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GEOMETRIC ASPECTS OF THE HOLOGRAPHIC DUALITY

D. V. Bykov∗

We briefly survey results related to applying the AdS/CFT correspondence to N=1 supersymmetric

models. These models, on one hand, are closest to realistic models of elementary particle physics and, on

the other hand, are amenable to quantitative analysis using the AdS/CFT correspondence. Furthermore,

they are related to such remarkable geometric objects as Sasakian manifolds and Ricci-flat cones, on which

we particularly focus.
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1. The AdS/CFT correspondence

The AdS/CFT conjecture states that particular conformal field theories (CFTs) are in a certain way
dual to string theory models describing string propagation in the anti-de Sitter (AdS) space. The original
example is the duality between the maximally supersymmetric Yang–Mills theory (N=4 SYM) and the
type IIB superstring in the space AdS5 × S5 [1]. We consider the Yang–Mills theory with the gauge group
SU(N) and coupling constant gYM. From the standpoint of the AdS5 ×S5 geometry, these two parameters,
N and gYM, are related to the radius of the sphere and the flux of the self-dual 5-form through it:1

R2 ∼
√

g2
YMN,

∫

S5
F5 ∼ N.

The correspondence between the two theories is manifested, in particular, in the fact that the global
symmetries of field theory correspond to the (super)isometries of AdS5 × S5. Indeed, the superconformal
group of the N=4 theory is PSU(2, 2|4). Its maximal bosonic subgroup is SU(2, 2) × SU(4). The first
factor here is isomorphic to SO(2, 4) (the conformal group of the four-dimensional Minkowski space), and
the second factor represents the R-symmetry group of the theory. On the other hand, SO(2, 4) and SO(6)
are the respective isometry groups of the AdS space and the five-dimensional sphere.

The simplest modification of this basic model is obtained if a quotient of the sphere by a discrete
subgroup of the isometry group SO(6) is taken:

AdS5 × S5 −→ AdS5 × S5/Γ, Γ ⊂ SO(6).

The dual gauge theory is now different: the gauge group consists of several simple factors, and the matter
multiplets are in bifundamental representations. The number of supersymmetries is also reduced and
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depends on the structure of the group Γ: if Γ ⊂ SU(3) ⊂ SO(6), then one supersymmetry, N=1, remains.
But if Γ ⊂ SU(2) ⊂ SU(3) ⊂ SO(6), then we obtain an N=2 superconformal field theory. Discrete
subgroups of SU(2) were classified by Klein and are known as the Kleinian groups An, Dn, and E6,7,8.
Hypermultiplets in this theory can be obtained by taking a quotient from the set of fields of the theory
with Γ = 1 (i.e., from the N=4 SYM) [2]. It turns out that they are described by the so-called quiver,
corresponding to the Dynkin diagram of the Lie algebra of the type A–D–E [3].

We note that the quotient manifold contains singularities if the action of the group Γ on S5 is not
free. This is precisely what happens if Γ ⊂ SU(2). This means that there should exist a more general
smooth metric containing certain “singularity-resolution” parameters and becoming nonsmooth in the limit
as these parameters tend to zero.

2. Sasakian manifolds and N=1 supersymmetry

All manifolds of the type AdS5 × S5/Γ mentioned in the preceding section are particular cases of a
rather wide class of solutions of IIB supergravity of the form AdS5 ×X5, in which the dilaton φ is constant
and the only nonzero form is the 5-form:

φ = const, F5 ∼ N
(
(vol)AdS5 + (vol)X5

)
. (1)

The Bogomolnyi–Prasad–Sommerfeld condition for this configuration, i.e., the requirement that at least
one supersymmetry be preserved, reduces to the gravitino variation vanishing (we write the variation
schematically; see, e.g., [4] for more details):

δψμ = (∇μ + F5γμ)ε = 0. (2)

The dilatino variation is automatically zero for the considered configuration. The spinor ε satisfying (2)
is called a Killing spinor. The existence of a Killing spinor substantially constrains the geometry of the
space X5. In particular, similarly to how this was done in [5], it can be shown that the solubility of Eq. (2)
is equivalent to the requirement that the metric cone over X5 be Kähler and Ricci-flat. In other words,
let (d̃s2)X5 be the metric on X5. The metric on the cone is ds2 = dr2 + r2(d̃s2)X5 by definition. The
supersymmetry requirement is that the metric ds2 be Kähler and Ricci-flat (the latter also follows directly
because (d̃s2)X5 is an Eintein metric of positive curvature by the supergravity equations of motion and
5-form (1)). In this case, the metric on the base of the cone (d̃s2)X5 is said to be Sasaki–Einstein.

