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Abstract

Earth system models demonstrate large uncertainty in projected changes in terrestrial carbon budgets. The lack of

inclusion of adaptive responses of vegetation communities to the environment has been suggested to hamper the abil-

ity of modeled vegetation to adequately respond to environmental change. In this study, variation in functional

responses of vegetation has been added to an earth system model (ESM) based on ecological principles. The restric-

tion of viable mean trait values of vegetation communities by the environment, called ‘habitat filtering’, is an impor-

tant ecological assembly rule and allows for determination of global scale trait–environment relationships. These

relationships were applied to model trait variation for different plant functional types (PFTs). For three leaf traits

(specific leaf area, maximum carboxylation rate at 25 °C, and maximum electron transport rate at 25 °C), relation-
ships with multiple environmental drivers, such as precipitation, temperature, radiation, and CO2, were determined

for the PFTs within the Max Planck Institute ESM. With these relationships, spatiotemporal variation in these for-

merly fixed traits in PFTs was modeled in global change projections (IPCC RCP8.5 scenario). Inclusion of this envi-

ronment-driven trait variation resulted in a strong reduction of the global carbon sink by at least 33% (2.1 Pg C yr�1)

from the 2nd quarter of the 21st century onward compared to the default model with fixed traits. In addition, the

mid- and high latitudes became a stronger carbon sink and the tropics a stronger carbon source, caused by

trait-induced differences in productivity and relative respirational costs. These results point toward a reduction of

the global carbon sink when including a more realistic representation of functional vegetation responses, implying

more carbon will stay airborne, which could fuel further climate change.
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Introduction

Global change projections by different earth system

models (ESMs) diverge strongly in their predicted ter-

restrial global carbon budgets, both in the magnitude

and direction of change. Differences between ESMs in

projected changes in land carbon storage range from

about 300 to 600 Pg carbon around 2100, depending on

the climate change scenario (Jones et al., 2013). One of

the causes of variation among projections is that the

modeled functional responses of ecosystems, for exam-

ple, the responses of vegetation productivity and auto-

trophic respiration to climate drivers, differ strongly

among models (Sitch et al., 2008). In addition, lack of

inclusion of vegetation dynamics (Poulter et al., 2010)

and of vegetation adaptation to changing environments

(Sitch et al., 2008) are thought to contribute to these

large intermodel deviations in global carbon budgets

around 2100.

In part, the limited variation in the functional

responses of vegetation within most dynamic global

vegetation models (DGVMs, which represent the land

surface component, including vegetation dynamics, in

ESMs) is caused by representing the vast range of vas-

cular plant species by only a small number of static

plant functional types (PFTs) (Van Bodegom et al.,

2012; Pavlick et al., 2013). PFTs tend to be parameter-

ized with a number of PFT-specific static properties,

related to, for example, phenology and photosynthesis,
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allowing for only limited variation in vegetation

behavior within PFTs. In reality, it is well-known that

vegetation responses to the environment are caused by

environmental drivers working via multiple processes

at different temporal and spatial scales, including plas-

ticity, acclimation, and (genotypic) adaptation in physi-

ological and morphological traits (Shaw & Etterson,

2012), and, at the community scale, via shifts in species

abundance and species turnover. In most current

DGVMs, however, PFTs do not allow for such within-

PFT dynamics, because the mechanisms underlying

functional responses to environmental change are not

or superficially modeled. Moreover, these functional

responses of vegetation communities to environmental

change also modify ecosystem functioning and the veg-

etation feedbacks to the environment (Lavorel & Gar-

nier, 2002; Diaz et al., 2004). Consequently, the lack of

variation in traits in PFTs in most DGVMs may intro-

duce inaccuracies in model predictions (Groenendijk

et al., 2011).

In response to environmental change, mean trait val-

ues of plant communities vary. Such change in traits

may be determined by ecological community assembly

rules, which express the impacts of ‘habitat filtering’

(Keddy, 1992; Cornwell et al., 2006; Gotzenberger et al.,

2012), where the local environment constrains the via-

ble species’ trait ranges in a community. For many

traits, global trait–environment relationships have

already been identified (Wright et al., 2005; Ordo~nez

et al., 2009; Douma et al., 2012b; Van Ommen Kloeke

et al., 2012). Such relationships are used to predict com-

munity mean trait values and thereby PFT distribution

and species assemblages (Douma et al., 2012a; Van

Bodegom et al., 2014). Using community mean traits,

variation in functional vegetation responses can be

modeled within PFTs based on ecological theory, but

without needing to invoke mechanistic processes that

are not fully quantified or understood. By quantifying

the relationships between observed variation in com-

munity mean traits and their environmental drivers

and incorporating these into DGVMs, traits can be

adjusted every year within the model, allowing for spa-

tial and temporal variation in functional responses of

vegetation to environmental change and modification

of vegetation–atmosphere feedbacks.

Equilibrium simulations based on this approach have

shown very strong impacts on carbon fluxes and vegeta-

tion distribution (Verheijen et al., 2013), but the impact

in global change projections is unknown. Because the

response of the community may be different from that

expected from single species responses (Poorter & Na-

vas, 2003) and changes in community mean trait values

include both within-species changes as well as changes

induced by differences in species abundances, the mag-

nitude and direction of community-level responses, and

related carbon fluxes are difficult to foretell. Therefore,

the aim of this study was to identify whether and how

the global carbon budget is modified in space and time

in global change projections when multiple environ-

mental sources of variation in functional vegetation

responses are included.

