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Abstract

Simulations of gyrokinetic energetic ions interacting with the magneto-hydrodynamic (MHD)

Alfvén Eigenmodes are presented. The effect of the finite fast-ion orbit width and the finite fast-ion

gyroradius, the role of the equilibrium radial electric field, as well as the effect of anisotropic fast-

particle distribution functions (loss-cone and ICRH-type distributions), are studied in Wendelstein

7-X stellarator geometry using a combination of gyrokinetic particle-in-cell and reduced MHD

eigenvalue codes. A preliminary stability analysis of a HELIAS reactor configuration is undertaken.
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I. INTRODUCTION

Alfvén instabilities caused by energetic ions have been seen in many fusion experiments,

both in tokamak [1] and stellarator/heliotron [2, 3] devices. The associated physics has

extensively been studied theoretically in tokamak geometry [4–6]. In comparison to toka-

maks, there are many similarities in the properties of Alfvénic waves and fast particles in

stellarator geometry. There are, however, also discrepancies, which can be caused by the

difference in the magnetic shear, the lack of axisymmetry, the absence or smallness of a

net toroidal plasma current, more complicated particle orbits in stellarators etc. [7]. The

theoretical study of fast-particle destabilized Alfvénic instabilities in 3D geometry was pi-

oneered by Kolesnichenko from 2001 onwards [8, 9]. At that time, the physics related to

the fast-particle transport induced by the Alfvén waves in tokamak plasmas had already

been studied intensively. The interest in fast-ion-driven Alfvénic instabilities in 3D has in-

creased since the appearance of drift-optimized [10] stellarators, such as the Wendelstein

7-AS (W7-AS) [11], and large heliotrons such as the Large Helical Device (LHD) [12]. It

has become apparent that Alfvén modes may play an important role in burning stellarator

plasmas (e. g. in a HELIAS reactor [13, 14]). Recent interest has been motivated not only

by projections to stellarator reactor-relevant conditions but also by experimental findings of

unstable Toroidal Alfvén Eigenmodes (TAE) and Global Alfvén Eigenmodes (GAE) in LHD

[2] and in W7-AS [3]. The basic structure of the shear Alfvén spectrum in 3D and the most

important stellarator-specific global modes (such as the Mirror Alfvén Eigenmodes or Heli-

cal Alfvén Eigenmodes) were discussed in Ref. [8]. Reference [9] was dedicated to a study

of the relevant wave-particle resonances using a hybrid approach: Alfvén Eigenmodes were

computed in a fluid approximation; for the kinetic fast ions, the power-transfer integral was

evaluated analytically. The fast ions were treated in the zero-orbit-width approximation,

and the effect of trapped ions was neglected. A similar study has been undertaken for LHD

geometry in Ref. [15], and the effect of localized energetic ions on the Alfvénic stability in

optimized stellarators has been considered in Ref. [16].

Numerically, a number of tools have been developed to study fast-particle instabilities

in stellarators (see a comprehensive review in Ref. [7]). Most of these tools use a hybrid

fluid-kinetic approach. In this paper, we employ a hybrid version of the EUTERPE code

[17] to study the fast-particle destabilization of Alfvén Eigenmodes in stellarator plasmas.
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In this approach [18], the Alfvén Eigenmodes are computed using the eigenvalue solver CKA

[18, 19] (employing the ideal-MHD version of Ohm’s law). The resulting eigenmode struc-

ture and frequency are used when following the particles in the framework of the gyrokinetic

particle-in-cell code EUTERPE [17]. The power transfer can be evaluated during this pro-

cedure, which is then used to determine the linear growth rate of the mode [18]. Details

and benchmarks of the method will be published elsewhere. In this approach, we can nat-

urally include all the effects associated with the finite orbit width and the finite Larmor

radius of the fast ions. All kinds of trapped particles (helically-trapped, toroidally-trapped,

transitioning etc.) are consistently included in the description as well as the effect of the

equilibrium radial electric field. The real magnetic geometry (computed numerically with

the VMEC code [20]) is accounted for. One can choose arbitrary fast-particle background

distribution functions: a conventional Maxwellian, slowing-down, beam-like, loss-cone, or

more complicated (e. g. realistic-NBI) distribution functions. We study the aforementioned

effects in context of Alfvén Eigenmode stability for the drift-optimized quasi-omnigeneous

configuration W7-X [21, 22]. Also, a preliminary analysis of the Alfvénic stability is carried

out for a stellarator reactor (HELIAS [14]) configuration.

The structure of our paper is as follows. In Sec. II, the basic equations and their numerical

treatment are discussed. The simulations are presented in Sec. III. Our conclusions are

summarised in Sec. IV.

II. BASIC EQUATIONS AND NUMERICAL APPROACH

We use the linearised version of the three-dimensional δf PIC-code EUTERPE [17].

