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Abstract

The kinematic dependences of the relative production rates, fΛ0
b
/fd, of Λ0

b baryons

and B0 mesons are measured using Λ0
b → Λ+

c π
− and B0 → D+π− decays. The

measurements use proton-proton collision data, corresponding to an integrated
luminosity of 1 fb−1 at a centre-of-mass energy of 7 TeV, recorded in the forward
region with the LHCb experiment. The relative production rates are observed
to depend on the transverse momentum, pT, and pseudorapidity, η, of the beauty
hadron, in the studied kinematic region 1.5 < pT < 40 GeV/c and 2 < η < 5. Using a
previous LHCb measurement of fΛ0

b
/fd in semileptonic decays, the branching fraction

B(Λ0
b → Λ+

c π
−) =

(
4.30± 0.03 +0.12

−0.11 ± 0.26± 0.21
)
× 10−3 is obtained, where the

first uncertainty is statistical, the second is systematic, the third is from the previous
LHCb measurement of fΛ0

b
/fd and the fourth is due to the B0 → D+π− branching

fraction. This is the most precise measurement of a Λ0
b branching fraction to date.
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5Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
6CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
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rUniversità di Pisa, Pisa, Italy
sScuola Normale Superiore, Pisa, Italy
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1 Introduction

Measurements of beauty hadron production in high-energy proton-proton (pp) collisions
provide valuable information on fragmentation and hadronisation within the framework
of quantum chromodynamics [1]. The study of beauty baryon decays also provides an
additional channel for investigating CP violation [2]. While significant progress has been
made in the understanding of the production and decay properties of beauty mesons,
knowledge of beauty baryons is limited.

The relative production rates of beauty hadrons are described by the fragmentation
fractions fu, fd, fs, fc and fΛ0

b
, which describe the probability that a b quark fragments

into a Bq meson (where q = u, d, s, c) or a Λ0
b baryon, respectively, and depend on the

kinematic properties of the b quark. Strange b baryons are less abundantly produced [3]
and are neglected here. Measurements of ground state b hadrons produced at the pp
interaction point also include decay products of excited b hadrons. In the case of B mesons,
such excited states include B∗ and B∗∗ mesons, while Λ0

b baryons can be produced via

decays of Λ∗0b or Σ
(∗)
b baryons.

Knowledge of the relative production rate of Λ0
b baryons is necessary to measure absolute

Λ0
b branching fractions. The measurement of the branching fraction of the Λ0

b → Λ+
c π
−

decay reported in this paper improves the determination of any Λ0
b branching fraction

measured relative to the Λ0
b → Λ+

c π
− decay. The inclusion of charge conjugate processes

is implied throughout this paper. The average branching fraction and production ratios
are measured.

Previous measurements of fΛ0
b
/fd have been made in e+e− collisions at LEP [4], pp

collisions at CDF [5, 6] and pp collisions at LHCb [7]. The value of fΛ0
b
/fd measured at

LEP differs significantly from the values measured at the hadron colliders, indicating a
strong dependence of fΛ0

b
/fd on the kinematic properties of the b quark.

The LHCb analysis [7] was based on semileptonic Λ0
b → Λ+

c µ
−ν̄X and B → Dµ−ν̄X

decays, where the B meson is charged or neutral, and X represents possible additional
decay products of the b hadron that are not included in the candidate reconstruction.
Near equality of the inclusive semileptonic decay width of all b hadrons was assumed.
The analysis measured fΛ0

b
/(fu + fd), which can be converted into fΛ0

b
/fd under the

assumption of isospin symmetry, i.e. fu = fd. A clear dependence of fΛ0
b
/fd on the

transverse momentum pT of the Λ+
c µ
− and Dµ− pairs was observed. A CMS analysis [8]

using Λ0
b → J/ψΛ decays also found that the cross-section for Λ0

b baryons fell faster with
pT than the b-meson cross-sections.

The present paper uses a data sample, corresponding to an integrated luminosity of
1 fb−1 of pp collision data at a centre-of-mass energy of 7 TeV, collected with the LHCb
detector. This is a substantially increased data sample compared to that in Ref. [7]. The
analysis aims to clarify the extent and characteristics of the pT dependence of fΛ0

b
/fd.

