ }^{11}$, Y. Li ${ }^{3}$, M. Liles ${ }^{52}$, R. Lindner ${ }^{38}$, C. Linn ${ }^{38}$, F. Lionetto ${ }^{40}$, B. Liu ${ }^{15}$, G. Liu ${ }^{38}$, S. Lohn ${ }^{38}$, I. Longstaff ${ }^{51}$, J.H. Lopes ${ }^{2}$, N. Lopez-March ${ }^{39}$, P. Lowdon ${ }^{40}$, H. Lu ${ }^{3}$, D. Lucchesi ${ }^{22, r}$, H. Luo ${ }^{50}$, A. Lupato ${ }^{22}$, E. Luppi ${ }^{16, f}$, O. Lupton 55, F. Machefert ${ }^{7}$, I.V. Machikhiliyan ${ }^{31}$, F. Maciuc ${ }^{29}$, O. Maev ${ }^{30}$, S. Malde ${ }^{55}$, G. Manca ${ }^{15, e}$, G. Mancinelli ${ }^{6}$, J. Maratas ${ }^{5}$, J.F. Marchand ${ }^{4}$, U. Marconi ${ }^{14}$, C. Marin Benito ${ }^{36}$, P. Marino ${ }^{23, t}$, R. Märki ${ }^{39}$, J. Marks ${ }^{11}$, G. Martellotti ${ }^{25}$, A. Martens ${ }^{8}$, A. Martín Sánchez ${ }^{7}$, M. Martinelli ${ }^{41}$, D. Martinez Santos ${ }^{42}$, F. Martinez Vidal ${ }^{64}$, D. Martins Tostes ${ }^{2}$, A. Massafferri ${ }^{1}$, R. Matev ${ }^{38}$, Z. Mathe ${ }^{38}$, C. Matteuzzi ${ }^{20}$, A. Mazurov ${ }^{16, f}$, M. McCann ${ }^{53}$, J. McCarthy ${ }^{45}$, A. McNab ${ }^{54}$, R. McNulty ${ }^{12}$, B. McSkelly ${ }^{52}$, B. Meadows ${ }^{57}$, F. Meier ${ }^{9}$, M. Meissner ${ }^{11}$, M. Merk ${ }^{41}$, D.A. Milanes ${ }^{8}$, M.-N. Minard ${ }^{4}$, N. Moggi ${ }^{14}$, J. Molina Rodriguez ${ }^{60}$, S. Monteil ${ }^{5}$, M. Morandin ${ }^{22}$, P. Morawski ${ }^{27}$, A. Mordà ${ }^{6}$, M.J. Morello ${ }^{23, t}$, J. Moron ${ }^{27}$, A.-B. Morris ${ }^{50}$, R. Mountain ${ }^{59}$, F. Muheim ${ }^{50}$, K. Müller ${ }^{40}$, R. Muresan ${ }^{29}$, M. Mussini ${ }^{14}$, B. Muster ${ }^{39}$, P. Naik ${ }^{46}$, T. Nakada ${ }^{39}$, R. Nandakumar ${ }^{49}$, I. Nasteva ${ }^{2}$, M. Needham ${ }^{50}$, N. Neri ${ }^{21}$, S. Neubert ${ }^{38}$, N. Neufeld ${ }^{38}$, M. Neuner ${ }^{11}$, A.D. Nguyen ${ }^{39}$, T.D. Nguyen ${ }^{39}$, C. Nguyen-Mau ${ }^{39, q}$, M. Nicol ${ }^{7}$, V. Niess ${ }^{5}$, R. Niet ${ }^{9}$, N. Nikitin ${ }^{32}$, T. Nikodem ${ }^{11}$, A. Novoselov ${ }^{35}$, D.P. O'Hanlon ${ }^{48}$, A. Oblakowska-Mucha ${ }^{27}$, V. Obraztsov ${ }^{35}$, S. Oggero ${ }^{41}$, S. Ogilvy ${ }^{51}$, O. Okhrimenko ${ }^{44}$, R. Oldeman ${ }^{15, e}$, G. Onderwater ${ }^{65}$, M. Orlandea ${ }^{29}$, J.M. Otalora Goicochea ${ }^{2}$, P. Owen ${ }^{53}$, A. Oyanguren ${ }^{64}$, B.K. Pal ${ }^{59}$, A. Palano ${ }^{13, c}$, F. Palombo ${ }^{21, u}$, M. Palutan ${ }^{18}$, J. Panman ${ }^{38}$, A. Papanestis ${ }^{49,38}$, M. Pappagallo ${ }^{51}$, C. Parkes ${ }^{54}$, C.J. Parkinson ${ }^{9,45}$, G. Passaleva ${ }^{17}$, G.D. Patel ${ }^{52}$, M. Patel ${ }^{53}$, C. Patrignani ${ }^{19, j}$, A. Pazos Alvarez ${ }^{37}$, A. Pearce ${ }^{54}$, A. Pellegrino ${ }^{41}$, M. Pepe Altarelli ${ }^{38}$, S. Perazzini ${ }^{14, d}$, E. Perez Trigo ${ }^{37}$, P. Perret ${ }^{5}$, M. Perrin-Terrin ${ }^{6}$, L. Pescatore ${ }^{45}$, E. Pesen ${ }^{66}$, K. Petridis ${ }^{53}$, A. Petrolini ${ }^{19, j}$, E. Picatoste Olloqui ${ }^{36}$, B. Pietrzyk ${ }^{4}$, T. Pilař ${ }^{48}$, D. Pinci ${ }^{25}$, A. Pistone ${ }^{19}$, S. Playfer ${ }^{50}$, M. Plo Casasus ${ }^{37}$, F. Polci ${ }^{8}$, A. Poluektov ${ }^{48,34}$, E. Polycarpo ${ }^{2}$, A. Popov ${ }^{35}$, D. Popov ${ }^{10}$, B. Popovici ${ }^{29}$, C. Potterat ${ }^{2}$, E. Price ${ }^{46}$, J. Prisciandaro ${ }^{39}$,
A. Pritchard ${ }^{52}$, C. Prouve ${ }^{46}$, V. Pugatch ${ }^{44}$, A. Puig Navarro ${ }^{39}$, G. Punzi ${ }^{23, s}$, W. Qian ${ }^{4}$, B. Rachwal ${ }^{26}$, J.H. Rademacker ${ }^{46}$, B. Rakotomiaramanana ${ }^{39}$, M. Rama ${ }^{18}$, M.S. Rangel ${ }^{2}$, I. Raniuk ${ }^{43}$, N. Rauschmayr ${ }^{38}$, G. Raven ${ }^{42}$, S. Reichert ${ }^{54}$, M.M. Reid ${ }^{48}$, A.C. dos Reis ${ }^{1}$, S. Ricciardi ${ }^{49}$, S. Richards ${ }^{46}$, M. Rihl ${ }^{38}$, K. Rinnert ${ }^{52}$, V. Rives Molina ${ }^{36}$, D.A. Roa Romero ${ }^{5}$, P. Robbe ${ }^{7}$, A.B. Rodrigues ${ }^{1}$, E. Rodrigues ${ }^{54}$, P. Rodriguez Perez ${ }^{54}$, S. Roiser ${ }^{38}$,
V. Romanovsky ${ }^{35}$, A. Romero Vidal ${ }^{37}$, M. Rotondo ${ }^{22}$, J. Rouvinet ${ }^{39}$, T. Ruf ${ }^{38}$, F. Ruffini ${ }^{23}$, H. Ruiz ${ }^{36}$, P. Ruiz Valls ${ }^{64}$, G. Sabatino ${ }^{25, l}$, J.J. Saborido Silva ${ }^{37}$, N. Sagidova ${ }^{30}$, P. Sail ${ }^{51}$,
B. Saitta ${ }^{15, e}$, V. Salustino Guimaraes ${ }^{2}$, C. Sanchez Mayordomo ${ }^{64}$, B. Sanmartin Sedes ${ }^{37}$, R. Santacesaria ${ }^{25}$, C. Santamarina Rios ${ }^{37}$, E. Santovetti ${ }^{24, l}$, M. Sapunov ${ }^{6}$, A. Sarti ${ }^{18, m}$, C. Satriano ${ }^{25, n}$, A. Satta ${ }^{24}$, D.M. Saunders ${ }^{46}$, M. Savrie ${ }^{16, f}$, D. Savrina ${ }^{31,32}$, M. Schiller ${ }^{42}$, H. Schindler ${ }^{38}$, M. Schlupp ${ }^{9}$, M. Schmelling ${ }^{10}$, B. Schmidt ${ }^{38}$, O. Schneider ${ }^{39}$, A. Schopper ${ }^{38}$, M.-H. Schune ${ }^{7}$, R. Schwemmer ${ }^{38}$, B. Sciascia ${ }^{18}$, A. Sciubba ${ }^{25}$, M. Seco ${ }^{37}$, A. Semennikov ${ }^{31}$, I. Sepp ${ }^{53}$, N. Serra ${ }^{40}$, J. Serrano ${ }^{6}$, L. Sestini ${ }^{22}$, P. Seyfert ${ }^{11}$, M. Shapkin ${ }^{35}$, I. Shapoval ${ }^{16,43, f}$, Y. Shcheglov ${ }^{30}$, T. Shears ${ }^{52}$, L. Shekhtman ${ }^{34}$, V. Shevchenko ${ }^{63}$, A. Shires ${ }^{9}$,
R. Silva Coutinho ${ }^{48}$, G. Simi ${ }^{22}$, M. Sirendi ${ }^{47}$, N. Skidmore ${ }^{46}$, T. Skwarnicki ${ }^{59}$, N.A. Smith ${ }^{52}$, E. Smith ${ }^{55,49}$, E. Smith ${ }^{53}$, J. Smith ${ }^{47}$, M. Smith ${ }^{54}$, H. Snoek ${ }^{41}$, M.D. Sokoloff ${ }^{57}$, F.J.P. Soler ${ }^{51}$, F. Soomro ${ }^{39}$, D. Souza ${ }^{46}$, B. Souza De Paula ${ }^{2}$, B. Spaan ${ }^{9}$, A. Sparkes ${ }^{50}$, P. Spradlin ${ }^{51}$, F. Stagni ${ }^{38}$, M. Stahl ${ }^{11}$, S. Stahl ${ }^{11}$, O. Steinkamp ${ }^{40}$, O. Stenyakin ${ }^{35}$, S. Stevenson ${ }^{55}$, S. Stoica ${ }^{29}$, S. Stone ${ }^{59}$, B. Storaci ${ }^{40}$, S. Stracka ${ }^{23,38}$, M. Straticiuc ${ }^{29}$, U. Straumann ${ }^{40}$, R. Stroili ${ }^{22}$, V.K. Subbiah ${ }^{38}$, L. Sun ${ }^{57}$, W. Sutcliffe ${ }^{53}$, K. Swientek ${ }^{27}$, S. Swientek ${ }^{9}$, V. Syropoulos ${ }^{42}$, M. Szczekowski ${ }^{28}$, P. Szczypka ${ }^{39,38}$, D. Szilard ${ }^{2}$, T. Szumlak ${ }^{27}$, S. T'Jampens ${ }^{4}$, M. Teklishyn ${ }^{7}$, G. Tellarini ${ }^{16, f}$, F. Teubert ${ }^{38}$, C. Thomas ${ }^{55}$, E. Thomas ${ }^{38}$, J. van Tilburg ${ }^{41}$, V. Tisserand ${ }^{4}$, M. Tobin ${ }^{39}$, S. Tolk ${ }^{42}$, L. Tomassetti ${ }^{16, f}$, D. Tonelli ${ }^{38}$, S. Topp-Joergensen ${ }^{55}$, N. Torr ${ }^{55}$, E. Tournefier ${ }^{4}$, S. Tourneur ${ }^{39}$, M.T. Tran 39, M. Tresch ${ }^{40}$, A. Tsaregorodtsev ${ }^{6}$, P. Tsopelas ${ }^{41}$, N. Tuning ${ }^{41}$, M. Ubeda Garcia ${ }^{38}$, A. Ukleja ${ }^{28}$, A. Ustyuzhanin ${ }^{63}$, U. Uwer ${ }^{11}$, V. Vagnoni ${ }^{14}$, G. Valenti ${ }^{14}$, A. Vallier ${ }^{7}$, R. Vazquez Gomez ${ }^{18}$, P. Vazquez Regueiro ${ }^{37}$, C. Vázquez Sierra ${ }^{37}$, S. Vecchi ${ }^{16}$, J.J. Velthuis ${ }^{46}$, M. Veltri ${ }^{17, h}$, G. Veneziano ${ }^{39}$, M. Vesterinen ${ }^{11}$, B. Viaud ${ }^{7}$, D. Vieira ${ }^{2}$, M. Vieites Diaz ${ }^{37}$, X. Vilasis-Cardona ${ }^{36, p}$, A. Vollhardt ${ }^{40}$, D. Volyanskyy ${ }^{10}$, D. Voong ${ }^{46}$, A. Vorobyev ${ }^{30}$, V. Vorobyev ${ }^{34}$, C. Vo β^{62}, H. Voss ${ }^{10}$, J.A. de Vries ${ }^{41}$, R. Waldi ${ }^{62}$, C. Wallace ${ }^{48}$, R. Wallace ${ }^{12}$, J. Walsh ${ }^{23}$, S. Wandernoth ${ }^{11}$, J. Wang ${ }^{59}$, D.R. Ward ${ }^{47}$, N.K. Watson ${ }^{45}$, D. Websdale ${ }^{53}$, M. Whitehead ${ }^{48}$, J. Wicht ${ }^{38}$, D. Wiedner ${ }^{11}$, G. Wilkinson ${ }^{55}$, M.P. Williams ${ }^{45}$, M. Williams ${ }^{56}$, F.F. Wilson ${ }^{49}$, J. Wimberley ${ }^{58}$, J. Wishahi ${ }^{9}$, W. Wislicki ${ }^{28}$, M. Witek ${ }^{26}$, G. Wormser ${ }^{7}$, S.A. Wotton ${ }^{47}$, S. Wright ${ }^{47}$, S. Wu ${ }^{3}$, K. Wyllie ${ }^{38}$, Y. Xie ${ }^{61}$, Z. Xing ${ }^{59}$, Z. Xu ${ }^{39}$, Z. Yang ${ }^{3}$, X. Yuan ${ }^{3}$, O. Yushchenko ${ }^{35}$, M. Zangoli ${ }^{14}$, M. Zavertyaev ${ }^{10, b}$, L. Zhang ${ }^{59}$, W.C. Zhang ${ }^{12}$, Y. Zhang ${ }^{3}$, A. Zhelezov ${ }^{11}$, A. Zhokhov ${ }^{31}$, L. Zhong ${ }^{3}$, A. Zvyagin ${ }^{38}$.
${ }^{1}$ Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
${ }^{2}$ Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
${ }^{3}$ Center for High Energy Physics, Tsinghua University, Beijing, China
${ }^{4}$ LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux, France
${ }^{5}$ Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
${ }^{6}$ CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
${ }^{7}$ LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
${ }^{8}$ LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France
${ }^{9}$ Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
${ }^{10}$ Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
${ }^{11}$ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
${ }^{12}$ School of Physics, University College Dublin, Dublin, Ireland
${ }^{13}$ Sezione INFN di Bari, Bari, Italy
${ }^{14}$ Sezione INFN di Bologna, Bologna, Italy
${ }^{15}$ Sezione INFN di Cagliari, Cagliari, Italy
${ }^{16}$ Sezione INFN di Ferrara, Ferrara, Italy
${ }^{17}$ Sezione INFN di Firenze, Firenze, Italy
${ }^{18}$ Laboratori Nazionali dell'INFN di Frascati, Frascati, Italy
${ }^{19}$ Sezione INFN di Genova, Genova, Italy
${ }^{20}$ Sezione INFN di Milano Bicocca, Milano, Italy
${ }^{21}$ Sezione INFN di Milano, Milano, Italy
${ }^{22}$ Sezione INFN di Padova, Padova, Italy
${ }^{23}$ Sezione INFN di Pisa, Pisa, Italy
${ }^{24}$ Sezione INFN di Roma Tor Vergata, Roma, Italy
${ }^{25}$ Sezione INFN di Roma La Sapienza, Roma, Italy
${ }^{26}$ Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
${ }^{27}$ AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
${ }^{28}$ National Center for Nuclear Research (NCBJ), Warsaw, Poland
${ }^{29}$ Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
${ }^{30}$ Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
${ }^{31}$ Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
${ }^{32}$ Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
${ }^{33}$ Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
${ }^{34}$ Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
${ }^{35}$ Institute for High Energy Physics (IHEP), Protvino, Russia
${ }^{36}$ Universitat de Barcelona, Barcelona, Spain
${ }^{37}$ Universidad de Santiago de Compostela, Santiago de Compostela, Spain
${ }^{38}$ European Organization for Nuclear Research (CERN), Geneva, Switzerland
${ }^{39}$ Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
${ }^{40}$ Physik-Institut, Universität Zürich, Zürich, Switzerland
${ }^{41}$ Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
${ }^{42}$ Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
${ }^{43}$ NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
${ }^{44}$ Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
${ }^{45}$ University of Birmingham, Birmingham, United Kingdom
${ }^{46}$ H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
${ }^{47}$ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
${ }^{48}$ Department of Physics, University of Warwick, Coventry, United Kingdom
${ }^{49}$ STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
${ }^{50}$ School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
${ }^{51}$ School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
${ }^{52}$ Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
${ }^{53}$ Imperial College London, London, United Kingdom
${ }^{54}$ School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
${ }^{55}$ Department of Physics, University of Oxford, Oxford, United Kingdom
${ }^{56}$ Massachusetts Institute of Technology, Cambridge, MA, United States
${ }^{57}$ University of Cincinnati, Cincinnati, OH, United States
${ }^{58}$ University of Maryland, College Park, MD, United States
${ }^{59}$ Syracuse University, Syracuse, NY, United States
${ }^{60}$ Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to ${ }^{2}$
${ }^{61}$ Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China, associated to ${ }^{3}$
${ }^{62}$ Institut für Physik, Universität Rostock, Rostock, Germany, associated to ${ }^{11}$
${ }^{63}$ National Research Centre Kurchatov Institute, Moscow, Russia, associated to ${ }^{31}$
${ }^{64}$ Instituto de Fisica Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain, associated to 36
${ }^{65}$ KVI - University of Groningen, Groningen, The Netherlands, associated to ${ }^{41}$
${ }^{66}$ Celal Bayar University, Manisa, Turkey, associated to ${ }^{38}$
${ }^{a}$ Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
${ }^{b}$ P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia ${ }^{c}$ Università di Bari, Bari, Italy
${ }^{d}$ Università di Bologna, Bologna, Italy
${ }^{e}$ Università di Cagliari, Cagliari, Italy
${ }^{f}$ Università di Ferrara, Ferrara, Italy
${ }^{g}$ Università di Firenze, Firenze, Italy
${ }^{h}$ Università di Urbino, Urbino, Italy
${ }^{i}$ Università di Modena e Reggio Emilia, Modena, Italy
${ }^{j}$ Università di Genova, Genova, Italy
${ }^{k}$ Università di Milano Bicocca, Milano, Italy
${ }^{l}$ Università di Roma Tor Vergata, Roma, Italy
${ }^{m}$ Università di Roma La Sapienza, Roma, Italy
${ }^{n}$ Università della Basilicata, Potenza, Italy
${ }^{\circ}$ AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
${ }^{p}$ LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
${ }^{q}$ Hanoi University of Science, Hanoi, Viet Nam
${ }^{r}$ Università di Padova, Padova, Italy
${ }^{s}$ Università di Pisa, Pisa, Italy
${ }^{t}$ Scuola Normale Superiore, Pisa, Italy
${ }^{u}$ Università degli Studi di Milano, Milano, Italy

