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In the standard asymptotic expansion of four-dimensional static asymptotically flat spacetimes, the
coefficient of the first subleading term of the lapse function can be identified with the mass of the
spacetime. Using the Hamiltonian formalism we show that, in asymptotically locally anti–de Sitter
spacetimes endowed with a scalar field, the mass can read off in the same way only when the boundary
conditions are compatible with the asymptotic realization of the anti–de Sitter symmetry. Since the mass is
determined only by the spatial metric and the scalar field, the above effect appears by considering not only
the constraints, but also the dynamic field equations, which relate the spatial metric with the lapse function.
In particular, this result implies that some prescriptions for computing the mass of a hairy spacetime are not
suitable when the scalar field breaks the asymptotic anti–de Sitter invariance.
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I. INTRODUCTION

Scalar fields play a significant role in physics. From a
theoretical point of view, they are expected to be amongst
the basic constituents of fundamental theories, e.g., string
theory. Cosmologically, they are at the basis of inflation and
dark energy models. More importantly, the first fundamen-
tal scalar particle was experimentally discovered [1,2].
In the last years, phenomenological applications of the
physics of hairy black holes have been proposed in
different contexts. For example, some of these configura-
tions have found interesting applications in condensed
matter by using gauge/gravity dualities (for a review see
for instance [3]). Additionally, astrophysical black holes
have received growing attention following the advent of
new observational facilities and, consequently, different
measurements for testing the spacetime geometry around
these objects have been proposed. In particular, a corner-
stone is to test the no-hair theorem from observations, i.e.,
whether or not the black hole at the center of our Galaxy
belongs to the Kerr class (see for instance [4,5]). Therefore,
exact hairy black hole solutions have an essential role in
conjunction with adequate formalisms to determine their
physical properties, such as the mass and angular momen-
tum, even in the presence of matter fields.
Such hairy configurations were ruled out by no-hair

theorems for which an asymptotically flat behavior for
the gravitational field and positivity of the scalar field
potential are assumed [6–10]. However, the presence of a
negative cosmological constant allows us to circumvent

these theorems in a physically sensible way. Indeed, a
number of exact asymptotically anti–de Sitter (AdS) scalar
hairy black holes have been constructed following the
precursor ones in three [11,12] and four dimensions [13].
Recently, general classes of exact static hairy black hole
solutions have been obtained [14–19] (see, also, [20–22]), as
well as time dependent hairy black holes [23,24], which in
turn has opened the possibility of investigating their generic
properties. For special values of the parameters in the moduli
potential, some of these solutions can be explicitly embedded
in supergravity theories [18,25,26].
An interesting physical effect emerges from asymptoti-

cally AdS scalar hairy solutions. Depending on its mass, the
scalar field could acquire a slow falloff at infinity. In this
case, the scalar field induces a strong backreaction on the
metric and, in this sense, it cannot be treated as a probe. In
particular, it was shown by using the Hamiltonian formalism
that the scalar field contributes to the mass of the hairy
solution [12,27,28]. Other approaches [29–33] have con-
firmed this result (see also [34–36] for early references about
conserved charges in asymptotically AdS spacetimes).
A relevant interval for the mass of the scalar field where

the above effect appears is m2
BF ≤ m2 < m2

BF þ l−2, where
m2

BF ¼ −9l−2=4 is the Breitenlohner-Freedman (BF) bound
[37] and l is the AdS radius. In this range the evolution of
scalar fields in AdS is well defined for any linear combi-
nation of Dirichlet and Neumann boundary conditions [38].
In the Hamiltonian formalism, the generators of the

asymptotic symmetries—the conserved charges—contain a
bulk term that is a linear combination of the constraints
supplemented with a boundary term. The boundary term is
fixed by requiring that the canonical generators have well-
defined functional derivatives with respect to the canonical
variables [39]. By virtue of the constraint equations, only
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the boundary term contributes to the charges and so, from
this point of view, the Hamiltonian method is indeed
suitable for a holographic interpretation. Since the charges
can be computed from the boundary term only, they require
just the asymptotic behavior of the canonical variables and
symmetries. Thus, the canonical generators provide the
charges for all the solutions sharing the same asymptotic
behavior.
In this article, we reexamine the notion of mass for

asymptotically AdS scalar hairy configurations in the
framework of general relativity with a minimally coupled
scalar field. The tool we are going to use for computing the
mass is the Hamiltonian method of Regge and Teitelboim
[39], following the results of [28]. A remarkable feature of
this class of solutions is found. Once the canonical
generator associated to the time translation (that corresponds
from first principles to the mass of the configuration1) is
evaluated using the equations of motions, its value coincides
with the coefficient of the first subleading term of the lapse
function only for boundary conditions that are compatible
with the canonical realization of the local AdS symmetry at
the boundary.
We would like to keep the discussion concrete and,

therefore, we treat the case of a single scalar field with
the conformal mass, m2 ¼ −2l−2, which is in the allowed
interval. In this case, both modes of the scalar are normal-
izable. This value of the mass is relevant for gauged
supergravities in four dimensions [40] and we can explic-
itly apply our general results to analytic hairy black hole
solutions [13,14,17,25]. This mass is also interesting
because it allows for subleading logarithmic branches
(depending on the form of the scalar field potentials and
boundary conditions [27,28]), which need to be treated
separately. We expect that similar results should hold for
scalar fields with arbitrary mass in the intervalm2