Moreover, the dependence of fΛ0
b
/fd on the pseudorapidity η, defined in terms of the polar

angle θ with respect to the beam direction as − ln(tan θ/2), is studied for the first time.
The analysis covers the fiducial region 1.5 < pT < 40 GeV/c and 2 < η < 5.

The hadronic decays Λ0
b → Λ+

c π
− and B0 → D+π− are used, with the charm hadrons
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reconstructed using the decay modes Λ+
c → pK−π+ and D+ → K−π+π+, respectively.

The data sample and the selection of B0 → D+π− decays are identical to those used in
Ref. [9]. Although a precise measurement of the absolute value of fΛ0

b
/fd is not possible

with these decays, since the Λ0
b → Λ+

c π
− branching fraction is poorly known [10], they can

be used to measure the dependence of fΛ0
b
/fd on the b-hadron kinematic properties to high

precision. This is achieved by measuring the efficiency-corrected yield ratio R in bins of
pT or η of the beauty hadron

R(x) ≡
NΛ0

b→Λ
+
c π−(x)

NB0→D+π−(x)
× εB0→D+π−(x)

εΛ0
b→Λ

+
c π−(x)

, (1)

where N is the event yield, ε is the total reconstruction and selection efficiency, and x
denotes pT or η. The quantity R is related to fΛ0

b
/fd through

fΛ0
b

fd
(x) =

B(B0 → D+π−)

B(Λ0
b → Λ+

c π
−)
× B(D+ → K−π+π+)

B(Λ+
c → pK−π+)

×R(x)

≡ S ×R(x), (2)

where S is a constant scale factor.
Since the value of fΛ0

b
/fd in a given bin of pT or η is independent of the decay mode of

the b hadron, the values of fΛ0
b
/fd(pT) from the semileptonic analysis [7] can be compared

to the measurement of R(pT), which allows for the extraction of the value of S. The
branching fraction B(Λ0

b → Λ+
c π
−) can then be readily obtained using Eq. (2). Notably,

the dependence on B(Λ+
c → pK−π+) cancels when extracting B(Λ0

b → Λ+
c π
−) in this way,

because this branching fraction also enters in the semileptonic measurement of fΛ0
b
/fd.

Furthermore, the branching fractions B(B0 → D+π−) [10] and B(D+ → K−π+π+) [11]
are well known, leading to a precise determination of B(Λ0

b → Λ+
c π
−).

The dependence of the semileptonic fΛ0
b
/fd measurement on B(Λ0

b → Λ+
c µ
−ν̄X), and

the assumption of near equality of the inclusive semileptonic decay width of all b hadrons,
implies that the measurement of B(Λ0

b → Λ+
c π
−) from the current paper cannot be used

to normalise existing measurements of B(Λ0
b → Λ+

c µ
−ν̄X) [10].

2 Detector and simulation

The LHCb detector [12] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The
detector includes a high-precision tracking system consisting of a silicon-strip vertex
detector surrounding the pp interaction region, a large-area silicon-strip detector located
upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of
silicon-strip detectors and straw drift tubes placed downstream. The combined tracking
system provides a momentum measurement with relative uncertainty that varies from
0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and impact parameter resolution of 20µm for
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tracks with large pT. Different types of charged hadrons are distinguished by information
from two ring-imaging Cherenkov detectors. Photon, electron and hadron candidates are
identified by a calorimeter system consisting of scintillating-pad and preshower detectors,
an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a
system composed of alternating layers of iron and multiwire proportional chambers.

The trigger consists of a hardware stage, based on information from the calorimeter and
muon systems, followed by a software stage, which applies a full event reconstruction. The
events used in this analysis are selected at the hardware stage by requiring a cluster in the
calorimeters with transverse energy greater than 3.6 GeV. The software trigger requires a
two-, three- or four-track secondary vertex (SV) with a large sum of the pT of the particles
and a significant displacement from the primary pp interaction vertices (PVs). At least
one charged particle should have pT > 1.7 GeV/c and χ2

IP with respect to any PV greater
than 16, where χ2

IP is defined as the difference in fit χ2 of a given PV reconstructed with
and without the considered track. A multivariate algorithm is used for the identification
of SVs consistent with the decay of a b hadron.

