EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-PH-EP-2013-190
LHCb-PAPER-2013-051
17 October 2013

Measurement of $C P$ violation in the phase space of $B^{ \pm} \rightarrow K^{+} K^{-} \boldsymbol{\pi}^{ \pm}$and $B^{ \pm} \rightarrow \pi^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{ \pm}$decays

LHCb collaboration

R. Aaij ${ }^{40}$, B. Adeva ${ }^{36}$, M. Adinolfi ${ }^{45}$, C. Adrover ${ }^{6}$, A. Affolder ${ }^{51}$, Z. Ajaltouni ${ }^{5}$, J. Albrecht ${ }^{9}$, F. Alessio ${ }^{37}$, M. Alexander ${ }^{50}$, S. Ali ${ }^{40}$, G. Alkhazov ${ }^{29}$, P. Alvarez Cartelle ${ }^{36}$, A.A. Alves Jr^{24}, S. Amato ${ }^{2}$, S. Amerio ${ }^{21}$, Y. Amhis ${ }^{7}$, L. Anderlini ${ }^{17}, f$, J. Anderson ${ }^{39}$, R. Andreassen ${ }^{56}$, J.E. Andrews ${ }^{57}$, R.B. Appleby ${ }^{53}$, O. Aquines Gutierrez ${ }^{10}$, F. Archilli ${ }^{18}$, A. Artamonov ${ }^{34}$, M. Artuso ${ }^{58}$, E. Aslanides ${ }^{6}$, G. Auriemma ${ }^{24, m}$, M. Baalouch ${ }^{5}$, S. Bachmann ${ }^{11}$, J.J. Back ${ }^{47}$, A. Badalov ${ }^{35}$, C. Baesso ${ }^{59}$, V. Balagura ${ }^{30}$, W. Baldini ${ }^{16}$, R.J. Barlow ${ }^{53}$, C. Barschel ${ }^{37}$, S. Barsuk ${ }^{7}$, W. Barter ${ }^{46}$, Th. Bauer ${ }^{40}$, A. Bay ${ }^{38}$, J. Beddow ${ }^{50}$, F. Bedeschi ${ }^{22}$, I. Bediaga ${ }^{1}$, S. Belogurov ${ }^{30}$, K. Belous ${ }^{34}$, I. Belyaev ${ }^{30}$, E. Ben-Haim ${ }^{8}$, G. Bencivenni ${ }^{18}$, S. Benson ${ }^{49}$, J. Benton ${ }^{45}$, A. Berezhnoy ${ }^{31}$, R. Bernet ${ }^{39}$, M.-O. Bettler ${ }^{46}$, M. van Beuzekom ${ }^{40}$, A. Bien ${ }^{11}$, S. Bifani ${ }^{44}$, T. Bird ${ }^{53}$, A. Bizzeti ${ }^{17, h}$, P.M. Bjørnstad ${ }^{53}$, T. Blake ${ }^{37}$, F. Blanc ${ }^{38}$, J. Blouw ${ }^{10}$, S. Blusk ${ }^{58}$, V. Bocci ${ }^{24}$, A. Bondar ${ }^{33}$, N. Bondar ${ }^{29}$, W. Bonivento ${ }^{15}$, S. Borghi ${ }^{53}$, A. Borgia ${ }^{58}$, T.J.V. Bowcock ${ }^{51}$, E. Bowen ${ }^{39}$, C. Bozzi ${ }^{16}$, T. Brambach ${ }^{9}$, J. van den Brand ${ }^{41}$, J. Bressieux ${ }^{38}$, D. Brett ${ }^{53}$, M. Britsch ${ }^{10}$, T. Britton ${ }^{58}$, N.H. Brook ${ }^{45}$, H. Brown ${ }^{51}$, A. Bursche ${ }^{39}$, G. Busetto ${ }^{21, q}$, J. Buytaert ${ }^{37}$, S. Cadeddu ${ }^{15}$, O. Callot ${ }^{7}$, M. Calvi ${ }^{20, j}$, M. Calvo Gomez ${ }^{35, n}$, A. Camboni ${ }^{35}$, P. Campana ${ }^{18,37}$, D. Campora Perez ${ }^{37}$, A. Carbone ${ }^{14, c}$, G. Carboni ${ }^{23, k}$, R. Cardinale ${ }^{19, i}$, A. Cardini ${ }^{15}$, H. Carranza-Mejia ${ }^{49}$, L. Carson ${ }^{52}$, K. Carvalho Akiba ${ }^{2}$, G. Casse ${ }^{51}$, L. Castillo Garcia ${ }^{37}$, M. Cattaneo ${ }^{37}$, Ch. Cauet ${ }^{9}$, R. Cenci ${ }^{57}$, M. Charles ${ }^{54}$, Ph. Charpentier ${ }^{37}$, S.-F. Cheung ${ }^{54}$, N. Chiapolini ${ }^{39}$, M. Chrzaszcz ${ }^{39,25}$, K. Ciba ${ }^{37}$, X. Cid Vidal ${ }^{37}$, G. Ciezarek ${ }^{52}$, P.E.L. Clarke ${ }^{49}$, M. Clemencic ${ }^{37}$, H.V. Cliff ${ }^{46}$, J. Closier 37, C. Coca ${ }^{28}$, V. Coco ${ }^{40}$, J. Cogan ${ }^{6}$, E. Cogneras ${ }^{5}$, P. Collins ${ }^{37}$, A. Comerma-Montells ${ }^{35}$, A. Contu ${ }^{15,37}$, A. Cook ${ }^{45}$, M. Coombes ${ }^{45}$, S. Coquereau ${ }^{8}$, G. Corti ${ }^{37}$, B. Couturier ${ }^{37}$, G.A. Cowan ${ }^{49}$, D.C. Craik ${ }^{47}$, M. Cruz Torres ${ }^{59}$, S. Cunliffe ${ }^{52}$, R. Currie ${ }^{49}$, C. D'Ambrosio ${ }^{37}$, P. David ${ }^{8}$, P.N.Y. David ${ }^{40}$, A. Davis ${ }^{56}$, I. De Bonis ${ }^{4}$, K. De Bruyn ${ }^{40}$, S. De Capua ${ }^{53}$, M. De Cian ${ }^{11}$, J.M. De Miranda ${ }^{1}$, L. De Paula ${ }^{2}$, W. De Silva ${ }^{56}$, P. De Simone ${ }^{18}$, D. Decamp ${ }^{4}$, M. Deckenhoff ${ }^{9}$, L. Del Buono ${ }^{8}$, N. Déléage ${ }^{4}$, D. Derkach ${ }^{54}$, O. Deschamps ${ }^{5}$, F. Dettori ${ }^{41}$, A. Di Canto ${ }^{11}$, H. Dijkstra ${ }^{37}$, M. Dogaru ${ }^{28}$, S. Donleavy ${ }^{51}$, F. Dordei ${ }^{11}$, A. Dosil Suárez ${ }^{36}$, D. Dossett ${ }^{47}$, A. Dovbnya ${ }^{42}$, F. Dupertuis ${ }^{38}$, P. Durante ${ }^{37}$, R. Dzhelyadin ${ }^{34}$, A. Dziurda ${ }^{25}$, A. Dzyuba ${ }^{29}$, S. Easo ${ }^{48}$, U. Egede ${ }^{52}$, V. Egorychev ${ }^{30}$, S. Eidelman ${ }^{33}$, D. van Eijk ${ }^{40}$, S. Eisenhardt ${ }^{49}$, U. Eitschberger ${ }^{9}$, R. Ekelhof ${ }^{9}$, L. Eklund ${ }^{50,37}$, I. El Rifai ${ }^{5}$, Ch. Elsasser ${ }^{39}$, A. Falabella ${ }^{14, e}$, C. Färber ${ }^{11}$, C. Farinelli ${ }^{40}$, S. Farry ${ }^{51}$, D. Ferguson ${ }^{49}$, V. Fernandez Albor ${ }^{36}$, F. Ferreira Rodrigues ${ }^{1}$, M. Ferro-Luzzi ${ }^{37}$, S. Filippov ${ }^{32}$, M. Fiore ${ }^{16, e}$, C. Fitzpatrick ${ }^{37}$, M. Fontana ${ }^{10}$, F. Fontanelli ${ }^{19, i}$, R. Forty ${ }^{37}$, O. Francisco ${ }^{2}$, M. Frank ${ }^{37}$, C. Frei ${ }^{37}$, M. Frosini ${ }^{17,37, f}$, E. Furfaro ${ }^{23, k}$, A. Gallas Torreira ${ }^{36}$, D. Galli ${ }^{14, c}$, M. Gandelman ${ }^{2}$, P. Gandini ${ }^{58}$, Y. Gao ${ }^{3}$, J. Garofoli ${ }^{58}$, P. Garosi ${ }^{53}$, J. Garra Tico ${ }^{46}$, L. Garrido ${ }^{35}$, C. Gaspar ${ }^{37}$, R. Gauld ${ }^{54}$, E. Gersabeck ${ }^{11}$, M. Gersabeck ${ }^{53}$, T. Gershon ${ }^{47}$, Ph. Ghez ${ }^{4}$, V. Gibson ${ }^{46}$, L. Giubega ${ }^{28}$, V.V. Gligorov ${ }^{37}$, C. Göbel ${ }^{59}$, D. Golubkov ${ }^{30}$, A. Golutvin ${ }^{52,30,37}$, A. Gomes ${ }^{2}$, P. Gorbounov ${ }^{30,37}$, H. Gordon ${ }^{37}$, M. Grabalosa Gándara ${ }^{5}$, R. Graciani Diaz ${ }^{35}$, L.A. Granado Cardoso ${ }^{37}$, E. Graugés ${ }^{35}$, G. Graziani ${ }^{17}$, A. Grecu ${ }^{28}$, E. Greening ${ }^{54}$, S. Gregson ${ }^{46}$, P. Griffith ${ }^{44}$, L. Grillo ${ }^{11}$, O. Grünberg ${ }^{60}$, B. Gui ${ }^{58}$, E. Gushchin ${ }^{32}$, Yu. Guz ${ }^{34,37}$, T. Gys ${ }^{37}$, C. Hadjivasiliou ${ }^{58}$, G. Haefeli ${ }^{38}$, C. Haen ${ }^{37}$, S.C. Haines ${ }^{46}$, S. Hall ${ }^{52}$, B. Hamilton ${ }^{57}$, T. Hampson ${ }^{45}$, S. Hansmann-Menzemer ${ }^{11}$, N. Harnew ${ }^{54}$, S.T. Harnew ${ }^{45}$, J. Harrison ${ }^{53}$, T. Hartmann ${ }^{60}$, J. He ${ }^{37}$, T. Head ${ }^{37}$, V. Heijne ${ }^{40}$, K. Hennessy ${ }^{51}$, P. Henrard ${ }^{5}$, J.A. Hernando Morata ${ }^{36}$, E. van Herwijnen ${ }^{37}$, M. Heß ${ }^{60}$, A. Hicheur ${ }^{1}$, E. Hicks ${ }^{51}$, D. Hill ${ }^{54}$, M. Hoballah ${ }^{5}$, C. Hombach ${ }^{53}$, W. Hulsbergen ${ }^{40}$, P. Hunt ${ }^{54}$, T. Huse ${ }^{51}$, N. Hussain ${ }^{54}$, D. Hutchcroft ${ }^{51}$, D. Hynds ${ }^{50}$, V. Iakovenko ${ }^{43}$, M. Idzik ${ }^{26}$, P. Ilten ${ }^{12}$, R. Jacobsson ${ }^{37}$, A. Jaeger ${ }^{11}$, E. Jans ${ }^{40}$, P. Jaton ${ }^{38}$, A. Jawahery ${ }^{57}$, F. Jing ${ }^{3}$, M. John ${ }^{54}$, D. Johnson ${ }^{54}$, C.R. Jones ${ }^{46}$, C. Joram ${ }^{37}$, B. Jost ${ }^{37}$, M. Kaballo ${ }^{9}$, S. Kandybei ${ }^{42}$, W. Kanso ${ }^{6}$, M. Karacson ${ }^{37}$, T.M. Karbach ${ }^{37}$, I.R. Kenyon ${ }^{44}$, T. Ketel ${ }^{41}$, B. Khanji ${ }^{20}$, O. Kochebina ${ }^{7}$, I. Komarov ${ }^{38}$, R.F. Koopman ${ }^{41}$, P. Koppenburg ${ }^{40}$, M. Korolev ${ }^{31}$, A. Kozlinskiy ${ }^{40}$, L. Kravchuk ${ }^{32}$, K. Kreplin ${ }^{11}$, M. Kreps ${ }^{47}$, G. Krocker ${ }^{11}$, P. Krokovny ${ }^{33}$, F. Kruse ${ }^{9}$, M. Kucharczyk ${ }^{20,25,37, j}$, V. Kudryavtsev ${ }^{33}$, K. Kurek ${ }^{27}$, T. Kvaratskheliya ${ }^{30,37}$, V.N. La Thi ${ }^{38}$, D. Lacarrere ${ }^{37}$, G. Lafferty ${ }^{53}$, A. Lai 15, D. Lambert ${ }^{49}$, R.W. Lambert ${ }^{41}$, E. Lanciotti ${ }^{37}$, G. Lanfranchi ${ }^{18}$, C. Langenbruch ${ }^{37}$, T. Latham ${ }^{47}$, C. Lazzeroni ${ }^{44}$, R. Le Gac ${ }^{6}$, J. van Leerdam ${ }^{40}$, J.-P. Lees ${ }^{4}$, R. Lefèvre ${ }^{5}$, A. Leflat ${ }^{31}$, J. Lefrançois ${ }^{7}$, S. Leo ${ }^{22}$, O. Leroy ${ }^{6}$, T. Lesiak ${ }^{25}$, B. Leverington ${ }^{11}$, Y. Li^{3}, L. Li Gioi ${ }^{5}$, M. Liles ${ }^{51}$, R. Lindner ${ }^{37}$, C. Linn ${ }^{11}$, B. Liu ${ }^{3}$, G. Liu ${ }^{37}$, S. Lohn ${ }^{37}$, I. Longstaff ${ }^{50}$, J.H. Lopes ${ }^{2}$, N. Lopez-March ${ }^{38}$, H. Lu ${ }^{3}$, D. Lucchesi ${ }^{21, q}$, J. Luisier ${ }^{38}$, H. Luo ${ }^{49}$, O. Lupton ${ }^{54}$, F. Machefert ${ }^{7}$, I.V. Machikhiliyan ${ }^{30}$, F. Maciuc ${ }^{28}$, O. Maev ${ }^{29,37}$, S. Malde ${ }^{54}$, G. Manca ${ }^{15, d}$, G. Mancinelli ${ }^{6}$, J. Maratas ${ }^{5}$, U. Marconi ${ }^{14}$, P. Marino ${ }^{22, s}$, R. Märki ${ }^{38}$, J. Marks ${ }^{11}$, G. Martellotti ${ }^{24}$, A. Martens ${ }^{8}$, A. Martín Sánchez ${ }^{7}$, M. Martinelli ${ }^{40}$, D. Martinez Santos ${ }^{41,37}$, D. Martins Tostes ${ }^{2}$, A. Martynov ${ }^{31}$, A. Massafferri ${ }^{1}$, R. Matev ${ }^{37}$, Z. Mathe ${ }^{37}$, C. Matteuzzi ${ }^{20}$,
E. Maurice ${ }^{6}$, A. Mazurov ${ }^{16,37, e}$, J. McCarthy ${ }^{44}$, A. McNab ${ }^{53}$, R. McNulty ${ }^{12}$, B. McSkelly ${ }^{51}$, B. Meadows ${ }^{56,54}$, F. Meier ${ }^{9}$, M. Meissner ${ }^{11}$, M. Merk ${ }^{40}$, D.A. Milanes ${ }^{8}$, M.-N. Minard ${ }^{4}$, J. Molina Rodriguez ${ }^{59}$, S. Monteil ${ }^{5}$, D. Moran ${ }^{53}$, P. Morawski ${ }^{25}$, A. Mordà ${ }^{6}$, M.J. Morello ${ }^{22, s}$, R. Mountain ${ }^{58}$, I. Mous ${ }^{40}$, F. Muheim ${ }^{49}$, K. Müller ${ }^{39}$, R. Muresan ${ }^{28}$, B. Muryn ${ }^{26}$, B. Muster ${ }^{38}$, P. Naik ${ }^{45}$, T. Nakada ${ }^{38}$, R. Nandakumar ${ }^{48}$, I. Nasteva ${ }^{1}$, M. Needham ${ }^{49}$, S. Neubert ${ }^{37}$, N. Neufeld ${ }^{37}$, A.D. Nguyen ${ }^{38}$, T.D. Nguyen ${ }^{38}$, C. Nguyen-Mau ${ }^{38, o}$, M. Nicol ${ }^{7}$, V. Niess ${ }^{5}$, R. Niet ${ }^{9}$, N. Nikitin ${ }^{31}$, T. Nikodem ${ }^{11}$, A. Nomerotski ${ }^{54}$, A. Novoselov ${ }^{34}$, A. Oblakowska-Mucha ${ }^{26}$, V. Obraztsov ${ }^{34}$, S. Oggero ${ }^{40}$, S. Ogilvy ${ }^{50}$, O. Okhrimenko ${ }^{43}$, R. Oldeman ${ }^{15, d}$, M. Orlandea ${ }^{28}$, J.M. Otalora Goicochea ${ }^{2}$, P. Owen ${ }^{52}$, A. Oyanguren ${ }^{35}$, B.K. Pal ${ }^{58}$, A. Palano ${ }^{13, b}$, M. Palutan ${ }^{18}$, J. Panman ${ }^{37}$, A. Papanestis ${ }^{48}$, M. Pappagallo ${ }^{50}$, C. Parkes ${ }^{53}$, C.J. Parkinson ${ }^{52}$, G. Passaleva ${ }^{17}$, G.D. Patel ${ }^{51}$, M. Patel ${ }^{52}$, G.N. Patrick ${ }^{48}$, C. Patrignani ${ }^{19, i}$, C. Pavel-Nicorescu ${ }^{28}$, A. Pazos Alvarez ${ }^{36}$, A. Pearce ${ }^{53}$, A. Pellegrino ${ }^{40}$, G. Penso ${ }^{24, l}$, M. Pepe Altarelli ${ }^{37}$, S. Perazzini ${ }^{14, c}$, E. Perez Trigo ${ }^{36}$, A. Pérez-Calero Yzquierdo ${ }^{35}$, P. Perret ${ }^{5}$, M. Perrin-Terrin ${ }^{6}$, L. Pescatore ${ }^{44}$, E. Pesen ${ }^{61}$, G. Pessina ${ }^{20}$, K. Petridis ${ }^{52}$, A. Petrolini ${ }^{19, i}$, A. Phan 58, E. Picatoste Olloqui ${ }^{35}$, B. Pietrzyk ${ }^{4}$, T. Pilař ${ }^{47}$, D. Pinci ${ }^{24}$, S. Playfer ${ }^{49}$, M. Plo Casasus ${ }^{36}$, F. Polci ${ }^{8}$, G. Polok ${ }^{25}$, A. Poluektov ${ }^{47,33}$, E. Polycarpo ${ }^{2}$, A. Popov ${ }^{34}$, D. Popov ${ }^{10}$, B. Popovici ${ }^{28}$, C. Potterat 35, A. Powell ${ }^{54}$, J. Prisciandaro ${ }^{38}$, A. Pritchard ${ }^{51}$, C. Prouve ${ }^{7}$, V. Pugatch ${ }^{43}$, A. Puig Navarro ${ }^{38}$, G. Punzi ${ }^{22, r}$, W. Qian ${ }^{4}$, B. Rachwal ${ }^{25}$, J.H. Rademacker ${ }^{45}$, B. Rakotomiaramanana ${ }^{38}$, M.S. Rangel ${ }^{2}$, I. Raniuk ${ }^{42}$, N. Rauschmayr ${ }^{37}$, G. Raven ${ }^{41}$, S. Redford ${ }^{54}$, S. Reichert ${ }^{53}$, M.M. Reid ${ }^{47}$, A.C. dos Reis ${ }^{1}$, S. Ricciardi ${ }^{48}$, A. Richards ${ }^{52}$, K. Rinnert ${ }^{51}$, V. Rives Molina ${ }^{35}$, D.A. Roa Romero ${ }^{5}$, P. Robbe ${ }^{7}$, D.A. Roberts ${ }^{57}$, A.B. Rodrigues ${ }^{1}$, E. Rodrigues ${ }^{53}$, P. Rodriguez Perez ${ }^{36}$, S. Roiser ${ }^{37}$, V. Romanovsky ${ }^{34}$, A. Romero Vidal ${ }^{36}$, M. Rotondo ${ }^{21}$, J. Rouvinet ${ }^{38}$, T. Ruf ${ }^{37}$, F. Ruffini ${ }^{22}$, H. Ruiz ${ }^{35}$, P. Ruiz Valls ${ }^{35}$, G. Sabatino ${ }^{24, k}$, J.J. Saborido Silva ${ }^{36}$, N. Sagidova ${ }^{29}$, P. Sail ${ }^{50}$, B. Saitta ${ }^{15, d}$,
V. Salustino Guimaraes ${ }^{2}$, B. Sanmartin Sedes ${ }^{36}$, R. Santacesaria ${ }^{24}$, C. Santamarina Rios ${ }^{36}$, E. Santovetti ${ }^{23, k}$, M. Sapunov ${ }^{6}$, A. Sarti ${ }^{18}$, C. Satriano ${ }^{24, m}$, A. Satta ${ }^{23}$, M. Savrie ${ }^{16, e}$, D. Savrina ${ }^{30,31}$, M. Schiller ${ }^{41}$, H. Schindler ${ }^{37}$, M. Schlupp ${ }^{9}$, M. Schmelling ${ }^{10}$, B. Schmidt ${ }^{37}$, O. Schneider ${ }^{38}$, A. Schopper ${ }^{37}$, M.-H. Schune ${ }^{7}$, R. Schwemmer ${ }^{37}$, B. Sciascia ${ }^{18}$, A. Sciubba ${ }^{24}$, M. Seco ${ }^{36}$, A. Semennikov ${ }^{30}$, K. Senderowska ${ }^{26}$, I. Sepp ${ }^{52}$, N. Serra ${ }^{39}$, J. Serrano ${ }^{6}$, P. Seyfert ${ }^{11}$, M. Shapkin ${ }^{34}$, I. Shapoval ${ }^{16,42, e}$, Y. Shcheglov ${ }^{29}$, T. Shears ${ }^{51}$, L. Shekhtman ${ }^{33}$, O. Shevchenko ${ }^{42}$, V. Shevchenko ${ }^{30}$, A. Shires ${ }^{9}$, R. Silva Coutinho ${ }^{47}$, M. Sirendi ${ }^{46}$, N. Skidmore ${ }^{45}$, T. Skwarnicki ${ }^{58}$, N.A. Smith ${ }^{51}$, E. Smith ${ }^{54,48}$, E. Smith ${ }^{52}$, J. Smith ${ }^{46}$, M. Smith ${ }^{53}$, M.D. Sokoloff ${ }^{56}$, F.J.P. Soler ${ }^{50}$, F. Soomro ${ }^{38}$, D. Souza ${ }^{45}$, B. Souza De Paula ${ }^{2}$, B. Spaan ${ }^{9}$, A. Sparkes ${ }^{49}$, P. Spradlin ${ }^{50}$, F. Stagni ${ }^{37}$, S. Stahl ${ }^{11}$, O. Steinkamp ${ }^{39}$, S. Stevenson ${ }^{54}$, S. Stoica ${ }^{28}$, S. Stone ${ }^{58}$, B. Storaci ${ }^{39}$, M. Straticiuc ${ }^{28}$, U. Straumann ${ }^{39}$, V.K. Subbiah ${ }^{37}$, L. Sun ${ }^{56}$, W. Sutcliffe ${ }^{52}$, S. Swientek ${ }^{9}$, V. Syropoulos ${ }^{41}$, M. Szczekowski ${ }^{27}$, P. Szczypka ${ }^{38,37}$, D. Szilard ${ }^{2}$, T. Szumlak ${ }^{26}$, S. T'Jampens ${ }^{4}$, M. Teklishyn ${ }^{7}$, E. Teodorescu ${ }^{28}$, F. Teubert ${ }^{37}$, C. Thomas ${ }^{54}$, E. Thomas ${ }^{37}$, J. van Tilburg ${ }^{11}$, V. Tisserand ${ }^{4}$, M. Tobin ${ }^{38}$, S. Tolk ${ }^{41}$, D. Tonelli ${ }^{37}$, S. Topp-Joergensen ${ }^{54}$, N. Torr ${ }^{54}$, E. Tournefier ${ }^{4,52}$, S. Tourneur ${ }^{38}$, M.T. Tran^{38}, M. Tresch ${ }^{39}$, A. Tsaregorodtsev ${ }^{6}$, P. Tsopelas ${ }^{40}$, N. Tuning ${ }^{40,37}$, M. Ubeda Garcia ${ }^{37}$, A. Ukleja ${ }^{27}$, A. Ustyuzhanin ${ }^{52, p}$, U. Uwer ${ }^{11}$, V. Vagnoni ${ }^{14}$, G. Valenti ${ }^{14}$, A. Vallier ${ }^{7}$, R. Vazquez Gomez ${ }^{18}$, P. Vazquez Regueiro ${ }^{36}$, C. Vázquez Sierra ${ }^{36}$, S. Vecchi ${ }^{16}$, J.J. Velthuis ${ }^{45}$, M. Veltri ${ }^{17, g}$, G. Veneziano ${ }^{38}$, M. Vesterinen ${ }^{37}$, B. Viaud ${ }^{7}$, D. Vieira ${ }^{2}$, X. Vilasis-Cardona ${ }^{35, n}$, A. Vollhardt ${ }^{39}$, D. Volyanskyy ${ }^{10}$, D. Voong ${ }^{45}$, A. Vorobyev ${ }^{29}$, V. Vorobyev ${ }^{33}$, C. Voß ${ }^{60}$, H. Voss ${ }^{10}$, R. Waldi ${ }^{60}$, C. Wallace ${ }^{47}$, R. Wallace ${ }^{12}$, S. Wandernoth ${ }^{11}$, J. Wang ${ }^{58}$, D.R. Ward ${ }^{46}$, N.K. Watson ${ }^{44}$, A.D. Webber ${ }^{53}$, D. Websdale ${ }^{52}$, M. Whitehead ${ }^{47}$, J. Wicht ${ }^{37}$, J. Wiechczynski ${ }^{25}$, D. Wiedner ${ }^{11}$, L. Wiggers ${ }^{40}$, G. Wilkinson ${ }^{54}$,
M.P. Williams ${ }^{47,48}$, M. Williams ${ }^{55}$, F.F. Wilson ${ }^{48}$, J. Wimberley ${ }^{57}$, J. Wishahi ${ }^{9}$, W. Wislicki ${ }^{27}$, M. Witek ${ }^{25}$, G. Wormser ${ }^{7}$, S.A. Wotton ${ }^{46}$, S. Wright ${ }^{46}$, S. Wu ${ }^{3}$, K. Wyllie ${ }^{37}$, Y. Xie ${ }^{49,37}$, Z. Xing ${ }^{58}$, Z. Yang ${ }^{3}$, X. Yuan ${ }^{3}$, O. Yushchenko ${ }^{34}$, M. Zangoli ${ }^{14}$, M. Zavertyaev ${ }^{10, a}$, F. Zhang ${ }^{3}$, L. Zhang ${ }^{58}$, W.C. Zhang ${ }^{12}$, Y. Zhang ${ }^{3}$, A. Zhelezov ${ }^{11}$, A. Zhokhov ${ }^{30}$, L. Zhong ${ }^{3}$, A. Zvyagin ${ }^{37}$.
