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1 Introduction

Second-generation ground-based interferometers, such as Advanced LIGO [1], Advanced

Virgo [2], and KAGRA [3], will start to operate in the next few years, making the antici-

pated direct detection of gravitational waves (GWs) a realistic prospect. Among the most

promising sources in the accessible frequency band of such experiments are inspiralling bi-

naries of compact objects, which can be treated analytically in terms of the post-Newtonian

(PN) approximation of General Relativity [4]. It turns out that even relative high order

corrections beyond Newtonian gravity, such as the fourth PN (4PN) order, are crucial

to obtain a successful detection from such sources, and furthermore to gain information

about the inner structure of the constituents of the binary [5]. Moreover, such objects are

expected to have large spins [6], thus PN corrections involving spins should be completed

to similar high orders as in the non spinning case, which was recently completed to 4PN

order [7].

In particular, finite size effects involving spins should also be taken into account in

order to obtain the required 4PN accuracy. The leading order (LO) finite size spin effects

at the quadrupole level, i.e. of the LO spin-squared interaction, were first derived for

black holes in [8, 9]. Generic quadrupoles, required to describe neutron stars of different

masses, were included already in [10], and the proportionality of the quadrupole to spin-

squared was introduced in [11]. The LO spin-squared interaction enters already at the 2PN

order for rapidly rotating generic compact objects. Yet, the next-to-leading order (NLO)

spin-squared interaction at 3PN order was treated much later in the following series of

works [12–15]. Finally, the LO cubic and quartic in spin interaction Hamiltonians for

black hole binaries were computed in parts in [14, 16]. These corrections enter formally
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at the 2PN order, and for rapidly rotating compact objects at the 3.5PN and 4PN orders,

respectively. However, these results were found to be incomplete in the test particle limit

for the quartic in spin sector [17].

In this work we derive for the first time the LO cubic and quartic in spin interaction

potentials for generic compact binaries via the Effective Field Theory (EFT) for gravitating

spinning objects [18]. Hence, we complete the LO finite size effects with spin up to the

4PN accuracy. The novel self-contained EFT approach for the binary inspiral problem was

introduced in [19, 20], and an extension to spinning objects was first approached in [21].

The EFT approach provides a systematic methodology to construct the action to arbitrary

high accuracy in terms of local operators ordered by their relevance and their Wilson

coefficients, which is invaluable for the obtainment of finite size effects. Moreover, the

EFT approach also applies the efficient standard tools of Quantum Field Theory, such as

Feynman diagrams. Indeed, we arrive at our results by augmenting the point particle action

with new higher dimensional nonminimal coupling worldline operators, involving higher-

order derivatives of the field, and introducing new Wilson coefficients, namely here spin-

induced polarization coefficients, corresponding to constants, which describe the octupole

and hexadecapole deformations of the object due to spin [18]. These Wilson coefficients

are fixed to unity in the black hole case. The nonminimal coupling worldline operators

enter the action with the electric and magnetic components of the Weyl tensor of even and

odd parity, coupled to even and odd worldline spin tensors, respectively.

Moreover, another advantageous practice in the EFT approach is the use of the non

relativistic gravitational (NRG) fields, which were introduced in [22]. The NRG decom-

position of spacetime is essentially a reduction over the time dimension, and therefore it

is the sensible decomposition for the PN limit [23]. Indeed, the NRG field decomposition,

which we employ, demonstrates a coupling hierarchy of the gravito-magnetic vector and the

Newtonian scalar to the odd and even in spin operators, respectively, which extends that of

minimal coupling, as was illustrated for the spin interactions in [24–26]. This observation

is very useful for the construction of the Feynman diagrams, and provides an instructive

analogy between the LO spin-orbit and cubic in spin interactions, and between the LO

quadratic and quartic in spin interactions.

The outline of the paper is as follows. In section 2 we review and present the new

ingredients in the EFT formulation for finite size effects with spins to the order required in

this work [18]. In section 3 we derive the complete LO cubic in spin interaction potential for

generic compact objects through the evaluation of the relevant Feynman diagrams, and we

compare to the ADM Hamiltonian result for a black hole binary. In section 4 we similarly

derive the complete LO quartic in spin interaction potential for generic compact objects,

and we correct the corresponding ADM Hamiltonian result for the black hole binary case.

Finally, in section 5 we summarize our main conclusions.

