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Abstract—We propose an improvement of the famous IC3
algorithm for model checking safety properties of finite state
systems. We collect models computed by the SAT-solver during
the clause propagation phase of the algorithm and use them as
witnesses for why the respective clauses could not be pushed
forward. It only makes sense to recheck a particular clause
for pushing when its witnessing model falsifies a newly added
clause. Since this trigger test is both computationally cheap and
sufficiently precise, we can afford to keep clauses pushed as far
as possible at all times. Experiments indicate that this strategy
considerably improves IC3’s performance.

I. INTRODUCTION

IC3 [1] is one of the strongest bit-level safety model
checking algorithms currently known. Its highly focused rea-
soning guided by the property being analyzed results in
remarkable performance in proving safety complemented by
a unique ability to find deep counterexamples. By leveraging
the power of modern incremental SAT-solvers IC3 carefully
updates clausal reachability information while maintaining a
surprisingly small memory footprint.

Since its discovery by Aaron Bradley in 2010, IC3 has
drawn attention of many researchers. It has been extended
to deal with liveness properties [2], applied to incremental
verification [3], and generalized to model checking software
[4]. An inspiring paper by Eén et al. [5] presents a detailed
account of an efficient implementation of IC3 and advocates
the importance of studying the algorithm further.

In this paper we focus on the so-called propagation phase of
the algorithm, where the clauses learned so far are inspected to
check whether they could yield an inductive invariant proving
the property. This is done by attempting to “push” individual
clauses forward in an operation involving a specific query to
a SAT-solver. Normally, if the query is satisfiable, the clause
cannot be pushed and the derived model is thrown away. We
propose to keep the model instead and use it as a witness for
why the clause cannot be pushed. The key observation is that
it only makes sense to repeat the expensive SAT-solver call
when the witness has been subsumed by another clause.

Being equipped with this cheap trigger test allows us to
incorporate clause propagation directly into the main loop
of the algorithm. A clause is pushed forward as soon as
its context becomes strong enough to make the above query
unsatisfiable. This provides IC3 with a better guidance and
enables immediate detection of convergence to the invariant.

Our experiments show that using the witnesses pays off in
practice. Moreover, they provide opportunity for further refine-

ments of the algorithm. We present a new clause minimization
heuristics aimed at subsuming as many witnesses as possible.

The rest of the paper is structured as follows. After fixing
the terminology in Section II, we give an overview of IC3
in Section III.1 Triggered pushing is explained in detail in
Section IV and incorporated into the overall algorithm in
Section V. We also show there how exhaustive subsumption
can be performed efficiently in IC3, which may be of inde-
pendent interest. We presents our experiments in Section VI
and conclude in Section VII with final remarks.

II. PRELIMINARIES

We assume the system to be verified is modeled as a finite
state machine (FSM). A FMS M = 〈X, I, P, T 〉 is described
by a finite set of Boolean state variables X , such that each
assignment s ∈ {0, 1}X corresponds to a state of M , further
by sets of initial I ⊆ {0, 1}X and property P ⊆ {0, 1}X
states, and by a transition relation T ⊆ {0, 1}X × {0, 1}X .
States not satisfying the property P are referred to as bad
states. A path in M is a sequence s0, . . . , sk of states, such
that 〈si, si+1〉 ∈ T for every 0 ≤ i < k. The model checking
algorithm establishes whether there exists a path from an initial
state to a bad state. The system is deemed safe if no such
counterexample path exists. Safety may be shown by providing
an inductive invariant proving P , which is a formula ϕ, such
that I ⇒ ϕ, ϕ ∧ T ⇒ ϕ′, and ϕ ⇒ P . Here we use the
convention that priming a formula means interpreting it over
the next state variables.

A literal is a state variable or its negation. A consistent
conjunction of literals is referred to as a cube and a disjunction
as a clause. A set of clauses stands for their conjunction. States
of the FSM naturally correspond to cubes mentioning every
variable from X . The FSM is assumed to be symbolically
represented in a such way that allows us to employ a SAT-
solver for answering queries about it.

III. OVERVIEW OF IC3

The IC3 algorithm can be seen as a hybrid between ex-
plicit and symbolic approach to model checking. It explicitly
constructs a path, starting from a bad state and extending
it backwards towards an initial state. At the same time,
it maintains symbolic stepwise approximating reachability
information, which is locally refined whenever the current

1 Due to space limitations, some aspects of the algorithm could not be
presented in full detail. If necessary, we recommend the reader to consult the
original work [1] or the paper [5], from which we adopt some of the notation.
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Algorithm IC3 (FSM M = 〈X, I, P, T 〉)
1: L0 ← I; foreach j > 0 : Lj ← ∅
2: for k = 0, 1, . . . do
3: /* Recursive path construction / blocking */
4: while SAT?[Lk ∧ ¬P ] do
5: extract state s from the model
6: Q ← {〈s, k〉}
7: while Q not empty do
8: pop some 〈s, i〉 from Q with minimal i
9: if i = 0 then

