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Abstract

The simulation of plasma-wall interactions of fusion plasmas is ex-
tremely costly in computer power and time – the running time for a
single parameter setting is easily in the order of weeks or months. We
propose to exploit the already gathered results in order to predict the
outcome for parametric studies within the high dimensional parame-
ter space. For this we utilize the Gaussian process method within the
Bayesian framework. Uncertainties of the predictions are provided
which point the way to parameter settings of further (expensive) sim-
ulations.
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1 Introduction

The problem of predicting function values in a multi-dimensional space sup-
ported by given data is a regression problem for a non-trivial function of
unknown shape. Given n input data vectors xi of dimension Ndim (with
matrix X = (x1,x2, ...,xn)) and corresponding target data y = (y1, ..., yn)

T

blurred by Gaussian noise of variance σ2

d the quested quantity is the target
value f∗ at test input vector x∗. The later would be generated by a function
f(x)

y = f(x) + ǫ , (1)

where 〈ǫ〉 = 0 and 〈ǫ2〉 = σ2

d. For being completely ignorant about a model
describing function our Ansatz is to employ the Gaussian process method,
with which any uniformly continuous function may be represented. As a
statistical process it is fully defined by its covariance function and called
Gaussian, because any collection of random variables produced by this pro-
cess has a Gaussian distribution.

The Gaussian process method defines a distribution over functions. One
can think of the analysis as taking place in a space of functions (function-
space view) which is conceptually different to the familiar view of solving the
regression problem of, for instance, the standard linear model (SLM)

fSLM(x) = xTw , (2)

in the space of the weights w (weight-space view). At this point it is instruc-
tive to restate the results for the later: the predictive distribution depending
on mean f̄∗ and variance for a test input data point x∗ is given by

p(fSLM

∗
|X,y, X∗) ∝ N

(

f̄SLM

∗
, var(fSLM

∗
)
)

, (3)

with

f̄SLM

∗
=

1

σ2
d

xT
∗

[

σ−2

d XXT + Σ−1

p

]

−1

Xy , (4)

var(fSLM

∗
) = xT

∗

[

σ−2

d XXT + Σ−1

p

]

−1

x∗ . (5)

Σp is the covariance in a Gaussian prior on the weights. In the next chapter
these results will be transferred to the function-space view of the Gaussian
process method.

The Gaussian process method has been appreciated much in the fields
of neural networks and machine learning [1, 2, 3]. Throughout this paper,
we follow in notation the book of Rasmussen & Williams [4]. Most of the
presented analysis may be found there, except for small amendments.
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2 Prediction of function values

As stated above the defining quantity of the Gaussian process method is the
covariance function. Its choice is decisive for the inference we want to apply.
It is the place where we incorporate all the properties which we would like
our (hidden) problem describing function to have in order to influence the
result. For example, the neighbourhood of two input data vectors xp and
xq should be of relevance for the smoothness of the result. This shall be
expressed by a length scale λ which represents the long range dependence
of the two vectors. For the covariance function itself we employ a Gaussian
type exponent with the negative squared value of the distance between two
vectors xp and xq

k(xp,xq) = σ2

f exp

{

−
1

2

∣

∣

∣

∣

xp − xq

λ

∣

∣

∣

∣

2
}

. (6)

σ2

f is the signal variance and apriori set to one, if we are ignorant about this
value. To avoid lengthy formulae, we abbreviate the covariance matrix of the
input data as (K)ij = k(xi,xj) and the vector of covariances between test
point and input data as (k∗)i = k(x∗,xi).

Moreover, we consider the degree of information which the data possesses
by an overall variance σ2

n accounting that the data are noisy and – more de-
tailed – (σd)i for the uncertainty estimation of a single data point yi provided
by the experimentalist. It can be shown [4] that in analogy to Eq. (3) for
given λ, σf and σn the probability distribution for a single function value f∗
is

p(f∗|X,y,x∗) ∝ N
(

f̄∗, var(f∗)
)

, (7)

with mean and variance

f̄∗ = kT
∗

(

K + σ2

n∆
)

−1

y , (8)

var(f∗) = k(x∗,x∗)− kT
∗

(

K + σ2

n∆
)

−1

k∗ . (9)

∆ is a matrix with the variances σ2

d of the input data on its diagonal and
zero otherwise. If no uncertainties of the input data are provided, ∆ is set
to the identity matrix.

