
Better Answers to Real Questions
Marek Košta and Thomas Sturm

Max-Planck-Institut für Informatik
Saarbrücken, Germany

{mkosta,sturm}@mpi-inf.mpg.de

Andreas Dolzmann
Leibniz-Zentrum für Informatik

Saarbrücken, Germany
andreas.dolzmann@dagstuhl.de

January 21, 2015

Abstract

We consider existential problems over the reals. Extended quantifier
elimination generalizes the concept of regular quantifier elimination by
providing in addition answers, which are descriptions of possible assign-
ments for the quantified variables. Implementations of extended quantifier
elimination via virtual substitution have been successfully applied to vari-
ous problems in science and engineering. So far, the answers produced by
these implementations included infinitesimal and infinite numbers, which
are hard to interpret in practice. We introduce here a post-processing
procedure to convert, for fixed parameters, all answers into standard real
numbers. The relevance of our procedure is demonstrated by application
of our implementation to various examples from the literature, where it
significantly improves the quality of the results.

1 Introduction
We consider existential problems over the reals. Extended quantifier elimination
generalizes the concept of regular quantifier elimination by providing in addi-
tion answers, which are descriptions of possible assignments for the quantified
variables (Weispfenning, 1994b, 1997b). Implementations of extended quantifier
elimination (Dolzmann and Sturm, 1997a, 1996) via virtual substitution (Loos
and Weispfenning, 1993; Weispfenning, 1997a, 1994a, 1988; Dolzmann et al.,
1999) have been successfully applied to various problems in science and en-
gineering (Sturm and Weispfenning, 1997; Sturm, 1999b; Weispfenning, 2001;
Sturm and Weber, 2008; Sturm et al., 2009; Errami et al., 2011; Weber et al.,
2011; Errami et al., 2013; Sturm, 1999a).

So far, the answers produced by these implementations included infinitesimal
and infinite numbers, which are hard to interpret in practice. This has been ex-
plicitly criticized in the literature, e.g., by Collard (2003). In the present article,
we introduce a complete post-processing procedure to convert, for fixed values

1

ar
X

iv
:1

50
1.

05
09

8v
1

 [
cs

.S
C

]
 2

1
Ja

n
20

15

{mkosta,sturm}@mpi-inf.mpg.de
andreas.dolzmann@dagstuhl.de

of parameters, all answers into standard real numbers. We furthermore demon-
strate the successful application of an implementation of our method within
Redlog (Dolzmann and Sturm, 1997a) to a number of extended quantifier elim-
ination problems from the scientific literature including computational geom-
etry (Sturm and Weispfenning, 1997), motion planning (Weispfenning, 2001),
bifurcation analysis for models of genetic circuits and for mass action (Sturm
and Weber, 2008; Sturm et al., 2009), and sizing of electrical networks (Sturm,
1999a).

The plan of the paper is as follows: In Section 2 we make ourselves familiar
with the concept of extended quantifier elimination. In Section 3 we give an
introduction of virtual substitution for extended quantifier elimination to the
extent necessary to understand how nonstandard values enter the answers and
what information is available for fixing them to standard values. Section 4 is the
technical core; we describe and prove our method and illustrate it by discussing
one example in detail. In Section 5 we revisit degree shifts, a successful heuristics
for reducing the degree of quantified variables before their elimination. We re-
interpret these degree shifts as quantifier eliminations by virtual substitution.
This allows us in Section 6 to generalize our method to cover also possible
degree shifts during elimination. In Section 7 we revisit examples from the
scientific literature where the application of extended quantifier elimination to
various problems from planning, modeling, science, and engineering had yielded
nonstandard answers. In all cases we can efficiently fix all nonstandard symbols
to standard values using our implementation of the method as it was introduced
in Section 4 and generalized in Section 6. This significantly improves the quality
of the results from a practical point of view. Finally, in Section 8 we summarize
our results and discuss possible extensions of our method.

2 The Concept of
Extended Quantifier Elimination

For our purposes here, we restrict ourselves to existential problems

ϕ(u1, . . . , um) = ∃xn . . . ∃x1ψ(x1, . . . , xn, u1, . . . , um)

in the Tarski language L = (0, 1,+,−, ·,≤, <,≥, >, 6=) interpreted in the Tarski
algebra (R, 0, 1,+,−, ·,≤, <,≥, >, 6=). As usual in algebraic model theory, the
symbol “=” and its interpretation as equality is part of first-order logic so that
it does not occur explicitly in the language L. Without loss of generality, ψ
is an ∧-∨-combination of atomic constraints, and we agree that all right hand
sides of the atomic constraints are 0.

Extended quantifier elimination applied to ϕ yields an extended quantifier
elimination result (EQR) β1(u) x1 = e11(u) . . . xn = e1n(u)

...
...

. . .
...

βk(u) x1 = ek1(u) . . . xn = ekn(u)

 .
The conditions βi(u) are quantifier-free Tarski formulas such that R |= ϕ ←→∨k
i=1 βi. In other words,

∨k
i=1 βi is a regular quantifier elimination result for ϕ,

2

and extended quantifier elimination generalizes regular quantifier elimination.
The answers ei(u) are terms in an extension language of the Tarski language.
For a ∈ Rm, if ϕ(a) holds, then at least one βi(a) holds, and so does ψ(ei(a),a).
We agree that “false” never occurs as a condition. If ϕ itself is equivalent to
“false,” we possibly obtain the empty scheme [].

As an example, consider the input formula

ϕ = ∃x∃yψ, ψ = ay + 3x2 + 4x ≤ a ∧ x ≥ a ≥ y.

A possible extended quantifier elimination result for ϕ is given by
a 6= 0 ∧ 4a+ 3 ≥ 0 y = −3a− 3 x = a

a ≤ 0 ∧ 3a2 − 3a− 4 ≤ 0 y = a x =
√
−3a2 + 3a+ 4− 2

3

 .
From this extended quantifier elimination result we can derive a regular quan-
tifier elimination result

(a 6= 0 ∧ 4a+ 3 ≥ 0) ∨ (a ≤ 0 ∧ 3a2 − 3a− 4 ≤ 0),

which can be simplified to a ≥ 0∨ 3a2 − 3a− 4 ≤ 0. Hence, ϕ holds if and only
if a ≥ α, where α ≈ −0.758306 is the smaller root of 3a2 − 3a− 4.

In the extended quantifier elimination result, the first row covers the case
that −0.75 ≤ a and a 6= 0, while the second row covers α ≤ a ≤ 0. Let us
consider some particular interpretations of a:

• For a = 2, the condition in the first row holds and the corresponding
answers yield x = 2 and y = −9. In fact, these three values satisfy ψ.
The condition in the second row, in contrast, does not hold. If we plug
a = 2 into the corresponding answers anyway, then we obtain a negative
argument for the square root, which cannot be interpreted over the reals.

• For α < a = −0.7525 < −0.75, the condition in the second row holds and
the corresponding answers yield x =

√
6997−800

1200 and y = −0.7525. Again,
these three values satisfy ψ. Now the condition in the first row does not
hold. If we plug a = −0.7525 into the corresponding answers anyway, then
we obtain x = −0.7525 and y = −0.7425, which does not satisfy ψ.

• For a = −0.5, both conditions hold and yield two different sets of val-
ues satisfying ψ, viz. x = −0.5, y = −1.5 and x =

√
7−4
6 , y = −0.5,

respectively.

• For a = 0 only the condition in the second row holds, but the answers in
the first row happen to work as well. This shows that the conditions are
sufficient but not necessary for the answers to be valid.

3 The Method of Virtual Substitution
Given ϕ(u) = ∃xψ(x,u), we compute a finite elimination set

E =
{
. . . ,

(
γ(u), e(u)

)
, . . . ,

}
such that ∃xψ ←→

∨
(γ,e)∈E

γ ∧ ψ[x // e]. (1)

3

In the elimination set E the e(u) are elimination terms substituted for the
quantified variable x via a virtual substitution [x // e]. The γ are quantifier-free
Tarski formulas serving as substitution guards. Equation (1) formally describes
regular quantifier elimination of one quantifier ∃x from ϕ. For the elimination
of several quantifiers, one assumes without loss of generality that the formula is
prenex and processes the prenex quantifier block from the inside to the outside.

We are now going to give an idea of the exact shape and computation of elim-
ination sets that is sufficiently precise to understand our main contribution here.
For a more thorough introduction into the theory of quantifier elimination by
virtual substitution we refer to the original publications by Weispfenning (1988,
1994a, 1997a), Loos and Weispfenning (1993), and Dolzmann et al. (1999). In
Section 3.1 we restrict ourselves to input formulas ϕ not containing any strict
inequalities “<,” “>,” or “6=.” In that course it will become clear how exactly we
derive extended quantifier elimination from the virtual substitution procedure.