The code is electromagnetic and can treat all particle species (ions, electrons, energetic

particles, impurities etc.) kinetically. In the hybrid approach [18], we solve the gyrokinetic

equation for the fast ions employing the p‖-formulation (see Ref. [23] for details). The fast-

particle distribution function is split into a background part and a small time-dependent

perturbation, f = F0 + δf . The background distribution function can be chosen freely. In

the following, we consider a number of background distribution functions, both isotropic

and anisotropic ones (see Sec. III for details).

If the amplitude of the field perturbation is assumed to be small (δfs/F0s ≪ 1), the
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first-order perturbed distribution function is found from the linearized Vlasov equation:

∂δf

∂t
+ Ṙ(0) · ∂δf

∂R
+ v̇

(0)
‖

∂δf

∂v‖
= − Ṙ(1) · ∂F0

∂R
− v̇

(1)
‖

∂F0

∂v‖
. (1)

Here, [Ṙ(0), v̇
(0)
‖ ] correspond to the unperturbed gyro-centre position and parallel velocity,

and [Ṙ(1), v̇
(1)
‖ ] are the perturbations of the particle trajectories proportional to the elec-

tromagnetic field fluctuations [shown in Eqs. (3)–(6) below]. The perturbed part of the

distribution function is discretized with markers:

δf(R, v‖, µ, t) =
Np
∑

ν=1

wν(t)δ(R−Rν)δ(v‖ − v‖ν)δ(µ− µν) , (2)

where Np is the number of markers, (Rν , v‖ν , µν) are the marker phase space coordinates

and wν is the weight of a marker. The equations of motion are

Ṙ(0) = v‖b
∗ +

1

qB∗
‖

b× (µ∇B + q∇Φ0) (3)

Ṙ(1) = − q

m
〈A‖〉b∗ +

1

B∗
‖

b×
(

∇〈φ〉 − v‖∇〈A‖〉
)

(4)

v̇
(0)
‖ = − 1

m

(

µ∇B + q∇Φ0

)

· b∗ (5)

v̇
(1)
‖ = − q

m

(

∇〈φ〉 − v‖∇〈A‖〉
)

· b∗ (6)

with φ and A‖ being the perturbed electrostatic and magnetic potentials, µ the magnetic

moment, m the mass of the particle, B∗
‖ = b · ∇ × A∗, b∗ = ∇ × A∗/B∗

‖ , A∗ = A +

(mv‖/q)b the so-called modified vector potential, A the magnetic potential corresponding

to the equilibrium magnetic field B = ∇×A, b = B/B the unit vector in the direction of

the equilibrium magnetic field, q the charge of the energetic ion, and Φ0 the electrostatic

potential corresponding to the background electric field (which is usually of neoclassical

nature [24]). The gyro-averaged potentials are defined as usual:

〈φ〉 =
∮

dθ

2π
φ(R+ ρ) , 〈A‖〉 =

∮

dθ

2π
A‖(R+ ρ) , (7)

where ρ is the gyroradius of the particle and θ is the gyro-phase. Numerically, the gyro-

averages are computed sampling a sufficient number of the gyro-points on the gyro-ring

around the gyro-centre position of the marker [25, 26].

The perturbed electrostatic and magnetic potentials are found from the reduced ideal-

MHD equations. The radial structure of the perturbed electrostatic potential and the fre-

quency of the global mode are obtained by numerically solving the eigenmode problem (the
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Alfvén-wave equation) in 3D stellarator geometry:

ω2∇ ·
(

1

v2A
∇⊥φ

)

+∇ ·
[

b∇2
⊥(b · ∇)φ

]

+∇ ·
[

b∇ ·
(

µ0j‖
B

b×∇φ
)]

− (8)

−∇ ·
(

2µ0

B2

[

(b×∇φ) · ∇p
]

(b× κ)
)

= 0

Here, vA is the Alfvén velocity, j‖ is the ambient parallel current, p is the background plasma

pressure and κ = (b ·∇)b is the magnetic field-line curvature (note that the parallel-current

and the magnetic-curvature corrections are usually small).

After the perturbed electrostatic potential φ has been obtained, the perturbed parallel

magnetic potential A‖ can be solved from the parallel component of Ohm’s law:

E‖ = −∇‖φ− ∂A‖

∂t
= 0 (9)

Numerically, the electrostatic and magnetic potentials are discretized with the finite-element

method (Ritz-Galerkin scheme):

φ(x) =
Ns
∑

l=1

φlΛl(x) , A‖(x) =
Ns
∑

l=1

alΛl(x) , (10)

where Λl(x) are finite elements (tensor products of B-splines [27, 28]), Ns is the total number

of the finite elements, φl and al are spline coefficients. Further details on the numerical

approach can be found in Refs. [17–19].

