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Abstract

A study of indirect CP violation in D0 mesons through the determination of the parameter AΓ is presented using
a data sample of pp collisions, corresponding to an integrated luminosity of 1.0 fb−1, collected with the LHCb
detector and recorded at the centre-of-mass energy of 7 TeV at the LHC. The parameter AΓ is the asymmetry of
the effective lifetimes measured in decays of D0 and D0 mesons to the CP eigenstates K−K+ and π−π+. Fits
to the data sample yield AΓ(KK) = (−0.35± 0.62± 0.12)× 10−3 and AΓ(ππ) = (0.33± 1.06± 0.14)× 10−3,
where the first uncertainties are statistical and the second systematic. The results represent the world’s best
measurements of these quantities. They show no difference in AΓ between the two final states and no indication
of CP violation.
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fUniversità di Firenze, Firenze, Italy
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The asymmetry under simultaneous charge and par-
ity transformation (CP violation) has driven the under-
standing of electroweak interactions since its discovery
in the kaon system [1]. CP violation was subsequently
discovered in the B0 and B0

s systems [2–4]. Charmed
mesons form the only neutral meson-antimeson system
in which CP violation has yet to be observed unambigu-
ously. This system is the only one in which mesons of
up-type quarks participate in matter-antimatter tran-
sitions, a loop-level process in the Standard Model
(SM). This charm mixing process has recently been
observed for the first time unambiguously in single
measurements [5–7]. The theoretical calculation of
charm mixing and CP violation is challenging for the
charm quark [8–12]. Significant enhancement of mix-
ing or CP violation would be an indication of physics
beyond the SM.

The mass eigenstates of the neutral charm meson
system, |D1,2〉, with masses m1,2 and decay widths Γ1,2,
can be expressed as linear combinations of the flavour
eigenstates, |D0〉 and |D0〉, as |D1,2〉 = p|D0〉 ± q|D0〉
with complex coefficients satisfying |p|2 + |q|2 = 1.
This allows the definition of the mixing parameters
x ≡ 2(m2−m1)/(Γ1 +Γ2) and y ≡ (Γ2−Γ1)/(Γ1 +Γ2).

Non-conservation of CP symmetry enters as a devi-
ation from unity of λf , defined as

λf ≡
qĀf
pAf

= −ηCP
∣∣∣∣qp
∣∣∣∣ ∣∣∣∣ ĀfAf

∣∣∣∣ eiφ, (1)

where Af (Āf ) is the amplitude for a D0 (D0) meson
decaying into a CP eigenstate f with eigenvalue ηCP ,
and φ is the CP -violating relative phase between q/p
and Āf/Af . Direct CP violation occurs when the asym-
metry Ad ≡ (|Af |2− |Āf |2)/(|Af |2 + |Āf |2) is different
from zero. Indirect CP violation comprises non-zero CP
asymmetry in mixing, Am ≡ (|q/p|2− |p/q|2)/(|q/p|2 +
|p/q|2) and CP violation through a non-zero phase φ.
The phase convention of φ is chosen such that, in the
limit of no CP violation, CP |D0〉 = −|D0〉. In this
convention CP conservation leads to φ = 0 and |D1〉
being CP -odd.

The asymmetry of the inverse of effective lifetimes
in decays of D0 (D0) mesons into CP -even final states,

Γ̂ (ˆ̄Γ), leads to the observable AΓ defined as

AΓ ≡
Γ̂− ˆ̄Γ

Γ̂ + ˆ̄Γ
≈ ηCP

(
Am +Ad

2
y cosφ− x sinφ

)
.

(2)
This makes AΓ a measurement of indirect CP viola-
tion, as the contributions from direct CP violation are
measured to be small [13] compared to the precision

on AΓ available so far [14]. Here, effective lifetimes
refer to lifetimes measured using a single-exponential
model in a specific decay mode. Currently available
measurements of AΓ [15, 16] are in agreement with no
CP violation at the per mille level [13].

