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We study a contracting universe composed of cold dark matter and radiation, and with a positive
cosmological constant. As is well known from standard cosmological perturbation theory, under the
assumption of initial quantum vacuum fluctuations the Fourier modes of the comoving curvature
perturbation that exit the (sound) Hubble radius in such a contracting universe at a time of matter-
domination will be nearly scale-invariant. Furthermore, the modes that exit the (sound) Hubble
radius when the effective equation of state is slightly negative due to the cosmological constant will
have a slight red tilt, in agreement with observations. We assume that loop quantum cosmology
captures the correct high-curvature dynamics of the space-time, and this ensures that the big-bang
singularity is resolved and is replaced by a bounce. We calculate the evolution of the perturba-
tions through the bounce and find that they remain nearly scale-invariant. We also show that the
amplitude of the scalar perturbations in this cosmology depends on a combination of the sound
speed of cold dark matter, the Hubble rate in the contracting branch at the time of equality of the
energy densities of cold dark matter and radiation, and the curvature scale that the loop quantum
cosmology bounce occurs at. Finally, for a small sound speed of cold dark matter, this scenario
predicts a small tensor-to-scalar ratio.

PACS numbers: 98.80.Qc, 98.80.Cq

I. INTRODUCTION

Observations of the cosmic microwave background
(CMB) —most recently [1, 2]— have clearly established
that scalar perturbations in the early universe were
nearly scale-invariant. It is thus necessary for any re-
alistic cosmological model to generate, in some fashion,
scale-invariant perturbations.

To achieve this, many cosmological models rely on the
presence of matter fields (typically scalar fields) that have
not yet been observed in nature. The new matter fields
are necessary in these models as they play an essential
role in the generation of scale-invariant perturbations.
While it is of course a requirement for any cosmological
scenario to predict near scale-invariance in order to be
potentially viable, there are some cosmological scenarios
where it is possible to avoid the weakness of postulating
the existence of unknown matter fields and nonetheless
obtain scale-invariance.

We shall study one such model in this paper. This cos-
mological model consists of a spatially flat Friedmann-
Lemâıtre-Robertson-Walker (FLRW) universe, with a
positive cosmological constant, cold dark matter, and ra-
diation. These are three ingredients known to be present
in our universe, and we will not assume the existence of
any other matter fields. We also assume that the initial
conditions are such that the space-time curvature is small
and the universe is large and contracting.

As the universe contracts, the space-time curvature
will increase, and quantum gravity effects are expected to
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become important at some point, likely when the space-
time curvature nears the Planck scale. In this work, we
will assume that loop quantum cosmology (LQC) cap-
tures the salient non-perturbative quantum gravity ef-
fects in the very early universe. LQC, a mini-superspace
approach to quantum cosmology motivated by loop quan-
tum gravity, predicts that a bounce occurs near the
Planck scale and that, once these quantum gravity ef-
fects are included, the space-time is free of the singular-
ities that appear in classical general relativity [3–5].

Thus, this model will be that of a bouncing universe,
with a matter content of radiation and cold dark mat-
ter and a positive cosmological constant. Now, it is
well known in cosmological perturbation theory that, for
perturbations that are initially in the quantum vacuum
state, the Fourier modes that reach the long wavelength
limit in a contracting space-time whose dynamics are
dominated by a pressureless matter field become scale-
invariant [6, 7]. (Note that the long-wavelength limit of
a Fourier mode does not always coincide with the mode
exiting the Hubble radius — here the relevant length
scale is the sound Hubble radius, as explained in more
detail later.) Furthermore, if the pressure is slightly neg-
ative, for example due to the presence of a positive cos-
mological constant, then the long wavelength perturba-
tion modes will be almost scale-invariant with a slight
red tilt. Therefore, in the model considered here, we ex-
pect the modes that become large during the epoch of
the universe that is dominated by cold dark matter to
be almost scale-invariant, and those that become large
when the effective equation of state is slightly negative
to have a small red tilt.

In this paper we calculate the spectrum of the cosmo-
logical perturbations for this model. By the use of some
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approximations, it is possible to complete the calcula-
tions entirely analytically; we also solve the equations
numerically in order to provide a check on the validity of
the approximations. In Sec. II we study the dynamics of
the background, first analytically and then numerically.
Then in Sec. III we calculate the evolution of the scalar
perturbations, from their initial quantum vacuum state
to their final form after the bounce in the background
FLRW space-time. Once again, this calculation is first
done analytically with the help of some approximations,
and is solved numerically afterwards. We continue in
Sec. IV by determining the spectrum of the primordial
gravitational waves, and end in Sec. V with a discussion.
We use units where c = 1, but keep G and ~ explicit
except where stated otherwise, typically in the sections
devoted to the numerical studies.

II. HOMOGENEOUS BACKGROUND

As explained in the Introduction, we are interested in
studying the dynamics of a flat FLRW cosmology with a
positive cosmological constant Λ and whose matter con-
tent is composed of radiation and cold dark matter, which
are modeled as perfect fluids.

Classically, the dynamics are given by the Friedmann
equations, while in LQC there exists a Hamiltonian
constraint operator that generates the evolution of the
wave function representing the quantum cosmology state.
While the full quantum evolution is in general rather
complicated, for sharply peaked states (i.e., states that
admit a clear semi-classical interpretation at low curva-
ture scales) the full quantum dynamics are very well ap-
proximated by a set of effective equations [8–10]. The
key point is that since the state is sharply peaked (and it
remains sharply peaked throughout the entire evolution,
including at the bounce point), it is meaningful to speak
of an effective geometry, with an effective scale factor,
and to ask what equations of motion govern the dynam-
ics of this effective scale factor; these equations are called
the effective equations. As radiation will dominate the
dynamics in the high-curvature regime, it is enough to
consider the effective equations for a radiation-dominated
flat FLRW space-time, which are given by

H2 =
8πG

3
ρ

(
1− ρ

ρc

)
, (1)

where H = ȧ/a is the Hubble rate (in proper time), ρ is
the energy density of the radiation matter field, and ρc ∼
ρPl is the critical energy density, which is of the order of
the Planck energy density. In addition, the matter field
satisfied the continuity equation

ρ̇+ 4Hρ = 0, (2)

where we have used the fact that the pressure of a ra-
diation perfect fluid is P = ρ/3. Note that the classical
Friedmann equations are obtained in the limit ρc → ∞.

