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Abstract: The leading order finite size effects due to spin, namely that of the cubic and

quartic spin interaction, are derived for the first time for generic compact binaries via

an Effective Field Theory approach. These corrections enter at the third and a half and

fourth post-Newtonian orders, respectively, for rapidly rotating compact objects. Hence,

we complete the leading order finite size effects with spin up to the fourth post-Newtonian

accuracy. We arrive at this by augmenting the effective action with new higher dimen-

sional nonminimal coupling worldline operators, involving higher-order derivatives of the

field, and introducing new Wilson coefficients, corresponding to constants, which describe

the octupole and hexadecapole deformations of the object due to spin. These Wilson

coefficients are matched to unity in the black hole case. The nonminimal coupling world-

line operators enter the action with the electric and magnetic, even and odd parity type,

components of the Weyl tensor coupled to the even and odd worldline spins, respectively.

Moreover, the non relativistic gravitational field decomposition, which we employ, demon-

strates a coupling hierarchy of the gravito-magnetic vector and the Newtonian scalar, to the

odd and even in spin operators, respectively, which extends that of the minimal coupling

case. This observation is useful for the construction of the Feynman diagrams, and provides

an instructive analogy between the leading order spin-orbit and cubic spin interactions, and

between the leading order quadratic spin and quartic spin interactions.
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1 Introduction

Second-generation ground-based interferometers, such as Advanced LIGO [1], Advanced

Virgo [2], and KAGRA [3], will start to operate in the next few years, making the antici-

pated direct detection of gravitational waves (GWs) a realistic prospect. Among the most

promising sources in the accessible frequency band of such experiments are inspiralling bi-

naries of compact objects, which can be treated analytically in terms of the post-Newtonian

(PN) approximation of General Relativity [4]. It turns out that even relative high order

corrections beyond Newtonian gravity, such as the fourth PN (4PN) order, are crucial

to obtain a successful detection from such sources, and furthermore to gain information

about the inner structure of the constituents of the binary [5]. Moreover, such objects are

expected to have large spins [6], thus PN corrections involving spins should be completed

to similar high orders as in the non spinning case, which was recently completed to 4PN

order [7].

In particular, finite size effects involving spins should also be taken into account in

order to obtain the required 4PN accuracy. The leading order (LO) finite size spin effects

at the quadrupole level, i.e. of the LO spin-squared interaction, were first derived for black

holes in [8, 9]. Generic quadrupoles were included already in [10], and the proportionality

of the quadrupole to spin-squared was introduced in [11]. The LO spin-squared interaction

enters already at the 2PN order for rapidly rotating generic compact objects. Yet, the next-

to-leading order (NLO) spin-squared interaction at 3PN order was treated much later in

the following series of works [12–15]. Finally, the LO cubic and quartic in spin interaction

Hamiltonians for black hole binaries were computed in parts in [14, 16]. These corrections
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enter formally at the 2PN order, and for rapidly rotating compact objects at the 3.5PN

and 4PN orders, respectively. However, these results were found to be incomplete in the

test particle limit for the quartic in spin sector [17].

In this paper we derive for the first time the LO cubic and quartic spin interaction

potentials for generic compact binaries via an Effective Field Theory (EFT) approach.

Hence, we complete the LO finite size effects with spin up to the 4PN accuracy. The

novel EFT approach for the binary inspiral problem was introduced in [18, 19] with its

extension to spinning objects in [20]. This approach provides a systematic methodology

to construct the action to arbitrarily high accuracy, in terms of operators ordered by their

relevance and their Wilson coefficients, which is invaluable for the obtainment of finite size

effects. Moreover, the EFT approach also applies the efficient standard tools of Quantum

Field Theory, such as Feynman diagrams. Indeed, we arrive at our results by augmenting

the effective action with new higher dimensional nonminimal coupling worldline operators,

involving higher-order derivatives of the field, and introducing new Wilson coefficients,

corresponding to constants, which describe the octupole and hexadecapole deformations of

the object due to spin. These Wilson coefficients are matched to unity in the black hole

case. The nonminimal coupling worldline operators enter the action with the electric and

magnetic, even and odd parity type, components of the Weyl tensor, coupled to the even

and odd worldline spins, respectively.