The purpose of the simulations in this paper is to compute the linear growth rate of the

eigenmode, which is given by the expression (see Ref. [18] for the derivation):

γ = − 1

2Wfield

dWfast

dt
(11)

with the “field energy” defined as follows (neglecting here the small corrections related to

the ambient pressure and the parallel current [18]):

Wfield =
1

2

∫

d3x

[

min0

B2
(∇⊥φ)

2 − 1

µ0
(∇⊥A‖)

2

]

(12)

and the “fast-particle power transfer” given by the expression:

dWfast

dt
= − qfast

∫

d6Z δf
[

Ṙ(0) · ∇
(

〈φ〉 − v‖〈A‖〉
)

+
1

m
〈A‖〉b∗ ·

(

µ∇B + q∇Φ0

)

]

(13)

Here, mi is the bulk-ion mass, n0 is the bulk-plasma density, qfast is the fast-particle charge,

and δf is the fast-particle distribution function. In our scheme, Wfield is precomputed on the
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grid when the simulation starts and the phase-space integral dWfast/dt must be computed on

each time step using the markers. The electrostatic and magnetic potentials do not evolve

self-consistently. Instead, the expressions of the form Φ̂AE(x) exp(i ωAE t + γ t) are used for

the fields with fixed fluid eigenfunction Φ̂AE(x) and fixed fluid eigenfrequency ωAE, both

resulting from an MHD calculation.

Since the power transfer dWfast/dt is a function of time, we compute the growth rate of the

eigenmode averaging Eq. (11) over a certain time interval. The average value is computed

after the simulation has evolved for some time. This way we can avoid the issues associated

with the initial noise and transient contributions to the wave-particle power transfer since

the mean value of Eq. (11) converges to the actual growth rate of the eigenmode in the

course of the simulation.

III. SIMULATIONS

A. General description

The simulations are performed in realistic stellarator magnetic geometry numerically cal-

culated by the VMEC code [20]. The impact of Finite fast-ion drift-Orbit Width (FOW) ef-

fects and Finite fast-ion Larmor Radius (FLR) effects [which enter through the gyro-average

of the perturbed field, see Eq. (7)] on the AE stability are considered as well as the role of

the background (e. g. neoclassical) radial electric field and the background (unperturbed)

fast-particle distribution function (e. g. anisotropy effects).

We consider a number of distribution functions, both isotropic and anisotropic ones. The

simplest case is a conventional Maxwellian with constant temperature and a radially varying

density (being the source of the free energy):

FM = n0(s)
(

m

2πT0

)3/2

exp

[

−
mv2‖
2T0

]

exp

[

− mv2⊥
2T0

]

(14)

Here, s is the normalised toroidal flux. The fast-ion density is as follows:

n0(s) = N0 exp
[

− κn∆n tanh
(

s− sn
∆n

)]

(15)

The shape of the density profile can be tailored by adjusting the parameters ∆n (the width of

the profile), sn (position of the maximal density gradient), and κn (inverse density gradient
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length). In addition to the spatial gradients, the free energy source can be associated with

an anisotropy of the velocity distribution function.

More realistic for fusion applications is the slowing-down distribution function given by

Fsd =
Sτs

4π(v3 + v3c )
Θ(v − vb) , vc =

(

niZ
2
i

ne

3π1/2me

4mi

)1/3

vthe (16)

Here, S is the fast-particle source (given usually by the rate of the fusion reaction), τs(s) is

the slowing-down time, vc(s) is the “critical velocity” [determined by the electron tempera-

ture profile Te(s)] above which the electron drag dominates over ion drag, and Θ(x) is the

Heaviside function with vb the “birth” velocity.

While the fusion-born alpha particles are well described by the isotropic slowing-down

distribution function, the fast ions generated by various heating methods (NBI or ICRH)

are usually characterised by an anisotropic distribution function. We will consider a few

examples of such distribution functions in Sec. III B.

B. TAE mode in W7-X geometry

We now consider W7-X geometry [21, 22]. The main parameters characterising the ge-

ometry are the rotational transform ι(s) shown in Fig. 1, the magnetic field at the axis

B0 = 2.66 T, the major radius R0 = 5.518 m, the minor radius ra = 0.496 m and the number

of periods Nper = 5 (reflecting the discrete symmetry of the stellarator). Both the bulk and

fast ions are taken to be hydrogen. The bulk plasma density nbulk = 1020 m−3 is assumed to

be flat. The bulk plasma temperature Ti = Te = 3 keV is flat, too. The bulk-plasma beta cor-

responding to the resulting flat bulk-plasma pressure is βbulk = 2µ0 nbulk(Ti+Te)/B
2
0 ≈ 0.034.