Over the last two decades great progress has been made in understanding the nature of hadrons containing beauty quarks. A number of theoretical tools have been developed to describe their decays. One of them, the heavy quark expansion (HQE) [1-8], expresses the decay widths as an expansion in powers of $\Lambda_{\mathrm{QCD}} / m_{b}$, where Λ_{QCD} is the energy scale at which the strong coupling constant becomes large, and m_{b} is the b-quark mass. At leading order in the HQE, all weakly decaying b hadrons (excluding those containing charm quarks) have the same lifetime, and differences enter only at order $\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)^{2}$. In the baryon sector, one expects for the lifetimes $\tau\left(\Xi_{b}^{0}\right) \approx \tau\left(\Lambda_{b}^{0}\right)[8]$ and $\tau\left(\Xi_{b}^{0}\right) / \tau\left(\Xi_{b}^{-}\right)=$ 0.95 ± 0.06 [9. 10]. Precise measurements of the Ξ_{b}^{0} and Ξ_{b}^{-}lifetimes would put bounds on the magnitude of the higher order terms in the HQE. A number of approaches exist to predict the b-baryon masses $[11-19]$. As predictions for the masses span a large range, more precise mass measurements will help to refine these models.

Hadron collider experiments have collected large samples of b-baryon decays, which have enabled increasingly precise measurements of their masses and lifetimes [20 25 . These advances include 1% precision on the lifetime of the Λ_{b}^{0} baryon [20] and $0.3 \mathrm{MeV} / c^{2}$ uncertainty on its mass [22]. Progress has also been made on improving the precision on the masses of the $\Sigma_{b}^{ \pm}[26], \Xi_{b}^{0}[27-29], \Xi_{b}^{-}[26,30]$ and $\Omega_{b}^{-}[26,30]$ baryons. The strangebeauty baryon measurements are still limited by small sample sizes owing to their low production rates, and either low detection efficiency or small branching fractions.