Simulated collision events are used to estimate the efficiency of the reconstruction and
selection steps for signal as well as background b-hadron decay modes. In the simulation,
pp collisions are generated using Pythia [13] with a specific LHCb configuration [14].
Decays of hadronic particles are described by EvtGen [15], in which final-state radiation
is generated using Photos [16]. The interaction of the generated particles with the
detector and its response are implemented using the Geant4 toolkit [17] as described in
Ref. [18].

3 Event selection

Since the Λ0
b → Λ+

c (→ pK−π+)π− and B0 → D+(→ K−π+π+)π− decays have the same
topology, the criteria used to select them are chosen to be similar. This minimises the
systematic uncertainty on the ratio of the selection efficiencies. Following the trigger
selection, a preselection is applied using the reconstructed masses, decay times and vertex
qualities of the b-hadron and c-hadron candidates. Further separation between signal and
background is achieved using a boosted decision tree (BDT) [19]. The BDT is trained
and tested on a sample of B0

s → D+
s π
− events from the same data set as the signal

events. This sample of events is not used elsewhere in the analysis. For the signal,
a weighted data sample based on the sPlot technique [20] is used. A training sample
representative of combinatorial background is selected from B0

s candidates with mass
greater than 5445 MeV/c2. The variables with the most discriminating power are found
to be the χ2

IP of the b-hadron candidate with respect to the PV, the pT of the final-state
particles, and the angle between the b-hadron momentum vector and the vector connecting
its production and decay vertices. In events with multiple PVs, the b hadron is associated
to the PV giving the smallest χ2

IP.
The BDT requirement is chosen to maximise the signal yield divided by the square

root of the sum of the signal and background yields. It rejects approximately 84% of the
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combinatorial background events while retaining approximately 84% of the signal events.
The D+ (Λ+

c ) candidates are identified by requiring the invariant mass under the K−π+π+

(pK−π+) hypothesis to fall within the range 1844–1890 (2265–2305) MeV/c2. The mass
resolution of the charm hadrons is approximately 6 MeV/c2.

The ratio of selection efficiencies is evaluated using simulated events. The
D+ → K−π+π+ decay is generated using the known Dalitz structure [21], while the
Λ+
c → pK−π+ decay is generated using a combination of non-resonant and resonant decay

modes with proportions according to Ref. [22]. Interference effects in the Λ+
c decay are

not taken into account. Consistency checks, using a phase-space only model for the
Λ+
c → pK−π+ decay, show negligible differences in the relative efficiencies. The distri-

butions of the input variables to the BDT are compared in data and simulation. Good
agreement is observed for most variables. The largest deviation is seen for quantities
related to the track quality. The simulated events are reweighted so that the distributions
of these quantities reproduce the distributions in data.

The final stage of the event selection applies particle identification (PID) criteria on
all tracks, based on the differences in the natural logarithm of the likelihood between the
pion, kaon and proton hypotheses [23]. The PID performance as a function of the pT
and η of the charged particle is estimated from data. This is performed using calibration
samples, selected using only kinematic criteria, and consisting of approximately 27 million
D∗− → D0(K+π−)π− decays for kaons and pions, and 13 million Λ → pπ− decays for
protons. The size of the proton calibration sample is small at high pT of the proton and
does not allow a reliable estimate of the efficiency of the proton PID requirement in this
kinematic region. Hence, proton PID criteria are only applied to candidates restricted
to a kinematic region in proton momentum and pseudorapidity corresponding to low-pT
protons. Outside of this region, no PID criteria are imposed on the proton.

The ratio of total selection efficiencies, εB0→D+π−/εΛ0
b→Λ

+
c π− , is shown in Fig. 1. Fluc-

tuations are included in the calculation of the efficiency-corrected yield ratio.