${ }^{1}$ Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
${ }^{2}$ Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
${ }^{3}$ Center for High Energy Physics, Tsinghua University, Beijing, China
${ }^{4}$ LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux, France
${ }^{5}$ Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
${ }^{6}$ CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
${ }^{7}$ LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
${ }^{8}$ LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France
${ }^{9}$ Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
${ }^{10}$ Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
${ }^{11}$ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
12 School of Physics, University College Dublin, Dublin, Ireland
${ }^{13}$ Sezione INFN di Bari, Bari, Italy
${ }^{14}$ Sezione INFN di Bologna, Bologna, Italy
${ }^{15}$ Sezione INFN di Cagliari, Cagliari, Italy
${ }^{16}$ Sezione INFN di Ferrara, Ferrara, Italy
${ }^{17}$ Sezione INFN di Firenze, Firenze, Italy
${ }^{18}$ Laboratori Nazionali dell'INFN di Frascati, Frascati, Italy
19 Sezione INFN di Genova, Genova, Italy
${ }^{20}$ Sezione INFN di Milano Bicocca, Milano, Italy
${ }^{21}$ Sezione INFN di Padova, Padova, Italy
${ }^{22}$ Sezione INFN di Pisa, Pisa, Italy
${ }^{23}$ Sezione INFN di Roma Tor Vergata, Roma, Italy
${ }^{24}$ Sezione INFN di Roma La Sapienza, Roma, Italy
${ }^{25}$ Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
${ }^{26}$ AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
${ }^{27}$ National Center for Nuclear Research (NCBJ), Warsaw, Poland
${ }^{28}$ Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
${ }^{29}$ Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
${ }^{30}$ Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
${ }^{31}$ Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
32 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
${ }^{33}$ Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
${ }^{34}$ Institute for High Energy Physics (IHEP), Protvino, Russia
35 Universitat de Barcelona, Barcelona, Spain
36 Universidad de Santiago de Compostela, Santiago de Compostela, Spain
${ }^{37}$ European Organization for Nuclear Research (CERN), Geneva, Switzerland
${ }^{38}$ Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
39 Physik-Institut, Universität Zürich, Zürich, Switzerland
40 Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
41 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
${ }^{42}$ NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
${ }^{43}$ Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
${ }^{44}$ University of Birmingham, Birmingham, United Kingdom
${ }^{45}$ H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
${ }^{46}$ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
${ }^{47}$ Department of Physics, University of Warwick, Coventry, United Kingdom
48 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
49 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
${ }^{50}$ School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
${ }^{51}$ Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
52 Imperial College London, London, United Kingdom
${ }^{53}$ School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
${ }^{54}$ Department of Physics, University of Oxford, Oxford, United Kingdom
$\mathbf{5 5}^{5}$ Massachusetts Institute of Technology, Cambridge, MA, United States
${ }^{56}$ University of Cincinnati, Cincinnati, OH, United States
57 University of Maryland, College Park, MD, United States
${ }^{58}$ Syracuse University, Syracuse, NY, United States
${ }^{59}$ Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to ${ }^{2}$
${ }^{60}$ Institut für Physik, Universität Rostock, Rostock, Germany, associated to ${ }^{\mathbf{1 1}}$
${ }^{61}$ Celal Bayar University, Manisa, Turkey, associated to ${ }^{\mathbf{3 7}}$
${ }^{a}$ P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
${ }^{\text {b }}$ Università di Bari, Bari, Italy
c Università di Bologna, Bologna, Italy
${ }^{\text {d }}$ Università di Cagliari, Cagliari, Italy
e Università di Ferrara, Ferrara, Italy
${ }^{f}$ Università di Firenze, Firenze, Italy
${ }^{g}$ Università di Urbino, Urbino, Italy
${ }^{\boldsymbol{h}}$ Università di Modena e Reggio Emilia, Modena, Italy
${ }^{\boldsymbol{i}}$ Università di Genova, Genova, Italy
${ }^{j}$ Università di Milano Bicocca, Milano, Italy
${ }^{\boldsymbol{k}}$ Università di Roma Tor Vergata, Roma, Italy
${ }^{l}$ Università di Roma La Sapienza, Roma, Italy
${ }^{m}$ Università della Basilicata, Potenza, Italy
${ }^{n}$ LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
${ }^{\circ}$ Hanoi University of Science, Hanoi, Viet Nam
${ }^{p}$ Institute of Physics and Technology, Moscow, Russia
$\boldsymbol{q}_{\text {Università di Padova, Padova, Italy }}$
${ }^{r}$ Università di Pisa, Pisa, Italy
${ }^{\text {s Scuola Normale Superiore, Pisa, Italy }}$
(The LHCb collaboration)