10: return COUNTEREXAMPLE
11: if SAT?[Li−1 ∧ T ∧ s′] then
12: extract a predecessor state t from the model
13: Q ← Q ∪ {〈t, i− 1〉, 〈s, i〉}
14: else
15: extract the used assumptions s′0 ⊆ s′

16: foreach 0 ≤ j ≤ i : Lj ← Lj ∪ {¬s0}
17: if i < k then
18: Q ← Q ∪ {〈s, i + 1〉}
19:
20: /* Clause propagation */
21: for i = 0, . . . , k and foreach c ∈ Li \ Li+1 do
22: if not SAT?[Li ∧ T ∧ ¬c′] then
23: Li+1 ← Li+1 ∪ {c}
24: if Li = Li+1 then
25: return SAFE

Fig. 1. High-level description of IC3. Some features of the algorithm not
relevant for our presentation have been omitted. Please consult [1] on how to
strengthen the query on line 11 with induction and [5] on how to generalize
states on lines 5 and 12 with ternary simulation.

path cannot be extended further. The reachability information
guides the path construction, and is also bound to eventually
converge to a proof of safety, if no full path exists.

Specifically, IC3 maintains a sequence of sets of clauses
L0, L1, . . ., which we call layers. Layers are updated in an
iterative manner, such that they satisfy the following proper-
ties: 1) L0 ≡ I , 2) Li ⊇ Li+1 and thus Li ⇒ Li+1 for every
i, 3) Li+1 is an overapproximation of the image of Li for
every i, 4) at the end of iteration k of the algorithm there
is no bad state satisfying Lk. It follows that on successful
termination of iteration k, IC3 will have established that there
is no counterexample path of length k or less.

Let us now have a look at the pseudocode of IC3 in
Fig. 1. We see that initially L0 is identified with I2 and
all the other layers are empty. Each iteration then comprises
two phases: a blocking phase and a propagation phase. The
blocking phase maintains a set Q, working as a priority queue,
of so-called proof obligations, pairs of the form 〈s, i〉, where
s is a state that can reach a bad state and i is an index.
Successfully blocking a proof obligation 〈s, i〉 amounts to
showing that s cannot reach an initial state in at most i steps.

2 We assume here that I has a feasible description as a set of clauses over
X . Indeed, it is typically translated into a set of unit clauses. Minor changes
are needed (see [5]) to accommodate to the general case.

Such information is recorded as a new clause strengthening
the layer Li. Deriving this clause may require first recursively
blocking other obligations, corresponding to predecessor states
of s, and strengthening the previous layers.

The blocking phase of iteration k starts by using a SAT-
solver to pick a bad state s satisfying Lk (lines 4 and 5).
Then the set Q is initialized for blocking the obligation 〈s, k〉
(line 6). The inner loop (starting at line 7) processes individual
obligations picking first those that are estimated to be closer to
an initial state (line 8). An obligation with i = 0 means a full
counterexample path has been constructed and the algorithm
terminates (line 10). If the SAT-solver query on line 11 returns
SAT, we extract a predecessor state t known to satisfy Li−1.
This signifies progress in extending the current path from s
to t, or, equivalently, a current failure to block the obligation
〈s, i〉. Both the new obligation 〈t, i − 1〉 to be worked on
next and the current are stored in Q (line 13). If, on the
other hand, the above call returns UNSAT, we assume the
solver provides us with a subset s0 of the state assumptions s
that were needed in the proof (line 15). This corresponds to
generalizing the reason for why the obligation was blocked.
The obtained subset s0 understood as a cube, becomes a clause
when negated by which the algorithm strengthens the layers
L0, . . . , Li (line 16).3 Finally, the blocked obligation 〈s, i〉
may be rescheduled by one step (lines 17, 18).4

Let us now turn to the propagation phase, which follows
next (starting on line 21). It scans the layer clauses one by
one and checks with the help of a SAT-solver call (line 22)
for each c ∈ Li\Li+1 whether it can be “pushed” to strengthen
a layer with a higher index. The clause is successfully pushed
forward when the solver returns UNSAT, having proved that
Li ∧ T ⇒ c′. If it is detected during propagation that
two neighboring layers have been made identical (line 24),
the algorithm terminates reporting that no counterexample is
possible (line 25). The justification for this conclusion follows
from the four properties of layers mentioned earlier. The
repeating layer Li, in fact, forms an inductive invariant which
proves the system to be safe.