4 Event yields

The dependences of fΛ0
b
/fd on the pT and η of the b hadron are studied in the ranges

1.5 < pT < 40 GeV/c and 2 < η < 5. The event sample is sub-divided in 20 bins in pT
and 10 bins in η, with bin boundaries chosen to obtain approximately equal numbers
of B0 → D+π− candidates per bin. The bin centres are obtained from simulated events
without any selection applied, and are defined as the mean of the average pT or η of the
Λ0
b → Λ+

c π
− and B0 → D+π− samples in each bin.

The yields of the two decay modes are determined from extended maximum likelihood
fits to the unbinned mass distributions of the reconstructed b-hadron candidates, in each
bin of pT or η. To improve the mass resolution, the value of the beauty hadron mass is
refit with the invariant mass of the charm hadron constrained to its known value [10].
Example fits in the pT bin with the lowest fitted signal yield and in an arbitrarily chosen η
bin are shown in Fig. 2 for Λ+

c π
− and D+π− candidates. The total signal yields, obtained
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from fits to the total event samples, are 44 859 ± 229 for the Λ0
b → Λ+

c π
− sample and

106 197± 344 for the B0 → D+π− sample.
The signal mass shape is described by a modified Gaussian distribution with power-law

tails on either side to model the radiative tail and non-Gaussian detector effects. The
parameters of the tails are obtained from simulated events and fixed in the fit. The mean
and the width of the Gaussian distribution are allowed to vary.

Three classes of background are considered: partially reconstructed decays with or
without misidentified tracks, fully reconstructed decays where at least one track is misiden-
tified, and combinatorial background. The shapes of the invariant mass distributions for
the partially reconstructed decays are obtained using large samples of simulated events.
For the B0 → D+π− sample, the decays B0 → D+ρ− and B0 → D∗+π− are modelled
with non-parametric distributions [24]. The main sources for the Λ0

b → Λ+
c π
− sample

are Λ0
b → Λ+

c ρ
− and Λ0

b → Σ+
c π
− decays, which are modelled with a bifurcated Gaussian

function. All these processes involve a neutral pion that is not included in the candidate’s
reconstruction.

The invariant mass distributions of the misidentified decays are affected by the PID
criteria. The shapes are obtained from simulated events, reweighted according to the
momentum-dependent particle identification efficiency, with the mass hypothesis of the
signal applied. The B0 → D+π− background in the Λ0

b → Λ+
c π
− sample is most abundant

in the highest pT bins, since the proton PID criteria are least effective in this kinematic
region.

The Cabibbo-suppressed decays Λ0
b → Λ+

c K
− and B0 → D+K− contribute to the

background in the Λ0
b → Λ+

c π
− and B0 → D+π− fits, respectively, when the kaon of the

b-hadron decay is misidentified as a pion. The yields of these backgrounds relative to the
signal yield are constrained in the fits, using LHCb measurements of the relevant ratios
of branching fractions [9, 25] and the misidentification probabilities with their associated
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Figure 1: Ratio of total selection efficiencies in bins of the (a) pT and (b) η of the b hadron.
The horizontal error bars indicate the range of each bin in pT or η respectively.
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uncertainties.
The combinatorial background consists of events with random pions, kaons and protons

forming a mis-reconstructed D+ or Λ+
c candidate, as well as genuine D+ or Λ+

c hadrons,
that combine with a random pion. The combinatorial background is modelled with an
exponential shape. The slope is fixed in the fit in each kinematic bin to the value found
from a fit to the total sample.

5 Results

The study of the dependences of fΛ0
b
/fd on the pT and η of the b hadron and the mea-

surement of the branching fraction of Λ0
b → Λ+

c π
− decays are performed using candidates

restricted to the fiducial region 1.5 < pT < 40 GeV/c and 2 < η < 5. A discussion on the
systematic uncertainties related to these measurements can be found in the next section.