BF ≤ m2 <
m2

BF þ l−2 and for any dimensions.
There are different proposals in the literature, developed

from other rationale, for computing the mass. It is interest-
ing to study the conditions that enable those prescriptions
to provide the right mass for the solutions analyzed here.
In particular, the formula of Ashtekar-Magnon-Das (AMD)
[35,41] has been extensively used to obtain the mass of
different hairy configurations [15,17,42–45]. We explicitly
show that the AMD mass matches the Hamiltonian mass of
hairy configurations only for boundary conditions that are
compatible with the local AdS symmetry at the boundary.

II. HAMILTONIAN MASS

Let us consider the action for a real scalar field minimally
coupled to four-dimensional Einstein gravity in the pres-
ence of a cosmological constant Λ ¼ −3l−2 and a self-
interaction potential UðϕÞ

I½gμν;ϕ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R − 2Λ
2κ

−
1

2
gμν∂μϕ∂νϕ −UðϕÞ

�
;

ð1Þ

where κ ¼ 8πG is the Einstein constant.
In the Hamiltonian formalism, the canonical generator of

an asymptotic symmetry defined by the vector ξ ¼ ðξ⊥; ξiÞ
is a linear combination of the constraints H⊥, Hi plus a
surface term Q½ξ�,

H½ξ� ¼
Z

d3xðξ⊥H⊥ þ ξiHiÞ þQ½ξ�: ð2Þ

The mass M is the conserved charge associated with
the asymptotic Killing vector ∂t. Therefore, from (2) we
obtain M ¼ Qð∂tÞ.

A. Nonlogarithmic branch

For a self-interaction potential, whose power series
expansion around ϕ ¼ 0 has the mass term m2 ¼ −2l−2
and a vanishing cubic term, the asymptotically AdS
behavior for the metric and scalar field does not contain
logarithmic branches [28]. Following this reference, we
consider a set of asymptotic conditions that will be
described below, and for which there exist analytic scalar
black hole solutions [13,14,17,25] whose asymptotic
behavior belongs to the chosen one. The falloff of the
scalar field is

ϕ ¼ α

r
þ β

r2
þOðr−3Þ; ð3Þ

where α and β denote two real constants. For static metrics
that match (locally) AdS at infinity, the relevant falloff is

−gtt ¼
r2

l2
þ k −

μ

r
þOðr−2Þ; ð4Þ

gmn ¼ r2hmn þOðr−1Þ; ð5Þ

grr ¼
l2

r2
þ al4

r4
þ l5b

r5
þOðr−6Þ; ð6Þ

where a and b are constants. Also, hmnðxmÞ is the two-
dimensional metric associated to the “angular section” Σk,
whose volume and curvature will be denoted by VðΣÞ and
2k, respectively.
We obtain the gravitational contribution

δMG ¼ VðΣÞ
κ

½rδaþ lδbþOð1=rÞ�; ð7Þ

and scalar contribution
1Hereafter, we name it Hamiltonian mass just for remarking

its origin.
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δMϕ ¼ VðΣÞ
l2

½rαδαþ αδβ þ 2βδαþOð1=rÞ�: ð8Þ

Thus, we have the variation of the mass

δM ¼ VðΣÞ
κl2

½rðl2δaþ καδαÞ þ l3δbþ κðαδβ þ 2βδαÞ
þOð1=rÞ�: ð9Þ

The above expression for δM is meaningful only in the case
of vanishing constraints. For the asymptotic conditions
considered here, H⊥ ¼ 0 implies

kþ a
κ

þ α2

2l2
¼ 0: ð10Þ

In this way, the divergent piece in (9) is removed and the
asymptotic variation of the mass takes a finite value

δM ¼ VðΣÞ
κl2

½l3δbþ κðαδβ þ 2βδαÞ�: ð11Þ

To remove the variations from (11) we need to impose
boundary conditions on the scalar field. If we define
β ¼ dWðαÞ=dα, the mass of the spacetime is given by2