Moreover, another advantageous practice in the EFT approach is the use of the non

relativistic gravitational (NRG) fields, which were introduced in [21]. The NRG decom-

position of spacetime is essentially a reduction over the time dimension, and therefore it

is the sensible decomposition for the PN limit [22]. Indeed, the NRG field decomposition,

which we employ, demonstrates a coupling hierarchy of the gravito-magnetic vector and

the Newtonian scalar to the odd and even in spin operators, respectively, which extends

that of the minimal coupling case for spin interactions, as was illustrated in [23–25]. This

observation is very useful for the construction of the Feynman diagrams, and provides an

instructive analogy between the LO spin-orbit and cubic spin interactions, and between

the LO quadratic spin and quartic spin interactions.

The outline of the paper is as follows. In section 2 we review and present the new

ingredients in the EFT formulation for finite size effects with spins to the order required

for this work. In section 3 we derive the LO cubic spin interaction potential for generic

compact objects through the relevant Feynman diagrams and their evaluation, and we

compare to the ADM Hamiltonian result for a black hole binary. In section 4 we similarly

derive the LO quartic spin interaction potential for generic compact objects, and correct

the corresponding ADM Hamiltonian result for the black hole binary case. Finally, in

section 5 we summarize our main conclusions.

Throughout this paper we use c ≡ 1, and ηµν ≡ Diag[1,−1,−1,−1]. Greek letters

denote indices in the global coordinate frame. The spin variables are always considered

in the local Lorentz frame. Spatial tensor indices are denoted with lowercase Latin letters

from the middle of the alphabet. Lowercase Latin letters from the middle of the alphabet

denote particle labels. The scalar triple product appears here with no brackets, i.e. ~a×~b·~c ≡
(~a×~b) · ~c.
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2 Finite size effects with spins via Effective Field Theory

In this section we will present and augment the effective action, that removes the scale of

the compact objects via the EFT approach, which is required in order to take into account

finite size effects with spins. We build on the works in [12, 18–20, 24, 26] for the construction

of the effective action, and employ the NRG fields [21, 22] for the Feynman rules. The NRG

fields also continue to play a central role in the construction of the Feynman diagrams in

spin interactions, as will be seen in the next section. This is an extension beyond the

minimal coupling part of the action, which was already illustrated in [23–25].

We recall that the action describing the binary system is given by

S = Sg +

2
∑

a=1

Sa(p), (2.1)

where Sg is the pure gravitational action, and Sa(p) is the worldline particle action for each

of the two particles in the binary. The gravitational action is the usual Einstein-Hilbert

action plus a gauge-fixing term, that we choose as the fully harmonic gauge, such that we

have

Sg = SEH + SGF = − 1

16πG

∫

d4x
√
g R+

1

32πG

∫

d4x
√
g gµνΓ

µΓν , (2.2)

where Γµ ≡ Γµ
ρσgρσ.

In terms of the NRG fields the metric reads

gµν =

(

e2φ −e2φAj

−e2φAi −e−2φγij + e2φAiAj

)

≃
(

1 + 2φ −Aj

−Ai −δij + 2φδij

)

, (2.3)

where we have written the approximation for the metric in the weak-field limit up to linear

order in the fields as required for this work.

The NRG scalar and vector field propagators in the harmonic gauge are given by

= 〈 φ(x1) φ(x2) 〉 = 4πG

∫

k

eik·(x1−x2)

k2
δ(t1 − t2), (2.4)

= 〈Ai(x1) Aj(x2)〉 = −16πG δij

∫

k

eik·(x1−x2)

k2
δ(t1 − t2). (2.5)

Next, we recall that the minimal coupling part of the effective action of each of the

particles with spins [20, 24, 27] is given by

L(p) =m
√
u2 +

1

2
SµνΩ

µν . (2.6)

Considering this particle action in eq. (2.1), the LO monopole-monopole interaction, that

is the Newtonian interaction, which involves no spin, and the LO dipole-monopole interac-

tion, that is the linear in spin LO spin-orbit interaction, are derived. These are obtained

through the following Feynman rules, which are also those required to the order that we

are considering in this work. For the one-graviton couplings to the worldline mass, we have

= −m
∫

dt φ [1 + · · · ] , (2.7)
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= m

∫

dt Aiv
i [1 + · · · ] , (2.8)

where the heavy solid lines represent the worldlines, and the spherical black blobs represent

the masses on the worldline. The ellipsis denotes higher orders in v, beyond the order

considered here.