In this Letter, we present the first measurement of the Ξ_{b}^{0} lifetime and report the most precise measurement of its mass, using a sample of about $3800 \Xi_{b}^{0} \rightarrow \Xi_{c}^{+} \pi^{-}, \Xi_{c}^{+} \rightarrow$ $p K^{-} \pi^{+}$signal decays. Unless otherwise noted, charge conjugate processes are implied throughout. The $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}, \Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}$decay is used for normalization, as it has the same final state, and is kinematically very similar. The ratio of Ξ_{b}^{0} to Λ_{b}^{0} baryon production rates, and its dependence on pseudorapidity, η, and transverse momentum, p_{T}, are also presented. We also use the $\Xi_{c}^{+} \rightarrow p K^{-} \pi^{+}$and $\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}$signals to make the most precise measurement of the Ξ_{c}^{+}mass to date. In what follows, we use $X_{b}\left(X_{c}\right)$ to refer to either a $\Xi_{b}^{0}\left(\Xi_{c}^{+}\right)$or $\Lambda_{b}^{0}\left(\Lambda_{c}^{+}\right)$baryon.

The measurements use proton-proton ($p p$) collision data samples collected by the LHCb experiment corresponding to an integrated luminosity of $3 \mathrm{fb}^{-1}$, of which $1 \mathrm{fb}^{-1}$ was recorded at a center-of-mass energy of 7 TeV and $2 \mathrm{fb}^{-1}$ at 8 TeV . The LHCb detector [31] is a single-arm forward spectrometer covering the pseudorapidity range $2<\eta<5$, designed for the study of particles containing b or c quarks. The detector includes a highprecision tracking system that provides a momentum measurement with precision of about 0.5% from $2-100 \mathrm{GeV} / c$ and impact parameter (IP) resolution of $20 \mu \mathrm{~m}$ for particles with large p_{T}. Ring-imaging Cherenkov detectors [32] are used to distinguish charged hadrons. Photon, electron and hadron candidates are identified using a calorimeter system, followed by a set of detectors to identify muons [33].

The trigger [34] consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction [34, 35]. About 57% of the recorded X_{b} events are triggered at the hardware level by one or more of the final state particles in the signal X_{b} decay. The remaining 43% are triggered only on other activity in the event. We refer to these two classes of events
as triggered on signal (TOS) and triggered independently of signal (TIS). The software trigger requires a two-, three- or four-track secondary vertex with a large sum of the transverse momentum of the particles and a significant displacement from the primary $p p$ interaction vertices (PVs). At least one particle should have $p_{\mathrm{T}}>1.7 \mathrm{GeV} / c$ and χ_{IP}^{2} with respect to any primary interaction greater than 16 , where χ_{IP}^{2} is defined as the difference in χ^{2} of a given PV fitted with and without the considered particle included. The signal candidates are required to pass a multivariate software trigger selection algorithm 35].

Proton-proton collisions are simulated using Pythia [36] with a specific LHCb configuration [37]. Decays of hadronic particles are described by EvtGen [38], in which final state radiation is generated using Рнотоs [39]. The interaction of the generated particles with the detector and its response are implemented using the Geant4 toolkit [40] as described in Ref. 41.

Candidate X_{b} decays are reconstructed by combining in a kinematic fit selected $X_{c} \rightarrow$ $p K^{-} \pi^{+}$candidates with a π^{-}candidate (referred to as the bachelor). Each X_{b} candidate is associated to the PV with the smallest χ_{IP}^{2}. The X_{c} daughters are required to have $p_{\mathrm{T}}>100 \mathrm{MeV} / c$, and the bachelor pion is required to have $p_{\mathrm{T}}>500 \mathrm{MeV} / c$. To improve the signal purity, all four final state particles are required to be significantly displaced from the PV and pass particle identification (PID) requirements. The PID requirements on the X_{c} daughter particles have an efficiency of 74%, while reducing the combinatorial background by a factor of four. The PID requirements on the bachelor pion are 98% efficient, and remove about 60% of the cross-feed from $X_{b} \rightarrow X_{c} K^{-}$decays. Crossfeed from misidentified $D_{(s)}^{+} \rightarrow K^{+} K^{-} \pi^{+}, D^{*+} \rightarrow D^{0}\left(K^{+} K^{-}\right) \pi^{+}$, and $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$ decays is removed by requiring either the mass under these alternate decay hypotheses to be inconsistent with the known $D_{(s)}^{(*)+}$ masses [42], or that the candidate satisfy more stringent PID requirements. The efficiency of these vetoes is about 98% and they reject 28% of the background. The X_{c} candidate is required to be within $20 \mathrm{MeV} / c^{2}$ of the nominal X_{c} mass 42.