All Sasaki–Einstein metrics look rather simple locally: they can be written in the form

(ds2)X5 = (dϕ − A)2 +
2∑

i,j=1

gij̄ dzi dz̄j , (3)

where gij̄ is a Kähler–Einstein metric on some complex surface (the meaning of this surface is explained in
Sec. 2.2.1 below) and A is the Kähler current. The validity of such a representation is clear for the sphere
S5 if we recall that it is the total space of a Hopf bundle with the base CP

2. An important difference in
the general case is that gij̄ need not necessarily be smooth (although the metric on X5 is smooth).

On a Sasaki–Einstein manifold with metric (3), there is a canonical vector field ∂/∂ϕ with a fixed
norm, the so-called Reeb vector. From the standpoint of the dual gauge theory, this U(1) isometry of X5

is dual to the global U(1) symmetry of the superconformal field theory, the R-symmetry, which acts on the
supercharges [6]:

Q → eiαQ, Q̄ → e−iαQ̄.

In contrast to an arbitrary theory with the N=1 supersymmetry, a superconformal theory always has a
U(1) R-symmetry because the generator of the R-symmetry enters the superalgebra SU(2, 2 | 1) explicitly
(the R-transformations are therefore its internal automorphisms).
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2.1. Calabi–Yau manifolds and singularities. The construction of a cone over a Sasaki–Einstein
manifold X5, described above, allows taking a new look at the configuration of the type AdS5 ×X5. Here,
we can recall the interpretation of the N=4 SYM theory as an effective field theory describing oscillations
of a stack of parallel D3 branes embedded in the flat space R

1,9. Clearly, the space transverse to the branes
in this case is R6. The branes are massive objects and therefore change the geometry of the space in which
they are embedded. Assuming that the branes are located at the origin of R6, we can introduce a radial
coordinate r and seek supergravity solutions of the type

ds2 = h−1/2(r)
4∑

i=1

dx2
i + h1/2(r)

(
dr2 + r2(dΩ)S5

)
. (4)

Because the branes are charged with respect to the 5-form F5, we must also impose the condition
∫

S5 F5 ∼ N .
The solution has the form [7] (l is a linear scale)

h(r) = 1 +
l4 N

r4
. (5)

In the limit r → 0, we obtain the metric of AdS5 × S5. It is hence clear that the sphere S5 emerges as
the locus of points equidistant from r = 0 (in sense of the natural flat metric) in the six-dimensional space in
which the branes are embedded. We can now consider the case where the “internal” six-dimensional space
is not a flat space but an arbitrary (compact) Calabi–Yau space Y 6. Placing the branes at a nonsingular
point of Y 6, we again have the N=4 SYM as a low-energy limit. But the situation changes if we place
the branes at a singular point of the Calabi–Yau space. In this case, the effective field theory on the
branes depends on the local geometry of Y 6 in the vicinity of the singularity. The neighborhood of the
singularity can be described by a noncompact Ricci-flat metric of the conical type, i.e., a metric of the form
(ds2)sing = dr2 + r2(d̃s2)X5 . In this case, the points equidistant from the singularity form not an S5 but a
Sasaki–Einstein manifold X5. Ansatz (4) still holds and leads to the configuration AdS5 × X5 in the limit
r → 0 [8].

2.1.1. The cones. It follows from the preceding section that the spaces X5 are tightly connected with
the singularities of the Calabi–Yau manifolds Y 6 of complex dimension three. Some of these singularities
can be represented as singularities of complex cones over complex surfaces, hereafter denoted by M. We
explain what this means with the example of the so-called “conifold.” We consider a nondegenerate quadric
in CP

3, for instance,
X2

0 + X2
1 + X2

2 + X2
3 = 0. (6)

It is known that this algebraic variety is isomorphic to CP
1 × CP

1. It is nonsingular as a hypersurface
in CP

3. To pass to the cone, we “forget” that X0, X1, X2, and X3 are projective coordinates, i.e., we
consider them ordinary affine variables. In other words, we consider Eq. (6) in C4. Obviously, singularity
at the origin X0 = X1 = X2 = X3 = 0 then arises. We call this singular variety the complex cone over
M = CP

1 ×CP
1. This definition can be obviously extended to complex cones over other complex surfaces.