Later, in Section 3.2, we generalize to formulas containing also strict in-
equalities. While with regular quantifier elimination the techniques used in the
course of the generalization to strict inequalities remain completely transpar-
ent to the user, with extended quantifier elimination they leave visible traces
in the answers by possibly introducing certain nonstandard elements, which do
not have a straightforward interpretation over the reals. The purpose of this
paper is to convert these answers to real numbers, given fixed values for the
parameters.

3.1 Virtual Substitution for Weak Inequalities
Recall that our constraints are normalized such that their right hand sides are
0. Assume that all occurrences of x in ϕ(u) = ∃xψ(x,u) are at most quadratic.
Consider fixed real interpretations u = a ∈ Rm for all parameters. Then all
constraints in ψ(x,a) become univariate, and the set { c ∈ R | R |= ψ(c,a) }
is a finite union of real intervals, where the interval endpoints are zeros of the
univariate left hand side polynomials.

Our goal is to include at least one such interval endpoint into our elimination
set E: For each constraint f2(u)x2 + f1(u)x+ f0(u) % 0, with a weak relation
% ∈ {=,≤,≥} and discriminant ∆ = f2

1 − 4f2f0 we add to E three pairs (γ, e)
as follows:(

f2 6= 0 ∧∆ ≥ 0, −f1 +
√

∆
2f2

)
,(

f2 6= 0 ∧∆ ≥ 0, −f1 −
√

∆
2f2

)
,

(
f2 = 0 ∧ f1 6= 0, −f0

f1

)
.

In order to obtain a quantifier-free equivalent for ϕ, such pairs have to be plugged
into ϕ according to (1). To start with, note that the substitution guards γ make
the substitution terms e meaningful by ensuring that denominations are not zero
and arguments to square roots are not negative.

Next, observe that our elimination terms e are not terms in the Tarski lan-
guage as they contain division as well as root symbols. It is one central idea of
the virtual substitution approach that the substitution operator does not map
L-terms to L-terms but atomic L-formulas to quantifier-free L-formulas:

[x // t] : atomic L-formulas→ quantifier-free L-formulas

4

Note that when there is more than one quantifier, it is crucial to obtain L-
formulas in (1) in order to be able to proceed.

To give an impression of virtual substitution, we describe here the substitu-
tion (f = 0)[x // g1+g2

√
g3

g4
] of a root expression

g1 + g2
√
g3

g4
, gi ∈ Z[u]

into an equation f = 0, where f ∈ Z[u][x] of arbitrary degree: It is easy to see
that there are g∗1 , g∗2 , g∗4 such that

f

(
g1 + g2

√
g3

g4

)
=
g∗1 + g∗2

√
g3

g∗4

is again a root expression. Using this intermediate result, we transform

g∗1 + g∗2
√
g3

g∗4
= 0 =̇ g∗1 + g∗2

√
g3 = 0

=̇ |g∗1 | = |g∗2
√
g3| ∧(

sgn(g∗1) 6= sgn(g∗2) ∨ sgn(g∗1) = sgn(g∗2) = 0
)

=̇ g∗1
2 − g∗2

2g3 = 0 ∧ g∗1g∗2 ≤ 0.

Technical details and formal descriptions of virtual substitutions for all our
relations have been given by Weispfenning (1997a).

Let us now apply these ideas to extended quantifier elimination of several
existential quantifiers via virtual substitution. Given

∃xn . . . ∃x1ψ(x1, . . . , xn, u1, . . . , um)

our intended result is a scheme as described in Section 2: β1(u) x1 = e11(u) . . . xn = e1n(u)
...

...
. . .

...
βk(u) x1 = ek1(u) . . . xn = ekn(u)

 .
We successively apply (1) to x1, . . . , xn using elimination sets E1(x2, . . . , xn,u),
. . . , En(u) to obtain β1, . . . , βk as follows:∨

(γn,en)∈En

· · ·
∨

(γ1,e1)∈E1

γn ∧
(
· · · ∧

(
γ1 ∧ ψ[x1 // e1]

)
· · ·
)
[xn // en]︸ ︷︷ ︸

βi(u)

. (2)

The index i of βi describes one choice
(
(γn, en), . . . , (γ1, e1)

)
from the Cartesian

product En × · · · × E1. In practice, the βi obtained this way undergo sophisti-
cated simplification methods such as those described by Dolzmann and Sturm
(1997b). Recall from the previous section that βi that become “false” are ig-
nored. It is important to understand that for the computation of the βi we are
using exclusively virtual substitution.

The corresponding ei(u), in contrast, are obtained from en(u), en−1(xn,u),
. . . , e1(x2, . . . , xn,u) via regular back-substitution of terms in an suitable exten-
sion language of L:

ei,n = en, ei,n−1 = en−1[xn/ei,n], ei,1 = e1[x1/ei,2] . . . [xn/ei,n]. (3)

5

Note once more that the back-substitution possible creates objects like

u1 + 3
√√

5u1 − u2 − 2
2 ,

which are not L-terms or even root expressions. It is thus suitable for obtain-
ing the ei but not for the βi. Vice versa, virtual substitution requires atomic
formulas as input. Thus it is suitable for obtaining the βi while for the ei it
is not applicable at all. Virtual substitution and regular term substitution are
independent concepts, which complement each other.

3.2 Virtual Substitution with Strict Inequalities
Let us return to the elimination of a single quantifier from ∃xψ(x,u). Recall
from the beginning of the previous Section 3.1 how we considered fixed inter-
pretation u = a ∈ Rm causing the set S = { c ∈ R | R |= ψ(c,a) } to be a finite
union of intervals.

When considering in addition strict inequalities, the intervals in S are pos-
sibly open. Consequently, for a strict constraint

ψi(x,u) =̇ fi2(u)x2
i + fi1(u)xi + fi0(u) %i 0, %i ∈ {<,>, 6=}, (4)

contained in ψ(x,u) we cannot use the zeros zi(u) of the left hand side but need
a point from inside the corresponding interval.

In early versions of virtual substitution methods for the linear case, Weispfen-
ning (1988) used arithmetic means 1

2 (zi + zj) for all pairs (ψi, ψj) of strict con-
straints. However, the size of the elimination set then grows quadratically in
the number of constraints, which turned out to be critical for the practical per-
formance of the method (Burhenne, 1990; Loos and Weispfenning, 1993). For
the quadratic case, observe that expressions

1
2

(
−gi1 ±

√
∆i

2gi2
+
−gj1 ±

√
∆j

2gj2

)

are not root expression of the form

g∗1 + g∗2
√

∆∗
g∗3

,

so that Weispfenning’s (1997a) virtual substitution rules sketched in the previous
Section 3.1 cannot be used.

The established approach for strict inequalities uses nonstandard extensions
of R: Let ε ∈ R∗ ⊃ R be a positive infinitesimal number, i.e., 0 < ε < x for all
0 < x ∈ R. Then for a strict constraint as defined in (4) we use four test points

−fi1 ±
√

∆i

2fi2
± ε.

As an optimization, it suffices to consider only upper bounds using −ε. For
solution sets that are unbounded from above we have to add only one more
point ∞ := 1/ε ∈ R∗ for the entire problem.

6

For the application of the elimination set as described in (1) and thus for
the computation of the βi with extended quantifier elimination, both ε and ∞
are equivalently translated into the Tarski language L via virtual substitution.
For instance, let t be a standard term. Then

(x3 + x2 − x− 1 < 0)[x // t− ε] =̇
(x3 + x2 − x− 1 < 0 ∨ (x3 + x2 − x− 1 = 0 ∧ (3x2 + 2x− 1 > 0 ∨

(3x2 + 2x− 1 = 0 ∧ (6x+ 2 < 0 ∨ (6x+ 2 = 0 ∧ 6 > 0))))))[x // t].

In a subsequent step, t can be virtually substituted for x as discussed in the
previous section. For understanding the principal idea, notice that 3x2 +2x−1,
6x + 2, and 6 are the first, second, and third derivatives of x3 + x2 − x − 1,
respectively. For the substitution of ∞ we have, e.g.,

(ax2 + bx+ c < 0)[x //∞] =̇ a < 0 ∨ (a = 0 ∧ b < 0) ∨ (a = 0 ∧ b = 0 ∧ c < 0).