The charmless decays $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$and $B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}$are reconstructed in a data set, corresponding to an integrated luminosity of $1.0 \mathrm{fb}^{-1}$ of $p p$ collisions at a center-of-mass energy of 7 TeV , collected by LHCb in 2011. The inclusive charge asymmetries of these modes are measured to be $A_{C P}\left(B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}\right)=-0.141 \pm 0.040$ (stat) ± 0.018 (syst) $\pm 0.007\left(J / \psi K^{ \pm}\right)$ and $A_{C P}\left(B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}\right)=0.117 \pm 0.021$ (stat) ± 0.009 (syst) $\pm 0.007\left(J / \psi K^{ \pm}\right)$, where the third uncertainty is due to the $C P$ asymmetry of the $B^{ \pm} \rightarrow J / \psi K^{ \pm}$reference mode. In addition to the inclusive $C P$ asymmetries, larger asymmetries are observed in localized regions of phase space.

Charmless decays of B mesons to three hadrons are dominated by quasi-two-body processes involving intermediate resonant states. The rich interference pattern present in such decays makes them favorable for the investigation of charge asymmetries that are localized in the phase space [1, 2]. The large samples of charmless B decays collected by the LHCb experiment allow direct $C P$ violation to be measured in regions of phase space. In previous measurements of this type, the phase spaces of $B^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}$and $B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}$decays were observed to have regions of large local asymmetries [3]. Concerning baryonic modes, no significant effects have been observed in either $B^{ \pm} \rightarrow p \bar{p} K^{ \pm}$or $B^{ \pm} \rightarrow p \bar{p} \pi^{ \pm}$decays [4]. Large $C P$-violating asymmetries have also been observed in charmless two-body B meson decays such as $B^{0} \rightarrow K^{+} \pi^{-}$and $B_{s}^{0} \rightarrow K^{-} \pi^{+}$(and the corresponding \bar{B}^{0} and \bar{B}_{s}^{0} decays) [5].

Some recent efforts have been made to understand the origin of the large asymmetries. For direct $C P$ violation to occur, two interfering amplitudes with different weak and strong phases must be involved in the decay process 6. Interference between intermediate states of the decay can introduce large strong phase differences, and is one mechanism for explaining local asymmetries in the phase space [7, 8]. Another explanation focuses on final-state $K K \leftrightarrow \pi \pi$ rescattering, which can occur between decay channels with the same flavor quantum numbers [3, 8, 9. Invariance of $C P T$ symmetry constrains hadron rescattering so that the sum of the partial decay widths, for all channels with the same final-state quantum numbers related by the S matrix, must be equal for charge-conjugated decays. Effects of $\mathrm{SU}(3)$ flavor symmetry breaking have also been investigated and partially explain the observed patterns [8, 10, 11].

The $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$decay is interesting because $s \bar{s}$ resonant contributions are strongly suppressed [12-14. Recently, LHCb reported an upper limit on the ϕ contribution to be $\mathcal{B}\left(B^{ \pm} \rightarrow \phi \pi^{ \pm}\right)<1.5 \times 10^{-7}$ at the 90% confidence level [15]. The lack of $K^{+} K^{-}$resonant contributions makes the $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$decay a good probe for rescattering from decays with pions. The $B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}$ mode, on the other hand, has large resonant contributions, as shown in an amplitude analysis by the BaBar collaboration, which measured the inclusive $C P$ asymmetry to be $(0.03 \pm 0.06)[16]$. For $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$decays, the inclusive $C P$-violating asymmetry was measured by the BaBar collaboration to be (0.00 ± 0.10) [17], from a comparison of B^{+}and B^{-}sample fits. Both results are compatible with the no $C P$-violation hypothesis.

In this Letter we report measurements of the inclusive $C P$-violating asymmetries for $B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}$and $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$decays. The $C P$ asymmetry in $B^{ \pm}$decays to a final state $f^{ \pm}$is defined as

$$
\begin{equation*}
A_{C P}\left(B^{ \pm} \rightarrow f^{ \pm}\right) \equiv \Phi\left[\Gamma\left(B^{-} \rightarrow f^{-}\right), \Gamma\left(B^{+} \rightarrow f^{+}\right)\right] \tag{1}
\end{equation*}
$$

where $\Phi[X, Y] \equiv(X-Y) /(X+Y)$ is the asymmetry function, Γ is the decay width, and the final states $f^{ \pm}$ are $\pi^{+} \pi^{-} \pi^{ \pm}$or $K^{+} K^{-} \pi^{ \pm}$. The asymmetry distributions across the phase space are also investigated.

The LHCb detector [18] is a single-arm forward spectrometer covering the pseudorapidity range $2<\eta<5$, designed for the study of particles containing b or c quarks. The analysis is based on $p p$ collision data, corresponding to an integrated luminosity of $1.0 \mathrm{fb}^{-1}$, collected in 2011 at a center-of-mass energy of 7 TeV .

Events are selected by a trigger [19] that consists of a hardware stage, based on information from a calorimeter system and five muon stations, followed by a software stage, which applies a full event reconstruction. Candidate events are first required to pass the hardware trigger, which selects particles with a large transverse energy. The software trigger requires a two-, three- or four-track secondary vertex with a high sum of the transverse momenta, p_{T}, of the tracks and significant displacement from the primary $p p$ interaction vertices (PVs). At least one track should have $p_{\mathrm{T}}>1.7 \mathrm{GeV} / c$ and χ_{IP}^{2} with respect to any primary interaction greater than 16 , where χ_{IP}^{2} is defined as the difference between the χ^{2} of a given PV reconstructed with and without the considered track, and IP is the impact parameter. A multivariate algorithm [20] is used for the identification of secondary vertices consistent with the decay of a b hadron.