In this paper, we will restrict our analysis to the effec-
tive equations of LQC, but a full quantum treatment of a
radiation-dominated space-time in LQC is given in [11].

In the first part of this section, we will use some rea-
sonable approximations in order to derive some analyt-
ical results, and in the second section we present some
numerical results that in part complement the analytic
results and in part provide a check on the validity of the
approximations.

To be specific, we shall make three approximations
in the analytical treatment of the background: first, we
shall assume that quantum gravity effects are negligible
already a few orders of magnitude away from the LQC
bounce. This has been verified in numerical simulations
[11], and can also be seen from studying the effective
equations. This will allow us to solve the classical Fried-
mann equations away from the bounce, and the LQC cor-
rections will only become relevant when the space-time
curvature nears the Planck scale during the radiation-
dominated epoch.

Second, we will assume that the evolution of the back-
ground universe can be broken into two distinct eras: the
first one which is dominated by the combination of the
cosmological constant and cold dark matter, and another
era which is dominated by radiation. We assume a dis-
continuous change in the equation of state between these
two eras, and impose continuity in the scale factor and
in the (conformal) Hubble rate during this transition.
This approximation is supported by results in Sec. II B
that show that the transition between the matter- and
radiation-dominated epochs occurs very rapidly.

Finally, recall that the goal of this paper is to calcu-
late the power spectrum of the perturbations. As is well
known, especially from calculations in inflation, the key
ingredient that determines the scale-dependence of the
perturbations is the equation of state of the background
at the time that the mode reaches the long wavelength
limit. Therefore, in order to simplify calculations, we
will assume a constant equation of state during the time-
frame that the perturbation modes of interest reach the
long wavelength limit (i.e., when the dynamics of the
space-time are dominated by the CDM, but the cosmo-
logical constant provides a small correction to the effec-
tive equation of state). This approximation is justified by
the effective equation of state being nearly constant dur-
ing the period of interest, as seen in Sec. II B. Nonethe-
less, one should keep in mind that the effective equation
of state —due to the combination of Λ and CDM— is
in fact changing in time, and in general will be slightly
different for different modes. As we shall see later, this
effect leads to a running of the scalar index ns.

A. Analytic Treatment

Using the effective equations, we shall first determine
the dynamics around the bounce point, and then solve
for the scale factor at earlier pre-bounce times when the
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space-time curvature is much smaller.

1. Radiation-Dominated Epoch

It is easy to see that (2) implies that

ρ(t) =
ρo
a(t)4

, (3)

where ρo is a constant of integration, and this can be
used to solve (1), giving

a(t) =

(
32πGρo

3
(t− to)2 +

ρo
ρc

)1/4

,

where to is another constant of integration. It is of course
possible to choose any values for to and ρo; for conve-
nience we shall set to = 0 so that the bounce occurs at
t = 0, and ρo = ρc so that the value of the scale factor
at the bounce point is 1. Then,

a(t) =

(
32πGρc

3
t2 + 1

)1/4

. (4)

Well before and after the bounce (|t| �
√

3/32πGρc),
the space-time curvature is much smaller than the Planck
scale and the scale factor is very well-approximated by
the classical solution

a(t) = a1/4
o

√
|t|, (5)

where we have defined

ao =
32πGρc

3
(6)

for later convenience, and the Hubble rate is given by

H =
1

2t
. (7)

It is also easy in the classical regime to change to con-
formal time η via the relation adη = dt, which gives

|t| =
√

2πGρc
3

η2, (8)

which in turn shows that the scale factor in terms of
conformal time is given by

a(η) =

√
8πGρc

3
|η|, (9)

and the conformal Hubble rate, again in the classical
regime, is given by

H =
1

η
= −

(
8πGρc

3

)1/4√
−H; (10)

the second equality holds for the contracting epoch of the
cosmology where H < 0 and H < 0.

2. Cold Dark Matter and Λ

Now we shall consider the earlier epoch where cold
dark matter and the cosmological constant dominate the
dynamics (the ΛCDM era). In this regime, the classical
Friedmann equations in conformal time can be written
as

H2 =
8πG

3
a2 (ρCDM + ρΛ) =

8πG

3
a2 ρtot, (11)

where ρΛ = Λ/8πG, and the combined continuity equa-
tion (also in conformal time) for cold dark matter and
the cosmological constant is given by

ρ′tot + 3H (ρtot + Ptot) = 0. (12)

Since PΛ = −ρΛ and PCDM = 0, it follows that the
effective equation of state for cold dark matter and the
cosmological constant combined1 is Ptot = ωρtot, with
−1 ≤ ω ≤ 0.

In order to solve these two equations exactly, we shall
assume that ω = −δ is a constant, and furthermore, since
we are interested in the regime where the dynamics are
dominated by the cold dark matter, we also take δ � 1.
Of course, the effective equation of state does not re-
main constant in this setting, but recall that we are inter-
ested in calculating the power spectrum of cosmological
perturbations, and their scale-dependence depends most
sensitively on the effective equation of state at the time
when they reach the long wavelength limit. Therefore,
the calculations where the spectra of the scalar and ten-
sor perturbations are determined are to be understood as
being for the modes that reach the long wavelength limit
when the effective equation of state is given by ω = −δ,
and so the specific value of δ will vary from one mode
to another. Note that this variation will be monotonic
with δ becoming closer and closer to zero for shorter and
shorter wavelengths, or for larger and larger k. The ex-
act rate at which this occurs will depend on the relative
contributions of cold dark matter and the cosmological
constant to the total matter energy density.