Again, precise definitions and proofs have been given by Weispfenning (1997a).
When again performing regular back-substitution of terms on the side of

the ei, nonstandard symbols cannot be removed but are propagated along the
way. In the final result a single answer ei can even contain several of such
nonstandard symbols. For example, on input of

ϕ = ∃x∃yψ, ψ =̇ ay + 3x2 + 4x < 0 ∧ x > y > a (5)

we obtain a nonstandard extended quantifier elimination result: a+ 4 < 0 y = −a− 3ε1 − 3ε2 − 4
3 x = −a− 3ε1 − 4

3
a < 0 ∧ a+ 4 > 0 y = −ε1 − ε2 x = −ε1

 . (6)

Given such answers containing nonstandard symbols, it is not hard to non-
constructively prove from the elimination procedure that for fixed real interpre-
tations of the parameter a there are positive real choices ε1, ε2 ∈ R so that
the answers satisfy ψ. Infinitesimals introduced at different stages of the elim-
ination are indexed accordingly. It is noteworthy that they have to be chosen
differently in general: Fixing a = −2 in the example, it is easy to see that ε1
has to be chosen different from ε2 because otherwise we would obtain y = 2x,
which together with a = −2 does not satisfy ay + 3x2 + 4x < 0.

Until now users of extended quantifier elimination were left alone with results
as in (6). In spite of the difficulties discussed above, there is a considerable
record of applications of extended quantifier elimination in the literature. We
are going to discuss some of these with our examples in Section 7.

We conclude this section with an important observation that for unfixed
parameters it is not possible in general to determine suitable real choices for
nonstandard symbols:

Proposition 1 (No Standard Answers for Unfixed Parameters). Consider the
formula ϕ = ∃x(a < x < 1) and the nonstandard extended quantifier elimination
result [

a < 1 x = 1− ε1
]
.

There is no standard choice ε̃1 ∈ R such that
[
a < 1 x = 1− ε̃1

]
is an

extended quantifier elimination result for ϕ as well.

7

Proof. Assume for a contradiction that ε̃1 ∈ R is a suitable choice. Then by
definition of extended quantifier elimination it follows for all a ∈]−∞, 1[that
a < 1 − ε̃1 < 1, in particular ε̃1 > 0. On the other hand, for a0 = 1 − ε̃1

2 we
have a0 ∈]−∞, 1[and 1− ε̃1 < a0 < 1, a contradiction.

4 Elimination of Nonstandard Symbols
from Answers

Given an extended quantifier elimination result and prescribed values for all pa-
rameters, our goal is to compute answers containing only standard real numbers.
For instance, given (5) and (6), and fixing a = −2 we are going to obtain[

true y = − 9
256 x = − 1

32

]
.

From the point-of-view of our method, it makes no difference whether the
parameters are fixed after extended quantifier elimination or in advance. For the
sake of a concise description, we are thus going to restrict to existential decision
problems from now on. Recall that if the regular quantifier elimination result
is “false,” then the extended quantifier elimination result is [], i.e., empty. If
the result is “true,” then we assume for simplicity that the extended quantifier
elimination result contains only one row, like[

true x1 = e1,1 . . . xn = e1,n
]
. (7)

Recall from (3) in Section 3.1 that here the e1,1, . . . , e1,n have been obtained
from elimination terms e1, . . . , en via regular back-substitution. Our method
is going to use not the back-substituted answers but these original elimination
terms. In addition, we are going to use the substitution guards γ1, . . . , γn
substituted with those elimination terms in (2). Hence the input for our method
is not an EQR like in (7) but a pre-EQR as follows:[

true x1 = e1(x2, . . . , xn) . . . xn−1 = en−1(xn) xn = en()
γ1(x2, . . . , xn) . . . γn−1(xn) γn()

]
.

Lemma 2 (Semantics of Virtual Substitution). Let ϕ(x1, . . . , xn) be a Tarski
formula, and let a2, . . . , an ∈ R.

(i) Assume that R |= ϕ[x1 // x2− ε](a2, . . . , an). Then there is ε̃0 ∈ R, 0 < ε̃0,
such that for all ε̃ ∈ R, 0 < ε̃ < ε̃0, we have R |= ϕ(a2 − ε̃, a2, . . . , an).

(ii) Assume that R |= ϕ[x1 //∞](a2, . . . , an). Then there is ã0 ∈ R, such that
for all ã1 ∈ R, ã0 < ã1, we have R |= ϕ(ã1, a2, . . . , an). In particular,
the set T = { a ∈ R | 0 < a and R |= ϕ(a, a2, . . . , an) } is unbounded from
above.

Proof. Consider Lε = L∪{ε,∞}. Using the compactness theorem for first-order
logic, there is a real closed field R∗ where the interpretation of ε is a positive
infinitesimal and∞ = ε−1. The L-restriction of R∗ is a proper extension field of
R and, by the Tarski principle, elementary equivalent to R. Formally, R∗|L ⊃ R
and R∗|L ∼= R.

8

(i) Using R ∼= R∗|L and expanding to R∗ it follows from R |= ϕ[x1 // x2 −
ε](a2, . . . , an) that also R∗ |= ϕ[x1 // x2 − ε](a2, . . . , an). It has been dis-
cussed by Loos and Weispfenning (1993) and Weispfenning (1997a) that
for our a2, . . . , an ∈ R the virtual substitution of ε has the following
property:

R∗ |= ϕ[x1 // x2 − ε](a2, . . . , an)←→ ϕ[x1/x2 − ε](a2, . . . , an).

It follows that R∗ |= ϕ[x1/x2 − ε](a2, . . . , an). Let n ∈ N \ {0}. Then we
can conclude R∗ |= ψ[x0/ε](a2, . . . , an), where

ψ = (0 < x0 ∧ nx0 < 1 ∧ ϕ)[x1/x2 − x0].

Now we can generalize R∗ |= ∃x0ψ(a2, . . . , an). Since ε does not oc-
cur anymore, we restrict from R∗ to R∗|L and then use the elemen-
tary equivalence to obtain R |= ∃x0ψ(a2, . . . , an). We have just shown
that for any n ∈ N \ {0} there exists a0 ∈ R, 0 < a0 < 1

n , such that
R |= ϕ(a2 − a0, a2, . . . , an). It follows that inf S = 0, where

S = { a ∈ R | 0 < a and R |= ϕ(a2 − a, a2, . . . , an) } ⊆ R.

On the other hand, S is a semialgebraic set and thus a finite union of
intervals and points. Hence there is ε̃0 ∈ R, 0 < ε̃0, such that]0, ε̃0[⊆ S.

(ii) The argument is essentially the same as in (i) above: We conclude that
R∗ |= ϕ[x1 //∞](a2, . . . , an). According to Loos and Weispfenning (1993)
and Weispfenning (1997a) we know that

R∗ |= ϕ[x1 //∞](a2, . . . , an)←→ ϕ[x1/∞](a2, . . . , an)

so that for n ∈ N we can conclude R∗ |= ψ[x0/∞](a2, . . . , an), where

ψ = (n < x0 ∧ ϕ)[x1/x0].

Again, we generalize, restrict, and apply elementary equivalence to obtain
R |= ∃x0ψ(a2, . . . , an). We thus know that for any n ∈ N there exists
a0 ∈ R, n < a0, such that R |= ϕ(a0, a2, . . . , an). It follows that the set
T is unbounded from above. On the other hand, T is a semialgebraic set
and thus a finite union of intervals and points. Hence there is ã0 ∈ R, such
that]ã0,∞[⊆ T .

Lemma 3. Consider a quantifier-free Tarski formula ψ(x1, . . . , xn). Assume
that for each i ∈ {2, . . . , n} we have a root expression ẽi = ai+bi

√
ci

di
with ai, bi,

ci, di ∈ Z[xi+1, . . . , xn]. Assume furthermore that R |= ψ −→ ci ≥ 0 ∧ di 6= 0,
and let αi ∈ R be the interpretation of ei = ẽi[xi+1/ẽi+1] . . . [xn/ẽn]. Then

{α ∈ R | R |= ψ[x2 // ẽ2] . . . [xn // ẽn](α) } = {α ∈ R | R |= ψ(α, α2, . . . , αn) }.

Proof. Consider L′ = L∪{√ ,−1} and the L′-expansion R′ of R where√ and −1

have the usual semantics if defined and an arbitrary but fixed value otherwise.
Let ν = (f % 0), where f ∈ Z[x, u1, . . . , um], % ∈ {≤, <,≥, >, 6=,=}, and let
e = a+b

√
c

d , where a, b, c, d ∈ Z[u1, . . . , um]. Let s ∈ Rm such that c(s) > 0

9

and d(s) 6= 0. Then according to Weispfenning (1997a) the following holds for
s ∈ Rm:

R′ |= (ν[x // e]←→ ν[x/e])(s).

For our formula ψ and all α ∈ R we obtain

R′ |= (ψ[x2 // ẽ2] . . . [xn // ẽn]←→ ψ[x2/ẽ2] . . . [xn/ẽn]←→ ψ)(α, α2, . . . , αn).

It follows that R |= (ψ[x2 // ẽ2] . . . [xn // ẽn]←→ ψ)(α, α2, . . . , αn) for all α ∈ R.