The Feynman rules for the one-graviton couplings to the worldline spin are:

=

∫

dt
1

2

(

Sij∂iAj

)

, (2.9)

=

∫

dt
(

Sij∂jφv
i + S0i∂iφ

)

, (2.10)

where the gray oval blobs represent the spins on the worldlines.

In order to take into account finite size effects with spins the effective action should

be extended beyond minimal coupling. Higher dimensional operators should be introduced

into the action, constructed with the Riemann tensor, which is equivalent to the Weyl

tensor in vacuum, using its even and odd parity components. For LO effects only linear

in Riemann terms should be considered. These operators will be constructed according to

the symmetries that the effective action should satisfy. For the LO spin-squared finite size

effects the finite size operator, which is added to the action [12], is given by

LES2 =
CES2

2m
Rµανβ

uαuβ√
u2

Sµ
γS

γν =
CES2

2m

Eµν√
u2

Sµ
γS

γν , (2.11)

where Eµν is the electric component of the Weyl tensor, that is

Eµν = Rµανβu
αuβ . (2.12)

CES2 is the Wilson coefficient corresponding to the quadrupole deformation of the object

due to spin, which was introduced in [11], where the proportionality factor is called a

instead of CES2 .

Considering this addition to the particle action in eq. (2.6) and eq. (2.1), the LO

quadrupole-monopole interaction, that is the LO spin-squared, is derived, using the fol-

lowing Feynman rules, required to the order that we are considering in this paper. The

Feynman rules for the one-graviton couplings to the worldline spin-squared are given by

=

∫

dt

[

−CES2

2m
SikSjk∂i∂jφ

]

, (2.13)

=

∫

dt

[

CES2

2m
SikSjk∂i∂jAlv

l

]

, (2.14)
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Figure 1. LO spin-squared interaction Feynman diagram. This diagram should be included

together with its mirror image. This is a quadrupole-monopole interaction. Note the analogy with

the Newtonian interaction.

where the black square boxes represent the ES2 spin operators on the worldlines. Using the

leading coupling of the spin-squared to the Newtonian scalar in eq. (2.13), contracted with

the corresponding leading mass coupling, we obtain the single Feynman diagram, which

makes up the LO spin-squared interaction, shown in figure 1.

The value of the Feynman diagram for the LO spin-squared interaction is given by

Fig. 1 =
1

2
C1(ES2)

Gm2

m1r3

[

S2
1 − 3

(

~S1 · ~n
)2
]

, (2.15)

and the LO spin-squared potential is just V LO
S2
1

= −Fig. 1. Notice that this is a purely New-

tonian effect, and that the worldline spin-squared acts just like a generic mass quadrupole.

In this paper we want to complete the LO octupole and hexadecapole level in the spins.

For that, the action should be extended to LO cubic and quartic order in the spin. We do

this by adding covariant derivatives on the field. Operators including covariant derivatives

of the worldline velocity can be eliminated through a shift of the worldline coordinate using

the LO EOM, and get absorbed into the Riemann dependent finite size operators, see also

e.g. [28], namely into their Wilson coefficients.