Further criteria are applied offline to select B mesons and suppress the combinatorial background. The $B^{ \pm}$ decay products are required to satisfy a set of selection criteria on their momenta, their p_{T}, the χ_{IP}^{2} of the finalstate tracks, and the distance of closest approach between any two tracks. The B candidates are required to have $p_{\mathrm{T}}>1.7 \mathrm{GeV} / c, \chi_{\mathrm{IP}}^{2}<10$ (defined by projecting the B candidate trajectory backwards from its decay vertex), decay vertex $\chi^{2}<12$, and decay vertex displacement from any PV greater than 3 mm . Additional requirements are applied to variables related to the B-meson production and decay, such as the angle θ between the B-candidate momentum and the direction of flight from the primary vertex to the decay vertex, $\cos (\theta)>0.99998$. Final-state kaons and pions are further selected using particle identification information, provided by two ringimaging Cherenkov detectors [21, and are required to be incompatible with a muon [22]. The kinematic selection is common to both decay channels, while the particle identification selection is specific to each final state. Charm contributions are removed by excluding the regions of $\pm 30 \mathrm{MeV} / c^{2}$ around the world average value of the D^{0} mass [23] in the two-body invariant masses $m_{\pi^{+} \pi^{-}}, m_{K^{ \pm} \pi^{\mp}}$ and $m_{K^{+} K^{-}}$.

The simulated events used in this analysis are generated using Pythia 6.4 [24] with a specific LHCb configuration [25]. Decays of hadronic particles are produced by

FIG. 1. Invariant mass spectra of (a) $B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}$decays and (b) $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$decays. The left panel in each figure shows the B^{-}modes and the right panel shows the B^{+}modes. The results of the unbinned maximum likelihood fits are overlaid. The main components of the fit are also shown.

EvtGen [26], in which final-state radiation is generated using Рнотоs [27]. The interaction of the generated particles with the detector and its response are implemented using the Geant4 toolkit [28] as described in Ref. [29].

Unbinned extended maximum likelihood fits to the mass spectra of the selected $B^{ \pm}$candidates are performed to obtain the signal yields and raw asymmetries. The $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$and $B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}$signal components are parametrized by a Cruijff function 30 with equal left and right widths and different radiative tails to account for the asymmetric effect of final-state radiation on the signal shape. The means and widths are left to float in the fit, while the tail parameters are fixed to the values obtained from simulation. The combinatorial background is described by an exponential distribution whose parameter is left free in the fit. The backgrounds due to partially reconstructed four-body B decays are parametrized by an ARGUS distribution [31] convolved with a Gaussian resolution function. For $B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}$decays the shape and yield parameters describing the backgrounds are varied in the fit, while for $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$decays they are taken from simulation, due to a further contribution from four-body B_{s}^{0} decays such as $B_{s}^{0} \rightarrow D_{s}^{-}\left(K^{+} K^{-} \pi^{-}\right) \pi^{+}$. We define peaking backgrounds as decay modes with one misidentified particle, namely the channels $B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}$ for the $B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}$mode, and $B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}$and $B^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}$for the $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$mode. The shapes and yields of the peaking backgrounds are obtained from simulation. The yields of the peaking and partially reconstructed background components are constrained to be equal for B^{+}and B^{-}decays. The invariant mass spectra of the $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$and $B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}$candidates are shown in Fig. 1 .

The signal yields obtained are $N(K K \pi)=1870 \pm 133$ and $N(\pi \pi \pi)=4904 \pm 148$, and the raw asymmetries are $A_{\text {raw }}(K K \pi)=-0.143 \pm 0.040$ and $A_{\text {raw }}(\pi \pi \pi)=$
0.124 ± 0.020, where the uncertainties are statistical. The $C P$ asymmetries are expressed in terms of the measured raw asymmetries, corrected for effects induced by the detector acceptance and interactions of final-state pions with matter $A_{\mathrm{D}}\left(\pi^{ \pm}\right)$, as well as for a possible B-meson production asymmetry $A_{\mathrm{P}}\left(B^{ \pm}\right)$,

$$
\begin{equation*}
A_{C P}=A_{\mathrm{raw}}-A_{\mathrm{D}}\left(\pi^{ \pm}\right)-A_{\mathrm{P}}\left(B^{ \pm}\right) \tag{2}
\end{equation*}
$$

The pion detection asymmetry, $A_{\mathrm{D}}\left(\pi^{ \pm}\right)=0.0000 \pm 0.0025$, has been previously measured by LHCb [32]. The production asymmetry $A_{\mathrm{P}}\left(B^{ \pm}\right)$is measured from a data sample of approximately $6.3 \times 10^{4} B^{ \pm} \rightarrow J / \psi\left(\mu^{+} \mu^{-}\right) K^{ \pm}$decays. The $B^{ \pm} \rightarrow J / \psi K^{ \pm}$sample passes the same trigger, kinematic, and kaon particle identification selection criteria as the signal samples, and it has a similar event topology. The $A_{\mathrm{P}}\left(B^{ \pm}\right)$term is obtained from the raw asymmetry of the $B^{ \pm} \rightarrow J / \psi K^{ \pm}$mode as

$$
\begin{equation*}
A_{\mathrm{P}}\left(B^{ \pm}\right)=A_{\mathrm{raw}}(J / \psi K)-A_{C P}(J / \psi K)-A_{\mathrm{D}}\left(K^{ \pm}\right) \tag{3}
\end{equation*}
$$

where $A_{C P}(J / \psi K)=0.001 \pm 0.007$ [23] is the world average $C P$ asymmetry of $B^{ \pm} \rightarrow J / \psi K^{ \pm}$decays, and $A_{\mathrm{D}}\left(K^{ \pm}\right)=-0.010 \pm 0.003$ is the kaon interaction asymmetry obtained from $D^{0} \rightarrow K^{ \pm} \pi^{\mp}$ and $D^{0} \rightarrow K^{+} K^{-}$decays [33], and corrected for $A_{\mathrm{D}}\left(\pi^{ \pm}\right)$. The $C P$ asymmetries of the $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$and $B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}$channels are then determined using Eqs. 2 and 3 .

Since the detector efficiencies for the signal modes are not uniform across the Dalitz plot, and the raw asymmetries are also not uniformly distributed, an acceptance correction is applied to the integrated raw asymmetries. It is determined by the ratio between the B^{-}and B^{+} average efficiencies in simulated events, reweighted to reproduce the population of signal data over the phase space. Furthermore, the detector acceptance and reconstruction depend on the trigger selection. The efficiency of the hadronic hardware trigger is found to have a small charge

FIG. 2. Asymmetries of the number of events (including signal and background) in bins of the Dalitz plot, $A_{\text {raw }}^{N}$, for (a) $B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}$and (b) $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$decays. The inset figures show the projections of the number of events in bins of (a) the $m_{\pi^{+} \pi^{-} \text {low }}^{2}$ variable for $m_{\pi^{+} \pi^{-} \text {high }}^{2}>15 \mathrm{GeV}^{2} / c^{4}$ and (b) the $m_{K^{+} K^{-}}^{2}$ variable. The distributions are not corrected for efficiency.
asymmetry for kaons. Therefore, the data are divided into two samples: events with candidates selected by the hadronic trigger and events selected by other triggers independently of the signal candidate. The acceptance correction and subtraction of the $A_{\mathrm{P}}\left(B^{ \pm}\right)$term is performed separately for each trigger configuration. The trigger-averaged value of the production asymmetry is $A_{\mathrm{P}}\left(B^{ \pm}\right)=-0.004 \pm 0.004$, where the uncertainty is statistical only. The integrated $C P$ asymmetries are then the weighted averages of the $C P$ asymmetries for the two trigger samples.