3 Marginalizing the hyper-parameters

The hyper-parameters θ = (λ, σf , σn)
T determine the result of the Gaussian

process method. Since we do not know a priori, which setting is useful, we
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marginalize over them later on in order to get the target values f
∗
for test

inputs X∗. Their expectation values are

〈θ〉 =

∫

dθ θp(θ|y)
∫

dθ p(θ|y)
=

∫

dθ θp(y|θ)p(θ)
∫

dθ p(y|θ)p(θ)
. (10)

Gaussian priors are employed for the hyper-parameters with mean and vari-
ance one but constrained to be positive,

p(θi) ∼ N (1, 1) ∀ θi ≥ 0 and p(θi) = 0 otherwise . (11)

The marginal likelihood p(y|θ) is obtained by

p(y|θ) =
∫

df p(y|f ,θ)p(f |θ) . (12)

As we deal with the Gaussian process the probability functions are of Gaus-
sian type, with the likelihood as p(y|f ,θ) ∼ N (f , σn∆) and the prior for f
as p(f |θ) ∼ N (0,K) [4]. Thus the integration in Eq. (12) yields

log p(y|θ) ∼ −
1

2
yT

[

K(θ) + σ2

n∆
]

−1

y −
1

2
log

∣

∣

∣K(θ) + σ2

n∆
∣

∣

∣ . (13)

The expectation value for the target f∗ at test input x∗ employs the marginal
likelihood and priors for the hyper-parameters from above

〈f
∗
〉 =

∫

dθ f̄∗
p(y|θ)p(θ)

∫

dθ′ p(y|θ′)p(θ′)
, (14)

where the fraction contains the sampling density in Markov chain Monte
Carlo.

4 Simulation of one-dimensional data sets

In order to examine the dependence of the result on the hyper-parameters
we first have a look at the situation in one dimension. While the variances
of the signal and the noise will mainly effect the accuracy of the result, the
most interesting hyper-parameter is the length scale λ. In Fig. 1(a-d) we set
σf=1 and σn=0.1 and have a look at the maximum aposteriori prediction
of Eq. (7). For a decent number of data (n=21, right panel) the model
is perfectly reproduced with λ=0.1 (d), while for a large value of λ = 1 –
emphasizing the long range behavior – the result becomes far to smooth (b).
The later can be seen on the left in Fig. 1(a), too, but in absence of further
knowledge (i.e. more data) the variance between the few input points (n=5)
becomes large (c). The result for marginalizing over all hyper-parameters is
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Figure 1: One dimensional example: left panel n=5, right panel n=21. Max-
imum aposteriori prediction with σf=1, σn=0.1 for λ=1 (top) and λ=0.1
(middle). Bottom: Expectation values of the target function from MCMC-
calculation.

n 〈λ〉 〈σf〉 〈σn〉
5 1.11 ± 0.83 0.94 ± 0.65 1.40 ± 0.52
21 0.191 ± 0.030 1.34 ± 0.39 0.106 ± 0.041

Table 1: MCMC expectation values.
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shown by Fig. 1(e) and (f). With n=5 input data it is not possible to infer
the sin(x)/x-model and an uninformative line with large uncertainty region
is the most honest result (e). The same conclusion can be drawn examining
the expectation values of the hyper-parameters in the table below of Fig.
1. For the n=5 case the standard deviations are in the same order as the
expectation values themselves, thus making them not very reliable. However,
for n=21, the expectation value of the length scale 〈λ〉 becomes pretty sharp
and the noise 〈σn〉 resembles closely the originally used value of 10% to blur
the data. Not much may be learned from the signal variance 〈σf〉 but that
our apriori estimation of one seems to be a good choice.

5 Multi-modality of marginal likelihood

We saw in the chapter above that the target function may be just an un-
informative line through data space, regarding deviations from the data as
tolerable within uncertainty range, or following each data point assuming
high accuracy – just according to the setting of the hyper-parameters λ and
σn. If both alternatives are possible explanations to the same data set, the
marginal likelihood Eq. (13) will show multi-modality. In this case the an-
alytic prediction of mean and variance from Eqs. (8, 9) for certain λ and
σn will fail to represent the complete solution. This can be seen in Fig. 2
for four input data values with standard deviation one. Though the result
for λ=1 and σn=1 on the top right (b) has highest probability a straight
(uninformative) line (a) corresponding to λ=0.2 and σn=0.45 contributes
significantly to the marginal likelihood (smaller hump in center of Fig. 2(e)).
Since the marginalization integral takes into account all contributions from
the marginal likelihood, the target function shown in Fig. 2(c) overcomes
this problem. However, one should bear in mind that for sparse and unreli-
able data the handy maximum aposteriori result which simply employs the
expectation values of the hyper-parameters (table below Fig. 2) in Eqs. (8,
9) in order to generate target values for test input data without redoing the
(MCMC) integration of Eq. (14) is not sufficient (see Fig. 2(d)).
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Figure 2: One dimensional example with four input data. Upper panel: tar-
get function prediction of Eq. (7) with σf=1 for λ=1, σn=1 (a) and λ=0.2,
σn=0.45 (b). (c) target function from MCMC marginalization of the hyper-
parameters; (d) maximum aposteriori result with hyper-parameter expecta-
tion values of table below; (e) marginal likelihood for the hyper-parameters
λ and σn.