The ratio of efficiency-corrected event yields as a function of pT is shown in Fig. 3(a),
and is fitted with an exponential function,
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Figure 2: Invariant mass distributions of (a,c) Λ+
c π
− candidates and (b,d) D+π− candidates for

specific ranges in pT and η of the b hadron, with fit projections overlaid. The different components
are defined in the legend, where “part reco” refers to the sum of partially reconstructed decays.
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R(pT) = a+ exp (b+ c× pT[ GeV/c]) , (3)

with

a = +0.181± 0.018± 0.026,

b = −0.391± 0.023 +0.069
−0.067,

c = −0.095± 0.007± 0.014 [ GeV/c]−1,

where the first uncertainties are statistical and the second systematic. The correlation
matrix of the parameters is

ρ(a, b, c) =

 1 −0.22 −0.94

−0.22 1 −0.10

−0.94 −0.10 1

 .

The correlation between the parameters leads to a relatively large apparent uncertainty
on the individual parameters. Systematic uncertainties are not included in this matrix.
The χ2/ndf value of the fit is 23.3/17, which corresponds to a p-value of 0.14.

The η dependence is described by a linear function,

R(η) = a+ b× (η − η) , (4)

with

a = 0.464± 0.003 +0.008
−0.010,

b = 0.081± 0.005 +0.013
−0.009,

η = 3.198,

where the first uncertainties are statistical and the second systematic. The offset η is
fixed to the average value of the measured η distribution. The correlation between the
two fit parameters is negligible for this choice of η. The χ2/ndf value of the fit is 13.1/8,
corresponding to a p-value of 0.11.

To extract the scale factor S given in Eq. (2), the normalisation of R(x), with fixed
parameters a, b and c, is allowed to vary in a fit to the published fΛ0

b
/fd data [7], as shown

in Fig. 3(b). The result quoted in Ref. [7] was measured as a function of the pT of the
Λ+
c µ
− system. A shift, estimated from simulation, is applied to the pT values to obtain the

corresponding average pT of the b hadron for each bin. Furthermore, the semileptonic results
are updated using recent determinations of B(Λ+

c → pK−π+) = (6.84± 0.24 +0.21
−0.27)% [26]

and the ratio of lifetimes (τB+ + τB0)/2τΛ0
b

= 1.071± 0.008 [27,28].
The following value of the scale factor S is determined,

S = 0.834

hadronic︷ ︸︸ ︷
±0.006 (stat) +0.023

−0.021 (syst)

semileptonic︷ ︸︸ ︷
±0.027 (stat) +0.058

−0.062 (syst),
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Figure 3: (a) Dependence of the efficiency-corrected ratio of yields, R, between Λ0
b → Λ+

c π
− and

B0 → D+π− decays on the pT of the beauty hadron, fitted with an exponential function. The
error bars on the data show the statistical and systematic uncertainties added in quadrature.
(b) The resulting parametrisation is then fitted to the rescaled fΛ0

b
/fd measurements from the

semileptonic analysis [7], to obtain the scale factor S. The error bars include only the statistical
uncertainty.

where the statistical and systematic uncertainties associated with the hadronic and
semileptonic measurement are shown separately. The χ2/ndf value of the fit is 8.68/3,
which corresponds to a p-value of 0.03.

By multiplying the ratio of the efficiency-corrected yields R with the scale factor S,
the dependences of fΛ0

b
/fd on pT and η are obtained. The pT dependence is described with

the exponential function

fΛ0
b
/fd(pT) = a′ + exp(b′ + c′ × pT[ GeV/c]), (5)

with

a′ = +0.151± 0.016 +0.024
−0.025,

b′ = −0.573± 0.040 +0.101
−0.097,

c′ = −0.095± 0.007± 0.014 [ GeV/c]−1,

where the first uncertainty is the combined statistical and the second is the combined
systematic from the hadronic and semileptonic measurements. The correlations between
the three fit parameters change due to the uncertainty on the scale factor S. The correlation
matrix of the parameters is

ρ(a′, b′, c′) =

 1 0.55 −0.73

0.55 1 −0.03

−0.73 −0.03 1

 .
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Figure 4: Dependence of fΛ0
b
/fd on the (a) pT and (b) η of the beauty hadron. To obtain this

figure, the ratio of efficiency-corrected event yields is scaled to the absolute value of fΛ0
b
/fd from

the semileptonic analysis [7]. The error bars include the statistical and systematic uncertainties
associated with the hadronic measurement. The dashed red lines indicate the uncertainty on the
scale of fΛ0

b
/fd from the semileptonic analysis.

