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Abstract

A first study of CP violation in the decay modes B± → [K0
SK
±π∓]Dh

± and B± →
[K0

SK
∓π±]Dh

±, where h labels a K or π meson and D labels a D0 or D0 meson,
is performed. The analysis uses the LHCb data set collected in pp collisions,
corresponding to an integrated luminosity of 3 fb−1. The analysis is sensitive to the
CP -violating CKM phase γ through seven observables: one charge asymmetry in
each of the four modes and three ratios of the charge-integrated yields. The results
are consistent with measurements of γ using other decay modes.
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7LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
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rUniversità di Padova, Padova, Italy
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1 Introduction

A precise measurement of the unitarity triangle angle γ = arg
(
−VudV

∗
ub

VcdV
∗
cb

)
is one of the most

important tests of the Cabibbo Kobayashi Maskawa (CKM) mechanism. This parameter
can be accessed through measurements of observables in decays of charged B mesons to
a neutral D meson and a kaon or pion, where D labels a D0 or D0 meson decaying to a
particular final state accessible to D0 and D0. Such decays are sensitive to γ through the
interference between b → cūs and b → uc̄s amplitudes. They offer an attractive means
to measure γ because the effect of physics beyond the Standard Model is expected to be
negligible, thus allowing interesting comparisons with other measurements where such
effects could be larger.

The determination of γ using B± → DK± decays was first proposed for D decays to
the CP -eigenstates K+K− and π+π− (so-called “GLW” analysis) [1, 2]. Subsequently, the
analysis of the K±π∓ final state was proposed (named “ADS”) [3,4], where the suppression
between the colour favoured B− → D0K− and suppressed B− → D0K− decays is
compensated by the CKM suppression of the D0 → K+π− decay relative to D0 → K+π−,
resulting in large interference. The LHCb collaboration has published the two-body ADS
and GLW analyses [5], the Dalitz analysis of the decay B± → [K0

Sh
±h∓]DK

±, (h =
π,K) [6] and the ADS-like analysis of the decay mode B± → [K±π∓π±π∓]DK

± [7],
where [X]D indicates a given final state X produced by the decay of the D meson.
These measurements have recently been combined to yield the result γ = (72.0+14.7

−15.6)
◦ [8],

which is in agreement with the results obtained by the BaBar and Belle collaborations of
γ = (69+17

−16)
◦ [9] and γ = (68+15

−14)
◦ [10], respectively. In analogy to studies in charged B

meson decays, sensitivity to γ can also be gained from decays of neutral B mesons, as has
been demonstrated in the LHCb analysis of B0 → [K+K−]DK

∗0 decays [11].
The inclusion of additional B± → DK± modes can provide further constraints on γ. In

this Letter, an analysis of the D → K0
SK
±π∓ final states is performed, the first ADS-like

analysis to use singly Cabibbo-suppressed (SCS) decays, as proposed in [12]. The two
decays, B± → [K0

SK
±π∓]Dh

± and B± → [K0
SK
∓π±]Dh

±, are distinguished by the charge
of the K± from the decay of the D meson relative to the charge of the B meson, so that
the former is labelled “same sign” (SS) and the latter “opposite sign” (OS).

In order to interpret CP -violating effects using these three-body decays it is necessary
to account for the variation of the D decay strong phase over its Dalitz plot due to the
presence of resonances between the particles in the final state. Instead of employing an
amplitude model to describe this phase variation, direct measurements of the phase made
by the CLEO collaboration are used, which are averaged over large regions of the Dalitz
plot [13]. The same CLEO study indicates that this averaging can be employed without
a large loss of sensitivity. The use of the CLEO results avoids the need to introduce a
systematic uncertainty resulting from an amplitude model description.

The analysis uses the full 2011 and 2012 LHCb pp collision data sets, corresponding
to integrated luminosities of 1 and 2 fb−1 and centre-of-mass energies of

√
s = 7 TeV and

8 TeV, respectively. The results are measurements of CP -violating observables that can be
interpreted in terms of γ and other hadronic parameters of the B± meson decay.