Throughout this paper we use c ≡ 1, ηµν ≡ Diag[1,−1,−1,−1], and the convention for

the Riemann tensor is Rµ
ναβ ≡ ∂αΓ

µ
νβ − ∂βΓ

µ
να + Γµ

λαΓ
λ
νβ − Γµ

λβΓ
λ
να. Greek letters denote

indices in the global coordinate frame. Spatial tensor indices are denoted with lowercase

Latin letters from the middle of the alphabet, whereas uppercase ones denote particle

labels. The scalar triple product appears here with no brackets, i.e. ~a×~b · ~c ≡ (~a×~b) · ~c.
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2 Spin-induced finite size effects via the effective field theory for spin

In this section we present the effective action, that removes the scale of the compact

objects in the EFT approach, and augment the point particle action, as required in order

to take into account finite size effects with spins. For the construction of the spin-induced

nonminimal couplings we follow the EFT for spin in [18], where an equivalent approach for

generic tidal interactions is found in [27]. For the Feynman rules we employ here the NRG

fields [22, 23], which continue to play a central role in the construction of the Feynman

diagrams also in spin interactions, as will be seen in the next sections. Thus, their central

role in spin interactions extends beyond the minimal coupling case, which was illustrated

in [24–26].

We recall that the effective action, describing the binary system, is given by

S = Sg +
2
∑

I=1

S(I)pp, (2.1)

where Sg is the pure gravitational action, and S(I)pp is the worldline point particle action

for each of the two particles in the binary. The gravitational action is the usual Einstein-

Hilbert action plus a gauge-fixing term, which we choose as the fully harmonic gauge, such

that we have

Sg = SEH + SGF = − 1

16πG

∫

d4x
√
g R+

1

32πG

∫

d4x
√
g gµνΓ

µΓν , (2.2)

where Γµ ≡ Γµ
ρσgρσ.

In terms of the NRG fields φ, Ai, γij ≡ δij + σij , the metric reads

gµν =

(

e2φ −e2φAj

−e2φAi −e−2φγij + e2φAiAj

)

≃
(

1 + 2φ −Aj

−Ai −δij + 2φδij

)

, (2.3)

where we have written the approximation in the weak field limit up to linear order in the

fields as required in this work.

The NRG scalar and vector field propagators in the harmonic gauge are given by

=〈 φ(x1) φ(x2) 〉 = 4πG

∫

dd~k

(2π)d
ei
~k·(~x1−~x2)

k2
δ(t1 − t2), (2.4)

=〈Ai(x1) Aj(x2)〉 = −16πG δij

∫

dd~k

(2π)d
ei
~k·(~x1−~x2)

k2
δ(t1 − t2). (2.5)

Next, we recall that the minimal coupling part of the point particle action of each of

the particles with spins [21, 25, 28, 29] is given by

Spp =

∫

dλ

[

−m
√
u2 − 1

2
SµνΩ

µν

]

, (2.6)

where λ is the affine parameter, uµ ≡ dxµ/dλ is the 4-velocity, and Ωµν , Sµν are the

angular velocity and spin tensors of the particle, respectively [18]. Considering this point
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particle action in eq. (2.1), the LO monopole-monopole interaction, namely the Newtonian

interaction, which involves no spin, and the LO dipole-monopole interaction, namely the

linear in spin LO spin-orbit interaction, are derived. These are obtained using the following

Feynman rules we present, which are also those required to the order that we are considering

in this work. Here we follow the same gauge choices and conventions as in [18], see section

5.3 there.

For the one-graviton couplings to the worldline mass, we have

=−m

∫

dt φ, (2.7)

= m

∫

dt Aiv
i, (2.8)

where the heavy solid lines represent the worldlines, and the spherical black blobs represent

the masses on the worldline.

The Feynman rules for the one-graviton couplings to the worldline spin are:

=
1

2

∫

dt [ǫijkSk∂iAj ] , (2.9)

=2

∫

dt
[

ǫijkSkv
i∂jφ

]

, (2.10)

where ǫijk is the 3-dimensional Levi-Civita symbol, such that Sij = ǫijkSk, and the oval

gray blobs represent the spins on the worldline. Note that the Feynman rules here contain

only spatial components of the spin tensor, since the rotational gauge fixing is applied

at the level of the point particle action, and thus the unphysical degrees of freedom of

spin are already eliminated. Our rotational variables are ultimately fixed to the canonical

gauge [18].

In order to take into account finite size effects with spins the point particle action should

be extended beyond minimal coupling, see section 4 of [18] for the complete treatment.