Lemma 4 (Commutation of Virtual Substitutions). Consider a quantifier-free
Tarski formula ψ(x1, . . . , xn). Let e1 = a1+b1

√
c1

d1
, with a1, b1, c1, d1 ∈ Z,

c1 > 0, d1 6= 0. Furthermore, let i ∈ {2, . . . , n}, let ei = ai+bi
√
ci

di
with ai, bi, ci,

di ∈ Z[xi+1, . . . , xn], and let γi(xi+1, . . . , xn) be a quantifier-free formula such
that R |= γi −→ ci > 0 ∧ di 6= 0. Then

R |= (γi ∧ ψ)[xi // ei][x1 // e1]←→ (γi ∧ ψ)[x1 // e1][xi // ei].

Proof. Let L′, R′ be as in the proof of Lemma 3. Recall the equivalence R′ |=
(ν[x // e]←→ ν[x/e])(s) and observe that, on the other hand, if R |= (ci < 0)(s)
or R |= (di = 0)(s) for s ∈ Rn−i, then R |= (γi ∧ψ ←→ false)(s). It follows that

R′ |= (γi ∧ ψ)[xi // ei][x1 // e1] ←→ (γi ∧ ψ)[xi/ei][x1/e1]
←→ (γi ∧ ψ)[x1/e1][xi/ei]
←→ (γi ∧ ψ)[x1 // e1][xi // ei].

Since virtual substitution eliminates all occurrences of √ and −1, we can con-
clude that R |= (γi ∧ ψ)[xi // ei][x1 // e1]←→ (γi ∧ ψ)[x1 // e1][xi // ei].

Theorem 5 (Computation of Standard Answers). Consider a closed Tarski
formula ϕ = ∃xn . . . ∃x1ψ(x1, . . . , xn). Assume that[

true x1 = e1 . . . xn = en
γ1 . . . γn

]
is a pre-EQR for ϕ such that each ei is of one of the following forms:

(a) a root expression a+b
√
c

d , where a, b, c, d ∈ Z[xi+1, . . . , xn],

(b) ∞,

(c) xi+1 − ε.

Then we can compute root expressions ẽ1, . . . , ẽn meeting the specification (a)
above and γ̃1, . . . , γ̃n such that the following is a pre-EQR for ϕ as well:[

true x1 = ẽ1 . . . xn = ẽn

γ̃1 . . . γ̃n

]
. (8)

10

Proof. For the sake of the proof, we are going to show that in addition to the
required ẽ1, . . . , ẽn and γ̃1, . . . , γ̃n we can compute real algebraic numbers
α1, . . . , αn for the values of ẽ1, . . . , ẽn after back-substitution. We represent
these real algebraic numbers as pairs of univariate defining polynomials and
open isolating intervals with rational bounds. Given k ∈ {1, . . . , n}, it suffices
to show that from[

true x1 = e1 . . . xk = ek xk+1 = ẽk+1 . . . xn = ẽn

γ1 . . . γk γ̃k+1 . . . γ̃n

]
and αk+1, . . . , αn we can compute suitable ẽk, γ̃k, and αk. Define

ϕk(xk, . . . , xn) = (γk−1 ∧ · · · ∧ γ1 ∧ ψ)[x1 // e1] . . . [xk−1 // ek−1],
ϕk+1(xk+1, . . . , xn) = (γk ∧ ϕk)[xk // ek],

and observe that[
true xk = ek xk+1 = ẽk+1 . . . xn = ẽn

γk γ̃k+1 . . . γ̃n

]
(9)

and [
true xk+1 = ẽk+1 . . . xn = ẽn

γ̃k+1 . . . γ̃n

]
(10)

are pre-EQRs for ∃xn . . . ∃xkϕk and ∃xn . . . ∃xk+1ϕk+1, respectively. On the
basis of these definitions it is sufficient for our proof to compute suitable ẽk, γ̃k,
and αk such that[

true xk = ẽk xk+1 = ẽk+1 . . . xn = ẽn

γ̃k γ̃k+1 . . . γ̃n

]
is a pre-EQR for ∃xn . . . ∃xkϕk as well. We define furthermore

ξ(xk, . . . , xn) = γ̃n ∧ · · · ∧ γ̃k+1 ∧ ϕk,
ξ′(xk) = ξ[xk+1 // ẽk+1] . . . [xn // ẽn].

Lemma 3 applied to the quantifier-free formula ξ, the root expressions ẽk+1,
. . . , ẽn, and the real algebraic numbers αk+1, . . . , αn yields

{ r ∈ R | R |= ξ′(r) } = { r ∈ R | R |= ξ(r, αk+1, . . . , αn) }. (11)

We distinguish three cases depending on the type of ek.

(a) We have ek = ak+bk
√
ck

dk
, and γk equals dk 6= 0∧ ck > 0. We set ẽk = ek and

γ̃k = γk. Since (10) is a pre-EQR for ∃xn . . . ∃xk+1ϕk+1 and αk+1, . . . , αn
correspond to the values of ẽk+1, . . . , ẽn after back-substitution, we have
R |= ϕk+1(αk+1, . . . , αn). It follows that in particular R |= γk(αk+1, . . . , αn)
and furthermore R |= dk(αk+1, . . . , αn) 6= 0 and R |= ck(αk+1, . . . , αn) > 0.
This allows us to compute αk = ẽk(αk+1, . . . , αk) from ak, bk, ck, dk, αk+1,
. . . , αn.

11

(b) We have ek = ∞, and γk is “true.” Since (9) is a pre-EQR for formula
∃xn . . . ∃xkϕk we have

R |= ξ[xk //∞][xk+1 // ẽk+1] . . . [xn // ẽn].

Using the fact that αk+1, . . . , αn are real algebraic numbers corresponding
to the values of ẽk+1, . . . , ẽn after back-substitution we conclude that

R |= ξ[xk //∞](αk+1, . . . , αn).

Lemma 2(ii) now guarantees that the set { r ∈ R | R |= ξ(r, αk+1, . . . , αn) }
is unbounded from above. Thus by (11) the set { r ∈ R | R |= ξ′(r) } is
unbounded from above as well. Using well-known bounds (Akritas, 2009)
on the roots of the univariate polynomials contained in ξ′, we compute a
sufficiently large p

q ∈ Q satisfying ξ′. We set ẽk = p+0
√

0
q and construct

a corresponding real algebraic number αk, and we set γ̃k = true. Then
R |= (γ̃k ∧ ξ′)[xk // ẽk], and n− k applications of Lemma 4 yield

R |= (γ̃n ∧ · · · ∧ γ̃k ∧ ϕk)[xk // ẽk][xk+1 // ẽk+1] . . . [xn // ẽn].

(c) We have ek = xk+1 − ε, and γk is “true.” Similarly to case (b), we observe
that (9) is a pre-EQR for ∃xn . . . ∃xkϕk and obtain

R |= ξ[xk // xk+1 − ε][xk+1 // ẽk+1] . . . [xn // ẽn],

and conclude that R |= ξ[xk // xk+1 − ε](αk+1, . . . , αn). Lemma 2(i) now
guarantees the existence of some ε̃0 ∈ R, 0 < ε̃0, such that

R |= ξ(αk+1 − ε̃, αk+1, . . . , αn) for 0 < ε̃ < ε̃0.

By (11) it follows that R |= ξ′(αk+1− ε̃) for all 0 < ε̃ < ε̃0. Therefore, after
finitely many refinements of the isolating interval

]
p
q , u
[

of αk+1 we obtain
R |= ξ′

(
p
q

)
. We set ẽk = p+0

√
0

q and construct a corresponding real algebraic
number, and we set γ̃k = true. Exactly as in case (b), R |= (γ̃k∧ξ′)[xk // ẽk],
and n− k applications of Lemma 4 yield

R |= (γ̃n ∧ · · · ∧ γ̃k ∧ ϕk)[xk // ẽk][xk+1 // ẽk+1] . . . [xn // ẽn].

Note that instead of using the lower bound p
q one can heuristically try and

find a satisfying integer.

A careful inspection of our proof reveals that in all cases γ̃k = γk. However,
this is going to change in Corollary 7, which generalizes our theorem.

Notice that the constructive proof of Theorem 5 suggests to recompute the
intermediate quantifier elimination results ϕk. In practice, there are arguments
for saving these ϕk during the quantifier elimination run. Consider, e.g., the
following common optimization: Whenever some ϕk heuristically simplifies to a
disjunction ϕk,1∨· · ·∨ϕk,s, then the virtual substitution procedure would treat
each ϕk,j separately, i.e., like originating from several elimination set elements.
In general, in the course of the application of Theorem 5 such transformations
cannot be reconstructed exclusively from the pre-EQR.

12

To illustrate the theorem we revisit our example given in (5) on page 7 for
the choice a = −2. In that case ψ in (5) specializes to

ψ =̇ −2y + 3x2 + 4x < 0 ∧ x > y > −2.