We implemented trait variation within the DGVM

component of the Max Planck Institute Earth System

Model (MPI-ESM). Three leaf traits that have been sta-

tic in the model so far were selected. These traits were

specific leaf area (SLA, fresh leaf area per dry mass),

maximum carboxylation rate at a reference temperature

of 25 °C (Vcmax25 ), and maximum electron transport rate

at 25 °C (Jmax25 ). Photosynthetic parameters are the

most sensitive parameters of DGVMs (White et al.,

2000; Zaehle et al., 2005) and varying such traits are

likely to modify model performance upon global

change. For these three traits, for each PFT in the

model, relationships with the environment were deter-

mined. In the model, these traits were reparameterized

on a yearly basis depending on local environmental

conditions of the previous year, allowing vegetation to

respond dynamically to the environment. Projections

were run separately with default static traits and vari-

able traits, each with two simulations, one with climate

and atmospheric CO2 change and one with climate

change with atmospheric CO2 kept at pre-industrial

concentrations, to disentangle trait impacts on modified

vegetation responses and carbon fluxes with and with-

out the inclusion of CO2 fertilization of photosynthesis.

Materials and methods

Model description

The MPI-ESM was developed by the Max Planck Institute for

Meteorology (Germany). Fluxes of water, carbon, and energy

between land and atmosphere, as well as vegetation dynamics

are simulated by the DGVM JSBACH (Raddatz et al., 2007;

Brovkin et al., 2009; Reick et al., 2013) which is the land surface

component of the MPI-ESM. In JSBACH, grid cells are covered

with different fractions of PFTs. In this setup of JSBACH, 8

PFTs were present: tropical broad-leaved evergreen trees,

tropical broad-leaved deciduous trees, extratropical (both tem-

perate and boreal) evergreen trees, extratropical deciduous

trees, raingreen shrubs, cold/deciduous shrubs, C3 grasses,

and C4 grasses. Competition between woody (shrubs and

trees) and nonwoody classes (grasses) is based on different

rates of establishment into unoccupied land. Within woody or

nonwoody vegetation types, competition is based on multi-

year net primary productivity (NPP). Mortality is natural

(fractional decline) or disturbance induced (by windbreaks or

fire). In this setup, no anthropogenic impacts were modeled,

meaning crops were not included, and there was no land-use
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change. The setup did not include a nitrogen cycle either as

this was not available for this coupled model setup at the time

of the simulations.

Based on the availability of georeferenced observational

trait data, needed to determine the relationships between

traits and environmental conditions, three originally PFT-spe-

cific parameters could be selected to vary: SLA (m2 kg�1 car-

bon), Vcmax25 (lmol m�2 s�1), and Jmax25 (lmol m�2 s�1).

Although in the simulation with trait variation spatial and

temporal variation in these traits occurred, the functional roles

of the traits remained the same as in the default simulations.

For an elaborate description of these functional roles of these

traits in JSBACH, see Verheijen et al. (2013) and its supple-

mentary material. In short, Vcmax25 and Jmax25 are reference val-

ues used in the photosynthesis routine [based on Farquhar

(1988) and Farquhar et al. (1980) for C3 plants and Collatz

et al. (1992) for C4 plants] to calculate Vcmax and Jmax at ambi-

ent temperatures and subsequently actual carboxylation and

electron transport rate. Leaf carbon assimilation (A) is then

determined by the lower value of the actual carboxylation and

electron transport rate minus leaf maintenance (dark) respira-

tion (Rd). Ambient Rd is derived from Rd at a reference tem-

perature of 25 °C (Rd,25), which is a constant fraction of

Vcmax25 .

Gross primary productivity (GPP) is obtained when A is

scaled to the canopy by the leaf area index (LAI). NPP is GPP

minus whole plant maintenance respiration (Rm, which scales

up from leaf Rd) and growth respiration (Rg, which is a fixed

portion of GPP-Rm). Within a PFT, NPP is divided in fixed

fractions over different carbon pools: aboveground and below-

ground ‘green’ (resource acquisition) pools (leaves and fine

roots), wood pools, reserve pools, and root exudates. SLA

plays no role in determining LAI, but controls, together with

LAI, the maximum quantity of carbon in the green pool and

the optimal quantity of carbon in the reserve pool, thus code-

termining the flow of carbon to the litter pools via modifica-

tion of carbon allocation dynamics. As a result, SLA is only

marginally related to productivity (by determining the maxi-

mum amount of carbon that can be allocated) and is com-

pletely decoupled from phenology. As a consequence, the role

of SLA on carbon fluxes is therefore limited compared to that

of Vcmax25 and Jmax25 (see, for a more detailed discussion, Ver-

heijen et al., 2013).

The default model has been benchmarked against contem-

porary conditions (Brovkin et al., 2013; Dalmonech & Zaehle,

2013). Verheijen et al. (2013) discussed the contemporary per-

formance of the model when trait variation is included; GPP

in the tropics was higher than in the default model, but it per-

formed similarly well or better with respect to vegetation dis-

tribution and carbon pools.

Selected data and trait–environment relationships

The selected trait and climate data and the majority of the

methods applied for determining the trait–environment rela-

tionships are described in detail in Verheijen et al. (2013).