To further improve the signal-to-background ratio, a boosted decision tree (BDT) [43, 44 algorithm using eight input variables is employed. Three variables from the X_{b} candidate are used, χ_{IP}^{2}, the vertex fit χ_{vtx}^{2}, and the χ_{VS}^{2}, which is the increase in χ^{2} of the PV fit when the X_{b} is forced to have zero lifetime relative to the nominal fit. For the X_{c} baryon, we use the χ_{IP}^{2}, and amongst its daughters, we take the minimum p_{T}, the smallest χ_{IP}^{2}, and the largest distance between any pair of daughter particles. Lastly, the χ_{IP}^{2} of the bachelor π^{-}is used. The BDT is trained using simulated signal decays to represent the signal and candidates from the high X_{b} mass region (beyond the fit region) to describe the background distributions. A selection is applied that provides 97% signal efficiency while rejecting about 50% of the combinatorial background with respect to all previously applied selections.

For each X_{b} candidate, the mass is recomputed using vertex constraints to improve the momentum resolution; X_{c} mass constraints are not used since the Ξ_{c}^{+}mass is not known to sufficient precision. The resulting X_{b} mass spectra are simultaneously fitted to the sum of a signal component and three background contributions. The X_{b} signal shape is parameterized as the sum of two Crystal Ball (CB) functions [45], with a common mean.

Figure 1: Invariant mass spectrum for (left) $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}$and (right) $\Xi_{b}^{0} \rightarrow \Xi_{c}^{+} \pi^{-}$candidates along with the projections of the fit.

The shape parameters are freely varied in the fit to data. The Λ_{b}^{0} and Ξ_{b}^{0} signal shape parameters are common except for their means and widths. The Ξ_{b}^{0} widths are fixed to be 0.6% larger than those for the Λ_{b}^{0}, based on simulation.

The main background sources are misidentified $X_{b} \rightarrow X_{c} K^{-}$decays, partially reconstructed $X_{b} \rightarrow X_{c} \rho^{-}$and $\Lambda_{b}^{0} \rightarrow \Sigma_{c}^{+} \pi^{-}$decays, and combinatorial background. The $X_{b} \rightarrow X_{c} K^{-}$background shape is obtained from simulated decays that are weighted according to PID misidentification rates obtained from $D^{*+} \rightarrow D^{0}\left(K^{-} \pi^{+}\right) \pi^{+}$calibration data. The $X_{b} \rightarrow X_{c} K^{-}$yield is fixed to be 3.1% of the $X_{b} \rightarrow X_{c} \pi^{-}$signal yield, which is the product of the misidentification rate of 42% and the ratio of branching fractions, $\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} K^{-}\right) / \mathcal{B}\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}\right)=0.0731 \pm 0.0023$ [27]. The assumed equality of this ratio for Ξ_{b}^{0} and Λ_{b}^{0} is considered as a source of systematic uncertainty. The partially reconstructed backgrounds are modeled empirically using an ARGUS [46] function, convolved with a Gaussian shape; all of its shape parameters are freely varied in the fit. The combinatorial background shape is described using an exponential function with a freely varied shape parameter.

The results of the simultaneous binned extended maximum likelihood fits are shown in Fig. 1. Peaking backgrounds from charmless final states are investigated using the X_{c} sidebands and are found to be negligible. We observe (180.5 ± 0.5) $\times 10^{3} \Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}$and $3775 \pm 71 \Xi_{b}^{0} \rightarrow \Xi_{c}^{+} \pi^{-}$signal decays. The mass difference is determined to be

$$
\Delta M_{X_{b}} \equiv M\left(\Xi_{b}^{0}\right)-M\left(\Lambda_{b}^{0}\right)=172.44 \pm 0.39(\text { stat }) \mathrm{MeV} / c^{2} .
$$

The data are also used to make the first determination of the relative lifetime $\tau\left(\Xi_{b}^{0}\right) / \tau\left(\Lambda_{b}^{0}\right)$. This is performed by fitting the efficiency-corrected ratio of yields, $N_{\text {cor }}\left(\Xi_{b}^{0}\right) / N_{\text {cor }}\left(\Lambda_{b}^{0}\right)$, as a function of decay time to an exponential function, $e^{\beta t}$. The

Figure 2: Efficiency-corrected yield ratio of $\Xi_{b}^{0} \rightarrow \Xi_{c}^{+} \pi^{-}$relative to $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}$decays in bins of decay time. A fit using an exponential function is shown. The uncertainties are statistical only.
fitted value of β thus determines $1 / \tau_{\Lambda_{b}^{0}}-1 / \tau_{\Xi_{b}^{0}}$. Since the Λ_{b}^{0} lifetime is known to high precision, $\tau\left(\Xi_{b}^{0}\right)$ is readily obtained. The data are binned in 0.5 ps bins from $0-6 \mathrm{ps}$, and 1 ps bins from 7 to 9 ps . The same fit as described above for the full sample is used to fit the mass spectra in each time bin. The signal and partially-reconstructed background shapes are fixed to the values from the fit to the full data sample, since they do not change with decay time, but the combinatorial background shape is freely varied in each time bin fit.

The measured yield ratio in each time bin is corrected by the relative efficiency, $\epsilon\left(\Lambda_{b}^{0}\right) / \epsilon\left(\Xi_{b}^{0}\right)$, as obtained from simulated decays. This ratio is consistent with a constant value of about 0.93 , except for the $0.0-0.5 \mathrm{ps}$ bin, which has a value of about 0.7 . This lower value is expected due to the differing lifetimes, $\tau\left(\Xi_{c}^{+}\right) \approx 0.45 \mathrm{ps} \gg \tau\left(\Lambda_{c}^{+}\right) \approx 0.2 \mathrm{ps}$, and the $\chi_{\text {IP }}^{2}$ requirements in the trigger and offline selections. The 7% overall lower efficiency for the Λ_{b}^{0} mode is due to the larger momenta of the daughters in the Ξ_{b}^{0} decay.