The cubic in spin operator, that should be added here, is

LBS3 =
CBS3

6m2

Bµν;λ

u2
SµκS ν

κ Sλ = −CBS3

12m2
Rµναβ;γu

αSµνSβ
ρS

ργ , (2.16)

where ǫαβγµ is the Levi-Civita tensor, Bµν is the magnetic component of the Weyl tensor,

that is

Bµν ≡
1

2
ǫαβγµR

αβ
δνu

γuδ, (2.17)

and the indices µ and ν should be symmetrized. The index of the covariant derivative

is also symmetrized with respect to them, so that the Bianchi identity is automatically

taken into account, and the symmetry factor of the operator is fixed accordingly. The spin

pseudovector Sλ is defined by

Sλ ≡ 1

2
ǫαβγλS

αβuγ . (2.18)

We have introduced here CBS3 , which is the Wilson coefficient, or constant describing the

octupole deformation due to spin.
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The Feynman rules for the one-graviton couplings to the worldline cubic spin are then

given by

=

∫

dt

[

−CBS3

12m2
SiSjSkl∂i∂j∂kAl

]

, (2.19)

=

∫

dt

[

CBS3

3m2
SiSjSkl∂i∂j∂kφ vl

]

, (2.20)

where the gray rectangular boxes represent the BS3 cubic spin operators on the worldlines.

Note that here it is the gravito-magnetic vector, which is the leading one in the hierarchy

of coupling of the magnetic component of the Weyl tensor in the worldline cubic spin

operator.

The quartic in spin operator, that should be added here, is

LES4 =
CES4

24m3

Eµν;λκ√
u2

SµγS ν
γ SλδS κ

δ , (2.21)

where again the covariant derivatives are symmetrized with respect to the curvature ten-

sor indices. We have introduced here CES4 , which is the Wilson coefficient, or constant

describing the hexadecapole deformation due to spin.

Then, the Feynman rule for the one-graviton coupling to the worldline quartic spin is

given by

=

∫

dt

[

−CES4

24m3
SikSjkSlnSmn∂i∂j∂l∂mφ

]

, (2.22)

where the black crossed box represents the ES4 quartic spin operators on the worldline.

Note that here it is again the Newtonian scalar, which is the leading one in the hierarchy of

coupling of the electric component of the Weyl tensor in the worldline quartic spin operator.

3 Leading order cubic spin interaction

The LO cubic and quartic spin interaction Hamiltonians for the black hole binary case

were approached in parts in [14, 16]. These corrections enter formally at the 2PN order,

and at the 3.5PN and 4PN orders, respectively, for rapidly rotating compact objects. In

this section and the next we derive these interaction potentials for any generic compact

binary from an EFT action approach, where we construct these interactions in a direct and

instructive manner.

3.1 Feynman diagrams

The cubic spin interaction contains two kinds of interaction: a quadrupole-dipole interac-

tion, and an octupole-monopole one. Each of these two interactions is analogous to the
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Figure 2. LO cubic spin interaction Feynman diagrams. These diagrams should be included

together with their mirror images. On the left pair we have the quadrupole-dipole interaction, and

on the right pair we have the octupole-monopole one. Note the analogy of each pair with the LO

spin-orbit interaction in figure 1 of [24].

LO spin-orbit interaction, which is a dipole-monopole interaction. The correspondence is

between even and odd parity multipole moments of the spin, such that the quadrupole

and octupole moments correspond to the monopole (mass) and dipole (spin), respectively.

We recall from figure 1 in section IV of [24], that the LO spin-orbit interaction contains

two contributing Feynman diagrams, mediated by one-graviton exchanges of the gravito-

magnetic vector and the Newtonian scalar of the NRG fields. Therefore, we expect to have

here four contributing Feynman diagrams, two for each of the two kinds of interaction,

that make up the cubic spin interaction.

Indeed, the four contributing Feynman diagrams can be seen here in figure 2, where

on the left diagrams (a) and (b), we have the quadrupole-dipole interaction, and on the

right diagrams (c) and (d), we have the octupole-monopole interaction. These diagrams

are obtained by the following contractions: in figure 2(a) the LO worldline spin coupling to

the gravito-magnetic vector from eq. (2.9) is contracted with the corresponding quadrupole

coupling in eq. (2.14); in figure 2(b) we contract the LO worldline spin quadrupole coupling

to the Newtonian scalar from eq. (2.13) with the corresponding spin coupling in eq. (2.10);

in figure 2(c) the LO worldline spin octupole coupling to the gravito-magnetic vector from

eq. (2.19) is contracted with the corresponding mass coupling in (2.8); finally, in figure 2(d)

the LO worldline mass coupling to the Newtonian scalar from eq. (2.7) is contracted with

the corresponding spin octupole coupling in eq. (2.20).