In the approximation that δ is constant, the total en-
ergy density behaves as

ρtot =
ρeff
a3(1−δ) , (13)

where ρeff is a constant of integration, and the scale
factor is given by

a(η) =

[√
2πGρeff

3
(1− 3δ)(η − ηo)

]2/(1−3δ)

, (14)

1 In fact, we expect that PCDM = ε2ρCDM with 0 < ε � 1, but
here we are interested in the situation where the small positive
contribution to ω from the cold dark matter and the small neg-
ative contribution to ω from the cosmological constant combine
to give a slightly negative ω.
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where ηo is also a constant of integration. It follows that
the conformal Hubble rate is

H =
2

(1− 3δ)(η − ηo)
. (15)

In order to determine the values of ρeff and ηo, let
us assume that the transition between the radiation-
dominated epoch and the ΛCDM era occurs at the equal-
ity conformal time ηe. Then, imposing that the scale
factor and the conformal Hubble rate be continuous
at the transition time, we find that ρeff = ρc/a

1+3δ
e

and ηo = ηe − 2/[(1 − 3δ)He], where ae = a(ηe) and
He = H(ηe) respectively. Then, the scale factor can be
rewritten as

a(η) = ae

(
η − ηo
ηe − ηo

)2/(1−3δ)

. (16)

3. Summary

Thus, for early times η ≤ ηe, the scale factor is given
by (16); then for ηe ≤ η the relation (9) holds so long as
quantum-gravity effects are negligible. When quantum
gravity effects become important, it is necessary to use
(4) to describe the dynamics of the scale factor.

B. Numerics of the Background Dynamics

In this subsection we numerically study the back-
ground solution presented in the ΛCDM model within the
context of LQC. To be explicit, we study the background
universe by separating the evolution into two periods.
In the first stage, we apply the realistic data from the
Planck results and numerically solve for the period that
the contracting universe evolves from dark energy domi-
nation to the matter-dominated phase. In particular, we
assume that the density parameters of all matter compo-
nents are the same as what we observed today, which are
given by Ωm ≡ ρm/ρtot = 0.314, ΩΛ ≡ ρΛ/ρtot = 0.686
and a deduced value Ωr ≡ ρr/ρtot = 9.23× 10−5, respec-
tively [2]. During this phase, the numerical result of the
background evolution is provided in Fig. 1.

One particularly important result is shown in the inset
of Fig. 1a: the effective equation of state evolves very
slowly as the era of matter-domination is approached.
This shows that, for modes that reach the long wave-
length limit in this time-frame, any effect due to an evolv-
ing effective equation of state will be very small, and it
is justified to make the approximation that δ is constant
in the analytic calculations.

Then, in the second stage, we consider a toy model
of a universe filled with a dark matter component and a
radiation component with their energy densities evolving
as follows,

ρm = ρim

(ai
a

)3(1−δ)
, ρr = ρir

(ai
a

)4

, (17)

respectively, where ρim and ρir are their initial values
when a = ai. Note that while it would be nice to si-
multaneously include both matter fields and a cosmolog-
ical constant, this is significantly more expensive from
a computational point of view. These numerical studies
presented here already provide strong support for the ap-
proximations used in the analytic section, and we leave
more detailed numerical studies for future work.

In order to relate this stage of the dynamics with the
previous one, the pressure is taken to have a very small
(but non-vanishing) negative value. Also, to make the
comparison between the analytic and numerical results
as simple as possible, we adopt the conformal time η and
set the value of the scale factor a to be unity at the
bouncing moment tB = 0 in the numerical calculation.
The dynamics are calculated by numerically solving the
second Friedmann equation H′ instead of the first one in
(11), which is given by

H′ = −4πG

3
a2

(
ρtot + 3Ptot −

4ρ2
tot

ρc
− 6ρtotPtot

ρc

)
,(18)

in the case of LQC. In addition, the continuity equa-
tion (12) is applied so that the background equations
of motion are self-complete after an initial value of the
background energy density has been imposed.

For the numerics, we work in units of the reduced
Planck mass MPl ≡ 1/

√
8πG (with ~ = 1) for all model

parameters with dimensions. As an explicit example (al-
though not a realistic one), we choose the values of the
energy densities, the critical density ρc and an effective
equation of state parameter for the CDM at the initial
moment to be

ρim = 1.1× 10−24 , ρir = 5.1× 10−28 ,

ρc = 2.9× 10−9 , δ = 0.05 , (19)

and our numerical results are shown in Fig. 2.
The evolution of the scale factor, which is depicted

by a blue solid curve in the left panel, explicitly shows
that a non-singular bouncing solution is obtained in our
model due to the quantum gravity effects captured by
LQC, in particular, the minimal value of the scale factor
is non-zero. From the middle panel, one can read more
details about the background evolution. For example, the
absolute value ofH is increasing when η is about less than
−2× 109. After that, H becomes approximately a linear
function of the conformal time and correspondingly, the
universe enters the bouncing phase with H evolving from
the negative valued regime to the positive valued one.
Eventually, the value of H decreases after η ≈ 2 × 109

and hence the universe naturally connects to a regular
thermal expanding phase after the bounce; there is no
need for reheating.

The right panel of Fig. 2 characterizes the evolutions of
the density parameters of the dark matter and radiation
in our model, which are defined by

Ωm(r) ≡
ρm(r)

ρtot
, (20)
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FIG. 1. Evolutions of the background equation of state parameter ω (the purple solid curve in the left panel), and the density parameters
Ωi ≡ ρi/ρtot (the red dotted and the blue dashed lines in the right panel) as a function of the cosmic time t (in units of per billion
years) in the model under consideration. The horizontal axis denotes the cosmic time t. The initial values of background parameters
are assumed to be the same as today’s universe.
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FIG. 2. Evolutions of the scale factor a (the blue solid curve in the left panel), the conformal Hubble parameter H (the red dotted curve in
the middle panel) and the density parameters Ωi ≡ ρi/ρtot (the green dash-dotted and the orange dashed lines in the right panel) as a
function of the conformal time η in the model under consideration. The horizontal axis denotes the conformal time η. The background
parameters chosen for the numerics are given in Eq. (19).

with the subscripts “m” and “r” representing dark mat-
ter and radiation respectively. One can see that the uni-
verse was originally dominated by the cold dark matter
with Ωm ' 1, as described the green dash-dotted curve.
During the cosmic contraction the contribution of radia-
tion, which is depicted by the orange dashed line, grows
faster than that of dark matter and then dominates over
the background evolution before the bounce. After the
bounce, the universe would have experienced a period of
radiation-dominated expanding phase and eventually en-
ters the CDM era and hence is in qualitative agreement
with cosmological observations. Note that the sharp
transition between these two eras provides justification
for the assumption of a discontinuous transition between
matter- and radiation-domination used in the analytic
calculations. Also, it is important to keep in mind that a
more careful choice of the initial parameters would make
the model more precisely consistent with experimental
data.