The density profile of the fast ions (which is the source of the free energy needed for the

TAE destabilisation) is given by Eq. (15) with the parameters N0 = 1017 m−3, ∆n = 0.2,

sn = 0.65, and κn = 3.0. These parameters correspond (very roughly) to the NBI W7-X

plasma. The magnetic field used corresponds to the high-mirror configuration. The re-

sulting shear Alfvén continuum is shown in Fig. 2. The Fourier spectrum of the Alfvénic

perturbations is

[φ,A‖] =
∑

m,n

[φmn, A‖mn] exp(imθ + inζ) (17)

with θ and ζ poloidal and toroidal angles, and m and n poloidal and toroidal mode numbers,

respectively. Due to the symmetry of the magnetic field [the discrete symmetry with the
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period number Nper = 5 and the stellarator symmetry (θ, ζ) −→ (− θ, − ζ)], this Fourier

spectrum splits into 1+ [Nper/2] = 3 linearly independent mode families [29] (corresponding

in W7-X e. g. to the toroidal mode numbers n = 0, 1, 2) where the geometry-related mode

couplings are allowed only within a single mode family (e. g. the mode with n = 0 couples

to the modes with n = 5, 10 . . ., but it does not interact linearly with the n = 1 mode). The

shear Alfvén continuum shown in Fig. 2 corresponds to n = ± 1 mode family. One sees

that a toroidicity-induced gap appears in the spectrum with a global eigenmode which has

its frequency inside the gap. This is a TAE mode with the toroidal mode number n = −6

and dominant poloidal mode numbers m = 6 and m = 7. The radial eigenmode structure

is shown in Fig. 3 [the effect of the ambient parallel current and plasma pressure has been

neglected in this calculation, see Eq. (8)]. One sees that, indeed, the mode is global and has

a characteristic TAE structure. The maximum of the mode is located, as usual in the TAE

context, at the resonant position satisfying k‖m + k‖m+1 = 0 (with m = 6 in the case shown

here). Note that there are also other TAE modes in the gap.

The simplest model for the fast-ion distribution function is a Maxwellian. In this case,

the velocity dependence of the distribution function (and the location of the wave-particle

resonances) is determined by a single quantity: the fast-ion temperature Tf . The dependence

of the mode growth rate on Tf at fixed fast-ion density N0 = 1017 m−3 resulting from the

hybrid-gyrokinetic simulations is shown in Fig. 4. First, one observes that the TAE mode

can indeed be destabilised in Wendelstein 7-X geometry. Second, one can see the stabilising

effects of finite orbit width (due to both the guiding-centre drifts and the gyro-motion of the

fast ions). For this purpose, simulations including the fast-ion FLR [keeping the gyro-average

in the equations of motion Eqs. (4) and (6)] are compared in Fig. 4 with the simulations

where only the guiding-centre drifts of the fast ions have been included (no FLR). In both

cases, the growth rate is bounded at high fast-ion temperatures. This effect is due to the

finite width of the guiding-centre orbits of the ions. In addition, the growth rate in the case

with the FLR effects included is smaller than in the case without the FLR effects (provided

the fast-ion temperature is not too small) indicating that the fast-ion FLR effects (caused

by their gyro-orbit) are stabilising with respect to the TAE mode, too. Such phenomena

have also been observed in the tokamak context (see e. g. Ref. [30] and the references cited

therein). In stellarators, the associated physics appears to be similar.

In Fig. 5, the growth rate of the same mode is plotted as the function of Tf at fixed
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fast-ion beta βf(s = 0.65) = 0.003 (for the bulk plasma, βbulk ≈ 0.034; it is a weak function

of s for the flat profiles considered here). Similarly to Fig. 4, the FOW and the FLR effects

can be observed in Fig. 5. But, in contrast to Fig. 4, the mode growth rate decreases faster

at high fast-ion temperatures (since the FOW/FLR stabilisation effect is not compensated

by the increase in βfast ∼ Tfast as is the case when the fast-ion density is fixed, see Fig. 4).

Thus, the mode here is most destabilised at few hundred keV of the fast-ion temperature.

Velocity-space properties of the ambient fast-ion distribution function determine the res-

onance structure and the finite-orbit-width effects. In Maxwellian case, the fast-ion temper-

ature is the only quantity entering explicitly the velocity part of the distribution function.

However, there are also other means to affect the location of the resonances. The resonance

condition for the fast-ion interaction with the wave can schematically be written as [7]:

ω − (m+ µ)ωθ + (n+ νNper)ωϕ = 0 (18)

Here, ω is the frequency, m and n are poloidal and toroidal numbers (respectively) of the

wave, µ and ν describe the 3D geometry-induced coupling, ωθ and ωϕ are the frequencies

of the poloidal and toroidal unperturbed motion of a fast ion. Now, these frequencies

(especially the poloidal one) can be affected by the ambient radial electric field [see Eq. (3);

here the ambient electric field enters through its potential Φ0]. Hence, the resonant structure

may be sensitive with respect to the ambient radial electric field since ωθ ∼ Er. Indeed, our

simulations reveal such a dependence. In Fig. 6, the mode growth rate is shown as a function

of the Mach number ME = uE/cs. Here, uE is the ambient E × B velocity computed at

s = 0.5 (employing a flat profile of the radial electric field) and cs =
√

Te/mi is the sound

speed. One observes a gradual decrease of the mode growth rate when moving from the “ion

root” (negative Er) to the “electron root” (positive Er) regime. Such a dependence may

result from a combined effect of the phase-space resonance shift caused by Er and the FOW

effects which bound the mode growth rate at higher fast-ion energies (temperatures). Note

that the effect of a Doppler shift caused by the ambient E×B rotation should be very small

for the Mach numbers considered. One can estimate it as δω/ωA ∼ uE/vA ∼ ME

√
β ≪ 1.

