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We present a new class of complex instantons in the context of ekpyrotic cosmological theories. These 
instantons, which satisfy the “no-boundary” boundary conditions, describe the emergence of a classical, 
contracting universe out of nothing. The ekpyrotic attractor is essential in guaranteeing an evolution 
towards a real, Lorentzian history of the universe. In the context of the no-boundary proposal, the relative 
probability for such ekpyrotic histories compared to inflationary ones is very high – in fact, assuming 
a bounce can be successfully incorporated, these new instantons currently describe the most likely origin 
of the universe.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
In most branches of physics, the aim of the physicist is to find 
the underlying dynamics of physical phenomena. As has been com-
mented many times, this is not sufficient in cosmology, where the 
question of initial conditions forms a crucial part of the quest. 
When we consider the evolution of the universe as a whole, we 
are inevitably led to the question of its origin. Since the advent of 
general relativity, wherein space and time are seen as dynamical 
fields, this question includes that of the origin of space and time. 
Since the advent of quantum theory, the question includes the fur-
ther aspect of why the universe appears so classical to us.

A vague but popular notion that many physicists seem to har-
bour in their minds (and dating back at least to [1]), is that out 
of an initial quantum “soup” a big spacetime quantum fluctuation 
might have been blown up, probably via an inflationary phase, to 
a large classical universe. However, in order to put such notions on 
firm ground, a theory of initial conditions is required, and very few 
of those exist. To us the most compelling one is the no-boundary 
proposal of Hartle and Hawking [2,3]. According to this proposal, 
the quantum state Ψ of the universe is calculated by summing the 
path integral over regular Euclidean four-geometries C ,

Ψ (hij,χ) =
∫
C

δgδφe−S E (gμν,φ). (1)

Here S E denotes the Euclidean action, in our case for a theory of 
gravity plus a minimally coupled scalar field φ with a potential 
V (φ),
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S E = −i

∫
d4x

√−g

(
R

2κ2
− 1

2
gμν∂μφ∂νφ − V (φ)

)
, (2)

where the Wick rotation is defined by 
√−g = −i

√
g and where κ

stands for the inverse of the reduced Planck mass. The integration 
domain C is defined as the set of regular Euclidean four-geometries 
with a single 3-dimensional boundary, where the metric and scalar 
field take values (hij, χ), the arguments of the wavefunction. In 
practice, one works in a minisuperspace where the metric takes 
the simple form

ds2 = dτ 2 + a2(τ )dΩ2
3 , (3)

with a being the scale factor and dΩ2
3 the metric on a three-

sphere. The path integral above can then be approximated using 
the saddle point method, with the result that the wavefunction 
can be written as a sum over saddle point configurations

Ψ (b,χ) ∼
∑

e−S E (b,χ), (4)

where S E (b, χ) is the Euclidean action of an instanton solution 
(a(τ ), φ(τ )) satisfying the equations of motion implied by the ac-
tion,

S E = 6π2

κ2

∫
dτ

(
−aa′ 2 − a + κ2a3

3

(
1

2
φ′ 2 + V

))
, (5)

with ′ ≡ d/dτ , as well as specific boundary conditions. The idea of 
Hartle and Hawking is that the universe is entirely self-contained, 
and that the four-geometry of the universe is smoothly rounded 
off in the ‘past’. This requirement, which we conventionally im-
pose at τ = 0, implies that at a(0) = 0 (called the South Pole of 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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the instanton) we must impose a′(0) = 1 and φ′(0) = 0. As a con-
sequence, each instanton satisfying the “no boundary” condition 
can be uniquely specified by the value φSP of the scalar field at 
the South Pole. The second boundary condition is provided by the 
arguments of the minisuperspace wavefunction (4): the geometry 
should admit a boundary, located at some value τ = τ f , where 
the scale factor and the scalar field take values (b, χ) respectively: 
a(τ f ) = b, φ(τ f ) = χ . For general values of (b, χ), no real instan-
ton solution can be found which satisfies both sets of boundary 
conditions, indicating that the saddle points for the integral (1) are 
generally complex: the fields (a(τ ), φ(τ )) are promoted to complex 
functions of the complex coordinate τ , satisfying the complex gen-
eralisation of the field equations. The Euclidean action S E (b, χ) can 
then be seen as a contour integral between τ = 0 to τ = τ f , where 
the choice of path is irrelevant as long as the instanton presents no 
singularities/branch cuts in the complex plane.