Briefly, data for SLA, Vcmax25 , and Jmax25 were obtained from

the TRY database (Kattge et al., 2011), supplemented with

SLA data from Van Bodegom et al. (2012) and Vcmax25 and

Jmax25 data from Domingues et al. (2010) (Table 1). For C4

grasses, PEP carboxylase CO2 specificity (PEP, mmol m�2 s�1)

instead of Jmax25 was modeled. For this PFT, PEP and Vcmax25

data were very limited; therefore, these traits were estimated

based on leaf nitrogen data from the TRY database and equa-

tions from Simioni et al. (2004). Every trait observation was

assigned to a JSBACH PFT based on information about

growth form, leaf habit, photosynthetic pathway, and occur-

rence in a climatic region of the K€oppen-Geiger classification

(Kottek et al., 2006). Community mean trait values were calcu-

lated for each PFT, weighted by square root of the number of

observations per community. For SLA, this resulted in 1052

PFT-specific entries (12 394 observations over 2869 species), 70

entries for Vcmax25 (761 observations over 129 species), and 56

entries for Jmax25 (402 observations over 108 species).

To define trait–environment relationships, community

mean trait values were related to a set of environmental driv-

ers. For each PFT, multiple linear regression was applied to

combinations of climatic variables. For CO2, a separate regres-

sion was determined, because the response of plants to CO2

concentrations other than ambient atmospheric CO2 could

only be derived from CO2 enrichment experiments. As a con-

sequence, the established trait–environment relationships are

composite regressions.

Most climate data were taken from 10-min gridded datasets

from the Climatic Research Unit (CRU) (New et al., 2002),

including mean annual precipitation (MAP, mm yr�1), mean

Table 1 References of selected trait data

Trait Reference

SLA Ackerly & Cornwell (2007), Bahn et al. (1999), Cavender-Bares et al. (2006), Cornelissen et al. (2003, 2004), Cornwell et al.

(2006), Fyllas et al. (2009), Garnier et al. (2007), Kattge et al. (2009, 2011), Kleyer et al. (2008), Kurokawa & Nakashizuka

(2008), H. Kurokawa (unpublished data), Laughlin et al. (2010), M.R. Leishman (unpublished data), Louault et al. (2005),

Medlyn et al. (1999), Niinemets (1999, 2001), Ogaya & Pe~nuelas (2007, 2008), Ordo~nez et al. (2010), Patino et al. (2012),

Pyankov et al. (1999), Reich et al. (2008, 2009), Shipley (1995), Shipley & Vu (2002), N.A. Soudzilovskaia (unpublished

data), Swaine (2007), Van Bodegom et al. (2012), P.M. van Bodegom (unpublished data), Vile et al. (2006), E. Weiher

(unpublished data), Wohlfahrt et al. (1999) and Wright et al. (2004, 2006)

Vcmax25 Domingues et al. (2010), Kattge et al. (2009) and Niinemets (1999, 2001)

Jmax25 Domingues et al. (2010) and Kattge et al. (2009)

SLA, specific leaf area.
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annual relative humidity (Reh, %), mean annual temperature

(MAT, °C), and mean temperature of coldest and warmest

month (Tmin and Tmax, °C). In addition, annual soil moisture

estimates (SoilMoist, m3 m�3 for 1 meter depth) were taken

from a 15-min gridded datasets based on remotely sensed data

(Miralles et al., 2011) and mean annual net shortwave radia-

tion (NSWR, W m�2) was calculated on a 30-min resolution

following Allen et al. (1998) and based on CRU data on per-

centage sunshine.

These climatic variables were coupled to the PFT-specific

trait means via georeferences. With the currently available

metadata in TRY, it was not possible to link traits to the envi-

ronmental conditions of the year the traits were measured.

Instead, the mean of traits measured at different years was

taken, assuming that they represented an ‘average’ year. All

possible relationships were tested by multiple linear regres-

sion (including interactions). After checking for significance

and colinearity of the environmental drivers and residual dis-

tribution, regressions with the highest R2
adjusted were selected.

Due to the low number of entries for the two tropical tree PFTs

and the two shrub PFTs, data were combined, resulting in two

instead of four regressions for these PFTs. To prevent model-

ing unrealistic trait values, simulated traits were restrained to

a 2.5–97.5% species-level quantile interval. Given that Vcmax25

and Jmax25 are strongly correlated (Wullschleger, 1993), PFT-

specific confidence intervals for their relationship were

applied as an additional constraint.

In contrast to plant responses to climate, which could be

based on field data, the response of plants to elevated CO2

concentrations could only be determined experimentally. For

this, we used meta-analyses of CO2 enrichment experiments.

Due to the relatively sparse data, some PFTs were grouped.

For trees, the elevated CO2 responses of Vcmax25 and Jmax25 were

derived from the meta-analysis of Medlyn et al. (1999), and for

shrubs and C3 grasses from Ainsworth & Rogers (2007). C4

grasses did not show a significant response. For SLA,

responses from Poorter et al. (2009) were taken for C3 (woody

and nonwoody) plants and C4 plants. Elevated CO2 concen-

trations were approximately 700 ppm in Medlyn et al. (1999),

on average 567 ppm in Ainsworth & Rogers (2007) and up to

1000 ppm in Poorter et al. (2009).