Higher dimensional operators are introduced into the action, constructed with the Riemann

tensor, which for a vacuum solution field is equivalent to the Weyl tensor, using its even

and odd parity components. Eµν is the electric component of the Weyl tensor, namely

Eµν ≡ Rµανβu
αuβ , (2.11)

and Bµν is the magnetic component of the Weyl tensor, that is

Bµν ≡ 1

2
ǫαβγµR

αβ
δνu

γuδ, (2.12)

where ǫαβγµ is the Levi-Civita tensor. The LO PN finite size effects are due to spin-induced

multipoles, for which only linear in curvature operators should be considered.
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These higher order operators are constructed according to the symmetries of the ef-

fective action [18]. The crucial symmetries to consider for the construction of nonminimal

couplings are parity invariance, and SO(3) invariance of the body-fixed triad, where we

start with a timelike basis vector, satisfying e[0]
µ = uµ/

√
u2, which amounts to a covariant

gauge condition for the worldline tetrad. We also recall here that permanent multipole

moments, beside mass and spin, are assumed to vanish, and that parity violation can be

neglected for macroscopic compact objects in general relativity. The building blocks of

these higher order operators are then spin-induced multipoles and curvature components

with covariant derivatives, which are considered in the body-fixed frame, where they form

irreducible representations of SO(3). Due to parity invariance the tensors, which contain

the even-parity electric and odd-parity magnetic curvature components, should be con-

tracted with an even and odd number of the spin vector, respectively, of an equal tensor

rank, where the spin vector Sµ is defined here by

Sµ ≡ 1

2
ǫαβγµS

αβ uγ√
u2

. (2.13)

Finally, these nonminimal couplings carry Wilson coefficients, which encode the internal

structure of the object.

For the LO spin-squared finite size effects the nonminimal coupling operator, which is

added to the action [18], is given by

LES2 =− CES2

2m

Eµν√
u2

SµSν . (2.14)

CES2 is the Wilson coefficient [12], corresponding to the quadrupole deformation of the

object due to spin, which was introduced in [11], where the proportionality factor was

called a. The spin-squared operator presented in eq. (2.14) is equivalent to that in [12], as

the building blocks of the spin-induced nonminimal couplings, considered in the body-fixed

frame, are traceless and orthogonal to the 4-velocity [18].

Considering this addition to the point particle action in eq. (2.6) and eq. (2.1), the LO

quadrupole-monopole interaction, that is the LO spin-squared interaction, is derived, using

the following Feynman rules we present, required to the order that we are considering in

this work. The Feynman rules for the one-graviton couplings to the worldline spin-squared

are given by

=

∫

dt

[

CES2

2m
SiSj∂i∂jφ

]

, (2.15)

=

∫

dt

[

−CES2

2m
SiSj

(

∂i∂jAlv
l − ∂i∂lAjv

l − ∂i∂tAj

)

]

, (2.16)

where the square black boxes represent the ES2 spin-squared operators on the worldlines.

Note that in spite of naive power counting only the terms in eqs. (2.15), (2.16), actually

contribute here at LO. Using the leading coupling of the spin-squared to the Newtonian
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Figure 1. LO spin-squared interaction Feynman diagram. This diagram should be included

together with its mirror image. This is a quadrupole-monopole interaction. Note the analogy with

the Newtonian interaction.

scalar in eq. (2.15), contracted with the corresponding leading mass coupling in eq. (2.7),

we obtain the single Feynman diagram, which makes up the well-known LO spin-squared

interaction [10, 11], shown in figure 1. The value of the Feynman diagram for the LO

spin-squared interaction is given by

Figure 1 =
1

2
C1(ES2)

Gm2

m1r3

[

S2
1 − 3

(

~S1 · ~n
)2
]

, (2.17)

where ~r ≡ ~x1 − ~x2, r ≡
√
~r2, ~n ≡ ~r/r, and the LO spin-squared potential just equals

V LO
S2
1

= −figure 1. Notice that this is a purely Newtonian effect, and that the worldline

spin-squared acts just like a generic mass quadrupole.

In this work we want to complete the LO octupole and hexadecapole levels in the

spins, since these contribute up to the 4PN accuracy for rapidly rotating compact objects.

For that, the point particle action should be extended to LO cubic and quartic order in

the spin [18].

The cubic in spin operator, that should be added here [18], is given by

LBS3 =− CBS3

6m2

DλBµν√
u2

SµSνSλ, (2.18)

where Dλ denotes the covariant derivative. We have introduced here CBS3 , which is the

Wilson coefficient, or constant describing the octupole deformation due to spin.

The Feynman rules for the one-graviton couplings to the worldline cubic spin are then

given by

=

∫

dt

[

−CBS3

12m2
SiSjǫklmSm∂i∂j∂kAl

]

, (2.19)

=

∫

dt

[

CBS3

3m2
SiSjǫklmSm∂i∂j∂kφ vl

]

, (2.20)

where the rectangular gray boxes represent the BS3 cubic spin operators on the worldlines.