For our theorem we have to consider the following pre-EQR corresponding to
the specialization of the EQR (6) to a = −2:[

true y = x− ε x = h− ε h = 0
true true true

]
. (12)

Notice the introduction of an artificial variable h to meet the requirement of the
theorem that infinitesimals occur only in expressions of the form xi = xi+1 − ε.

To apply the theorem to the pre-EQR (12), we consider

ϕ1(y, x, h) =̇ −2y + 3x2 + 4x < 0 ∧ x > y > −2,
ϕ2(x, h) =̇ ϕ1[y // x− ε]

=̇ x+ 2 > 0 ∧ 3x2 + 2x < 0,
ϕ3(h) =̇ ϕ2[x // h− ε]

=̇ h+ 2 > 0 ∧ (h = 0 ∨ 3h2 + 2h < 0).

As in the theorem, we proceed from the right to the left, i.e., our first step is
fixing h and computing a respective algebraic number αh. Since h = 0, we are
in case (a). Now [

true h = 0
true

]
is a pre-EQR for ∃hϕ3. Therefore, αh is the root of the polynomial h in the
interval]−1, 1[, i.e., αh is the rational number 0.

We continue with x = h− ε, which is case (c). Now[
true x = h− ε h = 0

true true

]
is a pre-EQR for ∃x∃hϕ2. Lemma 2(i) ensures that there exists ε̃0 ∈ R, 0 < ε̃0
such that for all ε̃ ∈ R, 0 < ε̃ < ε̃0, we have R |= ϕ2(αh− ε̃, αh). Refining αh we
compute that R |= ϕ2(αx, αh), where αx is the root of 32x + 1 in the interval
]− 1

16 ,
1

16 [, i.e., αx is the rational number − 1
32 .

Finally consider y = x− ε, which is again case (c). Now[
true y = x− ε x = − 1

32 h = 0
true true true

]
is a pre-EQR for ∃y∃x∃hϕ1. Lemma 2(i) ensures that there exists ε̃0 ∈ R, 0 < ε̃0
such that for all ε̃ ∈ R, 0 < ε̃ < ε̃0, we have R |= ϕ1(αx − ε̃, αx, αh). Refining
αx we compute that R |= ϕ1(αy, αx, αh), where αy is the root of 256y+ 9 in the
interval]− 10

256 ,
10

256 [, i.e., αy is the rational number − 9
256 . To conclude we state

that [
true y = − 9

256 x = − 1
32 h = 0

true true true

]

13

is a pre-EQR for ∃y∃x∃hϕ1, which does not contain any nonstandard symbols.
Since h does not occur in ϕ1 = ψ,[

true y = − 9
256 x = − 1

32
true true

]
is a pre-EQR for ∃y∃xψ.

Finally, note that all quantified variables have to be present in a pre-EQR
before Theorem 5 can be applied. This has a consequence, which we illustrate
on an example. Consider a valid sentence ∃x∃a(x < a). An extended quantifier
elimination result containing a nonstandard symbol for this formula is[

true a =∞
]
.

Since x does not occur in this result, it can be “freely chosen,” i.e., the result is
independent of the value of x. Put another way, this means that[

true x = t a =∞
]

is an extended quantifier elimination result for any standard term t as well. This
degree of freedom disappears when computing standard answers in the following
sense: The term t has to be fixed before the computation of standard answers.
Fixing t = 2 and using Theorem 5 we obtain a standard EQR[

true x = 2 a = 3
]
.

The computed standard answer for a depends on this choice of t, i.e., it is
possibly invalid for other choices. Fixing for example x = 4, we see that a = 3
is not admissible anymore, because substituting these terms into (x < a) yields
“false.” To compute a standard term for a when x = 4, we have to start with[

true x = 4 a =∞
]
,

and apply Theorem 5 again.

5 Degree Shifts by Virtual Substitution
We have already discussed that the feasibility of the virtual substitution method
strongly depends on the degrees of the quantified variables. Among the heuris-
tics for decreasing these degrees there is an observation, which was essentially
made already by Weispfenning (1997a), and which was refined and named de-
gree shift by Dolzmann et al. (1998). The following lemma restates the result
by Dolzmann et al.:

Lemma 6 (Degree Shift). Consider a quantifier-free Tarski formula ψ. Let
g be the GCD of all exponents of x in ψ. We divide all exponents of x in ψ
by g yielding ψ′. If g is odd, we have ∃xψ ←→ ∃xψ′, if g is even we have
∃xψ ←→ ∃x(x ≥ 0 ∧ ψ′). For g > 1 this reduces the degree of x in ψ. In order
to obtain larger GCDs and hence a better degree reduction, we may in advance
“adjust” the degree n > 0 of x in polynomials of the form xnf , where x does
not occur in f as follows: In equations and disequations, n may be equivalently
replaced by any m > 0. In ordering inequalities we may choose any m > 0 of
the same parity as n.

14

We now want to reanalyze this result as a special case of virtual substitution.
For this, we have to slightly generalize the framework by introducing shadow
quantifiers. Recall that we are considering existential problems of the form

ϕ(u1, . . . , um) = ∃xn . . . ∃x1ψ(x1, . . . , xn, u1, . . . , um).
As a first step we now switch to the equivalent problem

ϕ̂(u1, . . . , um) = ∃x̂n∃xn . . . ∃x̂1∃x1ψ(x1, . . . , xn, u1, . . . , um),
where {x̂1, . . . , x̂n} ∩ {x1, . . . , xn, u1, . . . , um} = ∅. That is, the variables x̂i do
not occur in ψ. Consequently, proceeding with the elimination as discussed in
Section 3, each shadow quantifier ∃x̂i imposes a trivial elimination problem.

Strictly following the virtual substitution framework, one would not sim-
ply drop those quantifiers ∃x̂i but eliminate them via trivial elimination sets
like {(true, 0)}. Notice that one cannot use ∅ as an elimination set here be-
cause

∨
∅ = false. Furthermore, from the point of view of extended quantifier

elimination the use of {(true, 0)} formally provides answers also for x̂1, . . . , x̂n.
Consider now w.l.o.g. the elimination of ∃x1, and assume that we are in the

situation of Lemma 6, where g > 1 is the GCD of the, possibly adjusted, degrees
of x1 in ψ. We use an elimination set that depends on the parity of g:

E =
{(
γ, g
√
x̂1

)}
,

where γ is x1 ≥ 0 if g is even and “true” otherwise. Of course, we have to define
a suitable virtual substitution of g

√
x̂1 for x1 within ψ:(

k∑
j=1

ajx
j
1 % 0

)[
x1 //

g
√
x̂1

]
=
(

k∑
j=1

aj x̂

⌊
max(j,g)

g

⌋
1 % 0

)
,

where a1, . . . , ak ∈ Z[x2, . . . , xn, u1, . . . , um] and % ∈ {=,≤, <,≥, >, 6=}. The
floor function is applied to make the definition complete; with our elimination
sets we will always have divisibility g | max(j, g). The max operator takes care
of possible degree adjustments made for the computation of E.

Observe that in contrast to the elimination sets studied so far we introduce
here a variable x̂1 which was not present in ψ before. That variable is bound by
shadow quantifier ∃x̂1. Intuitively, for the elimination of ∃x̂1∃x1 we switch from
one hard plus one trivial elimination step to two nontrivial elimination steps.

The termination of quantifier elimination with shadow quantifiers follows
from the termination of the underlying quantifier elimination method plus the
fact that there are only finitely many shadow quantifiers for each regular quan-
tifier.

To keep the notation simple, we will in the sequel not formally introduce
shadow quantifiers for all quantifiers. Instead, our procedure will silently assume
their presence whenever it performs a degree shift. In the corresponding pre-
EQR this can be recognized by assignments of the form xi = g

√
x̂i, which cannot

come into existence otherwise.

6 Generalization and Extensions of the Method
In this section we generalize Theorem 5 to admit more general pre-EQRs as
input. Furthermore, we discuss heuristics for obtaining rational numbers or
even integers instead of root expressions in our standard answers.

15

Corollary 7 (Generalized Computation of Standard Answers). Consider a
closed Tarski formula ϕ = ∃xn . . . ∃x1ψ(x1, . . . , xn). Assume that the follow-
ing is a pre-EQR for ϕ:[

true x1 = e1 . . . xn = en
γ1 . . . γn

]
such that each ei is of one of the following forms:

(a) a+b
√
c

d , where a, b, c, d ∈ Z[xi+1, . . . , xn],

(b) a+b
√
c

d ± ε, where a, b, c, d ∈ Z[xi+1, . . . , xn],

(c) ±∞,

(d) g
√
xi+1, where g ∈ N \ {0},

where as usual “±” denotes “+” or “−.” Then we can compute root expressions
ẽ1, . . . , ẽn each meeting either the specification (a) or the specification (d) above
and γ̃1, . . . , γ̃n such that the following is a pre-EQR for ϕ as well:[

true x1 = ẽ1 . . . xn = ẽn

γ̃1 . . . γ̃n

]
.