The only remaining question is in which case the affine manifolds of sort (6) are Ricci-flat (or, more
precisely, in which case they remain Ricci-flat after the singularity at the origin has been resolved). It turns
out that this requirement is met if and only if the complex surface M has an ample anticanonical bundle.
In the language of differential geometry, this means that M is a positively curved surface or, more exactly,
that the integral of the Ricci form over any homologically nontrivial two-cycle C is positive:

∫

C

i

2π
Rmn̄ dzm ∧ dz̄n > 0.
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It is known from algebraic geometry that the only compact nonsingular surfaces of positive curvature
are CP

1 × CP
1, CP

2, and also the blow-ups of CP
2 in no more than eight points. We let dP1, . . . ,dP8

denote the surfaces arising from such blow-ups; these are the so-called del Pezzo surfaces (two-dimensional
Fano varieties).

We choose one of these surfaces M. How can a corresponding Sasaki–Einstein metric be constructed
on X5? If M admits a Kähler–Einstein metric (with a Kähler potential K), then the answer is given by
formula (3). It can be also rewritten differently if we recall the correspondence between the Kähler–Einstein
metrics on M and Ricci-flat metrics on Y 6. We can seek a Kähler potential K defining the (Ricci-flat)
metric on the complex cone over M in the form

K = K(|u|2eK). (7)

This ansatz is called the Calabi ansatz [9].

2.1.2. The C3/Z3 singularity. We consider the situation where the Calabi ansatz is applicable,
namely, a singularity of the type C3/Z3, where Z3 acts on C3 via multiplication by a root of unity:

(z1, z2, z3) → e2πi/3(z1, z2, z3). (8)

The minimum set of invariant coordinates is given by all possible cubic combinations of the original variables
z1, z2, and z3. Clearly, these combinations are no longer independent: they satisfy certain equations. If
the variables z1, z2, and z3 were projective, then these cubic combinations would provide the linear system
|O(3)| of sections of the anticanonical bundle O(3) over CP

2. Because the variables z1, z2, and z3 are in
fact affine, the resulting manifold is the total space of the canonical bundle O(−3) over CP

2 or, in the
previously introduced terminology, it is the cone over M = CP

2.
The Kähler potential of CP

2 is written in the inhomogeneous coordinates as

K = log (1 + |w1|2 + |w2|2),

and Calabi ansatz (7) in this case can therefore be brought to the form K = K(|z1|2 + |z2|2 + |z3|2) by a
simple change of variables. The Ricci-flatness equation is an ordinary differential equation for K, which can
be solved explicitly (see [10] for more details). At infinity, i.e., when |z1|2 + |z2|2 + |z3|2 → ∞, the metric
becomes asymptotically Euclidean, but the requirement that there should be no conical defect at the origin
leads to the necessity of taking the quotient by (8). Hence, the metric at infinity asymptotically approaches
the metric on C3/Z3, while the singularity at the origin is resolved using the blow-up of a copy of CP

2.
Writing the metric on C3/Z3 in conical form, we see that the corresponding Sasaki–Einstein manifold is
the (smooth) lens space S5/Z3.

2.1.3. The conifold. Apart from sphere quotients, the most studied Sasaki–Einstein manifold is
related to the conifold defined by algebraic equation (6). A Ricci-flat metric on conifold (6) was obtained
in [11] and later generalized in [12]. This metric can be constructed using the substitution

K = a log (1 + |u|2) + K((1 + |u|2)(|w1|2 + |w2|2)).

The Ricci-flatness equation can once again be solved explicitly. At “infinity,” the metric is expressible as a
cone over a Sasaki–Einstein manifold, which in this case is called

T 11 :=
SU(2) × SU(2)

U(1)
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(the group U(1) is embedded diagonally). The dual N=1 field theory was introduced in [13]. It is a gauge
theory with the gauge group SU(N)×SU(N) and two sets of chiral fields Ai and Bj , i, j = 1, 2, which form
doublets with respect to the two global SU(2) groups. The chiral fields Ai and Bj are in bifundamental
representations (N, N̄) and (N̄ , N), and the superpotential is given by

W = εijεmn tr(AiBmAjBn). (9)