1



2 Formalism

The SS decay B+ → [K0
SK

+π−]DK
+ can proceed via a D0 or D0 meson, so that the decay

amplitude is the sum of two amplitudes that interfere,

A(m2
K0

SK
,m2

K0
Sπ

) = AD0(m2
K0

SK
,m2

K0
Sπ

) + rBe
i(δB+γ)AD0(m2

K0
SK
,m2

K0
Sπ

), (1)

where A{D0,D0}(m
2
K0

SK
,m2

K0
Sπ

) are the D0 and D0 decay amplitudes to a specific point in

the K0
SK

+π− Dalitz plot. The amplitude ratio rB is |A(B
+→D0K+)|

|A(B+→D0K+)| = 0.089± 0.009 [8] and

δB is the strong phase difference between the B+ → D0K+ and B+ → D0K+ decays. The
calculation of the decay rate in a region of the Dalitz plot requires the evaluation of the
integral of the interference term between the two D decay amplitudes over that region.
Measurements have been made by the CLEO collaboration [13], where quantum-correlated
D decays are used to determine the integral of the interference term directly in the form
of a “coherence factor”, κK0

SKπ
, and an average strong phase difference, δK0

SKπ
, as first

proposed in Ref. [14]. The coherence factor can take a value between 0 and 1 and is defined
through the expression

κK0
SKπ

e
−iδ

K0
S
Kπ ≡

∫
A∗
K0

SK
−π+(m2

K0
SK
,m2

Kπ)AK0
SK

+π−(m2
K0

SK
,m2

Kπ)dm2
K0

SK
dm2

Kπ

Aint.
K0

SK
−π+A

int.
K0

SK
+π−

, (2)

where Aint.
K0

SK
±π∓ =

∫
|AK0

SK
±π∓(m2

K0
SK
,m2

Kπ)|2dm2
K0

SK
dm2

Kπ. This avoids the significant

modelling uncertainty incurred by the determination of the strong phase difference between
the D0 and D0 amplitudes at each point in the Dalitz region from an amplitude model.
The decay rates, Γ, to the four final states can therefore be expressed as

Γ±SS, DK = z[ 1 + r2Br
2
D + 2rBrDκK0

SKπ
cos(δB ± γ − δK0

SKπ
) ]

Γ±OS, DK = z[ r2B + r2D + 2rBrDκK0
SKπ

cos(δB ± γ + δK0
SKπ

) ] (3)

where rD is the amplitude ratio for D0 → K0
SK

+π− with respect to D0 → K0
SK
−π+ and

z is the normalisation factor. Analogous equations can be written for the B± → Dπ±

system, with rπB and δπB replacing rB and δB, respectively. Less interference is expected
in the B± → Dπ± system where the value of rπB is much lower, approximately 0.015 [8].
These expressions receive small corrections from mixing in the charm system which, though
accounted for in Sect. 7, are not explicitly written here. At the current level of precision
these corrections have a negligible effect on the final results.

Observables constructed using the decay rates in Eq. (3) have a sensitivity to γ that
depends upon the value of the coherence factor, with a higher coherence corresponding to
greater sensitivity. The CLEO collaboration measured the coherence factor and average
strong phase difference in two regions of the Dalitz plot: firstly across the whole Dalitz
plot, and secondly within a region ±100 MeV/c2 around the K∗(892)± resonance, which
decays to K0

Sπ
±, where, though the sample size is diminished, the coherence is higher. The

measured values are κK0
SKπ

= 0.73± 0.08 and δK0
SKπ

= 8.3± 15.2◦ for the whole Dalitz
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plot, and κK0
SKπ

= 1.00 ± 0.16 and δK0
SKπ

= 26.5 ± 15.8◦ in the restricted region. The

branching fraction ratio of D0 → K0
SK

+π− to D0 → K0
SK
−π+ decays was found to be

0.592± 0.044 in the whole Dalitz plot and 0.356± 0.034 in the restricted region [13].
Eight yields are measured in this analysis, from which seven observables are constructed.

The charge asymmetry is measured in each of the four decay modes, defined as ASS, DK ≡
NDK−

SS −NDK+

SS

NDK−
SS +NDK+

SS

for the B± → [K0
SK
±π∓]DK

± mode and analogously for the other modes.

The ratios of B± → DK± and B± → Dπ± yields are determined for the SS and OS decays,
RDK/Dπ, SS and RDK/Dπ, OS respectively, and the ratio of SS to OS B± → Dπ± yields,
RSS/OS, is measured. The measurements are performed both for the whole D Dalitz plot
and in the restricted region around the K∗(892)± resonance.