This Letter reports measurements of AΓ in the
CP -even final states K−K+ and π−π+ using 1.0 fb−1

of pp collisions at 7 TeV centre-of-mass energy at the
LHC recorded with the LHCb detector in 2011. In the
SM, the phase φ is final-state independent and thus
measurements in the two final states are expected to
yield the same results. At the level of precision of the
measurements presented here, differences due to direct
CP violation are negligible. However, contributions to
φ from physics beyond the SM may lead to different
results. Even small final-state differences in the phase,
∆φ, can lead to measurable effects in the observables
of the order of x∆φ, for sufficiently small phases φ in
both final states [17]. In addition, the measurements of
AΓ in both final states are important to quantify the
contribution of indirect CP violation to the observable
∆ACP , which measures the difference in decay-time
integrated CP asymmetry of D0→ K−K+ to π−π+

decays [18,19].
The LHCb detector [20] is a single-arm forward spec-

trometer covering the pseudorapidity range 2 < η < 5,
designed for the study of particles containing b or c
quarks. The spectrometer dipole magnet is operated in
either one of two polarities, the magnetic field vector
points either up or down. The trigger [21] consists
of a hardware stage, based on information from the
calorimeter and muon systems, followed by a software
stage, which performs a full event reconstruction. The
software trigger applies two sequential selections. The
first selection requires at least one track to have mo-
mentum transverse to the beamline, pT, greater than
1.7 GeV/c and an impact parameter χ2, χ2

IP, greater
than 16. The χ2

IP is defined as the difference in χ2

of a given primary interaction vertex reconstructed
with and without the considered track. This χ2

IP re-
quirement introduces the largest effect on the observed
decay-time distribution compared to other selection
criteria. In the second selection this track is combined
with a second track to form a candidate for a D0 decay
into two hadrons (charge conjugate states are included
unless stated otherwise). The second track must have
pT > 0.8 GeV/c and χ2

IP > 2. The decay vertex is
required to have a flight distance χ2 per degree of
freedom greater than 25 and the D0 invariant mass,
assuming kaons or pions as final state particles, has to
lie within 50 MeV/c2 (or within 120 MeV/c2 for a trigger
whose rate is scaled down by a factor of 10) around

1



1865 MeV/c2. The momentum vector of two-body sys-
tem is required to point back to the pp interaction
region.

The event selection applies a set of criteria that are
closely aligned to those applied at the trigger stage. The
final-state particles have to match particle identification
criteria to separate kaons from pions [22] according to
their mass hypothesis and must not be identified as
muons using combined information from the tracking
and particle identification systems.

Flavour tagging is performed through the mea-
surement of the charge of the pion in the decay
D∗+→ D0π+ (soft pion). Additional criteria are ap-
plied to the track quality of the soft pion as well as
to the vertex quality of the D∗+ meson. Using a fit
constraining the soft pion to the pp interaction ver-
tex, the invariant mass difference of the D∗+ and D0

candidates, ∆m, is required to be less than 152 MeV/c2.
About 10 % of the selected events have more than

one candidate passing the selections, mostly due to
one D0 candidate being associated with several soft
pions. One candidate per event is selected at random
to reduce the background from randomly associated
soft pions. The D0 decay-time range is restricted to
0.25 ps to 10 ps such that there are sufficient amounts
of data in all decay-time regions included in the fit to
ensure its stability.

The whole dataset is split into four subsets, iden-
tified by the magnet polarity, and two separate data-
taking periods to account for known differences in the
detector alignment and calibration. The smallest subset
contains about 20% of the total data sample. Results
of the four subsets are combined in a weighted average.

The selected events contain about 3.11× 106 D0→
K−K+ and 1.03× 106 D0→ π−π+ signal candidates,
where the D∗+ meson is produced at the pp-interaction
vertex, with purities of 93.6% and 91.2%, respectively,
as measured in a region of two standard deviations of
the signal peaks in D0 mass, m(hh) (with h = K,π),
and ∆m.