2.1.4. Del Pezzo surfaces. We note that not all positively curved surfaces admit Kähler–Einstein
metrics. More precisely, Kähler–Einstein metrics do not exist on the del Pezzo surfaces dP1 and dP2

(see [14]). These surfaces are toric, which means that their isometry group is at least U(1)2. We can
therefore construct ansatzes for Kähler potentials defining the metrics on cones over these surfaces of the
form K = K(|u1|2, |u2|2, |u3|2). The Ricci-flatness condition reduces to a Monge–Ampere equation, which
can be analyzed in certain cases, for example, for the dP1 surface. In this case, the equation can be solved
exactly at “infinity,” and the corresponding Sasaki–Einstein metric can be found explicitly. This metric
corresponds to the manifold Y 2,1, a particular case of the Y p,q manifolds first studied in [15]. The del Pezzo
surfaces dP4,5,6,7,8 are not toric but do admit Kähler–Einstein metrics [16], although these are not known
explicitly.

We see that the geometry of cones over del Pezzo surfaces has not been fully elucidated. Nevertheless,
there exist conjectures for all cases as to what the field theories dual to these supergravity solutions should
be. These models were built in [17] (for the toric del Pezzo surfaces) and also in [18] (for the even more
general toric Sasakian manifolds Lp,q,r obtained in [19]). Dual N=1 field theories for the nontoric del Pezzo
surfaces were proposed in [20]. The field theory for the cone over dP8 was also studied in [21], in relation
to the fact that after a suitable symmetry breaking, it leads to a set of fields similar to the set of fields of
the supersymmetric standard model.

2.2. The R-symmetry and a-maximization. An important check of the AdS/CFT correspon-
dence in the case of toric del Pezzo surfaces (dP1, dP2, and dP3) is as follows. As mentioned above, the
isometry group for the metrics on the cones over these surfaces includes at least U(1)3. From the standpoint
of the associated Sasaki–Einstein manifold, one of these U(1) factors corresponds to the Reeb vector field,
and from the gauge theory standpoint, it corresponds to the R-symmetry. The other two U(1) factors
(which arise from the U(1) × U(1) isometries of the del Pezzo surfaces themselves) are in fact additional
flavor symmetries of the theory. In such theories, it is a complicated task to “separate” the global sym-
metries from the R-symmetry, i.e., to determine the charges of the elementary fields, for instance. The
condition that the superpotential has a particular R-charge, as well as other physical considerations, are
usually insufficient.

A systematic method for determining the R-charges of the theory based on certain relations between
the triangle anomalies in N=1 superconformal field theories was introduced in [22]. It consists in the
following. It is known that in a general d=4 conformal field theory, the Weyl anomaly (i.e., the anomaly of
the energy–momentum tensor) can be written as

〈T μ
μ 〉g = aE4 + cW 2,

where E4 is the Euler density and W 2 is the square of the Weyl tensor. What is meant here is that the
trace of the energy–momentum tensor of a theory defined in the space with fixed background metric g

is computed in the left-hand side. Differentiating with respect to the metric and subsequently setting it
to the flat metric, we can reformulate this equality: a correlation function of the elements of the energy–
momentum tensor with the insertion of the operator T μ

μ is nonzero. The quantities a and c (the central
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charges) are characteristic for the conformal field theory at hand and can be expressed in terms of the
R-charges of elementary fields. In particular, we can calculate a using the formula

a =
3
32

(3 trR3 − trR),

where tr denotes the sum over all fields of the theory. The prescription for finding the correct R-charges,
introduced in [22], amounts to the following. All fields should be assigned arbitrary admissible R-charges
(such that the superpotential would have the right dimensionality). We then find a local maximum of the
function a with respect to all the introduced parameters, i.e., with respect to all additional U(1) factors,
with which the R-charge can mix. As a result, we obtain a set of quadratic equations, whose solution gives
the correct R-charges of all fields.

Knowing the R-charges is especially important because there is an alternative way to compute them,
namely, using the AdS/CFT correspondence. The statement in [6], [23] is that the R-charges are in fact the
volumes of special three-dimensional submanifolds of a given Sasaki–Einstein manifold X5. It was shown
in [24] that with the methods of toric geometry, calculating the volumes of such submanifolds is reducible to
finding an extremum of a certain function, which hence provides a geometric counterpart to maximizing a.