Proof. From a theoretical point of view, the treatment of ei = a+b
√
c

d − ε can
be reduced to Theorem 5 via the introduction of artificial variables as we did
for our example in (12) above. From a practical point of view, it is not hard to
see how to algorithmically treat such expressions directly. Notice that then our
corrected answer ẽi will generally be a rational number. As already mentioned
in the proof of Theorem 5(c), one might heuristically even find an integer. In
both cases the possibly non-trivial guard γi has to be replaced by γ̃i = true.

Next, the treatment of a+b
√
c

d + ε and −∞ in analogy to a+b
√
c

d − ε and ∞,
respectively, is straightforward.

Finally, having obtained algebraic numbers for xi+1, . . . , xn, one can com-
pute an algebraic number also for g

√
xi+1 with g ∈ N \ {0}.

The proofs for both Theorem 5 and Corollary 7 are constructive. Recall that
the ordering of the variables within the given pre-EQR is such that quantifier
elimination has taken place from the left to the right, while the construction of
the standard answers proceeds from the right to the left.

Consider the computation of ẽk for some ek. Here, the quantifier elimination
direction mentioned above has played an important role in our proofs: Although
ek+1, . . . , en have been replaced with ẽk+1, . . . , ẽn, the expression ek is still
valid. Taking that idea a bit further, we may replace ek with any valid expression
without affecting the validity of either e1, . . . , ek−1 or ẽk+1, . . . , ẽn.

In fact, it is sometimes possible to convert a root expression ek into a rational
number or even an integer as follows: Before processing ek, we check whether
changing it to one of ek ± ε yields a valid pre-EQR for ϕ as well. This can be
done by means of the virtual substitution

(γ̃n ∧ · · · ∧ γ̃k+1 ∧ γk ∧ · · · ∧ γ1 ∧ ψ)
[x1 // e1] . . . [xk−1 // ek−1][xk // ek ± ε][xk+1 // ẽk+1] . . . [xn // ẽn].

16

In the positive case, we process ek ± ε instead of ek. In terms of the proofs
of Theorem 5 and Corollary 7 this leads to the cases (c) and (b), respectively,
where we generally obtain a rational solutions ẽk and heuristically even integers.

Finally, it is quite helpful in general to recognize rational numbers among
all occurring real algebraic numbers. This holds in particular for the final αn,
. . . , α1, as they correspond to the values of the back-substituted ẽn, . . . , ẽ1,
which may be complicated nested root expressions. For this one can use the
following lemma.

Lemma 8 (Rational Algebraic Numbers). Consider a real algebraic number
α =

(
anx

n + · · · + a0,]l, u[
)
, where a0, . . . , an ∈ Z, a0 > 0, l, u ∈ Q, l > 0.

Assume furthermore that
]
a0
u ,

a0
l

[
∩Z = {z}. Then α ∈ Q if and only if α = a0

z .

Proof. Let α ∈ Q. From l > 0 it follows that α > 0, say α = p
q , where p, q ∈ Z,

p > 0, q > 0. This admits the following factorization:

q ·
n∑
i=0

aix
i = (qx− p) ·

n−1∑
i=0

aix
i.

It follows that p | a0, say pp′ = a0, and we obtain α = pp′

qp′ = a0
qp′ . On the other

hand, l < a0
qp′ < u, which is equivalent to a0

u < qp′ < a0
l , and it follows that

qp′ = z. Together α = a0
qp′ = a0

z . The converse implication is obvious.

The lemma can be straightforwardly generalized to arbitrary intervals]l, u[.

7 Implementation and Application Examples
We have implemented our method in Redlog, which is a part of the computer al-
gebra system Reduce. Reduce is freely available under a modified BSD license.1
Technically, our implementation is an extension of Redlog’s extended quantifier
elimination rlqea by a switch rlqestdans, which toggles the computation of
standard answers.

In the following subsections we are going to revisit a number of applications
of extended quantifier elimination that have been documented in the scientific
literature. In each case we are going to briefly explain the underlying prob-
lem, recompute the solutions with nonstandard answers, and finally compute
solutions with standard answers using our approach as described in this article.

Since Redlog is very actively developed and improved, and the considered
applications date back up to more than 15 years, the nonstandard answers
obtained here partly differ from those reported in the literature. Of course, in
such cases both variants are correct.

All computations have been carried out with the CSL version of Reduce,
revision 2465, using 4 GB RAM on a 2.4 GHz Intel Xeon E5-4640 running
64 bit Debian Linux 7.3.

7.1 Computational Geometry
Besides many standard problems from computational geometry, Sturm and
Weispfenning (1997) consider in their Example 10 the reconstruction of a cuboid

1http://reduce-algebra.sourceforge.net

17

http://reduce-algebra.sourceforge.net

wireframe from a photography taken from the origin along the x3-axis with a
lens of focal length 5.

The answers obtained by extended quantifier elimination is going to describe
vectors e1, e2, e3 ∈ R3 generating the cuboid together with a vector v ∈ R3

describing its translation from the origin. The input formula, which contains in
addition points i ∈ R2 on the camera sensor, contains 15 quantifiers:

∃e1∃e2∃e3∃v∀i
(
(ι′ ←→ π0) ∧ ∃k(59kv = (100, 200, 295k + 295))

)
.

The formula ι′(e1, e2, e3,v, i), which has been obtained by regular quantifier
elimination earlier, generically describes that a point i lies in the image of a
cuboid generated by e1, e2, e3, and translated by v. The formula π0(i) is a
quantifier-free description of one concrete image. The remaining part of the
input formula fixes i =

(100
59 ,

200
59
)

to be the image of the origin of the cuboid.
Extended quantifier elimination yields “true” if and only if π0 is a picture of

a cuboid at all. In the positive case, the answers will provide suitable vectors
e1, e2, e3, and v.

For π0 as considered by Sturm and Weispfenning (1997) in Example 10,
the extended quantifier elimination yields “true” together with the following
nonstandard answers:

e1 =
(

5∞1,
7∞1

2 ,
5∞1

2

)
, e2 =

(
∞1, 2∞1,

−24∞1

5

)
,

e3 =
(
−109∞1

65 ,
53∞1

26 ,
∞1

2

)
, v =

(
5∞1, 10∞1,

59∞1 + 20
4

)
.

Our method fixes ∞1 = 1, which yields the following standard answers:

e1 =
(

5, 7
2 ,

5
2

)
, e2 =

(
1, 2,−24

5

)
,

e3 =
(
−109

65 ,
53
26 ,

1
2

)
, v =

(
5, 10, 79

4

)
.

The entire computation takes 189 s, of which the computation of the standard
answers takes less than 1 ms.

7.2 Motion Planning
Weispfenning (2001) has studied motion planning problems in dimension two.
Both the object to be moved and the free space between given obstacles are
semilinear sets. Extended quantifier elimination is used to decide whether a
geometrical object can be moved from an initial to a final destination in at most
n moves, where the trajectory of each move is a line segment. In the positive
case, the answers describe the coordinates u1, . . . , un ∈ R2 of the object after
each of the n moves. Accordingly, the input formulas contain 2n variables in
the prenex existential block.

We have applied our answer correction to three of the examples discussed
by Weispfenning (2001). For the concrete input formulas and pictures of the
scenery we refer to that publication.

18

Example u1 u2 u3 time

6.4 (5− ε1, 5− ε1)
(
5− ε1,

−2ε1+1
2

) (
9, 9

2
)

0.06 s
6.8 (0, 3 + ε1) (3− ε1, 6) (7, 6) 9.5 s
6.9 (0, 3 + ε1) (3− ε1, 6) 0.28 s

Table 1: Summary of nonstandard answers and computation times for motion
planning examples considered by Weispfenning (2001).

Example ε1 u1 u2 u3

6.4 3
16

(77
16 ,

77
16
) (77

16 ,
5

16
) (

9, 9
2
)

6.8 1 (0, 4) (2, 6) (7, 6)
6.9 1 (0, 4) (2, 6)

Table 2: Summary of standard answers for motion planning examples considered
by Weispfenning (2001). In all cases the time spent for the computation of ε1
was less than 1 ms.

For Example 6.4, we obtain the following nonstandard answers:

u1 = (5− ε1, 5− ε1) , u2 =
(

5− ε1,
−2ε1 + 1

2

)
, u3 =

(
9, 9

2

)
.

Our method fixes ε1 = 3
16 , which yields the following standard answers:

u1 =
(

77
16 ,

77
16

)
, u2 =

(
77
16 ,

5
16

)
, u3 =

(
9, 9

2

)
.