The dependence of the TAE growth rate on the ambient electric field observed may be of

practical interest since the sign of Er (electron or ion root) depends on neoclassical properties

of the plasma (collisionality etc.) and can be actively manipulated (e. g. employing various

heating scenarios). Also, the relative direction of the E × B rotation and the precession
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of trapped fast ions depends on whether the magnetic geometry is such that the parallel

adiabatic invariant J increases or decreases with minor radius [31].

Next, we consider the effect of anisotropy in the fast-ion background distribution function.

One example of such an anisotropic distribution function is a combination of an isotropic

Maxwellian (the same as has been used above) and a beam distribution (defined by its

amplitude αb, its direction χ0, and its width ∆b; all are constants in the real space):

FMb = FM [1 + αbfb(χ)] , fb(χ) = exp

{

−
(

χ− χ0

∆b

)2
}

, χ = v‖/v (19)

Note that Eq. (19) can give both the “beam-like distributions” when αb > 1 and χ0 is finite

and the “loss-cone distributions” when αb < 0 and χ0 = 0. In stellarators, the loss cones

can appear due to the radial drift motion of locally-reflected particles (collisionless escape

of energetic ions). An example of a loss-cone distribution function is shown in Fig. 7. This

type of distribution-function anisotropy can be destabilising, as apparent from Fig. 8. Here,

the growth rate is shown as a function of the fast-ion temperature computed for a varying

loss-cone “width”. The destabilisation is caused by the distribution-function gradient in the

pitch angle (which leads, effectively, to a bump-on-tail structure). However, there are also

other factors which affect the mode stability. For example, the number of resonant particles

and the fast-ion beta are modified by the loss cone (diminished by the particle escape). This

leads to stabilisation when the loss cone becomes larger (see Fig. 8).

Finally, consider an anisotropic (two-temperature) Maxwellian distribution function.

f0(s, v‖, v⊥) =
(

mh

2π

)3/2 nh(s)

T⊥(s)T
1/2
‖ (s)

exp

[

− mhv
2
⊥

2T⊥(s)
−

mhv
2
‖

2T‖(s)

]

(20)

An example of such a distribution function is shown in Fig. 9. In Ref. [32], a similar distribu-

tion function has been used to model the ICRH-heated “minority” ions whose perpendicular

temperature was determined by the ICRH power deposition profile [32, 33]:

T⊥(s) = Te (1 + 3ξ/2) , ξ =
PRF(s)τs
3nh(r)Te

≫ 1 , τs =
3(2π)3/2 ǫ20mh T

3/2
e

Z2
h e

4m
1/2
e ne ln Λ

(21)

with τs the slowing-down time and PRF the Radio-Frequency (RF) power deposition profile

which we choose according to the expression:

PRF(s) = P0 exp

[

− (s− sICRH)
2

2∆2
ICRH

]

(22)
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For the parallel temperature, we choose the following definition:

T‖(s) = Te + αT [T⊥(s)− Te] , αT < 1 (23)

Here, αT is an anisotropy parameter considered to be constant for simplicity.

Consider now the TAE mode interaction with such “minority-ion” distribution functions.

The minority-ion density is defined as in Sec. IIIA [see Eq. 15] with the same parameters

(N0 = 1017 m−3 etc). The perpendicular temperature is determined by the RF power de-

position profile Eq. (22) with the parameters sICRH = 0.8, ∆ICRH = 0.1, and P0 chosen

appropriately to obtain the maximum perpendicular temperature required (see below). For

the parameters chosen, the TAE mode with m = (6, 7) and n = −6 becomes unstable.

This mode is shown in Fig. 10 along with the minority-ion density and the perpendicular

temperature profiles. In Fig. 11, the growth rate is plotted as a function of the maximum

minority-ion perpendicular temperature [with Tmax = T⊥(sICRH), see Eqs. (22) and (21)] for

the anisotropy parameter αT = 0.2. One sees that the FOW effects do not have much influ-

ence on the TAE growth rate (but the FLR effects do). This is caused by a localised fast-ion

temperature profile chosen for the “minority ions” whose characteristic width (see Fig. 10)

eventually becomes comparable to the fast-ion drift-orbit width. Note that a rather strong

RF drive (large perpendicular temperatures) is required for the mode to become unstable.