The methods used in estimating the systematic uncertainties of the signal model, combinatorial background, peaking background, and acceptance correction are the same as those used in Ref. [3]. For $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$decays, we also evaluate a systematic uncertainty due to the partially reconstructed background model by varying the mean and resolution according to the difference between simulation and data obtained from the signal component. The $A_{\mathrm{D}}\left(\pi^{ \pm}\right)$and $A_{\mathrm{D}}\left(K^{ \pm}\right)$uncertainties are included as systematic uncertainties related to the procedure. A systematic uncertainty is also evaluated to account for the difference in kaon kinematics between the $B^{ \pm}$and D^{0} decays. The systematic uncertainties for the measurements of $A_{C P}\left(B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}\right)$and $A_{C P}\left(B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}\right)$are summarized in Table I.

The results obtained for the inclusive $C P$ asymmetries of the $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$and $B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}$decays are

$$
\begin{gathered}
A_{C P}\left(B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}\right)=-0.141 \pm 0.040 \pm 0.018 \pm 0.007 \\
A_{C P}\left(B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}\right)=0.117 \pm 0.021 \pm 0.009 \pm 0.007
\end{gathered}
$$

where the first uncertainty is statistical, the second is the experimental systematic, and the third is due to the $C P$
asymmetry of the $B^{ \pm} \rightarrow J / \psi K^{ \pm}$reference mode [23]. The significances of the inclusive charge asymmetries, calculated by dividing the central values by the sum in quadrature of the statistical and both systematic uncertainties, are 3.2 standard deviations (σ) for $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$and 4.9σ for $B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}$decays.

In addition to the inclusive charge asymmetries, we study the asymmetry distributions in the two-dimensional phase space of two-body invariant masses. The Dalitz plot distributions in the signal region, defined as the threebody invariant mass region within two Gaussian widths from the signal peak, are divided into bins with approximately equal numbers of events in the combined B^{-}and B^{+}samples. Figure 2 shows the raw asymmetries (not corrected for efficiency), $A_{\text {raw }}^{N}=\Phi\left[N^{-}, N^{+}\right]$, computed using the number of negative $\left(N^{-}\right)$and positive $\left(N^{+}\right)$entries in each bin of the $B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}$and $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$

TABLE I. Systematic uncertainties on $A_{C P}\left(B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}\right)$ and $A_{C P}\left(B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}\right)$. The total systematic uncertainties are the sum in quadrature of the individual contributions.

Systematic uncertainty	$A_{C P}(K K \pi)$	$A_{C P}(\pi \pi \pi)$
Signal model	0.001	0.0005
Combinatorial background	0.003	0.0008
Peaking background	0.001	0.0025
Acceptance	0.014	0.0032
Part. rec. background	0.005	-
$A_{\mathrm{D}}\left(\pi^{ \pm}\right)$uncertainty	0.003	0.0025
$A_{\mathrm{D}}\left(K^{ \pm}\right)$uncertainty	0.003	0.0032
$A_{\mathrm{D}}\left(K^{ \pm}\right)$kaon kinematics	0.008	0.0075
Total	0.018	0.0094

FIG. 3. Invariant mass spectra of (a) $B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}$decays in the region $m_{\pi^{+} \pi^{-} \text {low }}^{2}<0.4 \mathrm{GeV}^{2} / c^{4}$ and $m_{\pi^{+} \pi^{-}}^{2}$ high $>15 \mathrm{GeV}^{2} / c^{4}$, and (b) $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$decays in the region $m_{K^{+} K^{-}}^{2}<1.5 \mathrm{GeV}^{2} / c^{4}$. The left panel in each figure shows the B^{-}modes and the right panel shows the B^{+}modes. The results of the unbinned maximum likelihood fits are overlaid.

Dalitz plots. The $B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}$Dalitz plot is symmetrized and its two-body invariant mass squared variables are defined as $m_{\pi^{+} \pi^{-} \text {low }}^{2}<m_{\pi^{+} \pi^{-} \text {high. }}^{2}$. The $A_{\text {raw }}^{N}$ distribution in the Dalitz plot of the $B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}$ mode reveals an asymmetry concentrated at low values of $m_{\pi^{+} \pi^{-} \text {low }}^{2}$ and high values of $m_{\pi^{+} \pi^{-} \text {high. }}^{2}$. The distribution of the projection of the number of events onto the $m_{\pi^{+} \pi^{-} \text {low }}^{2}$ invariant mass (inset in Fig. 2(a)) shows that this asymmetry is located in the region $m_{\pi^{+} \pi^{-} \text {low }}^{2}<0.4 \mathrm{GeV}^{2} / c^{4}$ and $m_{\pi^{+} \pi^{-} \text {high }}^{2}>15 \mathrm{GeV}^{2} / c^{4}$. For $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$we identify a negative asymmetry located in the low $K^{+} K^{-}$invariant mass region. This can be seen also in the inset figure of the $K^{+} K^{-}$invariant mass projection, where there is an excess of B^{+}candidates for $m_{K^{+} K^{-}}^{2}<1.5 \mathrm{GeV}^{2} / c^{4}$. Although $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$ has no $\phi(1020)$ contribution [15, 34, a clear structure is observed. This structure was also seen by the BaBar collaboration [17] but was not studied separately for B^{-} and B^{+}components. No significant asymmetry is present in the low-mass region of the $K^{ \pm} \pi^{\mp}$ invariant mass projection.

The $C P$ asymmetries are further studied in the regions where large raw asymmetries are found. The regions are defined as $m_{\pi^{+} \pi^{-} \text {high }}^{2}>15 \mathrm{GeV}^{2} / c^{4}$ and $m_{\pi^{+} \pi^{-} \text {low }}^{2}<0.4 \mathrm{GeV}^{2} / c^{4}$ for the $B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}$mode, and $m_{K^{+} K^{-}}^{2}<1.5 \mathrm{GeV}^{2} / c^{4}$ for the $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$ mode. Unbinned extended maximum likelihood fits are performed to the mass spectra of the candidates in these regions, using the same models as for the global fits. The spectra are shown in Fig. 3. The resulting signal yields and raw asymmetries for the two regions are $N^{\mathrm{reg}}(K K \pi)=342 \pm 28$ and $\quad A_{\text {raw }}^{\text {reg }}(K K \pi)=-0.658 \pm 0.070 \quad$ for the $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm} \quad$ mode, and $\quad N^{\text {reg }}(\pi \pi \pi)=229 \pm 20$ and $A_{\text {raw }}^{\text {reg }}(\pi \pi \pi)=0.555 \pm 0.082$ for the $B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}$ mode. The $C P$ asymmetries are obtained from the
raw asymmetries using Eqs. 2 and 3 and applying an acceptance correction. Systematic uncertainties are estimated due to the signal models, acceptance correction and binning choice in the region, the $A_{\mathrm{D}}\left(\pi^{ \pm}\right)$and $A_{\mathrm{P}}\left(B^{ \pm}\right)$statistical uncertainties and the $A_{\mathrm{D}}\left(K^{ \pm}\right)$kaon kinematics. The local charge asymmetries for the two regions are measured to be

$$
\begin{gathered}
A_{C P}^{\mathrm{reg}}\left(B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}\right)=-0.648 \pm 0.070 \pm 0.013 \pm 0.007 \\
A_{C P}^{\mathrm{reg}}\left(B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}\right)=0.584 \pm 0.082 \pm 0.027 \pm 0.007
\end{gathered}
$$

where the first uncertainty is statistical, the second is the experimental systematic and the third is due to the $C P$ asymmetry of the $B^{ \pm} \rightarrow J / \psi K^{ \pm}$reference mode [23].