The entire computation takes 60 ms, of which the computation of the standard
answers takes less than 1 ms. Tables 1 and 2 summarize these results along with
the two other examples.

7.3 Models of Genetic Circuits
Recently, symbolic methods for the identification of Hopf bifurcations in vector
fields arising from biological networks or chemical reaction networks have re-
ceived considerable attention in the literature (Sturm and Weber, 2008; Sturm
et al., 2009; Errami et al., 2011; Weber et al., 2011; Errami et al., 2013). Given
a polynomial vector field, El Kahoui and Weber (2000) introduced a method,
which automatically generates first-order Tarski formulas describing the exis-
tence of a Hopf bifurcation in terms of the parameters. Then real quantifier
elimination is applied to obtain corresponding necessary and sufficient condi-
tions. For efficiency reasons, one often existentially quantifies all parameters
and applies extended quantifier elimination. In the positive case, the answers
provide one set of parameter values giving rise to a Hopf bifurcation.

Based on models introduced by Boulier et al. (2007), Sturm and Weber
(2008) and Sturm et al. (2009) used the approach sketched above to automat-
ically derive the existence of Hopf bifurcations for the gene regulatory network

19

controlling the circadian clock of a certain unicellular green alga. The input
formula is

∃(0 < v1 ∧ 0 < v3 ∧ 0 < v2 ∧ 0 < ϑ ∧ 0 < γ0 ∧ 0 < µ ∧ 0 < δ ∧ 0 < α

∧ ϑ · (γ0 − v1 − v1v9
3) = 0 ∧ λ1v1 + γ0µ− v2 = 0

∧ 9α(γ0 − v1 − v1v9
3) + δ(v2 − v3) = 0 ∧ 0 < ϑδ + ϑv9

3δ + 9λ1ϑv1v8
3δ

∧ 162ϑv17
3 αv1 + 162ϑαv1v8

3 + 162αv1v8
3δ + ϑ+ 2ϑv9

3δ + ϑ2v18
3 δ

+ ϑv9
3 + 2ϑδ + 81αv1v8

3ϑδ + 81αv1v17
3 ϑδ + δ2 + ϑδ2 + ϑ2δ + ϑ2

+ 2ϑ2v9
3 + ϑ2v18

3 + 6561α2v2
1v16

3 + 2ϑ2v9
3δ + δ + 81αv1v8

3 + ϑv9
3δ

2

− 9λ1ϑv1v8
3δ = 0),

for which we obtain the following nonstandard answers:

γ0 = 8 9√∞2
19∞3+16 9√∞2

10∞3+8 9√∞2∞3
729∞2

1∞3
2+1458∞2

1∞2
2+729∞2

1∞2−486∞1∞2
2∞3−486∞1∞2∞3+9∞2∞2

3
,

µ = 729∞2
1∞

3
2+1458∞2

1∞
2
2+729∞2

1∞2−486∞1∞2
2∞3−486∞1∞2∞3+∞2∞2

3−8∞2
3

8∞2
2∞3+16∞2∞3+8∞3

,

ϑ =
−6561∞4

1∞
4
2−26244∞4

1∞
3
2−39366∞4

1∞
2
2−26244∞4

1∞2−6561∞4
1+4374∞3

1∞
3
2∞3

+13122∞3
1∞2

2∞3+13122∞3
1∞2∞3+4374∞3

1∞3−54∞1∞2∞3
3−54∞1∞3

3+∞4
3

6561∞4
1∞

5
2+32805∞4

1∞
4
2+65610∞4

1∞
3
2+65610∞4

1∞
2
2+32805∞4

1∞2+6561∞4
1

−8748∞3
1∞

4
2∞3−34992∞3

1∞
3
2∞3−52488∞3

1∞
2
2∞3−34992∞3

1∞2∞3−8748∞3
1∞3

+3078∞2
1∞

3
2∞

2
3+9234∞2

1∞
2
2∞

2
3+9234∞2

1∞2∞2
3+3078∞2

1∞
2
3−108∞1∞2

2∞
3
3

−216∞1∞2∞3
3−108∞1∞3

3+∞2∞4
3+∞4

3

,

v1 = 8 9√∞2
10∞3+8 9√∞2∞3

729∞2
1∞3

2+1458∞2
1∞2

2+729∞2
1∞2−486∞1∞2

2∞3−486∞1∞2∞3+9∞2∞2
3
,

v2 = 9
√
∞2, v3 = 9

√
∞2, α =∞1, δ = 1, λ1 =∞3.

Our method fixes ∞1 = 1, ∞2 = 9, and ∞3 = 87481, which yields the
following standard solution:

γ0 = 69984800 · 9
√

9
616061191401 , µ = 3827162521

69984800 , ϑ = 7652917261
76056937210 ,

v1 = 6998480 · 9
√

9
616061191401 , v2 = 9

√
9, v3 = 9

√
9,

α = 1, δ = 1, λ1 = 87481.

The entire computation takes 370 ms, of which the computation of the standard
answers takes 140 ms.

7.4 Mass Action Systems
We are now going to discuss another example about Hopf bifurcation. This
time, the considered system is a chemical reaction system, viz. the famous and
well-studied phosphofructokinase reaction. It has been firstly analyzed with
symbolic methods by Gatermann et al. (2005, Example 2.1). We adopt here the
first-order formulation discussed by Sturm and Weber (2008) and Sturm et al.
(2009) following the approach sketched in the previous subsection.

20

We obtain nonstandard answers of the following form:

k21 = K21(∞1,∞2,∞3,∞4, ε1), k34 =∞1, k43 =∞2,

k46 = K46(∞1,∞2,∞3,∞4,∞5, ε1), k64 =∞5, k65 =∞3,

k56 = K56(∞1,∞2,∞3,∞4,∞5, ε1), v1 = ∞2∞4

∞1
,

v2 = V2(∞1,∞2,∞3,∞4,∞5, ε1), v3 =∞4.

The nonstandard terms K21, . . . , K56, V2 are so large that we cannot explicitly
display them here. To give an idea, K46 would fill more than 16 pages in this
document.

Our method fixes∞1 =∞2 =∞3 =∞4 = 1, ∞5 = 20, and ε1 = 2(
√

2−1),
which yields the following standard solution:

k21 = 3, k34 = 1, k43 = 1,

k46 =
√

3457 + 1
8 , k64 = 20, k65 = 1,

k56 = −
√

3457 + 159
6 , v1 = 1,

v2 = −
√

3457 + 159
24 , v3 = 1.

The entire computation takes 13.2 s, of which the computation of the standard
answers takes 0.1 s.

7.5 Sizing of Electrical Networks
Sturm (1999a, Section 5) has applied generic quantifier elimination to the sizing
of a BJT amplifier. Description of a circuit is given as a set of operating point
equations E1 and a set of AC conditions E2. For the concrete equations we
refer to the mentioned publication. The system E1 ∧E2 has to be solved w.r.t.
the main variables M = {r1, . . . , r8, c3} in terms of parameter variables P =
{vcc, ahigh, alow, p, zin, zout}. Fixing values of the parameters to

vcc = 3, ahigh = 3, alow = 2, p = 12, zin = 5, zout = 5,

the answers contain one nonstandard term:

r1 = 4457058395
5180672 , r2 = 4457058395

2590336 , r3 = −4457058395
1295168 ,

r4 = −4182864929375836679
128066211840000 , r5 =∞1, r6 = 282999424999

804520000 ,

r7 = 5, r8 = 25509595605337086755
20836792295619328 , c3 = 647584

13371175185 .

Our method fixes ∞1 = 1, which yields a standard answer for r5. The entire
computation takes less than 2 ms, of which the computation of the standard
answer takes less than 1 ms.

21

7.6 A Linear Feasibility Example
Korovin et al. (2009, Section 9) have considered a small linear existential prob-
lem to demonstrate the difference between their conflict resolution method and
the Fourier–Motzkin elimination method. The following are nonstandard an-
swers for that problem computed by Redlog:

x1 = − 8
13 , x2 = 1− 65ε1

65 , x3 = −14 + 13ε2

13 ,

x4 = −302− 195ε1 + 65ε2

130 , x5 = −30 + 26ε2

39 .

Our method fixes ε1 = 1
65 and ε2 = 1

13 , which yields the following standard
answers:

x1 = − 8
13 , x2 = 0, x3 = −1, x4 = −30

13 , x5 = −28
39 .

The entire computation takes 3 ms, of which the computation of the standard
answers takes less than 1 ms.