III. SCALAR PERTURBATIONS

In this section, we will calculate the final spectrum
of scalar perturbations after the bounce, assuming they
begin in the quantum vacuum state in the distant past
of the pre-bounce epoch.

In cosmological perturbation theory, it is convenient to
use the gauge-invariant Mukhanov-Sasaki variable [12]

v = zR, (21)

where R is the comoving curvature perturbation and

z =
a
√
ρ+ P

csH
. (22)

Linear perturbations can be handled in LQC by following
the ‘separate universe’ approach presented in [13, 14],
and from the resulting quantum theory it is possible to
derive effective equations that can be used to calculate
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expectation values of sharply-peaked states. The LQC
effective equations for the Mukhanov-Sasaki variable are
[15, 16]

v′′ − c2s
(

1− 2ρ

ρc

)
∇2v − z′′

z
v = 0, (23)

and it is easy to see that the standard classical expres-
sion is recovered in the limit ρc → ∞. The effective
equation (23) is expected to provide a good approxima-
tion to the full quantum dynamics for modes that always
remain large compared to the Planck length [9], which
is the case for the observationally relevant modes in the
matter bounce scenario.

In this section, using (23) we will determine how the
Fourier modes vk evolve, from their initial quantum vac-
uum state, to their form as they exit the sound Hub-
ble radius2 rsH = cs/H and finally how they propagate
through the bounce. As we shall see, the Fourier modes
that exit the sound Hubble radius during the period
of matter domination in the contracting branch become
scale-invariant and therefore these modes are of particu-
lar interest. This is why in this paper we will only con-
sider this family of the Fourier modes vk, and ignore the
modes that exit the Hubble radius either before (during
the epoch dominated by the cosmological constant) or
after (during the radiation-dominated phase).

In the first part, we present analytical calculations, and
in the second, numerical simulations. As in the previous
section, it is necessary to make certain approximations in
order to make the analytical calculations tractable and
the numerical studies in the second part serve in part to
check that the approximations are valid.

A. Analytic Treatment

We will begin by solving the dynamics of the pertur-
bations in the ΛCDM era —and the modes of interest
are those that reach the long wavelength limit during
this era— and then determine their evolution during
the radiation-dominated epoch, including through the
bounce.

In order to solve the equations of motion for vk, it
is necessary to make the following approximations: (i)
we only consider the modes that reach the long wave-
length limit during the ΛCDM era, where the back-
ground matter field is modelled as a perfect fluid with
a small and negative constant equation of state as ex-
plained in Sec. II A 2; (ii) we assume continuity in vk and

2 Since the sound speed of the matter fields in this model is not 1,
we find that the Fourier modes reach the long wavelength limit
when the mode exits the sound Hubble radius, not the Hubble
radius. These quantities differ by a factor of cs. Note that it is
equivalent to state that a given mode reaches the long wavelength
limit when its ‘sound wavelength’ exits the Hubble radius.

v′k at the spatial slice where we approximate the equa-
tion of state changing discontinuously to the radiation-
dominated epoch; and (iii) we work in the long wave-
length limit during the bounce period.

Recall from Sec. II B that the equation of state changes
very slowly in the regime where the effective equation of
state is slightly negative. This supports the first approx-
imation, since the key ingredient in determining the long
wavelength spectrum of scalar perturbations is the equa-
tion of state of the background at the time that the given
mode exits the sound Hubble radius. Since the effective
equation of state is changing slowly, we expect corrections
to the approximation of a constant equation of state to
be subleading. Finally, the validity of approximations (ii)
and (iii) is verified numerically in Sec. III B.

1. The ΛCDM Era

For the contracting portion of the space-time where
the scale factor is given by (16) (and safely neglecting
quantum gravity effects at this stage), (23) is

v′′k + c2s k
2vk −

2(1 + 3δ)

(1− 3δ)2(η − ηo)2
vk = 0. (24)

Since the sound speed of cold dark matter is unknown,
we set cs = ε which we assume to be constant. We expect
ε to be a small positive number.

The solutions to this differential equation are

vk =
√
−(η − ηo)

(
A1H

(1)
n [−εk(η − ηo)]

+A2H
(2)
n [−εk(η − ηo)]

)
, (25)

where H
(1)
n and H

(2)
n are the Hankel functions, and

n =

√
2(1 + 3δ)

(1− 3δ)2
+

1

4
≈ 3

2
+ 6δ +O(δ2), (26)

where after the last equality we drop terms of order δ2

and higher (recall that δ � 1).
Choosing the initial conditions to be quantum vacuum

fluctuations sets A1 =
√
π~/4 and A2 = 0.

Then, as η approaches ηe, some modes satisfy −εk(η−
ηo) � 1. These modes are said to be in the long wave-
length limit, and in this limit it is possible to use the small
argument expansion of the Hankel functions to show that

vk =

√
−π~(η − ηo)

4

[
(εk)n

Γ(n+ 1)

(
−(η − ηo)

2

)n
− i Γ(n)

π(εk)n

(
−2

η − ηo

)n ]
(27)

=

√
8~
9

(εk)3/2+6δH−(2+6δ)

− i
√

~
4

(εk)−3/2−6δH1+6δ, (28)
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where in the second equality the time dependence has
been rewritten in terms of the conformal Hubble rate,
and the exponents are accurate to first order in δ, while
the numerical prefactors are only accurate to zeroth or-
der in δ. It is straightforward to determine higher order
corrections in δ, but this will not be necessary here.

2. Radiation-Dominated Epoch

During the radiation-dominated epoch, the scale factor
is proportional to η while the sound speed is given by
1/
√

3, and so the Mukhanov-Sasaki variable satisfies the
equation

v′′k +
k2

3
vk = 0, (29)

at least in the classical regime where quantum gravity
effects are negligible. Note that due to the drastic change
in the speed of sound, some modes that were in the long
wavelength regime may at first be in the short wavelength
limit at the onset of the radiation-dominated epoch.