The η dependence is described by the linear function

fΛ0
b
/fd(η) = a′ + b′ × (η − η) , (6)

with

a′ = 0.387± 0.013 +0.028
−0.030,

b′ = 0.067± 0.005 +0.012
−0.009,

where the first uncertainty is the combined statistical and the second is the combined
systematic from the hadronic and semileptonic measurements. The dependences of fΛ0

b
/fd

on the pT and η of the b hadron are shown in Fig. 4.
The absolute value for B(Λ0

b → Λ+
c π
−) is obtained by substituting the results for S and

B(B0 → D+π−) = (2.68± 0.13)× 10−3 [10] into Eq. (2). The value for B(Λ+
c → pK−π+)

is also used in the determination of fΛ0
b
/fd using semileptonic decays and therefore cancels

in the final result. The branching fraction for Λ0
b → Λ+

c π
− is measured to be

B(Λ0
b → Λ+

c π
−) =

(
4.30± 0.03 +0.12

−0.11 ± 0.26± 0.21
)
× 10−3,

where the first uncertainty is statistical, the second is systematic, the third is from
the previous LHCb measurement of fΛ0

b
/fd, and the fourth is due to the knowledge of

B(B0 → D+π−). This value is in agreement with the current world average [10]. It
also agrees within 2.4 standard deviations with the recent LHCb measurement using
Λ0
b → Λ+

c (→ pK0
S )π− decays [29], taking into account the correlated uncertainty from the
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semileptonic value for fΛ0
b
/fd (6.1%). Combining the two LHCb measurements, and using

a consistent value for the lifetime ratio of (τB+ + τB0)/2τΛ0
b

= 1.071 ± 0.008, we obtain

B(Λ0
b → Λ+

c π
−) = (4.46± 0.36)× 10−3, where the uncertainty is the combined statistical

and systematic uncertainty of both measurements.

6 Systematic uncertainties

Systematic uncertainties on the measurement of the relative efficiency-corrected event
yields of the Λ0

b → Λ+
c π
− and B0 → D+π− decay modes relate to the fit models and to

the efficiencies of the PID, BDT and trigger selections. The effect of each systematic
uncertainty on the efficiency-corrected yield ratio is calculated separately for each bin
of pT or η. The systematic uncertainties are considered to be correlated across the bins,
unless mentioned otherwise. The effect of the systematic uncertainties on the model of
the R(x) dependence and the measurement of B(Λ0

b → Λ+
c π
−) are determined by refitting

the data points when the R value in each bin is varied by its associated uncertainty. The
various sources of systematic uncertainty are discussed below and summarised in Table 1.

The uncertainty due to the modelling of the signal shape is estimated by replacing
the modified Gaussian with two modified Gaussians, which share the same mean but are
allowed to have different widths. In addition, the parameters that describe the tails are

Table 1: Relative systematic uncertainties for the measurements of R(x) (first five columns)
and B(Λ0

b → Λ+
c π
−) (last column). The uncertainties from the various sources are uncorrelated

and added in quadrature to obtain the total uncertainty. Sample size refers to the size of the
simulated events sample.

pT bins η bins

R = a+ exp(b+ c× pT) R = a+ b× (η − η) B(Λ0
b → Λ+

c π
−)