Here we have only included terms, which contribute at this order. Note that here it is
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the gravito-magnetic vector, which is the leading one in the hierarchy of coupling in the

magnetic component of the Weyl tensor in the worldline cubic spin operator.

The quartic in spin operator, that should be added here [18], is given by

LES4 =
CES4

24m3

DκDλEµν√
u2

SµSνSλSκ. (2.21)

We have introduced here CES4 , which is the Wilson coefficient, or constant describing the

hexadecapole deformation due to spin.

Then, the Feynman rule for the one-graviton coupling to the worldline quartic spin is

given by

=

∫

dt

[

− CES4

24m3
SiSjSkSl∂i∂j∂k∂lφ

]

, (2.22)

where the crossed black box represents the ES4 quartic spin operator on the worldline.

Here again we have omitted terms, which actually only contribute beyond LO. Note that

here it is again the Newtonian scalar, which is the leading one in the hierarchy of coupling

in the electric component of the Weyl tensor in the worldline quartic spin operator.

3 Leading order cubic in spin interaction

The LO cubic and quartic in spin interaction Hamiltonians for the black hole binary case

were approached in parts in [14, 16]. These corrections enter formally at the 2PN order,

and at the 3.5PN and 4PN orders, respectively, for rapidly rotating compact objects. In

this section and the next we derive these interaction potentials for any generic compact

binary from the EFT for spin [18], where we construct these complete interactions in a

direct and instructive manner.

3.1 Feynman diagrams

The cubic in spin interaction contains two kinds of interaction: a quadrupole-dipole in-

teraction, and an octupole-monopole one. Each of these two interactions is analogous to

the LO spin-orbit interaction, which is a dipole-monopole interaction. The correspondence

is between even and odd parity multipole moments of the spin, such that the quadrupole

and octupole moments correspond to the monopole (mass) and dipole (spin), respectively.

We recall from figure 1 in section IV of [25], that the LO spin-orbit interaction contains

two contributing Feynman diagrams, mediated by one-graviton exchanges of the gravito-

magnetic vector and the Newtonian scalar of the NRG fields. Therefore, we expect to have

here four contributing Feynman diagrams, two for each of the two kinds of interaction,

that make up the cubic in spin interaction.

Indeed, the four contributing Feynman diagrams can be seen here in figure 2, where

on the left diagrams (a) and (b), we have the quadrupole-dipole interaction, and on the

right diagrams (c) and (d), we have the octupole-monopole interaction. These diagrams

are obtained by the following contractions: in figure 2(a) the LO worldline spin coupling to

– 7 –
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Figure 2. LO cubic in spin interaction Feynman diagrams. These diagrams should be included

together with their mirror images. On the left pair we have the quadrupole-dipole interaction, and

on the right pair we have the octupole-monopole one. Note the analogy of each pair with the LO

spin-orbit interaction in figure 1 of [25].

the gravito-magnetic vector from eq. (2.9) is contracted with the corresponding quadrupole

coupling in eq. (2.16); in figure 2(b) we contract the LO worldline spin quadrupole coupling

to the Newtonian scalar from eq. (2.15) with the corresponding spin coupling in eq. (2.10);

in figure 2(c) the LO worldline spin octupole coupling to the gravito-magnetic vector from

eq. (2.19) is contracted with the corresponding mass coupling in eq. (2.8); finally, in figure

2(d) the LO worldline mass coupling to the Newtonian scalar from eq. (2.7) is contracted

with the corresponding spin octupole coupling in eq. (2.20).

Hence, the values of the Feynman diagrams of the LO cubic in spin interaction are

given by the following:

Figure 2(a) =− 3
C1(ES2)G

m1r4

[

S2
1
~S2 · ~n× ~v1 + 2~S1 · ~n ~S2 · ~S1 × ~v1 − 5

(

~S1 · ~n
)2

~S2 · ~n× ~v1

]

− 3
C1(ES2)G

m1r3

[

~̇S1 · ~n~n · ~S1 × ~S2 + ~S1 · ~n~n · ~̇S1 × ~S2

]

, (3.1)

Figure 2(b) = 3
C1(ES2)G

m1r4

[

S2
1
~S2 · ~n× ~v2 + 2~S1 · ~n ~S2 · ~S1 × ~v2 − 5

(

~S1 · ~n
)2

~S2 · ~n× ~v2

]

,

(3.2)

Figure 2(c) =C1(BS3)

Gm2

m2
1r

4
~S1 · ~n× ~v2

[

S2
1 − 5

(

~S1 · ~n
)2
]

, (3.3)

Figure 2(d) =− C1(BS3)

Gm2

m2
1r

4
~S1 · ~n× ~v1

[

S2
1 − 5

(

~S1 · ~n
)2
]

. (3.4)

The evaluation of the diagrams here is straightforward. Yet, note that the value of diagram

2(b) depends on the choice of the spin gauge. Following [18], after the covariant gauge is

first inserted, and spin gauge freedom is incorporated in the action, an extra term from

minimal coupling is added [18], and is expected to supplement the potential here.