3. Nonconformal supersymmetric theories

An important question is whether the AdS/CFT correspondence can be extended to the case of non-
conformal field theories. For certain supersymmetric theories, the answer is affirmative. Two qualitatively
different cases are the best studied: where the conformal symmetry is broken by condensation of scalar fields
(i.e., via a Higgs effect) and where the original conformal model dual to AdS5 × X5 is explicitly modified
such that conformality is violated. We consider both cases.

3.1. Resolution of singularities and symmetry breaking. We return to the case of AdS5 × S5

and the N=4 SYM. This field theory describes the low-energy fluctuations of a stack of N coincident
D3 branes in ten-dimensional space. Six scalar fields φi, i = 1, . . . , 6, correspond to the six directions of
normal brane fluctuations. The potential energy is minimum when [φi, φj ] = 0. We diagonalize these N×N

matrices and assume that the eigenvalues split into two sets of M and N−M pairwise coinciding eigenvalues.
From the field theory standpoint, the original SU(N) symmetry is broken to S(U(M)×U(N −M)). From
the geometric standpoint, this means that two stacks of branes respectively containing M and N−M

branes have been split from each other. This configuration can be explicitly described in the framework of
supergravity. Indeed, we again seek the solution for the metric in form (4), but we do not require that the
function h depend only on the radial variable:

ds2 = h−1/2(
r )
4∑

i=1

dx2
i + h1/2(
r )(dr2 + r2(dΩ)S5), (10)

where 
r are the coordinates of R6. It then follows from the equations of motion that


R6 h = sources =
∑

i

δ(
r − 
ri), (11)

where “sources” are the positions of the D3 branes, which are pointlike objects from the standpoint of the
transverse space R6.

The solution can be obtained by an elementary modification of (5) (L is hereafter a linear scale):

h = 1 +
∑

i

L4

|
r − 
ri|4
.
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It turns out that a substitution of type (10) is applicable in a much more general situation where the branes
are placed at arbitrary points of the transverse Ricci-flat manifold Y 6. In what follows, we take the vicinity
of a conical singularity of a Calabi–Yau variety as Y 6. Let (ds2)Y 6 be the metric on Y 6. Instead of (10),
we can then write

ds2 = h−1/2(
r )
4∑

i=1

dx2
i + h1/2(
r )(ds2)Y 6 , (12)

where 
r are the coordinates on Y 6. The equations of motion again lead to an equation of type (11), where
we must take the Laplacian on Y 6 as a Laplacian and we still have a sum over the sources, i.e., over the
positions of the D3 branes on Y 6 in the right-hand side. If Y 6 is a cone over the Sasaki–Einstein manifold
X5, then the displacements of the branes can be interpreted as nonzero vacuum expectation values of the
fields in the dual (originally conformal) field theory [25]. But an important observation in [25] was that not
every symmetry breaking in the dual gauge theory can be interpreted as a displacement of branes.

For instance, in the N=1 theory with superpotential (9), we can consider classical vacuum configura-
tions in which the only nonzero fields are the A fields (or only the B fields). In more invariant terms, we
might say that the nonzero vacuum expectation value is acquired by a “baryonic” operator detA while the
“mesonic” operators tr(AB)k remain zero. The statement in [25] is that the nonzero expectation values of
baryonic operators should be interpreted as a resolution of the singularity of the dual geometric cone. In
the case of the conifold, because of the large group of isometries, the metric on the “resolved” space (i.e.,
the space with no singularity at the vertex) can be written explicitly [11]. A sphere S2 in this space is glued
in at the “point” r = 0 (the vertex of the cone), and this “point” is therefore no longer singular.

Using ansatz (12) for the metric that takes the back-reaction of the D3 branes into account and again
assuming that the function h depends only on the radius, the authors of [12] found a solution h(r) of the
Laplace equation, but this solution turned out to be singular at r = 0. This problem was resolved in [26],
where it was shown that the presence of the singularity is a consequence of the ansatz in which h is assumed
to depend only on the radius. Physically, this means that the D3 branes are “smeared” over the sphere
glued in at r = 0. But if we assume that the branes are located in a single point 
r0 of the glued-in sphere,
then we can find a smooth solution of the corresponding Laplace equation [26]. Moreover, although this
solution asymptotically approaches AdS5×T 11 as r → ∞, the solution becomes AdS5×S5 in the vicinity of
the branes, i.e., as 
r → 
r0,. Such an interpolation can be interpreted as symmetry breaking in the original
conformal theory by a baryonic condensate, which leads to N=4 SYM in the infrared limit (i.e., after the
massive fields are integrated out).