For C3 plants, the responses of PFTs to elevated CO2

resulted in a decrease in trait values. For Vcmax25 , this reflects a

downregulation upon increasing CO2, caused by an increased

affinity of Rubisco for CO2 at the expense of O2 affinity at

higher internal CO2 concentrations (Leakey et al., 2012). In

addition, there is less ATP needed for RuBP regeneration,

allowing a reduction in Jmax25 as well. Longer-term reduction

in Vcmax25 is associated with a reduction in leaf nitrogen, which

is re-allocated to other plant components to optimize carbon

gain and resource use, especially within a nitrogen-limited

environment (Ainsworth & Long, 2005; Leakey et al., 2012). In

addition, longer-term downregulation of photosynthesis is

also associated with an increase in nonstructural carbohy-

drates like starch (Poorter et al., 2009; Leakey et al., 2012),

explaining why SLA might decrease with increasing CO2 in

C3 plants. In contrast, in C4 grasses, no change in SLA was

found, the causes of which remain unclear (Poorter et al.,

2009). Vcmax25 and PEP did not show a strong response in C4

grasses, because these grasses have a CO2-concentrating

mechanism leading to CO2 saturation rather independent

from atmospheric CO2 concentrations (Poorter & Navas,

2003). However, they can still benefit from higher atmospheric

CO2 by an increased water-use efficiency via reduced stomatal

conductance (Ainsworth & Rogers, 2007).

The different regressions for CO2 and the climatic variables

were combined (see Data S1 for a description of the regres-

sions) and implemented in JSBACH. Trait values were calcu-

lated at the beginning of each simulated year, to allow

simulation of trait values for the coming year based on the

mean annual environmental conditions of the previous year

for each PFT in each grid cell.

Experimental design

Four simulation experiments were carried out: two simula-

tions with the default setup with the original default fixed trait

values (DEF) and two including environment-driven variation

in traits (VARTR). For each setup, one simulation with climate

and atmospheric CO2 changes was run, allowing for CO2 fer-

tilization effects on photosynthesis (called +fert) and one sim-

ulation with climate change but without CO2 fertilization

(called �fert), by keeping atmospheric CO2 fixed at pre-indus-

trial concentrations (atmospheric CO2 set at 284.7 ppm,

approximately year 1850). In contrast to the DEF simulations,

in both VARTR simulations, environmental change played an

additional role in varying traits, although in VARTR�fert, the

effect of CO2 on traits was constant over the years because

CO2 was kept constant. With these simulations, interactions

between trait variation and climate change (�fert) and the

combined effects of both climate change and CO2 fertilization

(+fert) on carbon fluxes could be investigated.

Simulations were performed with the MPI-ESM at a land

resolution of 1.875° (T63). Climate was internally simulated by

the atmosphere model ECHAM6 (Stevens et al., 2013) and

fluxes between land and atmosphere and vegetation dynamics

by JSBACH. Seasonal sea surface temperatures and sea ice

were prescribed and taken from simulations by fully coupled

historical runs (1850–2004) and projections (2004–2100) from

the C5MIP model intercomparison project following the

RCP8.5 scenario (Van Vuuren et al., 2011). The same input of

ozone, aerosols, and radiative forcing as in the C5MIP project

was used, see Giorgetta et al. (2013) for an overview and

description of sources. Only natural vegetation was modeled,

and therefore, anthropogenic greenhouse gas emissions (CO2,

N2O, CH4 and CFCs) were prescribed, following the RCP8.5

scenario as well, which implies a steady increase in atmo-

spheric CO2 to 925.9 ppm around 2100. The consequence of

this prescribed atmospheric CO2 increase was that carbon

feedbacks were not accounted for in the model.

Default simulations and simulations with variation in traits

in PFTs had their own model initialization. For each model

setup, the coupled JSBACH/ECHAM5 model was run until

quasi-equilibrium (for the vegetation) for 250 years in the pre-

industrial climate by repeating 30 years of seasonal sea sur-

face temperatures and sea ice forcing and running vegetation
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dynamics in an accelerated mode (where vegetation responses

were simulated 3 times within each year). The last 30 years of

this spin-up were used to drive the carbon balance model of

JSBACH for 1500 years to get the soil carbon pools into equi-

librium. Then the model was restarted with the equilibrated

carbon pools and run for another 200 years (with vegetation

dynamics in a normal mode) to get vegetation in equilibrium.

The two different spin-ups were used to start the historical

run and projections of the +fert and �fert simulations (i.e.

DEF+fert and DEF�fert and VARTR+fert and VARTR�fert).

This means the DEF and VARTR simulations had different ini-

tial climate and vegetation properties and carbon stocks, but

+fert and �fert for either the DEF or the VARTR setup did

not.

Simulations were performed till 2100 with CO2 concentra-

tions increasing up to ~925 ppm. For SLA, these concentra-

tions fell within the calibration range of the meta-analysis, but

maximum CO2 concentrations in the meta-analyses used to

determine Vcmax25 and Jmax25 responses to CO2 were on average

lower. As a consequence, CO2 concentrations were outside the

calibration range for grasses and shrubs for these traits from

2055 onward (i.e. above 567 ppm) and for trees from about

2073 onward (700 ppm). This means that results should be

interpreted with care from 2055 onward, and especially the

last quarter of the century should be considered speculative.