Therefore, the relevant solutions are

vk = B1 sin
kη√

3
+B2 cos

kη√
3
, (30)

and B1 and B2 can be determined from (27) by demand-
ing that vk and v′k be continuous at ηe. Note that as
the bounce is approached η → 0 and therefore the sec-
ond term with the prefactor B2 will dominate, so we can
drop B1. Imposing continuity in vk and v′k gives

B2 =− i
√

~
4

(εk)−3/2−6δ cos
kηe√

3
H1+6δ
e

− i
√

3~
16

(εk)−3/2−6δk−1 sin
kηe√

3
H2+6δ
e . (31)

Some modes will have rebecome short wavelength modes
due to the drastic change in the sound speed. For these
modes, the small argument expansion for the trigonemet-
ric functions cannot be used, and these terms will not
be scale-invariant. Thus, we expect that scale-invariance
will only be obtained for the modes that satisfy kηe � 1.
We will return to this point later.

3. The Bounce

In the contracting phase, as the bounce is approached
(but before quantum gravity effects become important)
we have |kη| � 1 and in this limit the solution for the
Mukhanov-Sasaki variable (30) tends to

vk = B2, (32)

with B2 given in (31).

During the bounce, all of the modes of cosmological in-
terest remain in the long-wavelength limit, and therefore
the equation of motion for vk is

v′′k −
z′′

z
vk = 0, (33)

where z = a
√
ρ+ P/csH = 4

√
ρc a

3/(ao t) [recall that

cs = 1/
√

3 during radiation-domination and ao is defined
in (6)], and the solution is

vk = C1z + C2z

∫
η

dη̃

z(η̃)2
. (34)

Note that z is not simply proportional to a due to the
quantum gravity effects that modify the Friedmann equa-
tion at high curvatures as seen in (1). The integral can
be evaluated by rewriting it in terms of the proper time
via the relation dt = adη, giving

vk = C1 z + C2 z t

[
2F1

(
1
2 ,

3
4 ; 3

2 ,−aot
2
)
− 1

a3

]
, (35)

where C2 has been redefined in order to absorb some
numerical factors.

In the classical pre-bounce era (t � −√ao), this ex-
pression must agree with (32) and this uniquely deter-
mines

C1 = π

√
G

6

Γ
(

1
4

)
Γ
(

3
4

) B2, C2 = −
√

2πGao
3

B2. (36)

Note that during this calculation it is important to keep
in mind that t = −|t| in the pre-bounce era.

It is also easy to calculate the form of the scalar per-
turbations in the classical post-bounce era by taking the
limit t � √ao in (35), which gives in terms of the co-
moving curvature perturbation

Rk =
vk
z

= 2C1 +O
(
t−1
)
, (37)

where we have only kept the dominant contribution,
namely the constant mode which is the only one that
does not decay with time.

4. Results

The amplitude of the comoving curvature perturbation
of 2C1 after the bounce depends on B2 via (36) and so
it is easy to check whether the resulting scalar perturba-
tions (37) are scale-invariant or not. Since the only de-
pendence of k in C1 resides in B2, a quick examination of
(31) suffices to determine the scale-dependence of R. As
one can readily verify, one obtains near scale-invariance
only in the limit of |kηe| � 1 (otherwise the dominant
contribution would be oscillations superimposed over a
red spectrum), in which case

B2 = −3 i

4

√
~ (εk)−

3
2−6δH1+6δ

e

(
1 +O

(
k2η2

e

))
. (38)
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Therefore, a necessary condition for scale-invariance is
that

|kηe| � 1, (39)

that is to say that the modes that become (nearly) scale-
invariant during the matter-dominated contracting era
must remain outside the sound Hubble radius during
the entire contracting radiation-dominated epoch and the
bounce in order to remain (nearly) scale-invariant.

For these modes, the power spectrum is

∆2
R =

k3

2π2
|R|2

=

√
3π

2

(
Γ
(

1
4

)
Γ
(

3
4

))2 √
ρc
ρPl
· |He|`Pl

ε3

×
(

8πGρc|He|
3k4

)3δ

, (40)

where ρPl = 1/(G2~) and `Pl =
√
G~, and the tilt is

given by

ns = 1− 12 δ. (41)

Thus, the observation of the tilt to be ns ≈ 0.96 [1, 2] sets
δ ≈ 0.003, which means that when the wavelength k−1

exits the sound Hubble radius ε/H the effective equation
of state must have been ωeff ≈ −0.003.

Also, in this model we predict a small running of the
scalar index. This is due to the following two effects: (i)
the departure from scale-invariance in a small interval of
k depends on the background effective equation of state,
and (ii) the background equation of state is dynamical.
The smallest values of k reach the long-wavelength limit
first, at a time when Λ contributes slightly more to the
background dynamics than it does at later times when
larger values of k reach the long-wavelength limit. There-
fore, as k increases, the background equation of state at
the ‘sound-Hubble-crossing’ time also increases,

dωeff

dk
> 0, (42)

and since ωeff = −δ and ns = 1− 12δ, it follows that

dns
dk

> 0. (43)

Therefore another prediction of this realization of the
matter bounce scenario is for the scalar index ns to in-
crease with k. Although the presence of this effect is
clear in this model, its amplitude is not known. In order
to calculate the expected amplitude of dns/dk, it would
be necessary to know quite precisely the energy densities
corresponding to cold dark matter and the cosmological
constant during the contracting phase, which is not an
easy task especially since we do not expect the universe
to be symmetric around the bounce point, as we shall
discuss next.

Nonetheless, the qualitative result (43) is a clear pre-
diction for this realization of the matter bounce scenario.

Finally, as stated above, the results (40) and (41) only
hold for Fourier modes that satisfy the condition (39).
In order to better understand this condition, it is useful
to rewrite it in terms of the physical wave number k =
a(t) · kphys(t) and of the Hubble rate at equality He via
(5), (7) and (10),

kphys(te)

|He|
� 1. (44)

A good choice to ensure that kphys corresponds to modes
that are observed in the cosmic microwave background
today, is to choose3 k? = 0.05 Mpc−1 = 10−59`−1

Pl , which
lies roughly in the middle of the logarithmic range of
the scales probed by the Planck telescope [2]. The value
of k? at the time of equality is given by the relation
k?(te) = a(to) · k?(to)/a(te). With our choice of con-
ventions of setting a(t = 0) = 1 at the bounce, it follows
that a(to) ∼ 1031. This can be calculated from the fact
that (i) the scale factor increased by a factor of ∼ 104 af-
ter matter-radiation equality until today, and (ii) that in
the expanding branch matter-radiation equality is known
to occur at t+e ∼ 104 years ∼ 6 × 1054tPl giving a scale

factor of a(t+e ) = a
1/4
o
√
te ∼ 1027 (assuming ρc ∼ ρPl)

at the time of matter-radiation equality in the expand-
ing branch. (Recall that matter-radiation equality oc-
curs before recombination, and the superscript ‘+’ on t+e
denotes the matter-radiation equality in the expanding
post-bounce branch.)