Hence, the values of the Feynman diagrams of the LO cubic spin interaction are given

by the following:

Fig. 2(a) = −3
C1(ES2)G

m1r4

[

S2
1
~S2 · ~n× ~v1 + 2~S1 · ~n ~S2 · ~S1 × ~v1 − 5

(

~S1 · ~n
)2

~S2 · ~n× ~v1

]

,

(3.1)

Fig. 2(b) = 3
C1(ES2)G

m1r4

[

S2
1
~S2 · ~n× ~v2 + 2~S1 · ~n ~S2 · ~S1 × ~v2 − 5

(

~S1 · ~n
)2

~S2 · ~n× ~v2

]

,

(3.2)

Fig. 2(c) = C1(BS3)

Gm2

m2
1r

4
~S1 · ~n× ~v2

[

S2
1 − 5

(

~S1 · ~n
)2
]

, (3.3)
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Fig. 2(d) = −C1(BS3)

Gm2

m2
1r

4
~S1 · ~n× ~v1

[

S2
1 − 5

(

~S1 · ~n
)2
]

. (3.4)

The evaluation of the diagrams here is straightforward. Yet, note that the value of diagram

2(b) is SSC dependent, and following the procedure from [29], we insert here the covariant

SSC, to be supplemented with an addition from the extra potential in eq. (4.7) there.

3.2 Effective potential and Hamiltonian

As we noted in the end of the previous section, we recall that we have an addition from

the extra potential of [29, 30], coming from the insertion of spin gauge constraints in

the rotational kinetic term, which enters first at the LO spin-orbit sector. This addition

contributes here only the kinetic piece, which is noted in eq. (72) of [24] as

LLO
S3extra =

1

2
~S1 · ~v1 × ~̇a1 + 1↔ 2, (3.5)

and is acceleration dependent. We proceed then to eliminate the acceleration in this extra

piece by substituting the EOM, as explained in [29, 31], which come from the LO quadratic

spin sectors, and given by

m1~a1(S2) =−
3

2
C1(ES2)

Gm2

m1r4

[(

S2
1 − 5

(

~S1 · ~n
)2
)

~n+ 2~S1 · ~n~S1

]

+ 1↔ 2

− 3G

r4

[(

~S1 · ~S2 − 5~S1 · ~n~S2 · ~n
)

~n+ ~S1 · ~n~S2 + ~S2 · ~n~S1

]

. (3.6)

We obtain then the following addition:

LLO
S3extra =

3

4
C1(ES2)

Gm2

m2
1r

4

[(

~S1 · ~n× ~v1 −
m1

m2

~S2 · ~n× ~v2

)(

S2
1 − 5

(

~S1 · ~n
)2
)

−2m1

m2

~S1 · ~n~S2 · ~S1 × ~v2

]

+
3

2

G

m1r4

[(

~S1 · ~S2 − 5~S1 · ~n~S2 · ~n
)

~S1 · ~n× ~v1

−~S1 · ~n~S2 · ~S1 × ~v1

]

+ 1↔ 2. (3.7)

Summing all diagrams in figure 2, and the extra addition in eq. (3.7), we get the

following effective potential for the LO cubic spin interaction:

V LO
S3 =C1(BS3)

Gm2

m2
1r

4

(

~S1 · ~n× ~v1 − ~S1 · ~n× ~v2

)

(

S2
1 − 5

(

~S1 · ~n
)2
)

+ 3
C1(ES2)G

m1r4

[(

S2
1
~S2 · ~n× ~v1 + 2~S1 · ~n ~S2 · ~S1 × ~v1 − 5

(

~S1 · ~n
)2

~S2 · ~n× ~v1

)

−
(

S2
1
~S2 · ~n× ~v2 + 2~S1 · ~n ~S2 · ~S1 × ~v2 − 5

(

~S1 · ~n
)2

~S2 · ~n× ~v2

)

−1

4

[(

m2

m1

~S1 · ~n× ~v1 − ~S2 · ~n× ~v2

)(

S2
1 − 5

(

~S1 · ~n
)2
)