〈λ〉 〈σf〉 〈σn〉
1.20 ± 0.83 0.85 ± 0.61 1.18 ± 0.51

Table 2: MCMC expectation values.
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6 Simulation of two-dimensional data set

To expand our investigations to the two-dimensional case we examine the
results for 5×5 and 21×21 input data points (see Fig. 3). Like in the one-
dimensional case for too little data points (or information) the expectation
value for the target function is a flat, uninformative hyper-plane with consid-
erably uncertainty. The latter may be inferred likewise from the large vari-
ance of 〈σn〉 assigning the input data points negligible relevance except for
the overall slope (last column in table below Fig. 3). For more data (21×21)
the situation turns completely and the expectation target function is an even
better representation of the original sin|(x)|/|x|-model than the artificially
blurred input data itself. Again the blurring factor of 10% is revealed nicely
by the analysis (last column/line in the table). Additionally, the difference
that the amount of data makes may be seen in the peaky structure of the
posterior distribution for λ and σn compared to the 5×5-case (lower panel in
Fig. 3).
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Figure 3: Two dimensional example – lines between lattice points are guide
to the eye: left panel n=5×5, right panel n=21×21. Top: input data; middle
target expectation values; bottom: (unnormalized) marginal likelihood for λ
and σn.
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n 〈λ〉 〈σf〉 〈σn〉
5×5 0.576 ± 0.045 0.84 ± 0.19 1.29 ± 0.79
21×21 0.198 ± 0.011 0.592 ± 0.074 0.1023 ± 0.0043

Table 3: MCMC expectation values.

7 Real world example with fusion plasma data

The power of the Gaussian process method is its straightforward applicability
in any number of dimensions for input data or target function. This becomes
of special use in spaces of various (fusion plasma) input and output parame-
ters, if the number of source data is already sufficient for reliable inferences. A
particular computationally expensive area is that of predicting the outcome of
particle transport and plasma-wall interaction in the scrape-off layer in fusion
plasma experiments. Here the theoretically acquired results are obtained by
the interplay of two sophisticated codes either describing the plasma solving
a fluid equation or the transport of neutrals by a Monte-Carlo method. The
run for a single parameter setting is in the order of weeks, sometimes even
several months on the fastest many-core computers available. A data base
of 1500 parameter settings will be the platform we intend to start from to
make inferences about outcomes within the ranges of the acquired data. To
keep it instructive we restrict ourselves in this paper to the two-dimensional
space for the input data (the core densities of deuterium na:core:D:ave and
helium na:core:He:ave) and one-dimensional target function (maximum elec-
tron density, outboard divertor: nemxap:ave). Further restrictions on the
data set caused by physics considerations (e.g. density constraints) leave a
number of 76 input data vectors (see Fig. 4a). The expectation value of the
target function, as well as the result from the maximum aposteriori distribu-
tion with the expectation values of the hyper-parameters shows those areas
in input space where further (expensive) computations should take place to
enforce the reliability of the outcome (Fig. 4(b) and (c)).
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Figure 4: Scrape-off layer plasma simulation: Predictive mean for tar-
get ’nemxap:ave’ and two dimensional input from ’na:core:D:ave’ and
’na:core:He:ave’. ’ELM’ is ’False’ and only deuterium core densities above
1019/m3 and helium core densities above 3.1 ∗ 1017/m3. are considered mak-
ing a data pool of 76 entries. (a) input data; (b) 31x31 target expectation
values; (c) 31x31 target maximum aposteriori; (d) marginal likelihood for
λ and σn. For violet (darker) points one is pretty sure about the predic-
tion. Further experiments should take place for parameter settings at yellow
(lighter) areas.
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