The effective lifetimes are extracted by eight inde-
pendent multivariate unbinned maximum likelihood fits
to the four subsamples, separated by the D0 flavour
as determined by the charge of the soft pion. The
fits are carried out in two stages, a fit to m(hh) and
∆m to extract the signal yield and a fit to the decay
time and ln(χ2

IP) of the D0 candidate to extract the
effective lifetime. The first stage is used to distinguish
the following candidate classes: correctly tagged signal
candidates, which peak in both variables; correctly re-
constructed D0 candidates associated with a random
soft pion (labelled “rnd. πs” in figures), which peak
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Figure 1: Fit of ∆m for one of the eight subsets, containing
the D0→ K−K+ candidates with magnet polarity down
for the earlier run period.

in m(hh) but follow a threshold function in ∆m; and
combinatorial background. The threshold functions
are polynomials in

√
∆m−mπ+ . The signal peaks in

m(hh) and ∆m are described by the sum of three Gaus-
sian functions. For the π−π+ final state a power-law
tail is added to the m(hh) distribution to describe the
radiative tail [23]. The combinatorial background is
described by an exponential function in m(hh) and a
threshold function in ∆m.

Partially reconstructed decays constitute additional
background sources. The channels that give significant
contributions are the decays D0 → K−π+π0, with
the charged pion reconstructed as a kaon and the π0

meson not reconstructed, and D+
s → K−K+π+, with

the pion not reconstructed. The former peaks broadly
in ∆m while the latter follows a threshold function
and both are described by an exponential in m(hh).
Reflections due to incorrect mass assignment of the
tracks are well separated in mass and are suppressed by
particle identification and are not taken into account.
An example fit projection is shown in Fig. 1.

Charm mesons originating from long-lived b hadrons
(secondary candidates) form a large background that
cannot be separated in the mass fit. They do not
come from the interaction point leading to a biased
decay-time measurement. The flight distance of the
b hadrons causes the D0 candidates into which they
decay to have large χ2

IP on average. This is therefore
used as a separating variable.

Candidates for signal decays, where the D∗+ is
produced at the pp-interaction vertex, are modelled by
an exponential function in decay time, whose decay
constant determines the effective lifetime, and by a

2



modified χ2 function in ln(χ2
IP) of the form

f(x) ≡

{
eαx−e

α(x−µ)
x ≤ µ

eαµ+β(x−µ)−eβ(x−µ) x > µ,
(3)

where all parameters are allowed to have a linear varia-
tion with decay time. The parameters α and β describe
the left and right width of the distribution, respectively,
and µ is the peak position. Secondary candidates are
described by the convolution of two exponential proba-
bility density functions in decay time. Since there can
be several sources of secondary candidates, the sum of
two such convolutions is used with one of the decay
constants shared, apart from the smaller π−π+ dataset
where a single convolution is sufficient to describe the
data. The ln(χ2

IP) distribution of secondary decays is
also given by Eq. 3, however, the three parameters are
replaced by functions of decay time

α(t) = A+B t+ C arctan(D t), (4)

and similarly for β and µ, where the parametrisations
are motivated by studies on highly enriched samples of
secondary decays and where A, B, C, and D describe
the decay-time dependence.

The background from correctly reconstructed D0

mesons associated to a random soft pion share the
same ln(χ2

IP) shape as the signal. Other combinatorial
backgrounds and partially reconstructed decays for the
K−K+ final state are described by non-parametric dis-
tributions. The shapes are obtained by applying an
unfolding technique described in Ref. [24] to the result
of the m(hh), ∆m fit. Gaussian kernel density estima-
tors are applied to create smooth distributions [25].