3 The LHCb detector and data set

The LHCb detector [15] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector
includes a high-precision tracking system consisting of a silicon-strip vertex detector
surrounding the pp interaction region, a large-area silicon-strip detector located upstream
of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip
detectors and straw drift tubes placed downstream. The combined tracking system provides
a momentum measurement with relative uncertainty that varies from 0.4 % at 5 GeV/c to
0.6 % at 100 GeV/c, and impact parameter (IP) resolution of 20µm for tracks with large
transverse momentum. Different types of charged hadrons are distinguished by particle
identification (PID) information from two ring-imaging Cherenkov (RICH) detectors [16].
Photon, electron and hadron candidates are identified by a calorimeter system consisting of
scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic
calorimeter. Muons are identified by a system composed of alternating layers of iron and
multiwire proportional chambers.

The trigger consists of a hardware stage, based on information from the calorimeter
and muon systems, followed by a software stage, which applies a full event reconstruction.
The software trigger searches for a track with large pT and large IP with respect to any pp
interaction point, also called a primary vertex (PV). This track is then required to be part
of a two-, three- or four-track secondary vertex with a high pT sum, significantly displaced
from any PV. A multivariate algorithm [17] is used for the identification of secondary
vertices consistent with the decay of a b hadron.

Samples of around two million B± → [K0
SK
∓π±]Dπ

± and two million B± →
[K0

SK
∓π±]DK

± decays are simulated to be used in the analysis, along with similarly-sized
samples of B± → [K0

Sπ
+π−]Dπ

±, B± → [K0
SK

+K−]Dπ
± and B± → [K±π∓π+π−]Dπ

±

decays that are used to study potential backgrounds. In the simulation, pp collisions are
generated using Pythia [18] with a specific LHCb configuration [19]. Decays of hadronic
particles are described by EvtGen [20], in which final state radiation is generated using
Photos [21]. The interaction of the generated particles with the detector and its response
are implemented using the Geant4 toolkit [22] as described in Ref. [23].
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4 Candidate selection

Candidate B → [K0
SK
±π∓]DK and B → [K0

SK
±π∓]Dπ decays are reconstructed in events

selected by the trigger and then the candidate momenta are refit, constraining the masses
of the neutral D and K0

S mesons to their known values [24] and the B± meson to originate
from the primary vertex [25]. Candidates where the K0

S decay is reconstructed using “long”
pion tracks, which leave hits in the VELO and downstream tracking stations, are analysed
separately from those reconstructed using “downstream” pion tracks, which only leave
hits in tracking stations beyond the VELO. The signal candidates in the former category
are reconstructed with a better invariant mass resolution.

The reconstructed masses of the D and K0
S mesons are required to be within 25 MeV/c2

and 15 MeV/c2, respectively, of their known values. Candidate B± → DK± decays are
separated from B± → Dπ± decays by using PID information from the RICH detectors.
A boosted decision tree (BDT) [26, 27] that has been developed for the analysis of the
topologically similar decay mode B± → [K0

Sh
+h−]Dh

′± is applied to the reconstructed
candidates. The BDT was trained using simulated signal decays, generated uniformly over
the D0 Dalitz plot, and background candidates taken from the B± invariant mass region in
data between 5700 and 7000 MeV/c2. It exploits the displacement of tracks from the decays
of long-lived particles with respect to the PV through the use of χ2

IP variables, where
χ2
IP is defined as the difference in χ2 of a given PV fit with and without the considered

track. The BDT also employs the B± and D candidate momenta, an isolation variable
sensitive to the separation of the tracks used to construct the B± candidate from other
tracks in the event, and the χ2 per degree of freedom of the decay refit. In addition to the
requirement placed on the BDT response variable, each composite candidate is required
to have a vector displacement of production and decay vertices that aligns closely to its
reconstructed momenta. The cosine of the angle between the displacement and momentum
vectors is required to be less than 0.142 rad for the K0

S and D0 candidates, and less than
0.0141 rad (0.0100 rad) for long (downstream) B± candidates.