In some regions of parameter space (b, χ), the wave function 
(4) can be classical in the WKB sense, and describe a one parame-
ter family of closed FRW classical histories which do not interfere 
and to which a definite probability can be assigned. As pointed 
out in [4], a possibility for this to happen is the existence of a 
one parameter family of complex instantons, satisfying the bound-
ary conditions for all the values of (b(t), χ(t)) corresponding to 
a real, classical history along an appropriate Lorentzian contour 
dτ f = ±i dt , where t ∈ R denotes ordinary physical time. This re-
quires a(τ ) and φ(τ ) to become approximately real on a vertical 
contour in the complex plane: as a consequence, along this con-
tour only the imaginary part of the action (5) keeps evolving, 
while the real part approaches a constant, and one can interpret 
Ψ �Ψ ∼ e−2 Re(S E ) as the relative (unnormalised) probability for the 
associated history [3].

So far, the no-boundary proposal has exclusively been studied 
in the context of inflation. There it was found that the inflationary 
attractor is crucial in allowing the appearance of classical histories 
[4,5]. Moreover, it was discovered that a certain minimum amount 
of inflation is typically needed for classicality, implying a lower 
bound (of order a few) on the number of e-folds in order to obtain 
a classical universe. From these studies, Hartle, Hawking and Her-
tog (HHH) concluded that inflation is necessary in order to explain 
both the origin and the classicality of the universe [4,5].

In the present Letter we will consider ekpyrotic cosmological 
models, in which the potential is taken to be steep and negative, 
V = −V 0e−cκφ with V 0, c positive constants [6,7]. Classically, such 
a potential leads to a phase of slow contraction, during which the 
standard cosmological puzzles (e.g. flatness and horizon problems) 
can be resolved. Moreover, simple extensions can lead to the am-
plification of scalar quantum fluctuations in order to produce clas-
sical density perturbations in agreement with (trustworthy) cosmic 
microwave background measurements [8–13]. If such an ekpyrotic 
phase is followed by a bounce into a phase of radiation dominated 
expansion [14–18], then these models provide an interesting alter-
native cosmological history compared to the popular assumption 
of an early inflationary phase. Here, we will present a new class of 
ekpyrotic instantons, which satisfy the no-boundary conditions and 
lead to a real, Lorentzian ekpyrotic phase. As we will discuss, their 
properties are such that one is led to reconsider the implications 
of the no-boundary proposal for the origin of our universe.

The theory we study is given by the action

S E = −
∫

d4x
√

g

(
R

2κ2
− 1

2
gμν∂μφ∂νφ + V 0e−cκφ

)
. (6)

An important simplification comes from applying the field shifts/
re-scalings

φ ≡ κ−1φ̄ + 
φ, gμν ≡ ecκ
φ

2
ḡμν, (7)
κ V 0
Fig. 1. The dark lines indicate the locus where the scale factor is real. To obtain 
the figure, we integrate along contours which are “L-shaped”, i.e. composed of a 
vertical segment followed by a horizontal segment. For this particular example, we 
have taken ε ≡ c2/2 = 4, φR

SP = 0. The value φ I
SP = −1.481 has been tuned to obtain 

a classical history, i.e. such that a0 in Eq. (9) is real. The fractional behaviour in the 
scale factor (cf. Eq. (9)) is responsible for the branch cut that is visible here and in 
Fig. 2 to the right of τcrunch .

which lead to

S E = −ecκ
φ

κ4 V 0

∫
d4x

√
ḡ

(
R̄

2
− 1

2
ḡμν∂μφ̄∂νφ̄ + e−cφ̄

)
. (8)

Thus, if we can find an instanton solution with a particular value of 
φ̄SP , we can transform it into a solution with φSP = φ̄SP +
φ using 
Eqs. (7). This implies furthermore that all such instanton families 
will be functions of the steepness c of the potential alone. From 
now on, we will drop the overbars and work in the re-scaled the-
ory.

As was mentioned above, it is highly non-trivial that a complex 
no-boundary instanton approaches a Lorentzian classical history 
on an appropriate vertical contour. In the context of inflation, it 
was found that the value of the scalar field at the South Pole 
φSP = |φSP|eiθ must be precisely tuned: for each value of the mod-
ulus |φSP|, HHH numerically found (at most) one specific value of 
the angle θ ensuring an approach to classicality. Moreover, hav-
ing a dynamical attractor turned out to be essential [4]. In the 
ekpyrotic context, we will use a slightly different labelling of the 
instantons, as we will fix φR

SP = 0, where we have now decomposed 
φSP = φR

SP + iφ I
SP into its real and imaginary parts. As discussed 

above, Eqs. (7) can then be used to find all other members of that 
family of instantons, where we must restrict 
φ ∈ R in order for 
all instantons to approach a real history. That is to say, all members 
of a given family have the same imaginary part φ I

SP of φSP , which 
must be tuned to the right value in order to reach asymptotic clas-
sicality. Figs. 1–2 show two graphs of the complex τ plane where 
we have integrated the equations of motion along contours start-
ing at the origin (with no-boundary initial conditions) and running 
first up/down the imaginary axis, and then out along the horizon-
tal direction. The dark lines show the locus where the scale factor 
(Fig. 1) and scalar field (Fig. 2) are real. For the tuned value of φ I

SP
used here, one can see that the lines of real scale factor and real 
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Fig. 2. Same as Fig. 1, but for the scalar field.