8 Conclusions and Future Work
We have introduced extended quantifier elimination as a general concept, and
focused on virtual substitution as one possible method for its realization. Suc-
cessful applications of extended quantifier elimination via virtual substitution
have been documented in the literature over the past two decades. One problem
there was that the answers obtained via virtual substitution in general contain
nonstandard symbols, which can be hard to interpret. For fixed parameters
the present work resolves this issue by providing a complete post-processing
method for fixing all answers to standard real numbers. We have implemented
our method, and applied it to various extended quantifier elimination problems
from the literature. In these experiments we have generally obtained standard
answers that are meaningful in terms of the modeled problems. In most cases
our post-processing method does not significantly contribute to the overall com-
putation time. It is noteworthy that our method is compatible with our recent
work on combining virtual substitution with learning techniques (Korovin et al.,
2014).

Recall from our discussion in Section 6 on finding integer and rational an-
swers that there is often a considerable degree of freedom in the choice of stan-
dard answers. In future this can be further exploited in many interesting ways:
For instance, using extended quantifier elimination methods as a theory solver in
the context of Satisfiability Modulo Theory (SMT) solving (Nieuwenhuis et al.,
2006), in particular when combining several theories in a Nelson–Oppen (1979)
style, one is specifically interested in avoiding identical answers for different vari-
ables. Alternatively, one can try to identify certain variables, which might be
interesting in certain contexts. As another option, there is only a small step to
automatically generating for a given pre-EQR code for an interactive procedure
that suggests ranges and finds possible choices for certain variables in coopera-
tion with the user. In cooperation projects with researchers from the sciences we

22

have had the experience that those researchers often have a surprisingly precise
idea about reasonable choices for certain variables.

A theoretically way more challenging step would be the generalization of our
method to the parametric case. Recall that Proposition 1 has shown that it is
not possible in general to determine real standard values for infinitesimals and
infinities without fixing values for the parameters beforehand. Nevertheless,
it might well be possible to devise on the basis of our work here a complete
method for symbolically replacing nonstandard symbols with standard terms.
In the example in Proposition 1 the infinitesimal ε1 could be replaced e.g. with
1−a

2 yielding a standard extended quantifier elimination result.

Acknowledgments
This research was supported in part by the German Transregional Collaborative
Research Center SFB/TR 14 AVACS and by the DFG/ANR Programme Blanc
Project STU 483/2-1 SMArT.

References
Alkiviadis G. Akritas. Linear and quadratic complexity bounds on the values

of the positive roots of polynomials. Journal of Universal Computer Science,
15(3):523–537, 2009.

François Boulier, Marc Lefranc, François Lemaire, Pierre-Emmanuel Morant,
and Aslı Ürgüplü. On proving the absence of oscillations in models of genetic
circuits. In Hirokazu Anai, Katsuhisa Horimoto, and Temur Kutsia, editors,
Proceedings of Algebraic Biology 2007, volume 4545 of LNCS, pages 66–80.
2007.

Klaus-Dieter Burhenne. Implementierung eines Algorithmus zur Quantorene-
limination fur lineare reelle Probleme. Diplomarbeit, Universität Passau, Ger-
many, 1990.

Jean-Francois Collard. Reasoning About Program Transformations. Springer,
2003.

Andreas Dolzmann and Thomas Sturm. Redlog user manual. Technical report,
FMI, Universität Passau, 1996.

Andreas Dolzmann and Thomas Sturm. Redlog: Computer algebra meets com-
puter logic. ACM SIGSAM Bulletin, 31(2):2–9, June 1997a.

Andreas Dolzmann and Thomas Sturm. Simplification of quantifier-free for-
mulae over ordered fields. Journal of Symbolic Computation, 24(2):209–231,
1997b.

Andreas Dolzmann, Thomas Sturm, and Volker Weispfenning. A new approach
for automatic theorem proving in real geometry. Journal of Automated Rea-
soning, 21(3):357–380, 1998.

23

Andreas Dolzmann, Thomas Sturm, and Volker Weispfenning. Real quantifier
elimination in practice. In B. Heinrich Matzat, Gert-Martin Greuel, and
Gerhard Hiss, editors, Algorithmic Algebra and Number Theory, pages 221–
247. Springer, 1999.

M’hammed El Kahoui and Andreas Weber. Deciding Hopf bifurcations by quan-
tifier elimination in a software component architecture. Journal of Symbolic
Computation, 30(2):161–179, 2000.

Hassan Errami, Thomas Sturm, and Andreas Weber. Algorithmic aspects of
Muldowney’s extension of the Bendixson-Dulac criterion for polynomial vec-
tor fields. In N. N. Vassiliev, editor, Polynomial Computer Algebra, pages
25–28, St. Petersburg, Russia, 2011. The Euler International Mathematical
Institute.

Hassan Errami, Markus Eiswirth, Dima Grigoriev, Werner M. Seiler, Thomas
Sturm, and Andreas Weber. Efficient methods to compute Hopf bifurcations
in chemical reaction networks using reaction coordinates. In Proceedings of
the CASC 2013, volume 8136 of LNCS, pages 88–99. 2013.

Karin Gatermann, Markus Eiswirth, and Anke Sensse. Toric ideals and graph
theory to analyze Hopf bifurcations in mass action systems. Journal of Sym-
bolic Computation, 40(6):1361–1382, 2005.

Konstantin Korovin, Nestan Tsiskaridze, and Andrei Voronkov. Conflict resolu-
tion. In Ian P. Gent, editor, Principles and Practice of Constraint Program-
ming – CP 2009, volume 5732 of LNCS, pages 509–523. 2009.

Konstantin Korovin, Marek Košta, and Thomas Sturm. Towards conflict-driven
learning for virtual substitution. In Proceedings of the CASC 2014, volume
8660 of LNCS, pages 256–270. 2014.

Rüdiger Loos and Volker Weispfenning. Applying linear quantifier elimination.
The Computer Journal, 36(5):450–462, 1993.

Greg Nelson and Derek C. Oppen. Simplification by cooperating decision pro-
cedures. ACM Transactions on Programming Languages and Systems, 1(2):
245–257, 1979.

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and
SAT modulo theories: From an abstract Davis–Putnam–Logemann–Loveland
procedure to DPLL(T). Journal of the ACM, 53(6):937–977, 2006.

Thomas Sturm. Reasoning over networks by symbolic methods. Applicable
Algebra in Engineering, Communication and Computing, 10(1):79–96, 1999a.

Thomas Sturm. Real Quantifier Elimination in Geometry. Doctoral dissertation,
Universität Passau, Germany, December 1999b.

Thomas Sturm and Andreas Weber. Investigating generic methods to solve Hopf
bifurcation problems in algebraic biology. In K. Horimoto, editor, Proceedings
of Algebraic Biology 2008, volume 5147 of LNCS, pages 200–215. 2008.

24

Thomas Sturm and Volker Weispfenning. Computational geometry problems in
REDLOG. In Dongming Wang, editor, Automated Deduction in Geometry,
volume 1360 of LNCS, pages 58–86. 1997.

Thomas Sturm, Andreas Weber, Essam O. Abdel-Rahman, and M’hammed El
Kahoui. Investigating algebraic and logical algorithms to solve Hopf bifurca-
tion problems in algebraic biology. Mathematics in Computer Science, 2(3):
493–515, 2009.

Andreas Weber, Thomas Sturm, and Essam O. Abdel-Rahman. Algorithmic
global criteria for excluding oscillations. Bull. Math. Biol., 73(4):899–916,
April 2011.

Volker Weispfenning. The complexity of linear problems in fields. Journal of
Symbolic Computation, 5(1&2):3–27, 1988.

Volker Weispfenning. Quantifier elimination for real algebra—the cubic case.
In Proceedings of the ISSAC 1994, pages 258–263. ACM Press, New York,
1994a.

Volker Weispfenning. Parametric linear and quadratic optimization by elimina-
tion. Technical Report MIP-9404, Universität Passau, Germany, 1994b.

Volker Weispfenning. Quantifier elimination for real algebra—the quadratic case
and beyond. Applicable Algebra in Engineering Communication and Comput-
ing, 8(2):85–101, 1997a.

Volker Weispfenning. Simulation and optimization by quantifier elimination.
Journal of Symbolic Computation, 24(2):189–208, 1997b.

Volker Weispfenning. Semilinear motion planning in REDLOG. Applicable Al-
gebra in Engineering, Communication and Computing, 12(6):455–475, 2001.

25

	1 Introduction
	2 The Concept of Extended Quantifier Elimination
	3 The Method of Virtual Substitution
	3.1 Virtual Substitution for Weak Inequalities
	3.2 Virtual Substitution with Strict Inequalities

	4 Elimination of Nonstandard Symbols from Answers
	5 Degree Shifts by Virtual Substitution
	6 Generalization and Extensions of the Method
	7 Implementation and Application Examples
	7.1 Computational Geometry
	7.2 Motion Planning
	7.3 Models of Genetic Circuits
	7.4 Mass Action Systems
	7.5 Sizing of Electrical Networks
	7.6 A Linear Feasibility Example

	8 Conclusions and Future Work