− 2~S1 · ~n~S2 · ~S1 × ~v2

]]

− 3

2

G

m1r4

[(

~S1 · ~S2 − 5~S1 · ~n~S2 · ~n
)

~S1 · ~n× ~v1 − ~S1 · ~n~S2 · ~S1 × ~v1

]

+ 1←→ 2. (3.8)
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The new Wilson coefficient CBS3 should be matched for the black hole case. The

binding energy can be used for a gauge invariant matching of all the Wilson coefficients

encountered in this paper. A comparison of the gauge invariant binding energy, derived

from our potential, with the one for a test-particle in the Kerr geometry [17], leads to

CBS3 = 1 for black holes. At the same time, this provides a check for our result against

the small mass ratio case.

We would like to compare our effective potential to the ADM Hamiltonian results for

a black hole binary derived in parts in [14, 16]. Collecting the pieces from eq. (144) in [16],

and eqs. (7.1), (7.2) in [14] (notice that eq. (2.13) in [14] has a typo), we obtain

HLO
S3 =

G

m2
1r

4

[

3

2

(

~S2
1
~S2 · ~n× ~p1 + ~S1 · ~n ~S2 · ~S1 × ~p1 − 5

(

~S1 · ~n
)2

~S2 · ~n× ~p1

+ ~n · ~S1 × ~S2

(

~S1 · ~p1 − 5~S1 · ~n ~p1 · ~n
)

− 3m1

2m2

(

~S2
1
~S2 · ~n× ~p2 + 2~S1 · ~n ~S2 · ~S1 × ~p2 − 5

(

~S1 · ~n
)2

~S2 · ~n× ~p2

))

−~S1 × ~n ·
(

~p2 −
m2

4m1
~p1

)(

~S2
1 − 5

(

~S1 · ~n
)2
)]

+ 1←→ 2. (3.9)

We note that the Legendre transform of the effective potentials at LO is trivial. The veloc-

ities are expressed in terms of the momenta, which at the LO level is just the Newtonian

relation, i.e. v = p/m. Also we can set in eq. (3.8) the Wilson coefficients CES2 = CBS3 = 1

for the black hole case.

Then we find for the difference between the LO cubic spin potentials, that is

∆V BHB
S3 ≡ V ADM

S3 − V EFT
S3 , (3.10)

which originates in our potential from diagram 2(a), and the extra addition, that it vanishes

by virtue of the following vector identity:

~N [ ~A, ~B, ~C, ~D] ≡ ~A ~B · ~C × ~D − ~B ~C · ~D × ~A+ ~C ~D · ~A× ~B − ~D ~A · ~B × ~C ≡ ~0, (3.11)

where ~N is a null vector. More specifically, we have

∆V BHB
S3 =

3

2

G

m1r4

(

~S1 · ~N [~v1, ~n, ~S1, ~S2]− 5~S1 · ~n~n · ~N [~S2, ~n,~v1, ~S1]
)

+ 1↔ 2 ≡ 0. (3.12)

Therefore, our potential agrees with [14, 16] for the case of binary black holes. One can

also use this comparison to conclude that CBS3 = 1 for black holes.

4 Leading order quartic spin interaction

4.1 Feynman diagrams

The quartic spin interaction contains three kinds of interaction: a quadrupole-quadrupole

interaction, an octupole-dipole one, and a hexadecapole-monopole one. The octupole-

dipole interaction is analogous to the LO spin1-spin2, which is a dipole-dipole interaction,

– 9 –



Figure 3. LO quartic spin interaction Feynman diagrams. Diagrams b and c here should be in-

cluded together with their mirror images. On the left and right we have the quadrupole-quadrupole

and hexadecapole-monopole interactions, each of which is analogous to the LO spin-squared inter-

action in figure 1 here. On the middle we have the octupole-dipole interaction analogous to the LO

spin1-spin2 interaction in figure 1 of [23].

and as we noted the octupole moment corresponds to the dipole due to its odd parity.