This is caused by the anisotropy of the distribution function: most of the fast-ion energy

is “perpendicular” whereas the resonant mode destabilisation is determined by the parallel

fast-ion temperature. The mode growth rate decreases with the temperature anisotropy as

shown in Fig. 12. Of course, the distribution function Eq. (20) used here represents a rather

crude model for the actual ICRH-driven distribution function in stellarator geometry. This

model may still capture certain features of the real distribution function (such as the tem-

perature anisotropy) but it misses other important effects (effects of finite ion orbit width,

variations of the minority-ion distribution function along the flux surface, etc.). A more

exact and comprehensive modelling is needed for the ICRH-driven minority ions in W7-X

geometry to assess the role of such distribution-function properties on the Alfvénic stability.

This problem is, however, beyond the scope of the present work and should be addressed in

future. Only then will a quantitative prediction of the ICRH effect on the Alfvénic stability

become feasible in W7-X.
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C. Stability of Alfvén Eigenmodes in HELIAS geometry

Fast particle confinement issues arising from their interaction with Alfvén Eigenmodes will

be of particular importance under anticipated reactor-relevant plasma conditions. Here, we

consider this topic in the case of a HELIAS configuration (the HELIcal Advanced Stellarator

concept), which has been proposed as a candidate for the future DEMO reactor [14]. It is an

extrapolation fromW7-X based on present day knowledge. The basic parameters of HELIAS

geometry are: B0 = 4.81 T, major radius R0 = 20.3 m, and minor radius ra = 1.93 m. The

safety factor profile and the Fourier spectrum of the ambient magnetic field coincide with

that of W7-X. Hence, the structure of the shear Alfvén continuum will be the same as it is

in W7-X, provided the bulk-plasma density profiles coincide.

We start our considerations using the model plasma similar to that of Sec. III B, only

under reactor-relevant conditions. Specifically, we implement flat bulk-plasma density

nbulk = 1020 m−3, flat bulk-plasma temperature Ti = Te = 15 keV, Maxwellian distribu-

tion for the fast ions (He4), and flat fast-ion temperature. The fast-ion density profile is

given by Eq. (15) with N0 = 1018 m−3. For such parameters, average βfast ∼ βbulk ∼ 0.05

(when He4 fast ions with 3.5 MeV energy are considered). Note that the average values

(order of magnitude) of the densities and temperatures chosen here are consistent with the

values predicted by the transport modelling (see below) of HELIAS plasmas. However, the

profiles (their shape) are chosen to coincide with the profiles used in the W7-X simulations

above (Sec. III B). For these profiles, the shear Alfvén continuum (normalised to the Alfvén

frequency) coincides with the continuum shown in Fig. 2. We consider the TAE mode with

the toroidal mode number n = − 6 and the dominant poloidal mode numbers m = (6, 7)

(the same mode has already been extensively studied in the original W7-X geometry, see

Sec. III B). The eigenmode found in HELIAS geometry with the reduced-MHD eigenvalue

solver [34, 35] is shown in Fig. 13. The growth rate of the unstable TAE mode is plotted

as a function of the fast-ion temperature in Fig. 14. One sees that the FLR/FOW effects

(stabilising under W7-X conditions, cf. Fig. 4) will be weak in the reactor plasma since the

ratio of the fast-ion orbit width to the system size will be much smaller in the HELIAS

reactor compared to W7-X.

Finally, let us consider stability of the HELIAS plasma with respect to Alfvén Eigenmodes

implementing realistic profiles predicted by the transport modelling (details of the transport

13



code are described in Refs. [36, 37]). The transport model has been chosen to be mainly

neoclassical in the bulk plasma with large anomalous transport at the edge. The anomalous

diffusivity scales as P 0.75/n where P is the total heating power and n is the electron density.

At a developed stage of burn, the resulting energy diffusivities at the plasma edge are between

1 − 5 m2/s, while in the plasma core they are about 1 m2/s for electrons and 1.5 m2/s for

deuterium ions. The particle source, used in the transport modelling, is shown in Fig. 15(a).

The bulk-plasma densities, temperatures, production rate of fusion alphas, corresponding

fast-ion density, the fast-ion and the bulk-plasma betas obtained in the modelling are shown

in Figs. 15(b-e). Note that the projected steady-state fusion energy gain factor Qsteady = ∞
for the HELIAS reactor which requires higher pressure of the energetic alphas (compared to

burning plasmas with smaller Qsteady). The shear Alfvén continuum corresponding to the

predicted bulk-ion density profile is plotted in Fig. 16. Here, one sees that the largest gap

in the continuum corresponds to the helical coupling of the Fourier harmonics (“helicity-

induced gap”). The Helical Alfvén Eigenmode (HAE) with the dominant (m = −14, n = 11)

and (m = −16, n = 16) Fourier harmonics, which is located in this gap, is shown in Fig. 17.