The efficiency-corrected yield ratio is shown in Fig. 2, along with the fit to an exponential function. The points are placed at the weighted average time value within each bin, assuming an exponential distribution with lifetime equal to $\tau\left(\Lambda_{b}^{0}\right)$. The bias due to this assumption is negligible. From the fit, we find $\beta=(0.40 \pm 1.21) \times 10^{-2} \mathrm{ps}^{-1}$. Using the measured Λ_{b}^{0} lifetime from LHCb of $1.468 \pm 0.009 \pm 0.008 \mathrm{ps}$ [20], we obtain

$$
\frac{\tau_{\Xi_{b}^{0}}}{\tau_{\Lambda_{b}^{0}}}=\frac{1}{1-\beta \tau_{\Lambda_{b}^{0}}}=1.006 \pm 0.018 \text { (stat) }
$$

consistent with equal lifetimes of the Ξ_{b}^{0} and Λ_{b}^{0} baryons.
We have also investigated the relative production rates of Ξ_{b}^{0} and Λ_{b}^{0} baryons as functions of p_{T} and η. The p_{T} bin boundaries are $0,4,6,8,10,12,16,20$, up to a maximum of $30 \mathrm{GeV} / c$, and the η bins are each 0.5 units wide ranging from 2 to 5 . The efficiency-corrected yield ratios are shown in Fig. 3. A smooth change in the relative production rates, at about the $10-20 \%$ level, is observed. Since the p_{T} dependence of Ξ_{b}^{0}

Figure 3: Efficiency-corrected yield ratio of $\Xi_{b}^{0} \rightarrow \Xi_{c}^{+} \pi^{-}$relative to $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}$decays as functions of (left) p_{T} and (right) pseudorapidity, η. The points are positioned along the horizontal axis at the weighted average value within each bin. The uncertainties are statistical only.

Figure 4: Distributions of the $p K^{-} \pi^{+}$invariant mass for (left) Λ_{c}^{+}and (right) Ξ_{c}^{+}candidates along with the projections of the fit.
and Λ_{b}^{0} production are similar, this implies that the steep p_{T} dependence of Λ_{b}^{0} baryon to B^{0} meson production measured in Ref. [47] also occurs for Ξ_{b}^{0} baryons.

The large sample of $\Xi_{b}^{0} \rightarrow \Xi_{c}^{+} \pi^{-}$decays is exploited to measure the Ξ_{c}^{+}mass. Signal X_{b} candidates within $50 \mathrm{MeV} / c^{2}$ of their respective peak values are selected, and a simultaneous fit to the Λ_{c}^{+}and Ξ_{c}^{+}mass spectra is performed. For this measurement, we remove the $20 \mathrm{MeV} / c^{2}$ restriction on the X_{c} mass. The sum of two CB functions is used to describe the signal and an exponential shape describes the background. The signal shape parameters are common, except for their means and widths. The larger Ξ_{c}^{+}resolution is due to the greater energy release in the decay. The mass distributions and the results of the fit are shown in Fig. 4. The fitted mass difference is

$$
\Delta M_{X_{c}} \equiv M\left(\Xi_{c}^{+}\right)-M\left(\Lambda_{c}^{+}\right)=181.51 \pm 0.14 \text { (stat) } \mathrm{MeV} / c^{2} .
$$

The results presented are all ratio or difference measurements, reducing their sensitivity to most potential biases. A summary of the systematic uncertainties is given in Table 1. Unless otherwise noted, systematic uncertainties are assigned by taking the difference between the nominal result and the result after a particular variation. In all measurements, possible dependencies on the signal and background models are investigated by exploring alternative shapes and fit ranges (for mass differences). Uncertainties are combined by summing all sources of uncertainty in quadrature.

For the mass difference measurements, common and separate variations in the fraction of $X_{b} \rightarrow X_{c} K^{-}$by $\pm 1 \%$ (absolute) are used to assign the cross-feed uncertainty. Shifts in the momentum scale of $\pm 0.03 \%$ [48] are applied coherently to both signal and normalization mode to determine the momentum scale uncertainty. Validation of the procedure on simulated decays shows no biases on the results. The uncertainty due to the limited size of those simulated samples are taken as a systematic error.

For the relative lifetime measurement, the relative acceptance uncertainty is dominated by a potential bias in the first time bin. The uncertainty is assessed by dropping this bin from the fit. Potential bias due to the BDT's usage of χ_{IP}^{2} information is examined by correcting the data using simulated efficiencies with a tighter BDT requirement. The smaller lifetime of the Λ_{b}^{0} baryon assumed in the simulation (1.426 ps) has a negligible impact on the measured lifetime ratio. Lastly, the finite size of the simulated samples is also taken into account.

For the relative production rate, the signal and background shape uncertainties, and the $X_{b} \rightarrow X_{c} K^{-}$cross-feed uncertainties are treated in the same way as above. For the relative acceptance we include contributions from (i) the geometric acceptance by comparing Pythia 6 and Pythia 8; (ii) the X_{c} Dalitz structure, by reweighting the efficiencies according to the distributions seen in data, and (iii) the lower efficiency in the $0-0.5 \mathrm{ps}$ bin by requiring $\tau\left(X_{b}\right)>0.5 \mathrm{ps}$. The uncertainty in the relative trigger efficiency is estimated by taking the difference in the average trigger efficiency, when using the different TOS/TIS fractions in data and simulation. A correction and an uncertainty due to the $20 \mathrm{MeV} / c^{2}$ mass range on X_{c} is obtained using the results of the X_{c} mass fits. The results for the 7 TeV and 8 TeV data differ by about 1% and are statistically compatible with each other. In summary, a $3 \mathrm{fb}^{-1} p p$ collision data set is used to make the first measurement of the Ξ_{b}^{0} lifetime. The relative and absolute lifetimes are

$$
\begin{aligned}
& \frac{\tau_{\Xi_{b}^{0}}}{\tau_{\Lambda_{b}^{0}}}=1.006 \pm 0.018(\text { stat }) \pm 0.010(\text { syst }) \\
& \tau_{\Xi_{b}^{0}}=1.477 \pm 0.026(\text { stat }) \pm 0.014(\text { syst }) \pm 0.013\left(\Lambda_{b}^{0}\right) \mathrm{ps}
\end{aligned}
$$

where the last uncertainty in $\tau_{\Xi_{b}^{0}}$ is due to the precision of $\tau_{\Lambda_{b}^{0}}$ [20]. This establishes that the Ξ_{b}^{0} and Λ_{b}^{0} lifetimes are equal to within 2%. We also make the most precise measurements of the mass difference and Ξ_{b}^{0} mass as

$$
\begin{aligned}
M\left(\Xi_{b}^{0}\right)-M\left(\Lambda_{b}^{0}\right) & =172.44 \pm 0.39 \text { (stat) } \pm 0.17(\text { syst }) \mathrm{MeV} / c^{2} \\
M\left(\Xi_{b}^{0}\right) & =5791.80 \pm 0.39 \text { (stat) } \pm 0.17 \text { (syst) } \pm 0.26\left(\Lambda_{b}^{0}\right) \mathrm{MeV} / c^{2}
\end{aligned}
$$

Table 1: Summary of systematic uncertainties on the reported measurements. Below, PR represents the relative uncertainty on the production ratio measurement.