M ¼ VðΣÞ
�
lb
κ
þ 1

l2

�
α
dWðαÞ
dα

þWðαÞ
��

: ð12Þ

Indeed, we recover the result of [46] (see, also, [47] for
five-dimensional black holes). At this point, it is important
to emphasize that the coefficient of the first subleading
term, μ, in the expansion (4) of gtt does not appear
explicitly in the expression of the mass. In fact, in static
spacetimes gtt is the lapse function that is not a canonical
variable and, consequently, does not appear either in the
constraints or in the surface terms. However, as we will see
shortly, once we use the equations of motion the situation
will change.
Now, for a given solution with the required asymptotics,

we have additional information since not only the con-
straints are satisfied, but also the equations of motion. The
Et
t − Er

r combination of the Einstein-scalar field equations,
which is not a constraint, is independent of the scalar field
potential and yields

Et
t − Er

r ¼
2aþ 2kþ κα2l−2

r2
þ −3μþ 3blþ 4καβl−2

r3

þOðr−4Þ ¼ 0: ð13Þ

The first term gives the same relation as the constraint
H⊥ ¼ 0, but the second one provides a relation containing
μ and the parameters of the asymptotic expansions of grr
and the scalar field

bl ¼ μ −
4

3
καβl−2: ð14Þ

Then the mass can be written as

M ¼ VðΣÞ
�
μ

κ
þ 1

l2

�
WðαÞ − 1

3
α
dWðαÞ
dα

��
: ð15Þ

Therefore, there are only three situations when the mass
reduces to M ¼ μVðΣÞκ−1:

(i) α ¼ 0: this is the usual Dirichlet boundary condition
and ensures asymptotic AdS invariance;

(ii) β ¼ 0: this is the Neumann boundary condition and
also ensures asymptotic AdS invariance;

(iii) β ¼ Cα2: this boundary condition3 corresponds to
multitrace deformations in the dual field theory [48]
and is also compatible with the asymptotic AdS
symmetry [28].

It is important to emphasize that the relation between the
Hamiltonian mass and the parameter μ that appears in the
expansion of gtt will allow us to establish a clear relation
with the AMD prescription. A concrete example when the
conformal symmetry is preserved can be found in [49].

B. Logarithmic branch

It is well known that a second order differential equation
has two linearly independent solutions. When the ratio of
the roots of the indicial equation is an integer, the solution
may develop a logarithmic branch. This is exactly what
happens when the scalar field saturates the BF bound, in
which case the leading falloff contains a logarithmic term
[27]. However, we are interested in a scalar field with the
conformal mass m2 ¼ −2l−2. To obtain the logarithmic
branch, a cubic term in the asymptotic expansion of the
scalar field potential is necessary [28],

UðϕÞ ¼ −
ϕ2

l2
þ λϕ3 þOðϕ4Þ; ð16Þ

so that the falloff of the scalar field to be considered is

ϕ ¼ α

r
þ β

r2
− 3λα2l2

lnðrÞ
r2

þOðr−3Þ; ð17Þ

and the suitable asymptotic behavior for the metric can be
expressed as

2The mass in (12) is defined up to a constant without variation.
Since in four dimensions there is no Casimir energy, this constant
is zero in order to fix a vanishing mass for the locally AdS
spacetime.

3The fact that under this boundary condition the contribution
of the scalar field vanishes was noticed in [33] using a different
approach.
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−gtt ¼
r2

l2
þ k −

μ

r
þOðr−2Þ; ð18Þ

gmn ¼ r2hmn þOðr−2Þ; ð19Þ

grr ¼
l2

r2
þ al4

r4
þ l5c lnðrÞ

r5
þ l5b

r5
þO

�
lnðrÞ2
r6

�
: ð20Þ

Using a similar procedure as in the previous section
we get

M ¼
�
lb
κ
þ 1

l2

�
α
dW
dα

þWðαÞ þ α3l2λ

��
VðΣÞ: ð21Þ

To relate the mass with the first subleading term of gtt
we use the combination of the Einstein equations Et

t − Er
r

which yields

b ¼ μ

l
−
2καðα2l2λþ 2βÞ

3l3
; ð22Þ

and then the mass becomes

M ¼
�
μ

κ
þ 1

l2

�
WðαÞ − 1

3
α
dW
dα

þ 1

3
α3l2λ

��
VðΣÞ: ð23Þ

Therefore, we obtain M ¼ μVðΣÞκ−1 only for α ¼ 0 or

WðαÞ ¼ α3½Cþ l2λ lnðαÞ�; ð24Þ
which are the AdS invariant boundary conditions [28].