IV. TRIGGERED CLAUSE PUSHING

There are several reasons for why the clause propagation
phase is an important part of IC3. First, it is an opportunity to
insert clauses into the till now empty layer Lk+1 before the
start of iteration k + 1. Sometimes, thanks to pushed clauses,
iterations pass off without actually entering the blocking
loop. Second, it generally strengthens the layers which then
provide better guidance for path construction or, equivalently,
a stronger context for obligation blocking. Finally, and most
importantly, clause propagation is the place where the algo-
rithm’s convergence to an inductive invariant is detected.

3 For efficiency, s0 should be as small as possible to provide for a good
generalization. For correctness, s0 must not intersect I . This can always be
achieved, since at this point the state s is never an initial state.

4 These two lines are not needed for correctness, but they substantially
improve IC3’s performance. When left out, the set Q operates as a stack and
forces IC3 to find counterexamples of minimal length.



For these reasons it could be advantageous to perform clause
propagation more often than just once per iteration. There
is, however, a non-trivial computational cost connected with
propagation, and so it can only pay off to run it again when the
layers have changed sufficiently since it was last performed.
Here we show how to detect on a per clause basis that a
previously failed pushing attempt should be reconsidered. This
will allow us to come up with a version of IC3, where all the
clauses are pushed as far as possible at all times.

Consider a clause c ∈ Li \ Li+1 that could not be pushed
forward. This means the query on line 22 of the pseudocode in
Fig. 1 returned SAT. We may now inspect the model computed
by the SAT-solver and extract a state wc which satisfies Li

and from which there is a transition to a state satisfying ¬c.
Notice that as long as wc remains to satisfy Li during the
potential strengthenings of the layer, the query in question
cannot become UNSAT. The state wc, therefore, represents a
witness for why c cannot be pushed forward from Li to Li+1.

But how do we efficiently recognize whether wc still satis-
fies Li after a new clause d has been added to Li? The answer
is: via subsumption! It is only when d ⊆ ¬wc (here we again
use that negation of a cube is a clause) that wc ceases to be a
witness, because it does not satisfy the strengthened Li. Now
we may directly retry the pushing query of line 22 and either
discover a new witness or finally push the clause c to Li+1.

It may seem expensive to perform the subsumption test
against every witness whenever a new clause is derived. Note,
however, that efficient implementations of IC3 already use
subsumption routinely to test each new clause against all other
clauses (subsumed clauses can be removed which helps to keep
the layers small) and that by also considering the witnesses,
one per each clause, the overhead is at most doubled. In the
next section we explain how to exploit the semantic relation
between the individual layers to potentially reduce this cost.

V. IC3 WITH SUBSUMPTION AND TRIGGERED PUSHING

It has been observed that IC3 often derives a clause c to
be inserted into layer Li while Li already contains a weaker
clause d ⊇ c. Bradley [1] proposes to remove such clauses
during propagation; the implementation described in [5] is
more eager and clears layers via subsumption each time a
new clause is derived. Removing subsumed clauses pays off,
because they do not bring any additional information only
make the layers unnecessarily large.

Once subsumption is implemented for reducing layers it
can also be used for pruning proof obligations. Indeed, by
construction, the clause c learned while blocking an obligation
〈s, i〉 satisfies c ⊆ ¬s, but may also subsume other obligations
〈t, i〉 currently on Q. These can be directly rescheduled to
index i + 1, each saving us one SAT-solver call.

Now we describe how to organize the data structures of IC3
such that 1) subsumption by newly derived clauses can be used
to prune layers and obligations, 2) clause pushing triggered by
subsuming a witness is integrated into the blocking phase to
keep clauses pushed as far as possible at all times.

∆0: clauses

O0: obligations 〈∗, 0〉

R0: push requests

W0: witnesses

b

b

∆1: clauses

O1: obligations 〈∗, 1〉

R1: push requests

W1: witnesses

b

b

b

b

b

b
b

b

b
b

Fig. 2. Organizing the data structures of IC3 with triggered pushing. A bi-
directional link is maintained between a clause and its witness / push request.

To avoid duplicating clauses we use the delta encoding of
layers proposed in [5]. A delta layer ∆i consist of clauses
appearing last in Li. Thus ∆i = Li\Li+1 and Li =

⋃
j≥i ∆j .

Each layer clause c is either associated with its witness wc or
a push request is stored for it, which means it will need to
be considered for pushing. Finally, instead of using a priority
queue, we explicitly separate proof obligations into sets Oi

based on their index. The whole situation is depicted in Fig. 2.
The algorithm now works as follows. It picks the smallest

index i such that there is either an obligation in Oi or a request
in Ri. If both sets are non empty, obligations are picked first.5

Handling a proof obligation corresponds to asking the query
from line 11 in Fig. 1 and either creates a new obligation or
derives a new clause to be added to ∆i. Similarly, handling
a push request corresponds to the query of line 22 and either
generates a new witness, which is stored to Wi, or pushes the
clause from ∆i to ∆i+1. In both cases a new clause may be
added to a layer, which is where subsumption comes into play.