The cone over the rank-one del Pezzo surface. It is interesting to generalize this consideration
to the case where the Calabi–Yau singularity is not (6) but a cone over a del Pezzo surface. We study
the simplest case of the rank-one del Pezzo surface (the blow-up of CP

2 at one point). Before solving for
the Green’s function h that describes the gravitational back-reaction of the D3 branes placed on the cone,
we must find a Ricci-flat metric (ds2)Y 6 on the cone itself. We can show that it should have the group of
isometries U(1) × U(1) × SU(2), i.e., in this case, we can seek a Kähler potential of the form [27]

K = K(|u|2, |z1|2 + |z2|2) := K(et, es).

It turns out to be useful to perform a Legendre transform with respect to (s, t), introducing the dual
variables

μ =
∂K

∂s
, ν =

∂K

∂t

and potential G = μ s + ν t − K. The Ricci-flatness equation then becomes

eGμ+Gν (GμμGνν − G2
μν) = μ. (13)
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The variables (μ, ν) are moment maps for the action of the group U(1)2, and the function G is defined on
the corresponding moment polygon.

As (μ, ν) → ∞, the metric should take the form of a cone ds2 = dr2 + r2(d̃s2)X5 over some Sasaki–
Einstein manifold X5. In the variables (μ, ν), this means that G has the asymptotic form

G0 = 3ν(log ν − 1) + νP0(ξ) as μ, ν → ∞, ξ =
μ

ν
. (14)

Substituting G0 for G in Eq. (13), we can find P0(ξ) as a solution of an ordinary differential equation. In
fact, we can thus obtain the metrics of all the spaces Y p,q [15]. Formally, expression (14) provides an exact
solution of Eq. (13), but this solution is singular at the cone vertex r = 0 (i.e., for finite values of μ, ν). To
resolve this singularity, we must seek corrections to G0 in 1/ν.

We seek the general solution in the form

G = 3ν(log ν − 1) + νP0(ξ) + log ν +
∞∑

k=0

ν−kPk+1(ξ).

In the order ν−M , we obtain an ordinary differential equation for PM (ξ):

d

dξ

(
Q(ξ)

dPM

dξ

)
−

(
(M − 2)2 − 1

)
ξPM = right-hand side, (15)

where Q(ξ) = ξ3 − 3ξ2/2 + d and the right-hand side depends on the previous orders of the expansion,
i.e., on P0, . . . , PM−1. Equation (15) is a special case of a Heun equation: the Fuchsian equation with four
regular singularities on the Riemann sphere. It was shown in [27] that the physical interval is ξ ∈ [ξ1, ξ2],
where ξ1 and ξ2 are the two largest roots of the polynomial Q(ξ). It follows from the regularity requirement
for the metric at ξ = ξ1, ξ2 that the function PM (ξ) must be real-analytic at those points, i.e., expandable
in a Taylor series. Because ξ = ξ1, ξ2 are singularities of (15), a solution that is regular near both points,
as a rule, does not exist; more precisely, it can only exist for particular values of the spectral parameter,
which is equal to zero in (15).

We note that if the homogeneous equation

d

dξ

(
Q(ξ)

dPM

dξ

)
−

(
(M − 2)2 − 1

)
ξPM = 0 (16)

has a regular solution for some M = 1, 2, . . . , then this solution can be taken with an arbitrary coefficient,
which in turn should be interpreted as a new parameter of the metric on the cone. But it turns out that
in the case of interest, regular solutions of (16) exist only for M = 3, 4 [27]. Therefore, the Ricci-flat
metric on the cone over dP1 can have no more than two parameters. Furthermore, there is an additional
topological relation between these parameters [28], and there is hence only one independent parameter of
the metric remaining in the end. One exact metric on the cone over dP1 is known [28], [29], but the
parameter in that metric is fixed, i.e., that metric is not the most general metric. What is the geometric
meaning of this parameter? Our conjecture is that it corresponds to the size of the blown-up CP