III. ASHTEKAR-MAGNON-DAS MASS

The AMD procedure [35,41] is particularly attractive
because it can be straightforwardly applied to hairy black
holes (detailed applications to related black hole physics
can be found in [17,45]). The AMD conserved quantities
are constructed from the electric part of the Weyl tensor.
First, consider a conformally rescaled metric that is regular
at the boundary

~gμν ¼ ω2gμν; ð25Þ

where gμν is the asymptotically AdS metric of interest and
ω has a zero of order one at infinity. ~gμν defines a conformal
structure at infinity since ω is defined up to a multiplication
of a regular function of the boundary coordinates. The
central object of the AMD prescription is the electric part of
the Weyl tensor

Eν
μ ¼ l2ω−1nαnβCν

αβμ; ð26Þ

where nμ ¼ ∂μω is the normal vector on the boundary and
Cν
βαμ is the Weyl tensor of ~gμν. Note that all the objects in

(26) are intended to be calculated and index manipulated

with the metric ~gμν. The energy in both cases, with or
without logarithmic branches, is

MAMD ¼ l
κ

Z
Σ
EttdΣt ¼ μVðΣÞ

κ
: ð27Þ

It is now clear that AMD mass matches the actual mass of
the spacetime, defined by the Hamiltonian, only for AdS
invariant boundary conditions.

IV. DISCUSSION

In this article, we have computed the mass for asymp-
totically AdS configurations endowed with a massive
minimally coupled scalar field. It has been shown that the
canonical generator associated to the time translation sym-
metry, i.e., the mass, once evaluated using the equations of
motion, coincides with the coefficient of the first subleading
term of the lapse function only for boundary conditions
that are compatible with the canonical realization of the local
AdS symmetry at the boundary. Additionally, we have
explicitly shown that the AMD mass provides the right
result, as defined by the Hamiltonian method, only for
boundary conditions that preserve the conformal invariance
of the boundary (and so of the dual theory).
Let us comment now on the test particle motion in scalar

hairy AdS spacetimes. This could be related with poten-
tially observable effects. For the clarity of the argument, let
us make the discussion quantitative. Consider the four-
dimensional static asymptotically flat metric:

ds2 ¼ −
�
1 −

μ

r
þOðr−2Þ

�
dt2 þ dr2

½1 − m
r þOðr−2Þ�

þ r2dΩ2: ð28Þ

Note that we have parametrized differently theOðr−1Þ term
of gtt and g−1rr , respectively. When there is no contribution
from the matter fields, i.e., when the matter fields fall
off fast enough at infinity, the Hamiltonian mass of the
spacetime is

M ¼ m
2G

: ð29Þ

Indeed, this is the case for massive scalar fields since they
are exponentially suppressed in asymptotically flat space-
times, and consequently the field equations yield μ ¼ m.
The motion of test particles on circular orbits is driven by
the (mass) parameter μ, as is revealed by the expression
for the rate of revolution ω ¼ dϕ=dt in a circular orbit at
radius R which, for a generic spherically symmetric
spacetime, is given by

ω2 ¼ −
1

2R
dgtt
dr

����
r¼R

: ð30Þ
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Then, for the asymptoticaly flat metric (28), we have
ω2 ¼ μ=ð2R3Þ when R is large. Therefore, this parameter
can be interpreted as the gravitational mass that generates
the gravitational field responsible for the test particles’
motion. If one interprets the Hamiltonian mass as the
inertial mass of the system, then, in agreement with the
equivalence principle, it is not surprising that m ¼ μ.
It is instructive to contrast the previous result with the

circular geodesic motion on an asymptotically AdS space-
time in the presence of a massive scalar field, described
by the metric

ds2 ¼ −
�
r2

l2
þ 1 −

μ

r
þOðr−2Þ

�
dt2

þ dr2

½r2l2 þ 1 − mðrÞ
r þOðr−2Þ�

þ r2dΩ2; ð31Þ

where mðrÞ grows slower than r3 [28]. In this case, the rate
of revolution reduces to l−2 þ μ=ð2R3Þ þOðR−4Þ. As is
expected, apart from the parameter μ, the motion is driven
also by the cosmological constant. Considering the latter
constant as a fundamental one, the motion is addressed
only by μ. However, when the backreaction of scalar fields
is taken into account, the mass matches μ=ð2GÞ only
for the AdS invariant boundary conditions discussed in
the previous section. From a holographic point of view,

the quantum fluctuations contribute to the inertia in the
boundary. This suggests that an issue arises from the
interpretation of μ as the gravitational mass when
the boundary condition on the scalar field breaks the
conformal symmetry.
One obvious extension of this work is an application to

higher dimensional scalar hairy black holes [17,18]. Also,
one can study the charged hairy black holes and their
extremal limits. In the extremal limit, the attractor mecha-
nism plays the role of a no-hair theorem [50] in the sense
that the moduli are fixed at the horizon and the near horizon
geometry is universal. The moduli flow is interpreted as an
RG flow and it will be interesting to compare the charges
computed at the horizon [51,52] with the charges computed
in the boundary. In this way, one can understand better the
role of the hair (scalar degrees of freedom living outside the
horizon) for black hole physics.
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