Results

Contemporary estimates of carbon budgets

The land carbon exchange, or net ecosystem exchange

(NEE), of the variable traits simulation with both

climate change and CO2 fertilization effects (VARTR+
fert) predicted a land carbon uptake in the 1980s, 1990s,

and 2000s (Table 2, positive values mean land carbon

uptake). These predictions fell within the 90% confi-

dence interval of the global land carbon budget of the

1990s and 2000s, as estimated by the IPCC 2013 assess-

ment (Ciais et al., 2013), whereas the default simulation

(DEF+fert) only fell within the 1990s range. VARTR+fert

had a lower NEE and was closer to the mean estimate

than DEF+fert for either the 1980s, 1990s, or 2000s. Either
simulation with climate change but without CO2 fertil-

ization effects (DEF�fert and VARTR�fert) predicted a

land carbon release for each of the contemporary time

periods.

Projected global NEE

Both simulations with climate change and CO2 fertiliza-

tion effects (DEF+fert and VARTR+fert) showed an

increase in land carbon initially (Fig. 1), but NEE

started to level off toward 2050 and showed a steady

decline in NEE in the second half of the 21st century.

Compared to the DEF+fert simulation, land in the

VARTR+fert simulation was a weaker carbon sink (see

also carbon pools in Fig. S1). Projected NEE was on

average 2.1 Pg C yr�1 lower in the second and third

quarters of the 21st century and 2.7 Pg C yr�1 lower in

the last quarter, which means, respectively, 33.0, 36.2,

and 69.9% less carbon sequestration in VARTR+fert
than in DEF+fert in these periods.

In the �fert simulations (DEF-fert and VARTR-
fert), the lack of CO2 fertilization on photosynthesis

resulted in a steady weakening of the land carbon sink

over time, because the increase in both autotrophic (Ra)

and heterotrophic (Rh) respiration due to higher tem-

peratures was not compensated by an increase in GPP,

like in the +fert simulations (see Fig. S2 for separate

fluxes). Land in the VARTR�fert was a stronger carbon

source than in DEF�fert, although differences were

smaller than between +fert simulations. NEE in

VARTR�fert was 0.3 Pg C yr�1 lower (more negative)

in the 2nd quarter and 1.0 Pg C yr�1 lower in both

the 3rd and 4th quarter of the 21st century, which

represented an increase in the carbon source of 11.1,

28.8, and 21.7%, respectively, compared to DEF�fert.

Table 2 Comparison of simulated global land carbon bud-

gets (positive values mean land carbon uptake) with the esti-

mates from the IPCC 2013 report (Ciais et al., 2013). Carbon in

Pg C yr�1, in brackets the 90% confidence interval

1980s 1990s 2000s

Pg C yr�1 Pg C yr�1 Pg C yr�1

IPCC 2013

Residual Land

Sink

1.5 (0.4–2.6) 2.6 (1.4–3.8) 2.6 (1.4–3.8)

DEF+fert 3.05 3.21 3.98

VARTR+fert 2.89 2.4 3.49

DEF+fert �0.94 �0.55 �1.29

VARTR�fert �0.43 �1.11 �1.00

DEF, default fixed trait values.

Fig. 1 Global net ecosystem exchange (10-year running mean in

Pg C yr�1). Positive values mean land carbon uptake.
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In VARTR, NEE differences between the (combined)

effects of CO2 fertilization (+fert) and climate change

vs. climate change alone (�fert) were 1.8, 1.0, and

1.7 Pg C yr�1 less in the last 3 quarters of the 21st cen-

tury compared to differences between +fert and �fert

in DEF. This means that by including trait variation, the

(combined) effects of CO2 fertilization and climate

change on the global carbon sink and source patterns

were modified as well.

Latitudinal changes in NEE

Latitudinal NEE (Fig. 2) clarifies which areas contrib-

uted most to the changes in global NEE. For the con-

temporary climate, differences across latitudes and

among simulations were small. However, over time,

differences in latitudinal NEE between simulations

became more profound, both in the amount of carbon

sequestered or released and in the spatial distribution.

In addition, global variability in NEE increased over

time and was larger in VARTR than in DEF simulations

(compare standard deviations in Fig. 2). From around

2050, NEE of the tropics (defined as area between the

Tropic of Cancer and Tropic of Capricorn) started to

diverge more strongly from NEE at the mid- and high

latitudes (i.e. temperate, boreal, and arctic areas in the

northern hemisphere) in VARTR simulations compared

to the DEF simulations. This divergence was caused

both by a stronger increase in carbon sequestration in

the mid- and high latitudes and a stronger carbon

release in the tropical areas in the VARTR simulations.

Latitudinal changes in traits

In general, latitudinal gradients of mean trait values

averaged over all PFTs (and weighted by fractional

cover of a PFT in a grid cell) showed a decreasing trend

over time in VARTR+fert (Fig. 3), but in VARTR�fert,

traits changed less and even increased in some areas

(e.g. above 50°N). In contrast, in both DEF simulations,

shifts in traits were small, because weighted mean trait

values in grid cells could only change with shifts in PFT

cover. In all simulations, Vcmax25 and Jmax25 were clearly

lower in the tropics than at mid- and high latitudes,

due to more favorable environmental conditions (e.g.

higher temperatures and a longer growing season).

Variation in traits was induced by both changes in

climatic drivers and CO2 in VARTR+fert. By removing

the CO2-induced variation from the VARTR+fert trait

values, trait changes over time (left to right panels)

caused by climatic variables alone (blue line in Fig. 3)

could be investigated. In addition, the difference

between trait values based on all environmental drivers

(black dashed line) and climatic drivers alone (blue

line) reflects the amount of change induced by elevated

CO2.