a b c a b

Fit model

Signal +0.7
−0.4%

+0.5
−0.2%

+0.2
−0.3%

+0.3
−0.1%

+1.1
−1.8%

+0.2
−0.1%

Background +5.5
−1.7%

+2.8
−2.1%

+2.6
−1.1%

+0.6
−0.1%

+2.4
−4.7%

+0.6
−0.0%

Efficiencies

PID 0.0% 0.5% 2.5% −1.3% 12.7% −1.1%

BDT +5.8
−7.6%

−15.1
+14.2%

+ 9.6
−10.2%

+1.3
−1.3%

+4.7
−4.8%

+2.3
−2.2%

Sample size ±12.1% ±9.0% ±10.8% ±0.9% ±9.3% ±1.2%

Trigger 0.9% 1.0% 1.0% −0.3% −0.1% −0.3%

Other

Bin centre ±0.3% ±0.3% ±0.1% ±0.1% ±1.3% 0.0%

Total +14.6
−14.5%

+17.1
−17.7%

+14.9
−14.9%

+1.8
−2.1%

+16.6
−11.6%

+2.6
−2.8%
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varied by ±10% relative to their nominal values, which is the maximum variation found
for these parameters when leaving them free in the fit. This affects the ratio of yields by a
maximum of 0.3%.

A possible variation of the slope of the combinatorial background shape across the bins
is observed in a data sample of Λ+

c π
+ candidates. To account for this, the slope is varied

from ±50% in the lowest pT or η bin to ∓50% in the highest pT or η bin. The signal yield
ratio varies by less than 1%, with the exception of one pT bin which shows a variation of
approximately 2%.

The uncertainty on the shapes of partially reconstructed backgrounds is estimated by
modelling them with a non-parametric distribution [24] for Λ0

b → Σ+
c π
− and Λ0

b → Λ+
c ρ
−

decays and with two modified Gaussian distributions with tails on either side for the
B0 → D∗+π− shape. The effect on the signal yield ratio is below 0.5% in most bins,
increasing to about 2% for the highest pT bin.

The contribution of b-hadron decays without an intermediate c hadron is ignored in
the fit. To evaluate the systematic uncertainty due to these decays, the b-hadron mass
spectra for candidates in the sidebands of the c-hadron mass distribution are examined.
A contribution of 0.4% relative to the signal yield is found in the B0 → D+π− decay
mode, and its full size is taken as systematic uncertainty. No contribution is seen in the
Λ0
b → Λ+

c π
− decay mode and no systematic uncertainty is assigned.

The uncertainty on the PID efficiency and misidentification rate is estimated by
comparing the PID performance measured using simulated D∗ and Λ calibration samples
with that observed in simulated signal events. The efficiency ratio varies by between 1%
and 4% across the bins.

As discussed in Sec. 3, the simulated events are reweighted so that the distributions
of quantities related to the track quality match the distributions observed in data. The
systematic uncertainty on the selection efficiency is obtained by recalculating the efficiency
without this reweighting. The yield ratio varies by between 0.2% and 6%. In addition,
there is a 5% statistical uncertainty per bin due to the simulated sample size, which is
uncorrelated across bins.

The uncertainty due to the trigger efficiency, caused by possible differences in the
response to a proton compared to a charged pion in the calorimeter, is estimated to be
about 0.4%, taking into account that at most 10% of the events containing Λ0

b → Λ+
c π
−

candidates are triggered by the proton. The systematic uncertainty due to the choice of
bin centre is evaluated by redefining the bin centres using the average pT or η of the Λ0

b or
B0 sample only, instead of the mean of the Λ0

b and B0 samples.

7 Conclusions

The dependences of the production rate of Λ0
b baryons with respect to B0 mesons are

measured as functions of the transverse momentum pT and of the pseudorapidity η of
the b hadron. The pT dependence is accurately described by an exponential function.
The ratio of fragmentation fractions fΛ0

b
/fd decreases by a factor of three in the range

12



1.5 < pT < 40 GeV/c. The ratio of fragmentation fractions fΛ0
b
/fd versus η is described by

a linear dependence in the range 2 < η < 5.
The absolute scale of fΛ0

b
/fd is fixed using the measurement of fΛ0

b
/fd from semileptonic

b-hadron decays [7]. The branching fraction of the decay Λ0
b → Λ+

c π
− is determined with

a total precision of 8%,

B(Λ0
b → Λ+

c π
−) =

(
4.30± 0.03 +0.12

−0.11 ± 0.26± 0.21
)
× 10−3,

which is the most precise determination of a branching fraction of a beauty baryon to date.