The steady-state distribution function of the energetic alpha particle is modelled with a

slowing-down distribution function Eq. (16) corresponding to the plasma profiles predicted

by the transport modelling. In the case considered, the HAE mode is unstable. The growth

rate of the HAE, γ = 1.8 × 104 rad/s, and the frequency ω = − 4.1 × 105 rad/s, have the

ratio γ/ω ∼ 4.4%.

The unstable Alfvén Eigenmodes may cause fast-ion transport (in nonlinear regime).

The nonlinear fluctuation channel could couple to the usual collisionless “3D-geometry”

channel (toroidal magnetic-field ripple loss). Such a synergy between different types of fast-

ion transport (AE-induced ripple trapping [38]) may become an issue in burning stellarator

plasmas and deserves further consideration.

IV. CONCLUSION

In this paper, we have studied the interplay of energetic ions and Alfvén eigenmodes in

stellarator plasmas. The Wendelstein 7-X stellarator and its extrapolation to a reactor-scale

HELIAS configuration have been considered. A hybrid reduced-MHD gyrokinetic numerical

framework has been used in order to study AE mode stability in these plasmas. FOW and
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FLR stabilisation effects have been observed in the W7-X plasma, but are much weaker in

the reactor. Furthermore, an effect of the equilibrium radial electric field (stabilising in the

electron root) has been demonstrated. This effect may be attributed to the modification

of the drift fast-ion orbits in presence of the electric field. An anisotropy in the back-

ground fast-ion distribution function has been considered in the cases of a “loss-cone” and

an anisotropic two-temperature Maxwellian distribution functions. The two-temperature

Maxwellian anisotropy may inhibit AE mode destabilisation since in this case most of the

fast-ion energy is concentrated in the perpendicular particle motion. In the reactor plasma,

the stability properties have been considered under conditions predicted by the transport

modelling. An unstable HAE mode has been found with γ/ω ≈ 4%.

Of course, it must be borne in mind that we have only calculated the drive and damp-

ing directly related to the fast ions. All the damping mechanisms associated with the bulk

plasma (collisional, continuum and radiative damping) have been ignored. Nevertheless,

the calculation shows that AEs could be driven unstable by alpha particles in a stellarator

reactor. A careful evaluation of the damping is thus called for. In this respect, a stepwise

approach is envisioned. As a first step, a fluid-electron gyrokinetic-ion model will be em-

ployed to the cases already considered with the perturbative hybrid approach presented in

this paper. This model, still reduced, can however describe at a sufficient level of accuracy

interaction of AEs with shear Alfvén continuum in a non-perturbative fashion. Such an

interaction is considered to be responsible for the continuum and radiative damping mech-

anisms (see e. g. Refs. [39–41]). The fluid-electron gyrokinetic-ion model is already under

development and will be described in a separate publication. More comprehensive but also

rather expensive (computationally) full-gyrokinetic simulations will be undertaken after the

fluid-electron results become feasible. Similar simulations have already been carried out in

tokamak geometry [30, 42, 43]. Furthermore, realistic simulations of NBI- and ICRH-heated

W7-X plasmas using real (predicted) anisotropic background distribution functions as well

as predicted plasma profiles should be undertaken using the perturbative hybrid-gyrokinetic

approach. Such simulations would be of interest as a preparation for experimental work on

W7-X. Finally, a perturbative modelling, being technically very robust, has the drawback of

working with preselected eigenmodes which, however, do not need to be dominant in the ac-

tual stability. Thus, a comprehensive assessment of Alfvén modes in stellarators will require

a non-perturbative framework (such as the aforementioned fluid-electron gyrokinetic-ion
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model or full-gyrokinetic approach). The work on the non-perturbative schemes is ongoing

and will be reported elsewhere.
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FIG. 1: (Colour online) Rotational transform in W7-X (high-mirror configuration).
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FIG. 2: (Colour online) Shear Alfvén wave continuum in the W7-X configuration (n = 1 mode

family) corresponding to flat bulk plasma density nbulk = 2×1020 m−3. One can see the toroidicity-

induced gap in the spectrum. The TAE eigenmode frequency (blue straight line) corresponding to

the toroidal mode number n = − 6 and the coupled poloidal mode numbers m = 6 (green curve)

and m = 7 (brown curve) is shown inside the gap. Here, the Alfvén frequency ωA = 7.4×105 rad/s.

21



0 0.2 0.4 0.6 0.8 1
norm. toroidal flux

0

0.5

1

R
e

(φ
),

 n
o

rm
a

li
z
e

d

m= 7 n=-6 
m= 6 n=-6 
m= 5 n=-6 
m= 4 n=-1 
m= 5 n=-1 

fast-ion density

FIG. 3: (Colour online) The eigenfunction corresponding to the global (even) TAE mode (see the

eigenfrequency in Fig. 2). One sees that m = 6 and m = 7 poloidal harmonics are coupled (and

dominant), in accordance with the shear Alfvén spectrum shown in Fig. 2. The maximum of the

mode is located near s = 0.65 (at the position of the TAE accumulation point).
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FIG. 4: (Colour online) Growth rate of the TAE mode (W7-X geometry) as a function of the fast-

particle temperature at fixed fast-ion density N0 = 1017 m−3 (Maxwellian fast-particle distribution

has been used). The growth rates without FLR effects (drift-kinetic fast ions) and with FLR effects

(gyrokinetic fast ions) have been considered. The frequency of the TAE mode ωTAE = 238766 rad/s.