If we assume a symmetric bounce, then it follows that
the times of matter-radiation equality before and after
the bounce are symmetric around t = 0, in which case
te = −6 × 1054tPl. From this and the relation (7), it
is easy to check that kphys/|He| ∼ 1 is of the order of
unity rather than much smaller than 1. This shows that
a symmetric bounce is not viable in this model. To make
this conclusion explicit, we rewrite (39) as

a(t+e )H+
e

a(te)He
· a(to) k?(to)

a(t+e )H+
e
� 1, (45)

which in turn, since the second term is of order unity and
via (5) and (7), gives

a(te)

a(t+e )
� 1. (46)

This relation shows that the bounce must be significantly
asymmetric. Indeed, in order for the condition (44) to
hold, |He| must be much larger (by at least a few or-
ders of magnitude) than it would be in a model with a

3 Of course, this relation has to hold for all observed k, here we
simply choose a reasonable value of k in order to better under-
stand the consequences of imposing (44).
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FIG. 3. Evolutions of cosmological perturbations with a fixed comoving wave number k = 2.2 × 10−7 in the model under consideration
in the frame of LQC. The left panel shows the comparison among the conformal Hubble radius λH = 1/H (the green solid line), the
comoving sound wavelength λε = 1/εk (the red dashed line), and the regular comoving wavelength λk = 1/k (the blue dotted line). The
middle panel depicts the dynamics of primordial power spectra for curvature perturbations ∆2

R (the blue solid curve) and gravitational
waves ∆2

h (the red dashed curve) along with the bouncing background. The right panel presents the evolution of the tensor-to-scalar
ratio r (the orange solid line). The initial conditions for the background field and model parameters are the same as for Fig. 2 and are
given in (19). The initial conditions for cosmological perturbations of both scalar and tensor types are that they are initially quantum
vacuum fluctuations in the early matter-dominated contracting phase.

symmetric bounce, in which case it is necessary for the
matter-radiation equality to occur at much higher curva-
ture scales in the contracting branch than it does in the
expanding branch. One possible way for this to happen
would be if a very large number of additional quanta of
radiation are created during the bounce; as an aside note
that such a process would generate a significant amount
of entropy.

Interestingly, it has recently been suggested that par-
ticle production may play an important role during the
bounce in LQC and this effect would cause the bounce
to be significantly asymmetric in precisely the manner
outlined here [17]. That being said, it is not yet clear
whether particle production could generate the amount
of asymmetry that is required for this realization of the
matter bounce to be viable. We leave this question for
future work.

There are also other reasons why an asymmetric
bounce is necessary in this scenario. Assuming the Hub-
ble parameter at te to be of the order of He ∼ 10−55t−1

Pl
—as would be the case for a symmetric bounce— then
for the amplitude of the scalar perturbations to match
the observed value of ∆2

R ∼ 10−9, it would be necessary
to have a very small value of the sound speed of cold dark
matter of cs = ε ∼ 10−15 (assuming ρc to be of approxi-
mately the same order of magnitude as ρPl); such a small
value of the sound speed parameter typically leads to pri-
mordial perturbations with over-large non-Gaussianities.
In order to have a larger (although still small) value of ε
and thus sufficiently small non-Gaussianities, it is again
necessary to have an asymmetric bounce. This likely re-
quires even more asymmetry than is needed to satisfy the
condition (46).

Finally, many of the modes observed today reentered
the sound Hubble radius during radiation-domination.

However, in order for them to be scale-invariant, in the
contracting branch of the universe, they must have ex-
ited the sound Hubble radius during matter-domination.
This is yet another reason that an asymmetric bounce is
necessary in the ΛCDM bounce scenario.

B. Numerical Analysis of the Perturbations

To complete the analysis of cosmological perturba-
tions, in this subsection we perform a numerical compu-
tation of the evolution of the primordial curvature per-
turbations and gravitational waves in the model under
consideration. To be consistent with the background nu-
merics, we consider the universe filled with a dust matter
field with its energy density evolving as (13), of which the
initial value is the same as the one given in (19). Further-
more, we impose the initial conditions of the cosmological
perturbations to be vacuum fluctuations during the mat-
ter dominated contracting phase (in units where ~ = 1),

Rinik → e−iεkη√
2εk z

, hinik → e−ikη√
2k a

. (47)

In addition, we take ε = 0.08 and fix k = 2.2 × 10−7 as
an example in the detailed calculation. Our numerical
results are presented in Fig. 3.

In the left panel of Fig. 3, one can see how primordial
cosmological perturbations evolve from the sub-Hubble
scale to the super-Hubble region in the contracting phase.
For a fixed comoving wave number k, the curvature
perturbation exits the Hubble radius much earlier than
the gravitational wave since its oscillation gets squeezed
when k ∼ H/cs at the sound horizon which is much
smaller than the Hubble radius. Consequently, one ex-
pects that there ought to be more oscillations in the
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power spectrum of primordial gravitational waves than
that of primordial curvature perturbations. This expec-
tation is exactly verified in the middle panel of the figure,
which displays the evolutions of primordial power spectra
of both scalar and tensor perturbations.

In the middle part of Fig. 3, one can see that ∆2
R ex-

periences only one oscillation and then becomes squeezed
very soon with its amplitude increasing until the nonsin-
gular bounce takes place. However, ∆2

h experiences sev-
eral oscillations during the contracting phase and only
becomes squeezed when the universe is very near the
bouncing phase. They both become conserved at super-
Hubble scales after the bounce, which can be read from
the right regime of Fig. 3b. Interestingly, one can ob-
serve that the magnitudes of the two spectra are compa-
rable (though the amplitude of the scalar mode is slightly
larger) during the contracting phase but the amplitude
of the scalar spectrum becomes significantly larger than
that of tensor spectrum after the bounce, and hence the
tensor-to-scalar ratio is suppressed to a small value that
is consistent with observations.