Climate-induced variation in PFT-averaged trait val-

ues resulted in trait patterns of VARTR+fert shifting

strongly toward those of VARTR-fert (i.e. blue lines

and gray dashed lines), where CO2 did not affect veg-

etation and traits thus varied in response to climate

only. Trait values, however, did not completely over-

lap, reflecting trait-induced differences in climate and

vegetation cover among the VARTR simulations.

These climate-induced changes could both increase or

decrease over time, depending on the dominant PFT

(see also Fig. S3 for PFT-specific trait responses over

time). In contrast, including the response of CO2

always resulted in a decrease in trait values (expect

for SLA for C4 grasses). The net changes in traits

depended on both the amount and direction of change

induced by both climatic variables and CO2, which

(a) (b) (c) (d)

Fig. 2 Latitudinal gradients of (10-year mean) average net ecosystem exchange (kg C m�2 yr�1), with global standard deviations (bot-

tom horizontal lines): (a) 1851, (b) 2000, (c) 2050, and (d) 2100. Legend as in Fig. 1. Horizontal dashed lines denote the Tropic of Cancer

and Capricorn.
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varied between PFTs (Fig. S3). The relative contribu-

tion of CO2 and climate to variation in traits was

therefore also PFT dependent.

Latitudinal changes in fluxes

In the DEF+fert simulation, GPP steadily increased

over time in mid- and high latitudes as well as the

tropics, whereas in VARTR+fert, GPP started already

to decline in the equatorial tropics in the 2nd quarter

of the 21st century. Changes in traits affected GPP,

but productivity in the +fert simulations was mostly

determined by direct CO2 fertilization effects, because

GPP still increased even when Vcmax25 and Jmax25

decreased (compare Figs 3 and 4). In most cases,

when Vcmax25 and Jmax25 dropped below values as pre-

vailing in DEF+fert, this resulted in a lower GPP in

VARTR+fert as well.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 3 Latitudinal gradients of (10-year mean) trait values, weighted by fractional plant functional types (PFT) cover: (a, e, i) 1851, (b,f,

j) 2000, (c,g,k) 2050, and (d,h,l) 2100. Upper row, specific leaf area (SLA) (kg m�2); middle row, Vcmax25 (lmol m�2 s�1); and lower row,

Jmax25 (lmol m�2 s�1, without C4 grasses). Legend as in Fig. 1. In addition, blue line: VARTR+fert without CO2 response. Horizontal

dashed lines denote the Tropic of Cancer and Capricorn. Note that in 1851, trait values within default fixed trait values (DEF) and

VARTR overlap initially and therefore some simulations seem absent.
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Overall, the NPP : GPP ratio (Fig. 5) was lower for

all simulations in the tropics compared to the high lati-

tudes, because higher temperatures enhance respiration

in the tropics (Raddatz et al., 2007). Changes in this

ratio were caused by direct CO2 fertilization effects and

temperature effects on GPP and temperature effects on

Ra. Changes in Vcmax25 and Jmax25 modified this ratio

additionally, making it difficult to disentangle the rela-

tive contribution of each variable. Over time, the areas

in the mid- and high latitudes where the NPP : GPP

ratio was higher in VARTR+fert than in DEF+fert
increased over time, indicating relatively lower respira-

tional costs in VARTR+fert. Even though GPP was

equal to or lower than in DEF+fert, this resulted in

higher NEE in large parts of these regions from around

2050 onward in VARTR+fert. In contrast, in the tro-

pics, the NPP : GPP ratio was almost always lower

(meaning relatively higher respirational losses) in

VARTR+fert, independent of whether GPP was lower

or higher than in DEF+fert. Over time, Rh became

slightly lower (Fig. S4) in VARTR+fert, but this could

not compensate for the lower carbon use efficiency, and

NEE dropped to negative values around 2050.

In the �fert simulations, these dynamics of fluxes

and traits resulted in similar differences: a somewhat

higher NEE for VARTR�fert at higher latitudes and

lower NEE in the tropics compared to DEF�fert.

Discussion

Implications of trait variation for global and regional
responses in carbon fluxes

In this study, we implemented trait variation within

PFTs based on observed trait–environment relation-

ships, allowing for variation in functional responses to

changes in the environment within PFTs. This approach

is a logical next step from using PFTs with static

(a) (b) (c) (d)

Fig. 4 Latitudinal gradients of (10-year mean) average annual gross primary productivity (GPP) (kg C m�2 yr�1): (a) 1851, (b) 2000, (c)

2050, and (d) 2100. Legend as in Fig. 1. Horizontal dashed lines denote the Tropic of Cancer and Capricorn.

(a) (b) (c) (d)

Fig. 5 Latitudinal gradients of (10-year mean) NPP : GPP ratios: (a) 1851, (b) 2000, (c) 2050, and (d) 2100. To prevent numeric artefacts,

areas where gross primary productivity (GPP) is <0.05 are left out. Legend as in Fig. 1. Horizontal dashed lines denote the Tropic of

Cancer and Capricorn.
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properties, which hampers the modeling of more

dynamic functional vegetation responses (Kattge et al.,

2011; Van Bodegom et al., 2012; Pavlick et al., 2013).

Allowing for a more realistic functional response of

vegetation to environmental change by including trait

variation allowed for better estimates of contemporary

global land carbon uptake (Table 2) and altered global

and regional source–sink patterns of carbon.