Additional requirements are used to suppress backgrounds from specific processes.
Contamination from B decays that do not contain an intermediate D meson is minimised
by placing a minimum threshold of 0.2 ps on the decay time of the D candidate. A
potential background could arise from processes where a pion is misidentified as a kaon
or vice versa. One example is the relatively abundant mode B± → [K0

Sπ
+π−]Dh

±, which
has a branching fraction around ten times larger than the signal. These are suppressed
by placing requirements on both the D daughter pion and kaon, making use of PID
information. For K0

S candidates formed from long tracks, the flight distance χ2 of the
candidate is used to suppress background from B± → [K±π∓π+π−]Dh

± decays. Where
multiple candidates are found belonging to the same event, the candidate with the lowest
value of the refit χ2 per degree of freedom is retained and any others are discarded, leading
to a reduction in the sample size of approximately 0.3 %.

The B± invariant mass spectra are shown in Fig. 1 for candidates selected in the whole
D Dalitz plot, overlaid with a parametric fit described in Sect. 5. The D Dalitz plots
are shown in Fig. 2 for the B± → DK± and B± → Dπ± candidates that fall within
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a nominal B± signal region in B± invariant mass (5247–5317 MeV/c2). The dominant
K∗(892)± resonance is clearly visible within a horizontal band, and the window around
this resonance used in the analysis is indicated.

5 Invariant mass fit

In order to determine the signal yields in each decay mode, simultaneous fits are performed
to the B± invariant mass spectra in the range 5110 MeV/c2 to 5800 MeV/c2 in the different
modes, both for candidates in the whole D Dalitz plot, and for only those inside the
restricted region around the K∗(892)± resonance. The data samples are split according to
the year in which the data were taken, the decay mode, the K0

S type and the charge of
the B candidate. The fit is parameterised in terms of the observables described in Sect. 2,
rather than varying each signal yield in each category independently.

The probability density function (PDF) used to model the signal component is a
modified Gaussian function with asymmetric tails, where the unnormalised form is given
by

f(m;m0, αL, αR, σ) ≡
{

exp[−(m−m0)
2/(2σ2 + αL(m−m0)

2)] for m < m0,

exp[−(m−m0)2/(2σ2 + αR(m−m0)2)] for m > m0,
(4)

where m is the reconstructed mass, m0 is the mean B mass and σ determines the width
of the function. The αL,R parameters govern the shape of the tail. The mean B mass
is shared among all categories but is allowed to differ according to the year in which
the data were collected. The αL parameters are fixed to the values determined in the
earlier analysis of B± → [K0

Sπ
+π−]Dh

± [6]. The αR parameters are common to the
B± → Dπ± and B± → DK±, SS and OS categories, and are allowed to vary in the
fit. Only the width parameters σ(B± → DK±) are allowed to vary in the fit. The
ratios σ(B± → Dπ±)/σ(B± → DK±) are fixed according to studies of the similar mode
B± → [K0

Sπ
+π−]Dh

±. The fitted values for σ(B± → DK±) vary by less than 10% around
14 MeV/c2. The total yield of B± → Dπ± decays is allowed to vary between the different
K0

S type and year categories. The yields in the various D decay modes and different
charges, and all the B± → DK± yields, are determined using the observables described in
Sect. 2, rather than being fitted directly.

In addition to the signal PDF, two background PDFs are required. The first background
PDF models candidates formed from random combinations of tracks and is represented
by a linear function. In the fit within the restricted Dalitz region, where the sample size
is significantly smaller, the slope of the linear function fitting the B± → Dπ± data is
fixed to the value determined in the fit to the whole Dalitz plot. The second background
PDF accounts for contamination from partially reconstructed processes. Given that the
contamination is dominated by those processes that involve a real D0 → K0

SK
±π∓ decay,

the PDF is fixed to the shape determined from the more abundant mode B± → [K±π∓]Dh
±.