This can also be seen in the right panel of Fig. 3
which depicts the dynamics of the tensor-to-scalar ra-
tio r throughout the cosmological bouncing evolution. In
Figs. 3b and 3c, we see that while the scalar perturbation
mode passes through the bouncing phase in a relatively
smooth fashion, the magnitude of the gravitational wave
mode is significantly damped. While the amplitude of the
gravitational wave increases somewhat after the bounce,
it remains significantly lower than before the bouncing
phase.

In the specific example with ε = 0.08 being considered,
we read approximately r ' 0.016 from the numerical
computation. As we will analyze in the next section on
the tensor-to-scalar ratio, this is roughly in the same or-
der of the analytical estimate (r ' 0.012) given by (54),
though the detailed values are not in exact agreement
with each other. We will comment further on this slight
numerical discrepancy at the end of this section.

Another important point is that in the numerical com-
putation we have chosen the critical density ρc to be
very small (ρc ∼ 10−9) so that the bounce scale is of or-
der O(10−6) Planck mass (this choice for ρc significantly
lowers the computational cost of the numerics as this
causes the bounce to occur at a lower curvature scale).
As a consequence, the amplitude of the power spectrum
of primordial curvature perturbations is about O(10−12)
which is approximately three orders lower than the mag-
nitude of the observed CMB spectrum. The numerical
computation performed in this subsection is sufficient to
demonstrate the formation of primordial power spectra
in the model under consideration and to verify their re-
lations obtained in semi-analytic analyses. However, one
can improve the agreement of the amplitude of the spec-
trum with observations by fine-tuning the values of the
parameters in this model.

It is also important to keep in mind that it is possible to
obtain a similar amplitude of scalar perturbations even if

ρc ∼ ρPl, although such a choice would require a smaller
value of |He| and/or a larger value of ε.

Finally, note that since there are two matter compo-
nents used in this step of the numerical computation,
the sound speed parameter depends on the background
evolution approximately as

cs =

{
ε for Ωm ' 1√
ω otherwise,

(48)

where ε is the small constant sound speed for CDM and
ω is the time-dependent equation of state ω = Ptot/ρtot,
which includes the contributions coming from the radi-
ation field and therefore equals 1/

√
3 near the bounce

when radiation dominates the dynamics of the universe.
This time-dependence effect has been taken into account
in the above numerical computation.

Finally, these numerical solutions also validate the ap-
proximations made in the analytical section. First, we see
that in the near-bounce region it is justified to assume
that the modes of interest are in the long-wavelength
limit. Furthermore, we have also numerically checked
the difference between the solution obtained in the pre-
vious section under the approximation of a discontinuous
change of the equation of state, and the result plotted in
Fig. 3b where no such approximation is made. We do
not include the graph here, as the two curves lie practi-
cally one on top of the other, showing the validity of this
approximation. A careful comparison of the two curves
shows that the theoretical calculation given in Sec. II A
very slightly overestimates the amplitude of R.

This last point raises an important issue: the results
presented in this paper rely either on analytic calcu-
lations based on several approximations that are well-
motivated but certainly introduce some small errors, or
on numerical simulations that, while accurate enough for
our purposes here, are not high-precision numerical stud-
ies. Due to the use of these approximations and numer-
ical simulations, the predictions presented in this paper
necessarily contain some small errors. That being said,
these small errors are not expected to affect the reliability
of the estimates obtained for the predicted observables in
the ΛCDM bounce scenario we consider here, which we
estimate (by comparisons between the analytical and nu-
merical results) to be accurate up to an overall factor of
approximately 2.

IV. TENSOR PERTURBATIONS

It is possible to also calculate the spectrum of tensor
perturbations after the bounce, again assuming that the
initial state was the quantum vacuum.

The LQC effective Mukhanov-Sasaki equation for ten-
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sor perturbations is4 [19]

µ′′ −
(

1− 2ρ

ρc

)
∇2µ− z′′T

zT
µ = 0, (49)

where µ = h/zT , with h being the usual tensor pertur-
bation modes, and

zT =
a√

1− 2ρ/ρc
. (50)

While the ‘time-dependent potentials’ z′′/z for scalar
perturbations and z′′T /zT for tensor perturbations are not
the same, the most important difference for our purposes
is the fact that the sound speed for tensor perturbations
is always 1, while the sound speed for scalar perturba-
tions is significantly smaller than 1 during the matter-
dominated phase. This effect strongly suppresses the
tensor-to-scalar ratio, as we show below.

With the tensor power spectrum defined as

∆2
h =

k3

2π2
64πG|h|2, (51)

and the tensor-to-scalar ratio r

r =
∆2
h

∆2
R
, (52)

it is possible to calculate the spectrum of the tensor per-
turbations in a fashion analogous to Sec. III. While the
calculation is a little long, it is not particularly illumi-
nating as it follows exactly the same steps as the one for
scalar perturbations. While there are a few numerical
factors that are different, the procedure is identical and
therefore here we will simply state the results.

The power spectrum of the tensor perturbations is
found to be almost scale-invariant, although the tilt de-
pends on the value of the effective equation of state at
the time that the mode exits the Hubble radius. Recall
that the scalar modes reach the long wavelength limit
well before the tensor modes since, during the cold-dark-
matter-dominated era, the sound speed for scalar modes

is c
(S)
s = ε while c

(T )
s = 1 for the tensor modes. Therefore,

while the effective equation of state when the scalar per-
turbations reach the long wavelength limit is ωeff = −δ,
the effective equation of state when the tensor modes exit

4 It is not possible to use the simplest separate universe models
to handle tensor modes as they necessarily require off-diagonal
elements in the metric, which do not appear in isotropic space-
times. While it is likely that the separate universe approach
could be appropriately generalized by using the anisotropic
Bianchi cosmologies to model each ‘separate universe’, this has
not been done yet. Instead, the equation of motion here is de-
rived by demanding that the constraint algebra in the effective
theory be anomaly-free. This procedure, when used to study
scalar perturbations, gives the same effective Mukhanov-Sasaki
equation as what was obtained in lattice LQC [18].

the Hubble radius will have changed and will be larger
(as the cosmological constant contributes less to the effec-
tive equation of state for a smaller scale factor), though
still close to zero. We denote this value of the effective
equation of state by −δT , and we can bound δT above
by δT ≤ δ. Then the departure from scale-invariance is
given by

nT = −12 δT . (53)

Note that δT , while expected to be small, may be neg-
ative and this would give a slight blue tilt to the spec-
trum of the tensor perturbations. Therefore, while near-
scale-invariant tensor perturbations are predicted by this
model, the exact departure from scale-invariance for the
tensor modes will depend on how the effective equation
of state varies in time, and this will determine whether
there is a small blue tilt or a small red tilt.