Even though the direct CO2 fertilization effect on

GPP was more profound than the effect of trait varia-

tion on GPP (compare the change over time in GPP in

VARTR+fert and VARTR�fert simulations), changes in

traits modified GPP and affected NEE. This resulted in

a lower NEE in VARTR+fert compared to DEF+fert of
on average 2.1 Pg C yr�1 between 2026 and 2075 and

about 2.7 Pg C yr�1 in the final quarter of the 21st cen-

tury, although this last projection remains rather uncer-

tain due to extrapolation of trait responses to elevation

CO2 beyond the calibration range. Regionally, however,

NEE also increased, particularly at the mid- and high

latitudes. The strong reduction in NEE in VARTR+fert
can mostly be attributed to the tropics, where predic-

tions are relatively uncertain, as data availability for the

calibration of trait–environment relationships was lim-

ited (see Materials and Methods section). The robust-

ness of this outcome thus needs to be evaluated in

future studies.

The actual effects of traits on model performance are

difficult to pinpoint due to the different pathways by

which variation in traits can cascade through the

model. Changes in traits drive changes in GPP (Vcmax25

and Jmax25 ), Ra (Vcmax25 , via Rd,25) and carbon storage

(SLA), and consequently modify carbon use efficiency

via the NPP : GPP ratio. Moreover, the effects of

changes in traits do not only work via modification in

vegetation carbon fluxes, but also indirectly through

effects on vegetation distribution (via NPP-induced

shifts in competitive advantage), Rh (via litter quality

and quantity), and feedbacks to climate (e.g. via

changes in productivity or vegetation distribution, see

Verheijen et al., 2013). These multiple pathways via

which trait effects the carbon cycle can cascade through

the system are probably the main cause for the modifi-

cation of functional vegetation responses by variable

traits to be strongly region dependent.

In addition, trait effects on vegetation and fluxes are

not easy to disentangle from direct effects of changes in

climate or CO2 fertilization effects. However, by com-

paring differences between DEF+fert and DEF�fert

with differences between VARTR+fert and

VARTR�fert, it was possible to identify to which extent

trait variation affected the (combined) effects of climate

change and CO2 fertilization (+fert simulations) on glo-

bal carbon sequestration compared to climate change

effects alone (�fert simulations). Globally, this effect of

variable traits (comparing +fert to �fert simulations)

was substantial and dampened global carbon seques-

tration by on average 1.8 Pg C yr�1 in the 2nd quarter

and 1.0 Pg C yr�1 and 1.7 Pg C yr�1 in the third and

fourth quarter of the 21st century in VARTR compared

to DEF. While the relative contribution of CO2 and cli-

matic variables to variation in traits differed per PFT,

CO2-induced trait responses consistently resulted in a

decrease in global PFT-averaged trait values. In particu-

lar, for Vcmax25 and Jmax25 , this resulted in lower trait val-

ues and productivity, dampening the effect of CO2

fertilization on photosynthesis, and resulting in smaller

differences between +fert and �fert in VARTR than in

DEF.

Together, these results suggest that our model, but

potentially other ESMs as well, currently overestimates

projected land carbon uptake, which implies more CO2

than expected will stay airborne at the end of the 21st

century.

Challenges for including trait variation in DGVMs

Due to gaps in current knowledge and available data,

some uncertainties concerning the trait–environment

relationships as applied in the current approach remain

to be resolved. For some PFTs, the number of trait data

was limited, and in some cases, the fraction of trait vari-

ance explained by environmental drivers was low (see

Data S1). However, the established trait–environment

relationships are based on community mean traits and

thus less prone to biases caused by large differences in

the number of observations for individual species.

In addition, the incorporated relationships are based

on spatial patterns in trait–environment relations and

subsequently applied to predict future temporal pat-

terns in trait variation. The applicability of such rela-

tionships under future climate is uncertain, because i.

acclimation and adaptation processes may affect trait–
environment relationships, ii. prevailing vegetation

may lag in its response (Chapin & Starfield, 1997) or

may not respond in similar ways to imposed environ-

mental changes as the responses inferred from commu-

nity mean trait–environment relationships, and iii. the

combination of future climate, atmospheric chemistry,

and soil properties may lead to novel abiotic regimes

and ecosystem types that cannot easily be predicted

from knowledge about the present or past (Chapin &

Starfield, 1997; Reu et al., 2014).

Concerning the first point, the importance of and var-

iation in trait acclimation and adaptation to environ-

mental change are currently largely unknown at a

global scale and can therefore not yet be quantitatively

incorporated in DGVMs. For example, long-term
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temperature and CO2 acclimation of photosynthesis

and temperature acclimation of respiration are lacking

in most global models (Smith & Dukes, 2013). In our

model, vegetation acclimation and adaptation to ele-

vated CO2 are based on measured PFT-specific

responses, but measurements on vegetation responses

to long-term CO2 enrichment treatments with very high

concentrations of CO2 are still relatively scarce. Trait

responses to environmental changes might be modified

by interactions between CO2 and other environmental

drivers, whereas our trait–environment regressions are

composite additive regressions. However, long-term

studies (spanning several growing seasons) investigat-

ing such interactions on plant performance are still lim-

ited, and interactions do not always occur (as, e.g.

between CO2, temperature, and drought, Kongstad

et al., 2012; Arndal et al., 2014) or show idiosyncratic

responses (e.g. for the interactive effect between CO2

and nitrogen, see Norby & Zak (2011) for an overview).