The yields of both these background components are free to vary in each data category.
A further significant background is present in the B± → DK± samples due to π → K

misidentification of the much more abundant B± → Dπ± mode. This background is
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Figure 1: Distributions of B± invariant mass of the SS and OS samples for the (a, c, e, g)
B± → DK± and (b, d, f, h) B± → Dπ± candidates in the full data sample. The fits are shown
for (a, b, e, f) B+ and (c, d, g, h) B− candidates. Fit PDFs are superimposed.
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Figure 2: Dalitz plot distribution of candidates selected in (a) the B± → [K0
SKπ]DK

± and (b)
the B± → [K0

SKπ]Dπ
± decay modes, where the data in the SS and OS modes, and the two K0

S

categories, are combined. Candidates included are required to have a refitted B± mass in a
nominal signal window between 5247 MeV/c2 and 5317 MeV/c2. The kinematic boundary is added
in blue, and the restricted region around the K∗(892)± resonance is indicated by horizontal red
lines.

modelled in the B± → DK± spectrum using a Crystal Ball function [28], where the
parameters of the function are common to all data categories in the fit and are allowed
to vary. The yield of the background in the B± → DK± samples is fixed with respect
to the fitted B± → Dπ± signal yield using knowledge of the RICH particle identification
efficiencies that is obtained from data using samples of D∗± → [Kπ]Dπ

± decays. The
efficiency for kaons to be selected is found to be around 84 % and the misidentification
rate for pions is around 4 %.

Production and detection asymmetries are accounted for, following the same procedure
as in Refs. [5, 7]. Values for the B± production and K detection asymmetries are assigned
such that the combination of production and detection asymmetries corresponds to the
raw asymmetry observed in B± → J/ψK± decays [29]. The detection asymmetry assigned
is −0.5± 0.7 % for each unit of strangeness in the final state to account for the differing
interactions of K+ and K− mesons with the detector material. An analogous asymmetry is
present for pions, though it is expected to be much smaller, and the detection asymmetry
assigned is 0.0± 0.7 %. Any potential asymmetry arising from a difference between the
responses of the left and right sides of the detector is minimised by combining approximately
equal data sets taken with opposite magnet polarity.

A further correction is included to account for non-uniformities in the acceptance over
the Dalitz plot. This efficiency correction primarily affects the RSS/OS observable, given
the difference in the Dalitz distributions for the two D meson decay modes. A correction
factor, ζ, is found by combining the LHCb acceptance, extracted from the simulated signal
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sample, and amplitude models, ASS, OS(m2
K0

SK
,m2

K0
Sπ

), for the Dalitz distributions of the

SS or OS decays,

ζ ≡

∫
D dm2

K0
SK

dm2
K0

Sπ
[ε(m2

K0
SK
,m2

K0
Sπ

)× |AOS(m2
K0

SK
,m2

K0
Sπ

)|2]∫
D dm2

K0
SK

dm2
K0

Sπ
[ε(m2

K0
SK
,m2

K0
Sπ

)× |ASS(m2
K0

SK
,m2

K0
Sπ

)|2]
, (5)

where ε(m2
K0

SK
,m2

K0
Sπ

) is the efficiency at a point in the Dalitz plot. The typical deviation

of ζ from unity is found to be around 5 %. The acceptance is illustrated in Fig. 3, where
bins of variable size are used to ensure that statistical fluctuations due to the finite size of
the simulated sample are negligible. The Dalitz distributions are determined using the
fact that little interference is expected in B± → Dπ± decays and, therefore, the flavour
of the D meson is effectively tagged by the charge of the pion. In this case, the Dalitz
distributions are given by considering the relevant D0 decay (D0 → K0

SK
−π+ for SS and

D0 → K0
SK

+π− for OS). These D0 decay Dalitz distributions are known and amplitude
models from CLEO are available [13] from which the Dalitz distributions can be extracted.
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Figure 3: Dalitz acceptance determined using simulated events and normalised relative to the
maximum efficiency.

Due to the restricted sample size under study, small biases exist in the determination
of the observables. The biases are determined by generating and fitting a large number
of simulated samples using input values obtained from the fit to data, and are typically
found to be around 2 %. The fit results are corrected accordingly.

The fit projections, with long and downstream K0
S -type categories merged and 2011

and 2012 data combined, are given for the fit to the whole Dalitz plot in Fig. 1. The signal
purity in a nominal mass range from 5247 MeV/c2 to 5317 MeV/c2 is around 85 % for the
B± → DK± samples and 96 % for the B± → Dπ± samples. The signal yields derived from
the fits to both the whole and restricted region of the Dalitz plot are given in Table 1. The
fitted values of the observables are given in Table 2, including their systematic uncertainties

8



Table 1: Signal yields and their statistical uncertainties derived from the fit to the whole Dalitz
plot region, and in the restricted region of phase space around the K∗(892)± resonance.