Fig. 3. This graph shows the real and imaginary parts of the scale factor for an 
example of an ekpyrotic instanton, along the integration contour depicted by three 
arrows in Figs. 1 and 2 (and using the same example). The first segment of the 
contour corresponds to a portion of flat Euclidean space, the second segment is 
fully complex while the last part corresponds to the phase of ekpyrotic contraction.

scalar field asymptotically overlap while becoming vertical. Thus 
a classical history is reached, which, as we have not added any 
dynamics that could lead to a bounce, ends in a big crunch singu-
larity at τcrunch .

In order to show what this instanton solution looks like, we 
depict the behaviour of the scale factor a and scalar field φ in 
Figs. 3–4 along the contour drawn in Figs. 1–2, where the con-
tour is parameterised by a real parameter λ. The first segment of 
Fig. 4. Same as Fig. 3, for the scalar field. Along the third segment of the contour, 
the scalar field becomes real while rolling down the ekpyrotic potential.

Fig. 5. The scale factor and scalar field both become increasingly real as they de-
crease during the ekpyrotic phase. In this way a real, Lorentzian history of the 
universe is reached.

the contour runs vertically downwards from the origin (τ = −iλ), 
and, as can be seen from Fig. 3, for this part the scale factor 
a ∝ iλ. This means that along this part, the metric is given by 
ds2 ≈ −dλ2 − λ2dΩ2

3 , i.e. the bottom of the instanton is a por-
tion of (opposite-signature) Euclidean flat space. Along the next 
segment, running in the real τ direction (dτ = dλ), the geometry 
is fully complex. The most interesting part is the third segment, 
which runs up vertically dτ = idλ such that it reaches the location 
of the crunch τcrunch ≡ τc . It is along this part, as the scalar field 
rolls down the ekpyrotic potential, that the geometry becomes real 
and Lorentzian. Fig. 5 shows how the scale factor and scalar field 
become increasingly real in the approach of the crunch, as the in-
stanton approaches a scaling solution,

a(τ ) ≈ a0
(
i(τ − τc)

) 1
ε
(
1 + αa

(
i(τ − τc)

)1− 3
ε
)
, (9)

φ(τ ) ≈
√

2

ε
ln

(
εi(τ − τc)√

ε − 3

)
+ αφ

(
i(τ − τc)

)1− 3
ε , (10)

where ε ≡ c2/2 is the fast-roll parameter. The leading correction 
terms, which are proportional to αa,φ and generally complex, are 
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seen to die off as long as ε > 3 or, equivalently, c2 > 6. This is 
a manifestation of the ekpyrotic attractor mechanism [19], which 
is crucial in reaching classicality. Incidentally, this also means that 
for potentials which are not steep enough, i.e. for ε ≤ 3, we can-
not expect to find classical histories. The arguments above strongly 
suggest that a classical history is indeed reached. We can verify 
this more precisely by studying the evolution of the wavefunction 
Ψ (b, χ) along a classical history (b(λ), χ(λ)). In particular, we are 
interested in the WKB criterion for classicality, namely that the 
amplitude of Ψ should vary increasingly slowly compared to the 
phase of Ψ , or, equivalently,

∣∣∂b S R
E

∣∣ � ∣∣∂b S I
E

∣∣, (11)∣∣∂χ S R
E

∣∣ � ∣∣∂χ S I
E

∣∣. (12)

We have evaluated these conditions numerically – see Fig. 7. The 
figure shows that both WKB conditions are increasingly well satis-
fied as the ekpyrotic phase proceeds, with the asymptotic scaling 
as b(ε−3) being reached for both conditions. We will provide fur-
ther details of the approach to classicality, along with an analytic 
derivation of the scaling of the WKB conditions, in a follow-up pa-
per [20]. However, as is clear from the figure, ekpyrotic instantons 
lead to the emergence of classical contracting universes.

The presence of a classical history implies that the real part 
of the Euclidean action reaches a constant. One can transform a 
given instanton using Eqs. (7) to any desired value of φR

SP . As can 
be seen from the re-scaled action (8) this has the effect of scaling 
the real part of the action by a factor V (0)

V (φR
SP)

= 1
|V (φR

SP)| . Thus, given 

that Re(S E ) < 0 when φR
SP = 0, values of the potential (at the origin 

V (φR
SP)) that are smaller in magnitude will lead to higher proba-

bilities. Note that the scaling with the potential is different in sign 
from the inflationary case, but similar in the sense that in both 
cases small values of the potential are preferred. In inflation this 
corresponds to a preference for a short inflationary phase, while 
in the ekpyrotic case a long phase of ekpyrotic contraction comes 
out as preferred. Further note that the semi-classical approxima-
tion should be reliable precisely for these preferred instantons, as 
their spacetime curvature is small.