3.2 Effective potential and Hamiltonian

As we noted in the end of the previous section, we recall that we have an addition from the

extra minimal coupling term of [18], coming from the incorporation of spin gauge freedom

– 8 –
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in the rotational minimal coupling term, which enters already at the LO spin-orbit sector.

This addition contributes here only the kinematic piece, similar to that noted in eq. (72)

of [25], given by

LLO
SSS(extra) =

1

2
~S1 · ~v1 × ~a1 + 1 ↔ 2, (3.5)

and is acceleration dependent. We proceed then to eliminate the acceleration in this extra

piece by making a redefinition of the position variables ∆~xI , as explained in [18], accord-

ing to

~x1 → ~x1 +
1

2m1

~S1 × ~v1, (3.6)

and similarly for particle 2 with 1 ↔ 2. As explained in [30, 31] the linear shift in the

position variables, corresponds to a substitution of the relevant EOM. Here these arise

from the LO quadratic in spin sectors, and are given by

m1~a1(SS) =− 3

2
C1(ES2)

Gm2

m1r4

[(

S2
1 − 5

(

~S1 · ~n
)2
)

~n+ 2~S1 · ~n~S1

]

+ 1 ↔ 2

− 3G

r4

[(

~S1 · ~S2 − 5~S1 · ~n~S2 · ~n
)

~n+ ~S1 · ~n~S2 + ~S2 · ~n~S1

]

. (3.7)

We obtain then the following addition:

LLO
SSS(extra) =

3

4
C1(ES2)

Gm2

m2
1r

4

[(

~S1 · ~n× ~v1 −
m1

m2

~S2 · ~n× ~v2

)(

S2
1 − 5

(

~S1 · ~n
)2
)

−2
m1

m2

~S1 · ~n~S2 · ~S1 × ~v2

]

+
3

2

G

m1r4

[(

~S1 · ~S2 − 5~S1 · ~n~S2 · ~n
)

~S1 · ~n× ~v1

−~S1 · ~n~S2 · ~S1 × ~v1

]

+ 1 ↔ 2. (3.8)

Moreover, we note that the value of diagram 2(a) in eq. (3.1) contains higher order time

derivatives of spin, of which a generic rigorous treatment was shown in [31]. According

to this treatment a redefinition of the spin is required to remove its higher order time

derivative, which amounts here to the insertion of the relevant EOM of the spin. Here

these are the LO Newtonian EOM of the spin, given by

Ṡi = 0, (3.9)

hence this insertion removes the terms with time derivative of the spin from eq. (3.1).

Summing all diagrams in figure 2, with the extra addition in eq. (3.8), and the insertion

of eq. (3.9), we get the following effective potential for the complete LO cubic in spin

– 9 –
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interaction:

V LO
SSS =C1(BS3)

Gm2

m2
1r

4

(

~S1 · ~n× ~v1 − ~S1 · ~n× ~v2

)

(

S2
1 − 5

(

~S1 · ~n
)2
)

+ 3
C1(ES2)G

m1r4

[(

S2
1
~S2 · ~n× ~v1 + 2~S1 · ~n ~S2 · ~S1 × ~v1 − 5

(

~S1 · ~n
)2

~S2 · ~n× ~v1

)

−
(

S2
1
~S2 · ~n× ~v2 + 2~S1 · ~n ~S2 · ~S1 × ~v2 − 5

(

~S1 · ~n
)2

~S2 · ~n× ~v2

)

−1

4

[(

m2

m1

~S1 · ~n× ~v1 − ~S2 · ~n× ~v2

)(

S2
1 − 5

(

~S1 · ~n
)2
)

− 2~S1 · ~n~S2 · ~S1 × ~v2

]]

− 3

2

G

m1r4

[(

~S1 · ~S2 − 5~S1 · ~n~S2 · ~n
)

~S1 · ~n× ~v1 − ~S1 · ~n~S2 · ~S1 × ~v1

]

+ 1 ←→ 2. (3.10)

The new Wilson coefficient CBS3 should be fixed in the black hole case. It is convenient to

normalize it to unity for black holes. The binding energy can be used for a gauge invariant

matching of all the Wilson coefficients encountered in this work. A comparison of the gauge

invariant binding energy, derived from our potential, with the one for a test-particle in the

Kerr geometry [17], leads to CBS3 = 1 for black holes. At the same time, this provides

a check of our result against the small mass ratio case. It should be stressed that this

matching procedure is based on the gauge invariant binding energy, and does not rely on

a specific gauge dependent form of the metric. We also note here the Geroch-Hansen mass

multipoles Ml, and flux multipoles Sl, for black holes, given by [32, 33]

Ml + iSl = M(ia)l. (3.11)

Yet, the Geroch-Hansen multipoles must be related to the Wilson coefficients by a matching

calculation.