The detector resolution is accounted for by the con-
volution of a Gaussian function with the decay-time
function. The Gaussian width is 50 fs, an effective
value extracted from studies of B→ J/ψX decays [26],
which has negligible effect on the measurement. Biases
introduced by the selection criteria are accounted for
through per-candidate acceptance functions which are
determined in a data-driven way. The acceptance func-
tions, which take values of 1 for all decay-time intervals
in which the candidate would have been accepted and
0 otherwise, enter the fit in the normalisation of the
decay-time parametrisations. The procedure for deter-
mination and application of these functions is described
in detail in Refs. [15,27]. Additional geometric detector
acceptance effects are also included in the procedure.
An example decay-time fit projection is shown in Fig. 2.
The fit yields AΓ(KK) = (−0.35 ± 0.62) × 10−3 and
AΓ(ππ) = (0.33± 1.06)× 10−3, with statistical uncer-
tainties only. The results of the four subsets are found
to be in agreement with each other.
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Figure 2: (Top) Fit of decay time to D0→ K−K+ and
corresponding pull plot for candidates with magnet polarity
down for the earlier run period, where pull is defined as
(data−model)/uncertainty, and (middle and bottom) ratio
of D0 to D0 data and fit model for decays to K−K+ and
π−π+ for all data, respectively.

The fit has regions where the model fails to describe
the data accurately, particularly at small decay times
and intermediate values of ln(χ2

IP) as shown in the
pull plot in Fig. 2. The same deviations are observed
in pseudo-experiment studies, and are reproduced in
several independent parametrisations, indicating that
the origin is related to the non-parametric treatment
of backgrounds in connection with non-ideal parametri-
sations of the ln(χ2

IP) distributions. They do not sig-
nificantly affect the central value of AΓ due to the low
correlations between the effective lifetime and other fit
parameters. The deviations are very similar for fits to
D0 and D0 samples leading to their cancellations in
the final asymmetry calculations as shown in Fig. 2.

In addition to the nominal procedure an alternative
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Figure 3: Fits of ln(χ2
IP) for D0→ K−K+ candidates for decay-time bins (left to right) 0.25− 0.37 ps, 0.74− 0.78 ps, and

1.55− 1.80 ps.

method is used, in which the data are binned in equally-
populated regions of the decay-time distribution and
the ratio of D0 to D0 yields calculated in each bin.
This avoids the need to model the decay-time accep-
tance. The time dependence of this ratio, R, allows the
calculation of AΓ from a simple linear χ2 minimisation,
with

R(t) ≈
ND0

ND0

(
1 +

2AΓ

τKK
t

)
1− e−∆t/τD0

1− e−∆t/τD0
, (5)

where τKK = τKπ/(1 + yCP ) is used as an external in-
put based on current world averages [13,28], ND0/ND0

is the signal yield ratio integrated over all decay times
and ∆t is the bin width. The dependence on τD0 and
τD0 cancels in the extraction of AΓ. For this method
the signal yields for decays, where the D∗+ is produced
at the pp-interaction vertex, for each decay-time bin
are extracted by simultaneous unbinned maximum like-
lihood fits to m(hh), ∆m, and ln(χ2

IP). Each bin is
chosen to contain about 4 × 104 candidates, leading
to 118 and 40 bins for K−K+ and π−π+, respectively.
In general, the binned fit uses similar parametrisations
to the unbinned fit, though a few simplifications are
required to account for the smaller sample size per bin.
The evolution of the fit projections in ln(χ2

IP) with
decay time is shown in Fig. 3.

The fits for both methods are verified by randomis-
ing the flavour tags and checking that the results for
AΓ are in agreement with zero. Similarly, the measure-
ment techniques for AΓ are applied to the Cabibbo-
favoured K−π+ final state for which they also yield
results in agreement with zero. The unbinned fit is fur-
ther checked by comparing the extracted lifetime using
the K−π+ final state to the world average D0 lifetime,
(410.1 ± 1.5) fs [28]. The result of (412.88 ± 0.08) fs,
where the uncertainty is only statistical, is found to
be in reasonable agreement. If the full difference to

the world average were taken as a relative systematic
bias it would lead to an absolute bias of less than 10−4

on AΓ. Large numbers of pseudo-experiments, with
both zero and non-zero input values for AΓ, are used
to confirm the accuracy of the results and their uncer-
tainties. Finally, dependencies on D0 kinematics and
flight direction, the selection at the hardware trigger
stage, and the track and vertex multiplicity, are found
to be negligible.