1 inside
the rank-one del Pezzo surface. From the standpoint of the dual field theory constructed in [17], this
parameter should correspond to a certain vacuum expectation value of one or several chiral fields (some
of the symmetry-breaking patterns for this model were studied in [30]). It would be very interesting to
elaborate this symmetry-breaking mechanism.
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3.2. Solutions with fractional branes. We return to the case of conifold (6). The conical Ricci-
flat metric on algebraic variety (6), ds2 = dr2 + r2(d̃s2)T 11 , is singular at r = 0. As discussed above (see
Sec. 3.1), the singularity at the vertex of the cone can be removed using the blow-up of a sphere CP

1. But
this is not the only way to eliminate the singularity. The point is that the cone base T 11 is topologically a
product S2×S3, and we can blow up an S3 instead of an S2 at r = 0. From the geometric standpoint, such
a modification corresponds to “deforming” the conifold, namely, replacing Eq. (6) with the nonsingular
equation

X2
0 + X2

1 + X2
2 + X2

3 = ε2 �= 0.

A nonsingular Ricci-flat metric exists on such a “deformed” manifold [11]. Moreover, a related metric
was presented in [31], but with a nonzero value of the field F5, hence describing D3 branes embedded in
this space. This metric has a singularity at r = 0. There are also more general supergravity solutions
related to the deformed conifold. One of them describes not only D3 branes but also D5 branes wrapped
around the sphere S2 in T 11 (these are also called “fractional” D3 branes) [32]. Such a solution does
not have singularities, in contrast to the analogous solution on the unresolved (singular) conifold obtained
previously [33]. The dual gauge theory has the gauge group SU(N + M)× SU(N) (here M is the number
of fractional branes). The change of the gauge group with respect to the case without fractional branes
leads to an explicit breaking of conformal symmetry.

4. Outlook

Since its advent in 1997 and to the present, the AdS/CFT correspondence is one of the main directions
of research in theoretical particle physics. The main quantitative confirmation of Maldacena’s conjecture
is related to studying the integrability of the N=4 gauge theory [34] and the dual AdS5×S5 sigma model
(see, e.g., [35]). Here, we have described several results from studying the AdS/CFT correspondence in
the nonintegrable cases with a smaller amount of supersymmetry, mainly, in N=1 theories. We showed
that this case features Sasaki–Einstein manifolds and related positively curved complex surfaces. We are
certain that understanding the geometric and physical aspects of these models will allow elucidating the
more subtle aspects of the AdS/CFT correspondence and perhaps even the very physical reason for its
existence. It is important to note that the AdS/CFT correspondence has not yet been explained from
the “first principles” of quantum field theory nor classical gravity. Revealing the physical essence of the
remarkable AdS/CFT conjecture remains one of the priorities of elementary particle physics.

Acknowledgments. It is a pleasure to take this opportunity to congratulate Andrei Alekseevich on
his birthday, to wish him health, optimism, and enjoyment of life. The author also thanks him for the
support always felt from him and hopes that it will be interesting for him to read about developments in
gauge theory related to beautiful geometric constructions.

This work was supported in part by the Russian Foundation for Basic Research (Grant Nos. 14-01-
00695 a and 13-01-12405 ofi m2) and the Program for Supporting Young Scientists and Candidates of
Science (Grant No. MK-2510.2014.1).

REFERENCES

1. J. M. Maldacena, Adv. Theoret. Math. Phys., 2, 231–252 (1998); arXiv:hep-th/9711200v3 (1997).

2. M. R. Douglas and G. W. Moore, “D-branes, quivers, and ALE instantons,” arXiv:hep-th/9603167v1 (1996).

3. S. Kachru and E. Silverstein, Phys. Rev. Lett., 80, 4855–4858 (1998); arXiv:hep-th/9802183v3 (1998).

4. J. M. Figueroa-O’Farrill, E. Hackett-Jones, and G. Moutsopoulos, Class. Q. Grav., 24, 3291–3308 (2007);

arXiv:hep-th/0703192v4 (2007).

5. C. Bär, Commun. Math. Phys., 154, 509–521 (1993).

1507



6. D. Berenstein, C. P. Herzog, and I. R. Klebanov, JHEP, 0206, 047 (2002); arXiv:hep-th/0202150v2 (2002).

7. G. T. Horowitz and A. Strominger, Nucl. Phys. B, 360, 197–209 (1991).

8. D. R. Morrison and M. R. Plesser, Adv. Theoret. Math. Phys., 3, 1–81 (1999); arXiv:hep-th/9810201v3 (1998).
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