Contributions of inhibitory control to individual differences in word production

Zeshu Shao Ardi Roelofs Antje Meyer

Introduction: A Model of Word Production

Introduction: Inhibition

Definition:

 The ability to suppress irrelevant or interfering stimuli or impulses with or without intention (Garavan et al., 1999; Macleod, 2007).

Some evidence:

- Bilingual speakers have better inhibition ability (e.g., Guo et al., 2012, but see Singh & Mishra, 2011).
- Individuals with specific language impairment also have inhibition deficits (Spaulding, 2010).

Forms of inhibition

- Non-selective inhibition: Stopping ANY response (Logan & Cowan, 1984).
- Selective inhibition: Suppressing a competitor (Forstman et al., 2008; van den Wildenberg et al., 2010).

Research Questions

- Do different types of inhibition play different roles in word production?
- How and when is inhibition engaged in word production?

Participants: 88 native Dutch speakers (14 men, Mean age = 30.15 years, range: 16 to 63 years).

Picture-word interference task: 56 objects

Semantically related

Unrelated

(Shao et al., Memory & Cognition, 2013)

• Stop-signal task to measure non-selective inhibition (Verbruggen, Logan & Stevens, 2008).

Study 1: Indicators of selective inhibition

- Delta plot to measure selective inhibition:
 - RT distribution analysis in response conflicting task (Ridderinkhof, 2002)

Delta = RT in difficult condition – RT in easy condition

Study 1: Delta plots

Correlation between semantic effects and two types of inhibition.

1.0

1.5

Correlation between selective and non-selective inhibition.

(Shao et al., Memory & Cognition, 2013)

Interim Conclusions

- Do different types of inhibition play different roles in word production?
 - Yes.
 - Selective inhibition helps to suppress the activation of overt strong competitors.
- Question: Does selective inhibition is engaged only when salient competitor is presented?

- Participants: 25 native Dutch speakers (9 men, Mean age = 21.16 years, range: 18 to 27 years).
- Naming tasks:
 - Picture-word interference task
 - Semantic blocking task
 - Stroop task
- Non-selective inhibition: Stop-signal task.
- Selective inhibition: Delta plot

Picture-word interference task:

Semantically related

Unrelated

- Semantic blocking task:
 - Homogenous block

Heterogeneous block

Word-color Stroop task:

Green xxx Red

incongruent neutral congruent

Study 2: Results of picture-word interference task

Study 2: Results of semantic blocking task

Study 2: Results of Stroop task

Study 2: Correlations between slope and semantic interference effect size

Study 2: Correlations between slope and semantic block effect size

Study 2: Correlations between slope and Stroop effect size

Slope of the slowest delta segment

Study 2: Correlations between slopes in both naming tasks

Study 2: Correlations between SSRT and semantic interference effect size

Study 2: Correlations between SSRT and semantic block effect size

Study 2: Correlations between SSRT and Stroop effect size

Stop-signal RT (ms)

- Replicating with different items:
 - Positive correlations between slopes of and effect size in the picture-word interference task, r = .59, and semantic block task, r = .62, but not in the Stroop task, r = .18.
 - No correlations between stop-signal RT and effect sizes in all tasks, rs < .19.

Interim Conclusions

- Selective inhibition helps to reduce strongly co-activated competitors:
 - when one single salient distractor is presented
 - or when the strong competitors are evoked through the preceding context.

Question: When is selective inhibition engaged in word production?

• EEG evidence.

Time course of word production:

- Name agreement (NA):
 - The extent to which different people agree on a name for a particular picture.

(Shao et al., Brain Research, 2014)

- N2 component:
 - Associated with a domain-general inhibitory mechanism (Dong et al., 2009; Jodo & Kayama, 1992; Simson, Vaughan, & Ritter, 1977; Thorpe, Fize, & Marlot, 1996).
 - Peaking between 200 to 300 ms

Participants: 25 native Dutch speakers, Mean age = 21.04 years.

Materials:

- 160 objects and actions with high or low name agreement.
- Hypothesis: If selective inhibition helps lexical selection, we should observe more pronounced N2 in the low name agreement condition during the time window of lexical selection.

EEG recording

- 128 channels, acticap
- Sampling rate: 512 Hz

Preprocessing

- Band pass filter: 0.05- 30Hz (48 dB)
- Epoch: -200 700 ms
- Time-locked to picture onset
- Baseline corrected: -200-0 ms
- Artifact rejection:
 - Amplitude criterion: ±100μV
 - Gradient criterion: 50.00 μV
 - Difference criterion: 150.00 μV

Study 3: Behavioral results

Study 3: Correlations between slope and size of name agreement effect

Magnitude of name agreement effect (ms)

(Shao et al., Brain Research, 2014)

Study 3: Object naming results

Study 3: Action naming results

Study 3: Correlations between slope and size of N2 effect

Study 3: Conclusions

- Longer naming RTs and more pronounced N2 in low than high NA condition.
- Slowest slope of delta plots negatively related to name agreement effect and N2 effect.
- Selective inhibition is engaged to support lexical selection during word production.

Conclusion

(e.g., Levelt, Roelofs, & Meyer, 1999)

Thank you!