Source	$\Delta M_{X_{b}}$ $\left(\mathrm{MeV} / c^{2}\right)$	$\Delta M_{X_{c}}$ $\left(\mathrm{MeV} / c^{2}\right)$	$\tau\left(\Xi_{b}^{0}\right) / \tau\left(\Lambda_{b}^{0}\right)$ $(\%)$	PR
Signal \& back. model	0.06	0.05	0.1	0.5
$X_{c} K^{-}$reflection	0.02	-	-	0.3
Momentum scale	0.06	0.06	-	-
Sim. sample size	0.14	0.07	0.9	0.6
Detection efficiency	-	-	0.4	1.0
BDT requirement	-	-	0.2	-
Trigger	-	-	-	1.3
X_{c} mass range	-	-	-	0.3
Total	0.17	0.10	1.0	1.9

where we have used $M\left(\Lambda_{b}^{0}\right)=5619.36 \pm 0.26 \mathrm{MeV} / c^{2}[22]$. The mass and mass difference are consistent with, and about five times more precise than the value recently obtained in Ref. 27.

We also measure the mass difference $M\left(\Xi_{c}^{+}\right)-M\left(\Lambda_{c}^{+}\right)$, and the corresponding Ξ_{c}^{+} mass, yielding

$$
\begin{aligned}
M\left(\Xi_{c}^{+}\right)-M\left(\Lambda_{c}^{+}\right) & =181.51 \pm 0.14(\text { stat }) \pm 0.10(\text { syst }) \mathrm{MeV} / c^{2} \\
M\left(\Xi_{c}^{+}\right) & =2467.97 \pm 0.14(\text { stat }) \pm 0.10(\text { syst }) \pm 0.14\left(\Lambda_{c}^{+}\right) \mathrm{MeV} / c^{2}
\end{aligned}
$$

where $M\left(\Lambda_{c}^{+}\right)=2286.46 \pm 0.14 \mathrm{MeV} / c^{2}$ [42 is used. These values are consistent with and at least three times more precise than other measurements 29, 42].

Furthermore, the relative yield of Ξ_{b}^{0} and Λ_{b}^{0} baryons as functions of p_{T} and η are measured, and found to smoothly vary by about 20%. The relative production rate inside the LHCb acceptance is measured to be

$$
\frac{f_{\Xi_{b}^{0}}}{f_{\Lambda_{b}^{0}}} \cdot \frac{\mathcal{B}\left(\Xi_{b}^{0} \rightarrow \Xi_{c}^{+} \pi^{-}\right)}{\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}\right)} \cdot \frac{\mathcal{B}\left(\Xi_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)}{\mathcal{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)}=(1.88 \pm 0.04 \pm 0.03) \times 10^{-2}
$$

The first fraction is the ratio of fragmentation fractions, $b \rightarrow \Xi_{b}^{0}$ relative to $b \rightarrow \Lambda_{b}^{0}$, and the remainder are branching fractions. Assuming naive Cabibbo factors [49], namely $\mathcal{B}\left(\Xi_{b}^{0} \rightarrow \Xi_{c}^{+} \pi^{-}\right) / \mathcal{B}\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}\right) \approx 1$ and $\mathcal{B}\left(\Xi_{c}^{+} \rightarrow p K^{-} \pi^{+}\right) / \mathcal{B}\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right) \approx 0.1$, one obtains $\frac{f_{\Xi_{b}^{0}}}{f_{\Lambda_{b}^{0}}} \approx 0.2$. The results presented in this paper provide stringent tests of models that predict the properties of beauty hadrons.

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 and Region Auvergne (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); SCSR (Poland); MEN/IFA (Romania); MinES, Rosatom, RFBR and NRC "Kurchatov Institute" (Russia); MinECo, XuntaGal and GENCAT (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC and the Royal Society (United Kingdom); NSF (USA). We also acknowledge the support received from EPLANET, Marie Curie Actions and the ERC under FP7. The Tier1 computing centres are supported by IN2P3 (France), KIT and BMBF (Germany), INFN (Italy), NWO and SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom). We are indebted to the communities behind the multiple open source software packages on which we depend. We are also thankful for the computing resources and the access to software R\&D tools provided by Yandex LLC (Russia).