Then, the quadrupole-quadrupole and hexadecapole-monopole interactions are analogous

each to the LO spin-squared interaction, which is a quadrupole-monopole interaction as

we noted in section 2, since the quadrupole and hexadecapole moments correspond to the

monopole due to their even parity. We recall from figure 1 in [23], that the LO spin1-spin2

interaction contains a single Feynman diagram, mediated by a one-graviton exchange of

the gravito-magnetic vector. Moreover, we saw in figure 1 in section 2 here, that the

LO spin-squared interaction also contains a single Feynman diagram mediated by a one-

graviton exchange of the Newtonian scalar. Therefore, all in all we expect to have here

three contributing Feynman diagrams, one for each of the three kinds of interaction, that

make up the quartic spin interaction.

Indeed, the 3 contributing Feynman diagrams are shown here in figure 3, where on the

left and right diagrams, (a) and (c), we have the quadrupole-quadrupole and hexadecapole-

monopole interactions, and on the middle diagram, (b), we have the octupole-dipole in-

teraction. These diagrams are obtained by the following contractions: in figure 3(a) the

LO worldline spin quadrupole coupling to the Newtonian scalar from eq. (2.13) is con-

tracted with itself; in figure 3(b) we contract the LO worldline spin octupole coupling to

the gravito-magnetic vector from eq. (2.19) with the LO spin coupling in (2.9); finally,

in figure 3(c) the LO worldline spin hexadecapole coupling to the Newtonian scalar from

eq. (2.22) is contracted with the LO mass coupling in eq. (2.7).

Hence, the values of the Feynman diagrams of the LO quartic spin interaction are

given by the following:

Fig. 3(a) =
3

4
C1(ES2)C2(ES2)

G

m1m2r5

[

S2
1S

2
2 + 2

(

~S1 · ~S2

)2
− 5

(

S2
1

(

~S2 · ~n
)2

+S2
2

(

~S1 · ~n
)2

+ 4~S1 · ~S2
~S1 · ~n ~S2 · ~n− 7

(

~S1 · ~n
)2 (

~S2 · ~n
)2
)]

,

(4.1)
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Fig. 3(b) =
3

2
C1(BS3)

G

m2
1r

5

[

S2
1
~S1 · ~S2 − 5S2

1
~S1 · ~n ~S2 · ~n− 5~S1 · ~S2

(

~S1 · ~n
)2

+
35

3
~S2 · ~n

(

~S1 · ~n
)3
]

, (4.2)

Fig. 3(c) =
3

8
C1(ES4)

Gm2

m3
1r

5

[

S4
1 − 10S2

1

(

~S1 · ~n
)2

+
35

3

(

~S1 · ~n
)4
]

. (4.3)

Here too the evaluation of the diagrams is straightforward, and we should have no additions

to the effective potential.

4.2 Effective potential and Hamiltonian

Summing all diagrams in figure 3, we get the following effective potential for the LO quartic

spin interaction:

V LO
S4 =− 3

4
C1(ES2)C2(ES2)

G

m1m2r5

[

S2
1S

2
2 + 2

(

~S1 · ~S2

)2
− 5

(

S2
1

(

~S2 · ~n
)2

+S2
2

(

~S1 · ~n
)2

+ 4~S1 · ~S2
~S1 · ~n ~S2 · ~n− 7

(

~S1 · ~n
)2 (

~S2 · ~n
)2
)]

− 3

2
C1(BS3)

G

m2
1r

5

[

S2
1
~S1 · ~S2 − 5S2

1
~S1 · ~n ~S2 · ~n− 5~S1 · ~S2

(

~S1 · ~n
)2

+
35

3
~S2 · ~n

(

~S1 · ~n
)3
]

+ 1←→ 2

− 3

8
C1(ES4)

Gm2

m3
1r

5

[

S4
1 − 10S2

1

(

~S1 · ~n
)2

+
35

3

(

~S1 · ~n
)4
]

+ 1←→ 2. (4.4)

Here too, for black holes the new Wilson coefficient CES4 can be matched against the

gauge invariant binding energy in [17], which also checks our result in the small mass ratio

case. From this, we find that CES4 = 1 for black holes.