In conclusion, we have found the first evidence of inclusive $C P$ asymmetries of the $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$and $B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}$modes with significances of 3.2σ and 4.9σ, respectively. The results are consistent with those measured by the BaBar collaboration [16, 17]. These charge asymmetries are not uniformly distributed in the phase space. For $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$decays, where no significant resonant contribution is expected, we observe a very large negative asymmetry concentrated in a restricted region of the phase space in the low $K^{+} K^{-}$invariant mass. For $B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}$decays, a large positive asymmetry is measured in the low $m_{\pi^{+} \pi^{-} \text {low }}^{2}$ and high $m_{\pi^{+} \pi^{-} \text {high }}^{2}$ phase-space region, not clearly associated to a resonant state. The evidence presented here for $C P$ violation in $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$and $B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm}$decays, along with the recent evidence for $C P$ violation in $B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}$ and $B^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}$decays [3] and recent theoretical developments [7-10], indicate new mechanisms for $C P$ asymmetries, which should be incorporated in models for future amplitude analyses of charmless three-body B decays.

ACKNOWLEDGEMENTS

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 and Region Auvergne (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); SCSR (Poland); MEN/IFA (Romania); MinES, Rosatom, RFBR and NRC "Kurchatov Institute" (Russia); MinECo, XuntaGal and GENCAT (Spain); SNSF and SER (Switzerland); NAS Ukraine (Ukraine); STFC (United Kingdom); NSF (USA). We also acknowledge the support received from the ERC under FP7. The Tier1 computing centres are supported by IN2P3 (France), KIT and BMBF (Germany), INFN (Italy), NWO and SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom). We are thankful for the computing resources put at our disposal by Yandex LLC (Russia), as well as to the communities behind the multiple open source software packages that we depend on.
[1] I. Bediaga et al., On a CP anisotropy measurement in the Dalitz plot, Phys. Rev. D80 (2009) 096006 , arXiv:0905.4233.
[2] I. Bediaga et al., Second generation of 'Miranda procedure' for CP violation in Dalitz studies of B (and D and τ) decays, Phys. Rev. D86 (2012) 036005, arXiv:1205. 3036
[3] LHCb collaboration, R. Aaij et al., Measurement of CP violation in the phase space of $B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}$and $B^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}$decays, Phys. Rev. Lett. 111 (2013) 101801, arXiv:1306.1246.
[4] LHCb collaboration, R. Aaij et al., Studies of the decays $B^{+} \rightarrow p \bar{p} h^{+}$and observation of $B^{+} \rightarrow \bar{\Lambda}(1520) p$, Phys. Rev. D88 (2013) 052015, arXiv:1307.6165
[5] LHCb collaboration, R. Aaij et al., First observation of $C P$ violation in the decays of B_{s}^{0} mesons, Phys. Rev. Lett. 110 (2013) 221601, arXiv:1304.6173
[6] M. Bander, D. Silverman, and A. Soni, $C P$ noninvariance in the decays of heavy charged quark systems, Phys. Rev. Lett. 43 (1979) 242.
[7] Z.-H. Zhang, X.-H. Guo, and Y.-D. Yang, CP violation in $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$in the region with low invariant mass of one $\pi^{+} \pi^{-}$pair, Phys. Rev. D87 (2013) 076007 arXiv:1303.3676
[8] B. Bhattacharya, M. Gronau, and J. L. Rosner, CP asymmetries in three-body $B^{ \pm}$decays to charged pions and kaons, Phys. Lett. B726 (2013) 337, arXiv:1306.2625.
[9] I. Bediaga, O. Lourenço and T. Frederico, CP violation and CPT invariance in $B^{ \pm}$decays with final state interactions, arXiv:1307.8164
[10] D. Xu, G.-N. Li, and X.-G. He, Large SU(3) breaking effects and $C P$ violation in B^{+}decays into three charged SU(3) octet pseudoscalar mesons, arXiv:1307.7186
[11] M. Gronau, U-spin breaking in $C P$ asymmetries in B decays, arXiv:1308.3448
[12] G. Zweig, An SU(3) model for strong interaction symmetry and its breaking, CERN Report 8419 (1964).
[13] S. Okubo, ϕ meson and unitary symmetry model, Phys. Lett. 5 (1963) 165
[14] J. Iizuka, Systematics and phenomenology of meson family, Prog. Theor. Phys. Suppl. 37 (1966) 21
[15] LHCb collaboration, R. Aaij et al., Measurement of the charge asymmetry in $B^{ \pm} \rightarrow \phi K^{ \pm}$and search for $B^{ \pm} \rightarrow \phi \pi^{ \pm}$decays, arXiv:1309.3742, submitted to Phys. Lett. B.
[16] BaBar collaboration, B. Aubert et al., Dalitz plot analysis of $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{ \pm} \pi^{\mp}$ decays, Phys. Rev. D79 (2009) 072006 arXiv:0902.2051.
[17] BaBar collaboration, B. Aubert et al., Observation of the decay $B^{+} \rightarrow K^{+} K^{-} \pi^{+}$, Phys. Rev. Lett. 99 (2007) 221801, arXiv:0708.0376.
[18] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3 (2008) S08005.
[19] R. Aaij et al., The LHCb trigger and its performance in 2011, JINST 8 (2013) P04022, arXiv:1211.3055.
[20] V. V. Gligorov and M. Williams, Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree, JINST 8 (2013) P02013, arXiv:1210.6861.
[21] M. Adinolfi et al., Performance of the LHCb RICH detector at the LHC, Eur. Phys. J. C73 (2013) 2431, arXiv:1211.6759
[22] F. Archilli et al., Performance of the muon identification at $L H C b$, arXiv:1306.0249, submitted to JINST.
[23] Particle Data Group, J. Beringer et al., Review of particle physics, Phys. Rev. D86 (2012) 010001.
[24] T. Sjöstrand, S. Mrenna, and P. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026, arXiv:hep-ph/0603175.
[25] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, Nu clear Science Symposium Conference Record (NSS/MIC) IEEE (2010) 1155
[26] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A462 (2001) 152
[27] P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for $Q E D$ corrections in Z and W decays, Eur. Phys. J. C45 (2006) 97, arXiv:hep-ph/0506026.
[28] GEANT4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270 GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250.
[29] M. Clemencic et al., The LHCb simulation application, Gauss: design, evolution and experience, J. Phys.: Conf. Ser. 331 (2011) 032023
[30] BaBar collaboration, P. del Amo Sanchez et al., Study of $B \rightarrow X \gamma$ decays and determination of $\left|V_{t d} / V_{t s}\right|$, Phys. Rev. D82 (2010) 051101, arXiv: 1005.4087
[31] ARGUS collaboration, H. Albrecht et al., Search for $b \rightarrow$ s γ in exclusive decays of B mesons, Phys. Lett. B229 (1989) 304 .
[32] LHCb collaboration, R. Aaij et al., Measurement of the $D_{s}^{+}-D_{s}^{-}$production asymmetry in 7 TeV pp collisions, Phys. Lett. B713 (2012) 186, arXiv:1205.0897
[33] LHCb collaboration, R. Aaij et al., First evidence of direct $C P$ violation in charmless two-body decays of B_{s}^{0} mesons,

Phys. Rev. Lett. 108 (2012) 201601, arXiv:1202.6251.
[34] Y. Li, C.-D. Lu, and W. Wang, Revisiting $B \rightarrow \phi \pi$ decays in the Standard Model, Phys. Rev. D80 (2009) 014024 , arXiv:0901.0648