When a clause c is added into ∆i we put a push request
for it into Ri and then do the following: 1) we remove
all the clauses from ∆i subsumed by c (along with their
witnesses or associated push requests), 2) we remove the
subsumed witnesses from Wi and insert push requests for the
respective clauses into Ri, 3) we reschedule the subsumed
proof obligations from Oi to Oi+1. If the clause c was
pushed to ∆i from ∆i−1, we are done. If, on the other
hand, c was derived during blocking, it formally strengthened
all L0, . . . , Li. We, therefore, continue towards lower indices
performing 1) and 2)6 for j = i−1, i−2, . . . A key observation
is that the iteration can be stopped as soon as the clause c is
itself subsumed by some clause d from ∆j . Since layers of low
index are stronger than those further on, the iteration typically
terminates way before reaching j = 0. This way a lot of time
spent on futile subsumption tests can be saved.

VI. EXPERIMENT

To experimentally evaluate the benefit of the presented tech-
nique we implemented both the standard IC3 algorithm and
its variation extended with triggered pushing and compared

5 First, by blocking obligations from Oi we strenghten Li. Then we
consider the requests from Ri. If a clause is successfully pushed to Li+1

it may subsume obligations waiting in Oi+1.
6The sets Oj of proof obligations are empty for j < i at this point.
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to one further enhanced by witness directed minimization (WDM).

them on the benchmarks from the Hardware Model Checking
Competition of 2012.7 Since most of the code is shared by
the two implementations the results should directly reflect the
relative improvement caused by triggered pushing which is
expected to carry over to other implementations.

Our code8 is built on top of the SAT-solver Minisat [6]
version 2.2. We transform the circuit to CNF using the
Plaisted-Greenbaum encoding [7] which is then simplified by
variable elimination [8]. The obligation queue and layers are
organized as described in Section V. We found it advantageous
in this setup to allocate a new solver instance for every time
index. That way, the solvers corresponding to strong layers of
low indices are not polluted by the weaker clauses derived
further on. Clauses, as well as states of proof obligations
and witnesses, are stored sorted which enables a linear pass
subsumption test. The test is, however, only started if the
inputs pass a pre-filter based on precomputed signatures [8].

Before we present our experimental results let us explain
one further enhancement of IC3 which is readily available
once the witnesses for pushing are maintained. Recall that
when a proof obligation is succcessfully blocked a set of used
assumptions is extracted from the SAT-solver. It is important
for efficiency that this set be as small as possible. That is why
this set is usually explicitly minimized by removing individual
literals and checking whether the respective query remains
UNSAT. It has been observed [1] that the order in which
literals are tried for removal affects the quality of the final
result. Here we propose a heuristical order aimed at subsuming
witnesses and thus evoking pushing: a particular literal is
preferred for removal when there is a high number of witnesses
of the respective layer that would not be subsumed if the literal
remained in the learned clause. The idea is that early removals
are easier then later ones and so with this order we try to keep
the chance of subsuming a witness by the learned clause high.

7See http://fmv.jku.at/hwmcc12/.
8Available at http://www.mpi-inf.mpg.de/∼suda/triggered.html.

We call the technique witness directed minimization (WDM).
Let us finally have a look at Fig. 3, which compares the

performance of the original IC3, a version with triggered push-
ing, and a version further extended with WDM. (The first two
versions use a random literal order for clause minimization.)
We ran the versions separately on our servers with 3.16 GHz
Xeon CPU, 16 GB RAM, and Debian 6.0. The timeout was set
to 900 seconds per problem. In the end original IC3 solved 45
problems (19 SAT and 26 UNSAT), a version with triggered
pushing 54 (18 SAT and 36 UNSAT), and the one with
WDM 56 problems (18 SAT and 38 UNSAT). This clearly
demonstrates that triggered pushing considerably improves the
performance of IC3.

VII. DISCUSSION

Out of curiosity, we performed the above experiment with a
version of IC3 completely without clause propagation where
convergence is detected when a delta layer becomes empty
due to subsumption. This version solved 19 problems (15 SAT
and 4 UNSAT). This experimentally confirms that clause prop-
agation is an important phase during which IC3 strengthens
its layers to provide better guidance for subsequent iterations
and, more importantly, establishes whether convergence to an
inductive invariant has occurred.

It this paper we have shown how the power of clause
propagation can be directly incorporated into the main loop of
IC3 rendering its benefits continuous. This is done by lever-
aging witnesses, states extracted from failed clause pushing
attempts, which would normally be thrown away. Maintaining
the witnesses provides new opportunities for directing IC3
towards the invariant, as exemplified by the witness directed
minimization technique we proposed. We believe the witnesses
could also be used as a theoretical tool for a deeper under-
standing of the remarkable performance of IC3 in general.
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Eds. FMCAD Inc., 2011, pp. 125–134.
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