Finally, for the particular scenario studied here, the
amplitude of primordial gravitational waves is predicted
to be very strongly suppressed, with a tensor-to-scalar
ratio of

r = 24 ε3, (54)

where ε refers to the sound speed of cold dark matter
and r is therefore predicted to be very small. Note that
the tensor-to-scalar ratio is suppressed both by a contri-
bution due to the sound speed of cold dark matter, and
also by a further factor of 1/4 during the bounce due to
quantum gravity effects.

There do not appear to be many estimates of the sound
speed of cold dark matter in the literature; one interest-
ing reference is [20] which provides a bound of approx-
imately ε2 . 0.03 (note however that in that paper the
authors study a considerably different model from this
one). It is likely that in the future a better estimate for
ε can be found, but nonetheless the constraint ε2 . 0.03
already implies an upper bound of r . 0.12 on the tensor-
to-scalar ratio, a result which is in agreement with the
latest observations [1, 2].

V. DISCUSSION

In this paper we have seen how in a contracting uni-
verse cosmological perturbations, assumed to be initially
in their quantum vacuum state, become scale-invariant if
their sound wavelength becomes larger than the Hubble
radius when the dynamics of the universe is dominated by
cold dark matter. A small red tilt is generated when the
effective equation of state is negative due to the presence
of a positive cosmological constant, and a small tensor-
to-scalar ratio is predicted.

The scale-invariant perturbations can provide appro-
priate initial conditions for an expanding universe in or-
der to seed structure formation if there is a bounce to
connect the contracting branch of the universe to our cur-
rent expanding branch. In the realization of the matter
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bounce scenario studied here, the bounce occurs due to
non-perturbative quantum gravity effects, as captured by
LQC, that resolve the classical singularity and provide a
quantum bridge between the pre-big-bang and post-big-
bang epochs. Further, the only matter fields present in
this model are assumed to be cold dark matter and radi-
ation, together with a positive cosmological constant.

The main predictions depend on four parameters: the
scalar index ns is determined by the effective equation
of state at the time when the Fourier modes vk exit the
sound Hubble radius, while the amplitude of the scalar
perturbations depend on a combination of the sound
speed of cold dark matter ε, the amount of asymme-
try in the universe, which can be parametrized by He

the Hubble rate at matter-radiation equality in the con-
tracting branch, and the matter energy density at the
bounce ρc. In particular, a symmetric bounce is ruled
out and, in order to match observations, it is necessary
for matter-radiation equality to occur at higher space-
time curvature scales in the contracting branch than in
the expanding branch. This type of asymmetry can be
caused by particle production during the bounce, a pro-
cess which may be important in LQC [17].

There exist several other realizations of the matter
bounce scenario, some where the bounce is caused by
matter fields that violate energy conditions [21–25], and
others where it is quantum gravity effects that provide
the bounce [26–31]. An important point is that the pre-
dictions of the different realizations vary in some signifi-
cant aspects, concerning both CMB experiments [32–36]
as well as dark matter searches [37–39]. The recent re-
view [36] explains the different predictions of the various
realizations of the matter bounce scenario and in order
to complement that paper, here we shall briefly explain
how the predictions of the model studied in this paper
differ from the other models.

First, the ΛCDM bounce model studied in this pa-
per gives a slight red tilt in a natural fashion, something
which is absent in many other realizations of the matter
bounce (see for example [25, 28, 40] for specific realiza-
tions). And second, the predicted tensor-to-scalar ratio
is very small. Most realizations of the matter bounce typ-
ically predict relatively large tensor-to-scalar ratios, and
it is often necessary to assume the presence of a large
number of fields (and thus of entropy perturbations as
well) in order to decrease the relative amplitude of the
tensor perturbations. This is not necessary here since the
tensor-to-scalar ratio is naturally predicted to be small
due to the small sound speed of cold dark matter. Note
that this effect of a small cs strongly damping the value
of r has also previously been noticed in a study of the

matter bounce scenario in a Bohm-de Broglie quantum
cosmology model [41].

There do remain two important open questions regard-
ing this model that are left for future work. The first
one concerns the importance of particle production ef-
fects during the bounce. Will there be enough parti-
cle production to cause sufficient asymmetry around the
bounce point for this model to be viable? The second,
more difficult, open problem is to determine how the
presence of anisotropies would modify the predictions of
this model. The Friedmann equation for the mean scale
factor in Bianchi models shows that anisotropies dom-
inate the dynamics in the high curvature limit, and we
should expect them to typically become important during
(and possibly for some time before and after) the bounce
in LQC. Indeed, anisotropies can modify the predictions
of a number of cosmological scenarios including inflation
[42]. Despite their importance, anisotropies are often
neglected as cosmological perturbation theory becomes
considerably more complex in their presence [43–46]; in
particular, for non-vanishing anisotropies the equations
of motion for the scalar, vector and tensor perturbations
no longer decouple.

Note that if there is an ekpyrotic phase in the contract-
ing branch of the space-time, it is possible to avoid the
growth of anisotropies generated during matter contrac-
tion [23, 24, 47–49] and then there is no need to include
them in the analysis. However, it is certainly possible
(and outside of ekpyrotic models it appears more natu-
ral) for anisotropies to grow and dominate the dynamics
near the bounce. In this case, while the anisotropies will
be diluted soon after the bounce (see, e.g., Sec. IIIC of
[50]), they may change the spectrum of the cosmologi-
cal perturbations as they evolve through the anisotropy-
dominated bounce, and some of these modifications may
ultimately be observable today. For this reason, it is
important to allow for anisotropies by generalizing the
results obtained here for the case where the background
is an anisotropic Bianchi I space-time (rather than flat
FLRW), and determining precisely how anisotropies may
affect the predictions of this model.
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