References

[1] V. A. Khoze and M. A. Shifman, Heavy quarks, Sov. Phys. Usp. 26 (1983) 387.
[2] I. I. Bigi and N. Uraltsev, Gluonic enhancements in non-spectator beauty decays: An inclusive mirage though an exclusive possibility, Phys. Lett. B280 (1992) 271.
[3] I. I. Y. Bigi, N. G. Uraltsev, and A. I. Vainshtein, Nonperturbative corrections to inclusive beauty and charm decays: QCD versus phenomenological models, Phys. Lett. B293 (1992) 430, arXiv:hep-ph/9207214.
[4] B. Blok and M. A. Shifman, The rule of discarding $1 / N_{c}$ in inclusive weak decays. 1., Nucl. Phys. B399 (1993) 441, arXiv:hep-ph/9207236.
[5] B. Blok and M. A. Shifman, The rule of discarding $1 / N_{c}$ in inclusive weak decays. 2., Nucl. Phys. B399 (1993) 459, arXiv:hep-ph/9209289.
[6] M. Neubert, B decays and the heavy quark expansion, Adv. Ser. Direct. High Energy Phys. 15 (1998) 239, arXiv: hep-ph/9702375.
[7] N. Uraltsev, Heavy quark expansion in beauty and its decays, arXiv:hep-ph/9804275.
[8] I. I. Y. Bigi, The QCD perspective on lifetimes of heavy flavor hadrons, arXiv:hep-ph/9508408.
[9] A. J. Lenz, Mixing and lifetimes of b-hadrons, AIP Conf. Proc. 1026 (2008) 36, arXiv:0802.0977.
[10] A. J. Lenz, Lifetimes and HQE, arXiv:1405.3601, invited contribution to the Kolya Uraltsev Memorial Book.
[11] D. Ebert, R. N. Faustov, and V. O. Galkin, Masses of heavy baryons in the relativistic quark model, Phys. Rev. D72 (2005) 034026, arXiv:hep-ph/0504112.
[12] N. Mathur, R. Lewis, and R. M. Woloshyn, Charmed and bottom baryons from lattice $N R Q C D$, Phys. Rev. D66 (2002) 014502, arXiv:hep-ph/0203253.
[13] X. Liu et al., Bottom baryons, Phys. Rev. D77 (2008) 014031, arXiv:0710.0123.
[14] E. E. Jenkins, Model-independent bottom baryon mass predictions in the $1 / N_{c}$ expansion, Phys. Rev. D77 (2008) 034012, arXiv:0712.0406.
[15] R. Roncaglia, D. B. Lichtenberg, and E. Predazzi, Predicting the masses of baryons containing one or two heavy quarks, Phys. Rev. D52 (1995) 1722, arXiv:hep-ph/9502251.
[16] M. Karliner, B. Keren-Zur, H. J. Lipkin, and J. L. Rosner, The quark model and b baryons, Annals Phys. 324 (2009) 2, arXiv:0804.1575.
[17] M. Karliner, Heavy quark spectroscopy and prediction of bottom baryon masses, Nucl. Phys. Proc. Suppl. 187 (2009) 21, arXiv:0806.4951.
[18] Z. Ghalenovi and A. Akbar Rajabi, Single charm and beauty baryon masses in the hypercentral approach, Eur. Phys. J. Plus 127 (2012) 141.
[19] J.-R. Zhang and M.-Q. Huang, Heavy baryon spectroscopy in $Q C D$, Phys. Rev. D78 (2008) 094015, arXiv:0811.3266.
[20] LHCb collaboration, R. Aaij et al., Precision measurement of the ratio of the Λ_{b}^{0} to \bar{B}^{0} lifetimes, arXiv:1402.6242, to appear in Phys. Lett. B.
[21] LHCb collaboration, R. Aaij et al., Measurements of the B^{+}, B^{0}, B_{s}^{0} meson and Λ_{b}^{0} baryon lifetimes, JHEP 04 (2014) 114, arXiv:1402.2554.
[22] LHCb collaboration, R. Aaij et al., Study of beauty hadron decays into pairs of charm hadrons, Phys. Rev. Lett. 112 (2014) 202001, arXiv:1403.3606.
[23] LHCb collaboration, R. Aaij et al., Measurement of the Ξ_{b}^{-}and Ω_{b}^{-}baryon lifetimes, arXiv:1405.1543, submitted to PLB.
[24] ATLAS collaboration, G. Aad et al., Measurement of the Λ_{b} lifetime and mass in the ATLAS experiment, Phys. Rev. D87 (2013) 032002, arXiv:1207. 2284.
[25] CMS collaboration, S. Chatrchyan et al., Measurement of the Λ_{b}^{0} lifetime in pp collisions at $\sqrt{s}=7 \mathrm{Te} V$, JHEP 07 (2013) 163, arXiv:1304.7495.
[26] CDF collaboration, T. Aaltonen et al., Measurement of the masses and widths of the bottom baryons $\Sigma_{b}^{ \pm}$and $\Sigma_{b}^{* \pm}$, Phys. Rev. D85 (2012) 092011, arXiv:1112.2808.
[27] LHCb collaboration, R. Aaij et al., Study of beauty baryon decays to $D^{0}{ }^{p} h^{-}$and $\Lambda_{c}^{+} h^{-}$final states, Phys. Rev. D89 (2014) 032001, arXiv:1311.4823.
[28] CDF collaboration, T. Aaltonen et al., Observation of the Ξ_{b}^{0} baryon, Phys. Rev. Lett. 107 (2011) 102001, arXiv:1107.4015.
[29] CDF collaboration, T. A. Aaltonen et al., Mass and lifetime measurements of bottom and charm baryons in p \bar{p} collisions at $\sqrt{s}=1.96$ TeV, Phys. Rev. D89 (2014) 072014 , arXiv:1403.8126.
[30] LHCb collaboration, R. Aaij et al., Measurements of the $\Lambda_{b}^{0}, \Xi_{b}^{-}$and Ω_{b}^{-}baryon masses, Phys. Rev. Lett. 110 (2013) 182001, arXiv:1302.1072.
[31] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3 (2008) S08005.
[32] M. Adinolfi et al., Performance of the LHCb RICH detector at the LHC, Eur. Phys. J. C73 (2013) 2431, arXiv:1211.6759.
[33] A. A. Alves Jr. et al., Performance of the LHCb muon system, JINST 8 (2013) P02022, arXiv:1211.1346.
[34] R. Aaij et al., The LHCb trigger and its performance in 2011, JINST 8 (2013) P04022, arXiv:1211.3055.
[35] V. V. Gligorov and M. Williams, Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree, JINST 8 (2013) P02013, arXiv:1210.6861.
[36] T. Sjöstrand, S. Mrenna, and P. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026, arXiv:hep-ph/0603175; T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852, arXiv:0710.3820.
[37] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, Nuclear Science Symposium Conference Record (NSS/MIC) IEEE (2010) 1155.
[38] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A462 (2001) 152.
[39] P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. J. C45 (2006) 97, arXiv:hep-ph/0506026.
[40] Geant4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270; Geant4 collaboration, S. Agostinelli et al., Geant4: a simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250.
[41] M. Clemencic et al., The LHCb simulation application, GaUss: design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023
[42] Particle Data Group, J. Beringer et al., Review of particle physics, Phys. Rev. D86 (2012) 010001, and 2013 partial update for the 2014 edition.
[43] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and regression trees, Wadsworth international group, Belmont, California, USA, 1984.
[44] R. E. Schapire and Y. Freund, A decision-theoretic generalization of on-line learning and an application to boosting, Jour. Comp. and Syst. Sc. 55 (1997) 119.
[45] T. Skwarnicki, A study of the radiative cascade transitions between the Upsilon-prime and Upsilon resonances, PhD thesis, Institute of Nuclear Physics, Krakow, 1986, DESY-F31-86-02.
[46] ARGUS collaboration, H. Albrecht et al., Measurement of the polarization in the decay $B \rightarrow J / \psi K^{*}$, Phys. Lett. B340 (1994) 217.
[47] LHCb collaboration, R. Aaij et al., Study of the kinematic dependences of Λ_{b}^{0} production in pp collisions and a measurement of the $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}$branching fraction, arXiv:1405.6842, submitted to JHEP.
[48] LHCb collaboration, R. Aaij et al., Precision measurements of D meson mass differences, JHEP 06 (2013) 065, arXiv: 1304.6865.
[49] N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531.

[^0]: ${ }^{\dagger}$ Authors are listed on the following pages.