13



Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for
the excellent performance of the LHC. We thank the technical and administrative staff
at the LHCb institutes. We acknowledge support from CERN and from the national
agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3
and Region Auvergne (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland);
INFN (Italy); FOM and NWO (The Netherlands); SCSR (Poland); MEN/IFA (Romania);
MinES, Rosatom, RFBR and NRC “Kurchatov Institute” (Russia); MinECo, XuntaGal
and GENCAT (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC and the
Royal Society (United Kingdom); NSF (USA). We also acknowledge the support received
from EPLANET, Marie Curie Actions and the ERC under FP7. The Tier1 computing
centres are supported by IN2P3 (France), KIT and BMBF (Germany), INFN (Italy),
NWO and SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom). We are
indebted to the communities behind the multiple open source software packages on which
we depend. We are also thankful for the computing resources and the access to software
R&D tools provided by Yandex LLC (Russia).

References

[1] A. V. Berezhnoy and A. K. Likhoded, The relative yields of heavy hadrons as function
of transverse momentum at LHC experiments, arXiv:1309.1979.

[2] I. Dunietz, CP violation with beautiful baryons, Z. Phys. C56 (1992) 129.

[3] LHCb collaboration, R. Aaij et al., Measurement of the Ξ−b and Ω−b baryon lifetimes,
arXiv:1405.1543, submitted to Phys. Lett. B.

[4] Heavy Flavor Averaging Group, Y. Amhis et al., Averages of b-hadron, c-hadron, and
τ -lepton properties as of early 2012, arXiv:1207.1158, updated results and plots
available at http://www.slac.stanford.edu/xorg/hfag/.

[5] CDF collaboration, T. Aaltonen et al., Measurement of ratios of fragmentation
fractions for bottom hadrons in pp̄ collisions at

√
s = 1.96-TeV, Phys. Rev. D77

(2008) 072003, arXiv:0801.4375.

[6] CDF collaboration, T. Aaltonen et al., First measurement of the ratio of branch-
ing fractions B(Λ0

b → Λ+
c µ
−ν̄µ)/B(Λ0

b → Λ+
c π
−), Phys. Rev. D79 (2009) 032001,

arXiv:0810.3213.

[7] LHCb collaboration, R. Aaij et al., Measurement of b hadron production fractions in
7 TeV pp collisions, Phys. Rev. D85 (2012) 032008, arXiv:1111.2357.

14

http://arxiv.org/abs/1309.1979
http://dx.doi.org/10.1007/BF01589716
http://arxiv.org/abs/1405.1543
http://arxiv.org/abs/1207.1158
http://www.slac.stanford.edu/xorg/hfag/
http://dx.doi.org/10.1103/PhysRevD.77.072003
http://dx.doi.org/10.1103/PhysRevD.77.072003
http://arxiv.org/abs/0801.4375
http://dx.doi.org/10.1103/PhysRevD.79.032001
http://arxiv.org/abs/0810.3213
http://dx.doi.org/10.1103/PhysRevD.85.032008
http://arxiv.org/abs/1111.2357


[8] CMS collaboration, S. Chatrchyan et al., Measurement of the Λ0
b cross section and

the Λ
0

b to Λ0
b ratio with J/ψ Λ decays in pp collisions at

√
s = 7 TeV, Phys. Lett.

B714 (2012) 136, arXiv:1205.0594.

[9] LHCb collaboration, R. Aaij et al., Measurement of the fragmentation fraction
ratio fs/fd and its dependence on B meson kinematics, JHEP 04 (2013) 1,
arXiv:1301.5286.

[10] Particle Data Group, J. Beringer et al., Review of particle physics, Phys. Rev. D86
(2012) 010001, and 2013 partial update for the 2014 edition.

[11] CLEO collaboration, S. Dobbs et al., Measurement of absolute hadronic branching
fractions of D mesons and e+e− → DD̄ cross-sections at the ψ(3770), Phys. Rev.
D76 (2007) 112001, arXiv:0709.3783.

[12] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3
(2008) S08005.
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