Whole Dalitz plot K∗(892)± region
Mode DK± Dπ± DK± Dπ±

SS 145 ± 15 1841 ± 47 97 ± 12 1365 ± 38
OS 71 ± 10 1267 ± 37 26 ± 6 553 ± 24

as discussed in Sect. 6. The only significant difference between the observables fitted in the
two regions is for the value of RSS/OS. This ratio is expected to differ significantly, given
that the fraction of D0 → K0

SK
−π+ decays that are expected to lie inside the restricted

portion of the Dalitz plot is around 75 %, whereas for D0 → K0
SK

+π− the fraction is
around 44 % [13]. This accounts for the higher value of RSS/OS in the restricted region.
The ratios between the B± → DK± and B± → Dπ± yields are consistent with that
measured in the LHCb analysis of B± → [Kπ]Dh

±, 0.0774 ± 0.0012 ± 0.0018 [5]. The
CP asymmetries are consistent with zero in the B± → Dπ± system, where the effect
of interference is expected to be small. The asymmetries in the B± → DK± system,
ASS, DK and AOS, DK , which have the highest sensitivity to γ are all compatible with zero
at the 2σ level. The correlations between RSS/OS ratio and the ratios RDK/Dπ, SS and
RDK/Dπ, OS are −16 % (−13 %) and +16 % (+16 %), respectively, for the fit to the whole
Dalitz plot (K∗(892)± region). The correlation between the RDK/Dπ, SS and RDK/Dπ, OS

ratios is +11 % (+15 %). Correlations between the asymmetry observables are all less than
1 % and are neglected.

Table 2: Results for the observables measured in the whole Dalitz plot region, and in the restricted
region of phase space around the K∗(892)± resonance. The first uncertainty is statistical and
the second is systematic. The corrections for production and detection asymmetries are applied,
as is the efficiency correction defined in Eq. (5).

Observable Whole Dalitz plot K∗(892)± region
RSS/OS 1.528 ± 0.058 ± 0.025 2.57 ± 0.13 ± 0.06
RDK/Dπ, SS 0.092 ± 0.009 ± 0.004 0.084 ± 0.011 ± 0.003
RDK/Dπ, OS 0.066 ± 0.009 ± 0.002 0.056 ± 0.013 ± 0.002
ASS, DK 0.040 ± 0.091 ± 0.018 0.026 ± 0.109 ± 0.029
AOS, DK 0.233 ± 0.129 ± 0.024 0.336 ± 0.208 ± 0.026
ASS, Dπ −0.025 ± 0.024 ± 0.010 −0.012 ± 0.028 ± 0.010
AOS, Dπ −0.052 ± 0.029 ± 0.017 −0.054 ± 0.043 ± 0.017

6 Systematic uncertainties

The largest single source of systematic uncertainty is the knowledge of the efficiency
correction factor that multiplies the RSS/OS observable. This uncertainty has three sources:
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the uncertainties on the CLEO amplitude models, the granularity of the Dalitz divisions in
which the acceptance is determined, and the limited size of the simulated sample available
to determine the LHCb acceptance. Of these, it is the modelling uncertainty that is
dominant. In addition, an uncertainty is assigned to account for the fact that interference
is neglected in the computation of the efficiency correction factor, which is shared between
the Dπ± and DK± systems.

Uncertainties on the parameters that are fixed in the PDF are propagated to the
observables by repeating the fit to data whilst varying each fixed parameter according
to its uncertainty. An additional systematic uncertainty is calculated for the fit to the
restricted K∗(892)± region, where the Dπ± combinatorial background slopes are fixed to
the values determined in the fit to the whole Dalitz plot.

Uncertainties are assigned to account for the errors on the B± production asymmetry
and the K± and π± detection asymmetries. The effect of the detection asymmetry depends
on the pion and kaon content of the final state, and the resulting systematic uncertainty is
largest for the ASS, DK and AOS, Dπ observables.

The absolute uncertainties on the particle identification efficiencies are small, typically
around 0.3 % for kaon efficiencies and 0.03 % for pion efficiencies. Of the four main
sources of systematic error, these result in the smallest uncertainties on the experimental
observables.