We would like to compare our effective potential to the ADM Hamiltonian results for

a black hole binary (BHB) derived in parts in [14, 16]. Collecting the pieces from eq. (144)

in [16], and eqs. (7.1), (7.2) in [14] (notice that eq. (2.13) in [14] has a typo), we obtain

HLO
SSS(BHB) =

G

m2
1r

4

[

3

2

(

~S2
1
~S2 · ~n× ~p1 + ~S1 · ~n ~S2 · ~S1 × ~p1 − 5

(

~S1 · ~n
)2

~S2 · ~n× ~p1

+ ~n · ~S1 × ~S2

(

~S1 · ~p1 − 5~S1 · ~n ~p1 · ~n
)

− 3m1

2m2

(

~S2
1
~S2 · ~n× ~p2 + 2~S1 · ~n ~S2 · ~S1 × ~p2 − 5

(

~S1 · ~n
)2

~S2 · ~n× ~p2

))

−~S1 × ~n ·
(

~p2 −
m2

4m1
~p1

)(

~S2
1 − 5

(

~S1 · ~n
)2
)]

+ 1 ←→ 2. (3.12)

We recall that we already fixed the gauge of the rotational variables to the canonical one.

Thus we note that the Legendre transform of the effective potentials at LO is trivial. The

velocities are expressed in terms of the momenta, which at the LO level amounts to just
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using the Newtonian relation, i.e. v = p/m. Also we can set in eq. (3.10) the Wilson

coefficients CES2 = CBS3 = 1 for the black hole case.

Then we find for the difference between the LO cubic in spin potentials for the BHB

case, ∆VSSS(BHB) ≡ V ADM
SSS(BHB)−V EFT

SSS(BHB), which originates in our potential from diagrams

2(a), 2(b), and the extra addition, that it vanishes by virtue of the following vector identity,

valid for 4 arbitrary vectors ~Aa (with label index a) in 3 dimensions:

Ni ≡
1

3!
ǫabcd ǫ

jklAa
iA

b
jA

c
kA

d
l ≡ 0, (3.13)

namely ~N is a null vector.1 Explicitly this reads

~N [ ~Aa] ≡ ~A1
~A2 · ~A3 × ~A4 − ~A2

~A3 · ~A4 × ~A1 + ~A3
~A4 · ~A1 × ~A2 − ~A4

~A1 · ~A2 × ~A3 ≡ ~0.

(3.14)

More specifically, we have for the difference

∆VSSS(BHB) =− 3

2

G

m1r4

(

~S1 − 5~S1 · ~n~n
)

· ~N [~n,~v1, ~S1, ~S2] + 1 ↔ 2 ≡ 0. (3.15)

Therefore, our potential in eq. (3.10) agrees with the result in eq. (3.12) from [14, 16] for

the case of binary black holes. One can also use this comparison to conclude that indeed

CBS3 = 1 for black holes.

4 Leading order quartic in spin interaction

4.1 Feynman diagrams

The quartic in spin interaction contains three kinds of interaction: a quadrupole-quadrupole

interaction, an octupole-dipole one, and a hexadecapole-monopole one. The octupole-

dipole interaction is analogous to the LO spin1-spin2, which is a dipole-dipole interaction,

and as we noted the octupole moment corresponds to the dipole due to its odd parity.

Then, the quadrupole-quadrupole and hexadecapole-monopole interactions are analogous

each to the LO spin-squared interaction, which is a quadrupole-monopole interaction as

we noted in section 2, since the quadrupole and hexadecapole moments correspond to the

monopole due to their even parity. We recall from figure 1 in [24], that the LO spin1-spin2

interaction contains a single Feynman diagram, mediated by a one-graviton exchange of

the gravito-magnetic vector. Moreover, we saw in figure 1 in section 2 here, that the

LO spin-squared interaction also contains a single Feynman diagram mediated by a one-

graviton exchange of the Newtonian scalar. Therefore, all in all we expect to have here

three contributing Feynman diagrams, one for each of the three kinds of interaction, that

make up the quartic in spin interaction.