In addition, trait responses to CO2 are very likely to

change with increasing atmospheric CO2, because these

trait changes do not stand alone from other physiologi-

cal processes, such as reductions in stomatal conduc-

tance, nitrogen re-allocation, and accumulation of

sugars (Leakey et al., 2012), all of which can modulate

the response of Vcmax25 and Jmax25 to CO2. Due to data

limitations, however, a more sophisticated modeling of

the actual responses of these traits beyond assuming a

linear response was currently out of reach. Because of

these uncertainties in adaptive and interactive

responses, results after 2050 need to be interpreted with

care, also because Vcmax25 and Jmax25 responses to CO2

concentrations are outside the range of the meta-analy-

sis for shrubs and grasses from 2055 onward (i.e. above

567 ppm), even though for trees, these responses are

still within the calibration range till about 2073 and

SLA responses can be extrapolated to the end of the

century.

With respect to the second uncertainty, it appears

that the observed intra- and interannual variation in

LMA (leaf mass per area, inverse of SLA) of oaks and

perennial grasses (6-year time span) (Ma et al., 2011)

and Vcmax25 in oak and ash (3-year time span) (Grassi

et al., 2005) is as strong as the simulated variation in the

traits of deciduous trees or C3 grasses over a period of

250 years. This demonstrates the huge amount of varia-

tion in leaf traits possible within only a few years and

shows the responsiveness of vegetation to changing

environmental conditions. Moreover, over a 250-year

time period (the length of the simulations), variation in

functional vegetation responses of nonwoody vegeta-

tion (in much lesser amount in woody vegetation due

to longer turnover times) might additionally be driven

by genetic adaptation or shifts in species abundance.

Thus, although the use of trait–environmental relation-

ships has its limitations for applications in global mod-

eling, its inclusion allows accounting for variation in

traits within PFTs within realistic ranges, which have

been shown to be very large.

Concerning the last point, moving away from PFTs

toward a completely traits-based modeling approach

can allow for nonanalogue vegetation types (Van Bode-

gom et al., 2012; Reu et al., 2014). In our model, we set

additional limits on traits to prevent unrealistic trait

ranges outside observed ranges. Therefore, we may

have conservatively assessed the impacts of potential

nonanalogue conditions.

In addition to these uncertainties concerning data

availability and knowledge gaps about vegetation

responses, the model design also poses limitations on

the implementation of trait variation. Plant traits are

often correlated, and we accounted for such trade-offs

for Vcmax25 and Jmax25 . However, well-known trade-offs

from the ‘leaf economics spectrum’ (Wright et al., 2004),

for example, between SLA and these photosynthetic

traits or leaf life span (LLS), could not be implemented

because in JSBACH, phenology is modeled indepen-

dently from productivity and carbon storage. Hence, in

contrast to many DGVMs, in JSBACH, SLA is not link-

ing productivity and LAI. This decoupling of SLA

makes trade-offs with photosynthetic traits and LLS

less relevant, although in other vegetation models with

a more central role for SLA, such trade-offs are neces-

sary. For a more elaborate discussion on this, we refer

to Verheijen et al. (2013).

Toward a more realistic vegetation representation by
including an integrated estimate of trait variation

A number of alternative approaches have been devel-

oped to realize more (trait) variation in vegetation

models, from realizing trait variation as an emergent

property based on fundamental trade-offs (Pavlick

et al., 2013; Scheiter et al., 2013) to data-driven

approaches based on observed species trait values (Fy-

llas et al., 2014). So far, none of these approaches use

integrated estimates of community-level trait variation

by linking observational trait data to multiple environ-

mental drivers. Community mean trait responses

include both within-species acclimation or adaptation

as well as changes in trait values caused by shifts in

species abundances as a consequence of competition or

environment-induced mortality. Both components need

to be considered given that single species responses do

not necessarily translate to responses at the community

level (Poorter & Navas, 2003). Moreover, the combina-

tion of responses also implies that trait responses will

not automatically result in biomass increment in a
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community. For example, at the end of the 21st century,

there was a drop in the productivity of tropical forests

in the VARTR+fert simulation, whereas GPP kept

increasing in DEF+fert. This makes it very difficult to

predict the direction of change in carbon fluxes a priori.

In addition, by empirically including multiple envi-

ronmental drivers, various sources of trait variation were

captured. Due to model limitations, edaphic drivers such

as nitrogen and phosphorus availability or soil age and

structure are still lacking. Indirectly though, at least

nutrient limitation is partially covered by the inclusion

of vegetation responses to elevated CO2, because nutri-

ent limitation may arise when vegetation is exposed to

higher CO2 for longer time periods (Reich et al., 2006;

Norby et al., 2010). This means that in the VARTR+fert
simulation, predictions are more conservative than in

the DEF simulation (without any nutrients constraints at

all), in results are in line with JSBACH simulations with

N and P cycling, where projected land carbon uptake is

reduced due to lower productivity caused by nutrient

limitations (Goll et al., 2012).

Together, with our approach, a more realistic

response of vegetation to changing environmental con-

ditions, by allowing for both spatial and temporal trait

variation within PFTs, can be implemented in ESMs. To

further study these responses, we propose i. further

development of trait databases to improve the reliabil-

ity of the vegetation responses to changing climate, ii.

inclusion of our approach within other DGVMs, and iii.

further development of completely traits-based

DGVMs. In our case, an integral assessment of these

modifications in the carbon cycle through functional

vegetation responses has already revealed substantial

impacts on global and regional fluxes.
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