The fast-ion beta range (measured at the position of maximal fast-ion density gradient s = 0.65)

is 0.0006 ≤ βf ≤ 0.012. For the bulk plasma, βbulk(s = 0.65) = 0.034.
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FIG. 5: (Colour online) Growth rate of the TAE mode (W7-X geometry) as a function of the

fast-particle temperature at fixed fast-ion beta βf (s = 0.65) ≈ 0.003. Here, bulk-plasma beta

βbulk(s = 0.65) = 0.034 and other parameters are the same as in Fig. 4.
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FIG. 6: (Colour online) Growth rate as a function of the ambient radial electric field (FLR effects

neglected). Here, the fast-particle temperature Tf = 1 MeV.
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FIG. 7: (Colour online) Loss-cone distribution function with parameters χ0 = 0, ∆b = 0.5, and

αb = − 0.9 projected onto the (v‖, v⊥)-plane (here v‖ corresponds to the horizontal axis and v⊥

to the vertical axis).
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FIG. 8: (Colour online) Growth rate of the TAE mode (W7-X geometry) as a function of the

fast-particle temperature in presence of a loss cone in the distribution function. The growth rates

are plotted at different “widths of the loss cone”. One sees that the dependence of the TAE-

mode growth rate on the loss-cone width is non-monotonic: there is a competition between the

anisotropy drive (which wins at smaller “loss cones”) and stabilisation caused by decreasing fast-

particle pressure (caused by the “prompt losses” and winning when ∆b increases). Here, αb = − 0.9

[see Eq. (19)].
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FIG. 10: (Colour online) Unstable TAE eigenfunction and plasma profiles (used as a proxy for the

ICRH scenario).
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FIG. 11: (Colour online) Growth rate as a function of the maximal minority-ion perpendicular tem-

perature Tmax (related to the RF power) in the ICRH-type scenario. The anisotropic Maxwellian

is compared with the isotropic one (defined using the same density profile and a flat temperature

equal to the ICRH maximum T⊥). The stabilising FOW effect is weak in the anisotropic case,

which is probably due to the strong localisation of the energetic-ion temperature profile. Note that

Tmax = 400 keV corresponds roughly to the maximum ICRH power P0 = 3 MW/m3.
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FIG. 12: (Colour online) Effect of the temperature anisotropy. The parameter αT defines the

ratio of the parallel temperature to the perpendicular one. Here, the maximum perpendicular

temperature (“ICRH-driven tail” in the distribution function) was T⊥ = 400 keV. Note that the

isotropic case αT = 1 is more unstable for the inhomogeneous minority-ion temperature profile

used here (see Fig. 10) compared to the Maxwellian with the same density but flat temperature

profile (Fig. 4).
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FIG. 13: (Colour online) Unstable TAE in HELIAS geometry (assuming flat bulk-plasma density).

The frequency of the mode ω = 111796 rad/s.
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FIG. 14: (Colour online) TAE growth rate in the HELIAS reactor as a function of fast-ion tem-

perature. It is striking how little the FLR/FOW stabilisation mechanisms matter in the reactor

environment. The frequency of the mode ω = 111796 rad/s.
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FIG. 15: (Colour online) (a) Profile of the particle (D-T) sources, used in the transport modelling of

the HELIAS plasma, plotted as a function of r = ra
√
s where s is the normalised toroidal flux and

ra is the minor radius of the device. (b) Predicted plasma density profiles (transport calculations):

electron, deuterium, tritium, and helium-ash densities. (c) Predicted plasma temperature profiles

(transport calculations). (d) Predicted power density of fusion alphas and the resulting energetic-

ion density (computed as nfast =
∫

Fsdd
3v). (e) Predicted fast-ion and bulk-ion betas. The fast-ion

beta βfast = 2µ0 pfast/B
2 with the fast-ion pressure roughly estimated as pfast ≈ Pατs.
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FIG. 16: (Colour online) Shear Alfvén continuum generated by the predicted bulk plasma density

profile in HELIAS geometry. The frequency of the HAE mode with the dominant (m = − 14, n =

11) and (m = − 16, n = 16) Fourier harmonics is also plotted. Here, the Alfvén frequency

ωA = 365453 rad/s.
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FIG. 17: (Colour online) The HAE mode is unstable for the predicted profiles. The growth rate

of this mode γ = 17874 rad/s, and the frequency ω = − 410523.29 rad/s.
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