We proceed to compare our effective potential with the ADM Hamiltonian results for

a black hole binary in [14, 16]. However, it was found in [17], that the black hole binary

Hamiltonian at quartic order in each of the spins, which was derived in [14], must be

incomplete. Indeed, at leading order the source part of the Hamilton constraint Hmatter is

the source of the Newtonian potential, which corresponds to the NRG scalar field φ. From

eq. (2.22) we therefore expect a contribution to the Hamilton constraint of the form:

Hmatter
hexadecapole =

CES4

24m3
SikSjkSlnSmn∂i∂j∂l∂mδ. (4.5)

Indeed, this term was not considered in [14]. The resulting contribution to the Hamiltonian

is identical to the value of figure 3(c) up to an overall sign. Hence, we see that the

conclusions of section VI and in particular eq. (6.5) in [14] are incorrect, as was already

noted in [17].

Collecting the pieces from eqs. (124), (131) in [16], and the correction of eq. (6.5) in

[14], that we just noted, coming from the hexadecapole-monopole interaction in fig. 3(c)

here (for CES4 = 1), we obtain the correct binary black hole Hamiltonian:

HLO
S4 = −3

2

G

m1m2r5

[

1

2
~S2
1
~S2
2 +

(

~S1 ·~S2

)2
− 5

2

(

~S2
1

(

~S2 ·~n
)2

+ ~S2
2

(

~S1 ·~n
)2
)
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−10~S1 ·~n ~S2 ·~n
(

~S1 ·~S2 −
7

4
~S1 ·~n ~S2 ·~n

)]

− 3

2

G

m2
1r

5

[

~S2
1
~S1 ·~S2 − 5~S1 ·~S2

(

~S1 ·~n
)2
− 5~S2

1
~S1 ·~n ~S2 ·~n

+
35

3
~S2 ·~n

(

~S1 ·~n
)3
]

+ 1←→ 2

− 3Gm2

8m3
1r

5

[

S4
1 − 10S2

1

(

~S1 · ~n
)2

+
35

3

(

~S1 · ~n
)4
]

+ 1←→ 2. (4.6)

With this correction included we find full agreement of our result with the black hole binary

Hamiltonian in [14, 16]. Again, this comparison can also be used to match CBS3 = 1 for

the black hole case.

5 Conclusions

In this paper we derived for the first time the LO cubic and quartic spin interaction

potentials for generic compact binaries via an Effective Field Theory approach. These

corrections, which enter at the 3.5PN and 4PN orders, respectively, for rapidly rotating

compact objects, complete the LO finite size effects with spin up to the 4PN accuracy.

We arrive at these results by augmenting the effective action with new higher dimen-

sional nonminimal coupling worldline operators, involving higher-order derivatives of the

field, corresponding to the higher-order multipole moments with spins, and introducing

new Wilson coefficients, corresponding to constants, which describe the octupole and hex-

adecapole deformations of the object due to spin. These Wilson coefficients are matched

to unity in the black hole case via comparisons with the gauge invariant binding energy

in the test particle limit and with the ADM Hamiltonian. We also see that the ADM

Hamiltonian result for the quartic spin interaction potential for a black hole binary, which

was derived in [14], is incorrect, and we complete this result.

The nonminimal coupling worldline operators enter the action with the electric and

magnetic, or even and odd parity type, components of the Weyl tensor, coupled to the

even and odd worldline spins, respectively. Moreover, the NRG field decomposition, which

we employ, demonstrates a coupling hierarchy of the gravito-magnetic vector and the New-

tonian scalar to the odd and even in spin operators, respectively, which extends that of

the minimal coupling case. Therefore the NRG fields are found to be very useful for the

treatment of interactions involving spins, since they also facilitate the construction of the

Feynman diagrams, and provide instructive analogies between the LO spin-orbit and cubic

spin interactions, and between the LO quadratic spin and quartic spin interactions. These

analogies are based on the correspondence between the even and odd parity multipole

moments with spin.

Finally, we note that we see, that beyond the LO finite size effect with spin, that is the

LO spin-squared interaction, which is a purely Newtonian effect, all LO finite size effects

with spin are relativistic ones.
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