Indeed, the three contributing Feynman diagrams are shown here in figure 3, where

on the left and right diagrams, (a) and (c), we have the quadrupole-quadrupole and

hexadecapole-monopole interactions, and on the middle diagram, (b), we have the octupole-

dipole interaction. These diagrams are obtained by the following contractions: in figure

1We thank an anonymous referee for providing eq. (3.13) for the vector identity in eq. (3.14).
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Figure 3. LO quartic in spin interaction Feynman diagrams. Diagrams b and c here should be in-

cluded together with their mirror images. On the left and right we have the quadrupole-quadrupole

and hexadecapole-monopole interactions, each of which is analogous to the LO spin-squared inter-

action in figure 1 here. On the middle we have the octupole-dipole interaction analogous to the LO

spin1-spin2 interaction in figure 1 of [24].

3(a) the LO worldline spin quadrupole coupling to the Newtonian scalar from eq. (2.15) is

contracted with itself; in figure 3(b) we contract the LO worldline spin octupole coupling to

the gravito-magnetic vector from eq. (2.19) with the LO spin coupling in eq. (2.9); finally,

in figure 3(c) the LO worldline spin hexadecapole coupling to the Newtonian scalar from

eq. (2.22) is contracted with the LO mass coupling in eq. (2.7).

Hence, the values of the Feynman diagrams of the LO quartic in spin interaction are

given by the following:

Figure 3(a) =
3

4
C1(ES2)C2(ES2)

G

m1m2r5

[

S2
1S

2
2 + 2

(

~S1 · ~S2

)2
− 5

(

S2
1

(

~S2 · ~n
)2

+S2
2

(

~S1 · ~n
)2

+ 4~S1 · ~S2
~S1 · ~n ~S2 · ~n− 7

(

~S1 · ~n
)2 (

~S2 · ~n
)2
)]

,

(4.1)

Figure 3(b) =
3

2
C1(BS3)

G

m2
1r

5

[

S2
1
~S1 · ~S2 − 5S2

1
~S1 · ~n ~S2 · ~n− 5~S1 · ~S2

(

~S1 · ~n
)2

+
35

3
~S2 · ~n

(

~S1 · ~n
)3
]

, (4.2)

Figure 3(c) =
3

8
C1(ES4)

Gm2

m3
1r

5

[

S4
1 − 10S2

1

(

~S1 · ~n
)2

+
35

3

(

~S1 · ~n
)4
]

. (4.3)

Here too the evaluation of the diagrams is straightforward. Moreover, we have no additions

to the effective potential.
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4.2 Effective potential and Hamiltonian

Summing all diagrams in figure 3, we get the following effective potential for the complete

LO quartic in spin interaction:

V LO
SSSS =− 3

4
C1(ES2)C2(ES2)

G

m1m2r5

[

S2
1S

2
2 + 2

(

~S1 · ~S2

)2
− 5

(

S2
1

(

~S2 · ~n
)2

+S2
2

(

~S1 · ~n
)2

+ 4~S1 · ~S2
~S1 · ~n ~S2 · ~n− 7

(

~S1 · ~n
)2 (

~S2 · ~n
)2
)]

− 3

2
C1(BS3)

G

m2
1r

5

[

S2
1
~S1 · ~S2 − 5S2

1
~S1 · ~n ~S2 · ~n− 5~S1 · ~S2

(

~S1 · ~n
)2

+
35

3
~S2 · ~n

(

~S1 · ~n
)3
]

+ 1 ←→ 2

− 3

8
C1(ES4)

Gm2

m3
1r

5

[

S4
1 − 10S2

1

(

~S1 · ~n
)2

+
35

3

(

~S1 · ~n
)4
]

+ 1 ←→ 2. (4.4)

Here too, for black holes the new Wilson coefficient CES4 can be fixed from the gauge

invariant binding energy in [17], which also checks our result in the small mass ratio case.

From this we find that CES4 = 1 for black holes.

We proceed to compare our effective potential with the ADM Hamiltonian results for

a black hole binary in [14, 16]. However, it was found in [17], that the black hole binary

Hamiltonian at quartic order in each of the spins, which was derived in [14], must be

incomplete. Indeed, at leading order the source part of the Hamilton constraint Hmatter is

the source of the Newtonian potential, which corresponds to the NRG scalar field φ. From

eq. (2.22) we therefore expect a contribution to the Hamilton constraint of the form:

Hmatter
hexadecapole =

CES4

24m3
SiSjSkSl∂i∂j∂k∂lδ. (4.5)

Indeed, this term was not considered in [14]. The resulting contribution to the Hamiltonian

is identical to the value of figure 3(c) up to an overall sign. Hence, we see that the

conclusions of section VI and in particular eq. (6.5) in [14] are incorrect.