The binned fit yields AΓ(KK) = (0.50±0.65)×10−3

and AΓ(ππ) = (0.85± 1.22)× 10−3. Considering the
statistical variation between the two methods and the
uncorrelated systematic uncertainties the results from
both methods yield consistent results.

The systematic uncertainties assessed are sum-
marised in Table 1. The effect of shortcomings in the
description of the partially reconstructed background
component in the K−K+ final state is estimated by
fixing the respective distributions to those obtained
in fits to simulated data. The imperfect knowledge
of the length scale of the vertex detector as well as
decay-time resolution effects are found to be negligible.
Potential inaccuracies in the description of combina-
torial background and background from signal candi-
dates originating from b-hadron decays are assessed
through pseudo-experiments with varied background
levels and varied generated distributions while leaving
the fit model unchanged. The impact of imperfect treat-
ment of background from D0 candidates associated to
random soft pions is evaluated by testing several fit
configurations with fewer assumptions on the shape of
this background.

The accuracy of the decay-time acceptance correc-
tion in the unbinned fit method is assessed by testing
the sensitivity to artificial biases applied to the per-
event acceptance functions. The overall systematic
uncertainties of the two final states for the unbinned
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Table 1: Systematic uncertainties, given as multiples of 10−3. The first column for each final state refers to the unbinned fit
method and the second column to the binned fit method.

Source Aunb
Γ (KK) Abin

Γ (KK) Aunb
Γ (ππ) Abin

Γ (ππ)
Partially reconstructed backgrounds ±0.02 ±0.09 ±0.00 ±0.00
Charm from b decays ±0.07 ±0.55 ±0.07 ±0.53
Other backgrounds ±0.02 ±0.40 ±0.04 ±0.57
Acceptance function ±0.09 — ±0.11 —
Magnet polarity — ±0.58 — ±0.82
Total syst. uncertainty ±0.12 ±0.89 ±0.14 ±1.13

method have a correlation of 0.31.
A significant difference between results for the two

magnet polarities is observed in the binned method.
As this cannot be guaranteed to cancel, a systematic
uncertainty is assigned. The unbinned method is not
affected by this as it is not sensitive to the overall
normalisation of the D0 and D0 samples. In general the
two methods are subject to different sets of systematic
effects due to the different ways in which they extract
the results. The systematic uncertainties for the binned
method are larger due to the fact that the fits are
performed independently in each decay-time bin. This
can lead to instabilities in the behaviour of particular
fit components with time, an effect which is minimised
in the unbinned fit. The effects of such instabilities are
determined by running simulated pseudo-experiments.

The use of the external input for τKK in the binned
fit method does not yield a significant systematic uncer-
tainty. A potential bias in this method due to inaccu-
rate parametrisations of other background is tested by
replacing the probability density functions by different
models and a corresponding systematic uncertainty is
assigned.

In summary, the CP -violating observable AΓ is
measured using the decays of neutral charm mesons
into K−K+ and π−π+. The results of AΓ(KK) =
(−0.35 ± 0.62 ± 0.12) × 10−3 and AΓ(ππ) = (0.33 ±
1.06 ± 0.14) × 10−3, where the first uncertainties are
statistical and the second are systematic, represent the
world’s best measurements of these quantities. The
result for the K−K+ final state is obtained based on
an independent data set to the previous LHCb mea-
surement [15], with which it agrees well. The results
show no significant difference between the two final
states and both results are in agreement with zero,
thus indicating the absence of indirect CP violation at
this level of precision.
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