We can now also look for similar instanton solutions at differ-
ent values of c resp. ε , setting again φR

SP = 0. As discussed above, 
we expect such solutions to exist as long as ε > 3, and our nu-
merical studies support this expectation. Fig. 6 shows the value 
of φ I

SP and the (final) real part of the action, as functions of ε . 
These instantons all have very similar features to the example that 
we discussed above. Note in particular that they have a signifi-
cant imaginary part to φSP and in this respect these instantons 
are quite different from the known de Sitter-like instantons, which 
typically only have a small imaginary part. The real part of the 
action (which we denote by s(ε) at φR

SP = 0) is always negative. 
Reinserting the dependence on φR

SP , we then find our final formula 
for the relative probability of these ekpyrotic histories:

Ψ �Ψ ∼ Exp
[−2 Re(S E)

] = Exp

[ −2s(ε)

|V (φR
SP)|

]
. (13)

Thus, if a theory admits several distinct ekpyrotic regions in its 
potential, the preference will be for the longest and shallowest 
possible ekpyrotic phase. If a theory admits both ekpyrotic regions 
and inflationary ones, there will be a competition between the 
usual de Sitter-like inflationary instantons and the ekpyrotic ones. 
For a de Sitter half-sphere, which is a good approximation to the 
inflationary instantons, one has s(ε) = −12π2 in the above for-
mula for the relative probabilities, hence this quantity is similar in 
magnitude in the ekpyrotic case. However, for a successful period 
Fig. 6. Top: The imaginary part of the scalar field (at the South Pole) corresponding 
to classical histories, as a function of the fast-roll parameter ε . Bottom: The real 
part of the Euclidean action as a function of ε , once a classical history has been 
reached. Given that we take φR

SP = 0 for these examples, and thus |V (φR
SP)| = 1, this 

graph also corresponds to a depiction of s(ε).

Fig. 7. A useful criterion for classicality is the WKB conditions (11), (12) on the 
wavefunction. We have evaluated the b and χ derivatives of the Euclidean ac-
tion along a series of instantons with boundary values ranging between (b = 3/2, 
χ = 0) and (b = 3/2 × e−10/c , χ = −10), with c = 3. These numerical calculations 
demonstrate that the WKB classicality conditions are increasingly well satisfied 
along a classical ekpyrotic trajectory, as the scale factor b decreases (time thus 
runs from right to left in the figure). The dotted red lines indicate a scaling as 
b(ε−3) , which is reached asymptotically. Note that, using the re-scalings (7), this 
plot equally well applies to ranges of boundary values (b = 3/2 × ec
χ/2, χ = 
χ ) 
and (b = 3/2 × ec
χ/2−10/c , χ = 
χ − 10), for arbitrary 
χ ∈ R and keeping κ , 
V 0 fixed.

of inflation one must consider potentials that have a large mag-
nitude V , typically of order the grand unified scale. By contrast, 
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the potential is very small at the start of the ekpyrotic phase, and 
thus our new instantons are vastly preferred over inflationary ones 
in a mixed potential energy landscape (cf. [21]). It will be interest-
ing to also examine potentials pertinent to the cyclic universe [22], 
containing a dark energy plateau. For such potentials both types of 
instantons may exist simultaneously – we will report on this case 
in a forthcoming publication [20].

We end with a few comments: first, because of CPT invari-
ance the no-boundary wavefunction also contains instantons that 
are related to the ones discussed here by complex conjugation 
(i.e. with the scalar field taking the value φ�

SP at the South Pole) 
and which predict a time-reversed classical history [4]. Such his-
tories, in which the universe expands slowly while the scalar field 
runs up a negative potential, are however not realistic, as the in-
clusion of perturbations would immediately reveal that such uni-
verses quickly become curvature dominated (they are not attrac-
tors). Thus, we can ignore these saddle points here. Second, it 
is important to realise that the minisuperspace approximation is 
justified for the contracting histories we are interested in: during 
a single-field ekpyrotic phase, gauge-invariant curvature perturba-
tions are not amplified [11], and consequently do not destabilise 
the ekpyrotic scaling solution. This is another manifestation of the 
ekpyrotic attractor mechanism.

Finally, we should stress an important point: the theory we 
considered here does not allow for the null energy condition to 
be violated, and hence all classical ekpyrotic histories necessarily 
end up in a crunch. In the future, we plan on extending this study 
to include a bounce into the current expanding phase of the uni-
verse. Provided such a bounce can be successfully incorporated, 
and provided that classicality is maintained across the bounce, 
our results indicate that, according to the no-boundary proposal, 
these new instantons describe the most likely origin of our uni-
verse.
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