Collecting the pieces from eqs. (124), (131) in [16], and taking into account our cor-

rection to eq. (6.5) in [14], that we just noted in eq. (4.5), coming from the hexadecapole-

monopole interaction in figure 3(c) here (for CES4 = 1), we obtain the complete correct

binary black hole ADM Hamiltonian:

HLO
SSSS(BHB) = −3

2

G

m1m2r5

[

1

2
~S2
1
~S2
2 +

(

~S1 ·~S2

)2
− 5

2

(

~S2
1

(

~S2 ·~n
)2

+ ~S2
2

(

~S1 ·~n
)2
)

−10~S1 ·~n ~S2 ·~n
(

~S1 ·~S2 −
7

4
~S1 ·~n ~S2 ·~n

)]

− 3

2

G

m2
1r

5

[

~S2
1
~S1 ·~S2 − 5~S1 ·~S2

(

~S1 ·~n
)2

− 5~S2
1
~S1 ·~n ~S2 ·~n

+
35

3
~S2 ·~n

(

~S1 ·~n
)3
]

+ 1 ←→ 2

− 3Gm2

8m3
1r

5

[

S4
1 − 10S2

1

(

~S1 · ~n
)2

+
35

3

(

~S1 · ~n
)4
]

+ 1 ←→ 2. (4.6)
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With our correction included we then find full agreement of our result in eq. (4.4) with the

black hole binary ADM Hamiltonian in eq. (4.6). Again, this comparison can also be used

to fix CBS3 = 1 for the black hole case.

5 Conclusions

In this work we derived for the first time the complete LO cubic and quartic in spin inter-

action potentials for generic compact binaries via the effective field theory for gravitating

spinning objects [18]. These corrections, which enter at the 3.5PN and 4PN orders, respec-

tively, for rapidly rotating compact objects, complete the LO finite size effects with spin up

to the 4PN accuracy. In order to complete the spin dependent conservative sector to 4PN

order, it remains to apply the effective field theory for gravitating spinning objects [18] at

NNLO to quadratic level in spin, which was initiated in [26].

We arrive at the results here by augmenting the effective action with new higher di-

mensional nonminimal coupling worldline operators, involving higher-order derivatives of

the field, coupled to the higher-order multipole moments with spins, and introducing new

Wilson coefficients, corresponding to constants, which describe the octupole and hexade-

capole deformations of the object due to spin. These Wilson coefficients are fixed to unity

in the black hole case via comparisons with the gauge invariant binding energy in the test

particle limit and with the ADM Hamiltonian. We also see that the ADM Hamiltonian

result for the quartic in spin interaction potential for a black hole binary, which was derived

in [14], is incorrect, and we complete this result.

It should be noted that the relation between the Wilson coefficients in this work and the

multipole moments used in numerical codes, e.g. [34–36], and the Geroch-Hansen multipoles

for black holes noted in eq. (3.11), should be worked out via a formal EFT matching

procedure. Clearly, this involves subtleties [35], and is left for future research. Yet we also

note that recently, universal relations, nearly equation-of-state independent, were found

between certain neutron star observables [37, 38]. It was demonstrated in [36], that all

multipoles seem to be related in an approximately universal manner, though the accuracy

of this approximation becomes worse for higher multipoles. This implies a universal relation

between the coefficients CES2 , CBS3 , and CES4 in our potentials also for neutron stars.

Thus, the new potentials effectively do not introduce new parameters. This is important for

gravitational wave experiments, since a larger parameter space would render the parameter

estimation more difficult. Instead, our potentials essentially just refine the precision of the

equations of motion or of the binding energy without enlarging the parameter space.

The nonminimal coupling worldline operators enter the point particle action with the

electric and magnetic components of the Weyl tensor of even and odd parity, coupled to the

even and odd worldline spin tensors, respectively. Moreover, the NRG field decomposition,

which we employ, demonstrates a coupling hierarchy of the gravito-magnetic vector and the

Newtonian scalar to the odd and even in spin operators, respectively, which extends that of

minimal coupling. Therefore the NRG fields are found to be very useful for the treatment

of interactions involving spins, since they also facilitate the construction of the Feynman

diagrams, and provide here instructive analogies between the LO spin-orbit and cubic in
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spin interactions, and between the LO quadratic and quartic in spin interactions. These

analogies are based on the correspondence between the even and odd parity multipole

moments with spin.

Finally, we note that we see that beyond the LO finite size effect with spin, namely the

LO spin-squared interaction, which is a purely Newtonian effect, all LO finite size effects

with spin are relativistic ones.
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