In Table 3, the sources of systematic uncertainty are given for each observable in the
fit to the whole Dalitz plot. Similarly those for the fit in the restricted region are given in
Table 4.

Table 3: Absolute values of systematic uncertainties, in units of 10−2, for the fit to the whole
Dalitz plot.

Observable Eff. correction Fit PDFs Prod. and det.
asymms.

PID Total

RSS/OS 2.40 0.50 − 0.01 2.45
RDK/Dπ, SS 0.01 0.38 − 0.02 0.38
RDK/Dπ, OS 0.01 0.19 − 0.01 0.19
ASS, DK 0.14 0.44 1.71 0.01 1.78
AOS, DK 0.36 2.13 0.99 0.01 2.37
ASS, Dπ 0.02 0.05 0.99 < 0.01 0.99
AOS, Dπ 0.03 0.10 1.71 < 0.01 1.72

7 Interpretation and conclusions

The sensitivity of this result to the CKM angle γ is investigated by employing a frequentist
method to scan the γ − rB parameter space and calculate the χ2 probability at each
point, given the measurements of the observables with their statistical and systematic
uncertainties combined in quadrature, accounting for correlations between the statistical
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Table 4: Absolute values of systematic uncertainties, in units of 10−2, for the fit in the restricted
region.

Observable Eff. correction Fit PDFs Prod. and det.
asymms.

PID Total

RSS/OS 6.08 0.53 − 0.01 6.10
RDK/Dπ, SS 0.01 0.25 − 0.02 0.25
RDK/Dπ, OS 0.01 0.21 − 0.01 0.21
ASS, DK 0.13 2.27 1.71 0.01 2.85
AOS, DK 0.04 2.38 0.99 0.01 2.57
ASS, Dπ 0.04 0.17 0.99 < 0.01 1.00
AOS, Dπ 0.06 0.09 1.71 < 0.01 1.72
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Figure 4: Scans of the χ2 probabilities over the γ−rB parameter space for (a) the whole Dalitz fit
and (b) the fit inside the K∗ region (b). The contours are the usual nσ profile likelihood contours,
where ∆χ2 = n2 with n = 1 (dark blue), 2 (medium blue), and 3 (light blue). The 2σ contour
encloses almost all of the parameter space shown, so a central value of γ and relevant bounds are
not extracted. The result is seen to be compatible with the current LHCb measurement of γ,
indicated by the point at (γ = 72.0◦ and rB = 0.089), at a level between 1 and 2σ.

uncertainties. The effects of charm mixing are accounted for, but CP violation in the decays
of D mesons is neglected. Regions of 1σ, 2σ and 3σ compatibility with the measurements
made are indicated by the dark, medium and light blue regions, respectively, in Fig. 4.
The small sample size in the current data set results in a bound on γ that is only closed
for the 1σ contour.

Although it is not possible to measure γ directly using these results alone, it is of
interest to consider how this result relates to the previous LHCb γ determination, obtained
from other B± → DK± modes [8], since it will be included in future combinations. In
order to aid this comparison, the scans of the γ − rB space plots are shown in Fig. 4(a) for
the measurement made using the whole D → K0

SKπ Dalitz plot and in Fig. 4(b) for that
made in the restricted region. The current LHCb average, extracted from a combination of

11



B± → DK± analyses [8], is shown as a point with error bars at γ = 72.0◦ and rB = 0.089.
The LHCb average lies within the 2σ region allowed by the measurements presented in this
Letter. It is interesting to note that the bound determined in the γ − rB space indicates a
more stringent constraint when using the restricted region, where the coherence is higher.
This, and the fact that the measurements in this Letter are limited by their statistical
precision, motivates the use of this region in future analyses of these decays in a larger
data sample. Combination with analyses in other, more abundant channels with sensitivity
to the same parameters will yield more stringent constraints upon γ.

In summary, for the first time a measurement of charge asymmetries and associated ob-
servables is presented in the decay modes B± → [K0

SK
±π∓]Dh

± and B± → [K0
SK
∓π±]Dh

±,
and no significant CP violation is observed. The results of the analysis are consistent with
other measurements of observables in related B± → DK± modes, and will be valuable in
future global fits of the CKM parameter γ.
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