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Abstract

Climate extremes can trigger exceptional responses in terrestrial ecosystems, for in-
stance by altering growth or mortality rates. Effects of this kind are often manifested in
reductions of the local net primary production (NPP). Investigating a set of European
long-term data on annual radial tree growth confirms this pattern: we find that 53 % of5

tree ring width (TRW) indices are below one standard deviation, and up to 16 % of the
TRW values are below two standard deviations in years with extremely high temper-
atures and low precipitation. Based on these findings we investigate if climate driven
patterns in long-term tree growth data may serve as benchmarks for state-of-the-art
dynamic vegetation models such as LPJmL. The model simulates NPP but not explic-10

itly the radial tree ring growth, hence requiring a generic method to ensure an objective
comparison. Here we propose an analysis scheme that quantifies the coincidence rate
of climate extremes with some biotic responses (here TRW or simulated NPP). We
find that the reduction in tree-ring width during drought extremes is lower than the
corresponding reduction of simulated NPP. We identify ten extreme years during the15

20th century in which both, model and measurements indicate high coincidence rates
across Europe. However, we detect substantial regional differences in simulated and
observed responses to extreme events. One explanation for this discrepancy could be
that the tree-ring data have preferentially been sampled at more climatically stressed
sites. The model-data difference is amplified by the fact that dynamic vegetation models20

are designed to simulate mean ecosystem responses at landscape or regional scale.
However, we find that both model-data and measurements display carry-over effects
from the previous year. We conclude that using radial tree growth is a good basis for
generic model-benchmarks if the data are analyzed by scale-free measures such as
coincidence analysis. Our study shows strong reductions in carbon sequestration dur-25

ing extreme years. However, for a better understanding of the impact of extreme events
on e.g. the long-term fate of the European carbon balance, more long-term measure-
ment data and improved process-based models are needed.
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1 Introduction

Extreme climate events are known to trigger exceptional responses in terrestrial
ecosystems (Reyer et al., 2012; Smith, 2011; Zscheischler et al., 2014b, a). The ques-
tion, which ecosystem processes exceed their natural range of variability in the wake
of environmental extremes is of paramount importance for anticipating the fate of land5

ecosystems under climate change scenarios (Cotrufo et al., 2011; Jentsch et al., 2011).
This knowledge is important because ecosystem response e.g. to drought events
(Schwalm et al., 2012) may decrease the economic returns from forest ecosystems
(Hanewinkel et al., 2013) or lead to substantial net CO2 emissions and amplify climate
change (Reichstein et al., 2013). One prominent example is the 2003 heat wave in10

Europe that alone caused carbon emissions of ∼ 0.5 PgCyr−1 from forests that usually
act as carbon sinks (Ciais et al., 2005; Janssen et al., 2003). However, it is important
to note that extreme events may have differential effects in different biomes, e.g. en-
hanced vegetation growth during the 2003 heat wave at high elevations in the Alps
(Jolly et al., 2005).15

In many low- and mid-latitude areas, water stress and high temperatures reduce
evapotranspiration and productivity (Granier et al., 2007). Yet, the general applicability
of such studies is challenged by different climate responses of forests across biomes
and tree species (Babst et al., 2013b; Granier et al., 2007; Lindner et al., 2010). In-
creasing amounts of atmospheric CO2 may serve as a buffer against drought by en-20

hancing water use efficiency (e.g. Andreu-Hayles et al., 2011; Penuelas et al., 2011;
Keenan et al., 2013), but again the strength of these effects is poorly constrained and
may differ among tree species or tree age classes (Gedalof and Berg, 2010), and
likewise depend on nutrient availability (e.g. Norby et al., 2010). Another known, yet
understudied aspect, is the role of “lagged effects”, i.e. when previous year’s extremes25

influence forest productivity e.g. via decreased non-structural carbohydrate reserves
(e.g. Dietze et al., 2013; Fritts, 1976; Richardson et al., 2013) or via altered mortality
rates (Bréda et al., 2006; Moreno et al., 2013). Carbon sequestered in the second half
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of the growing season is generally not used for radial growth but supports a combina-
tion of cell-wall thickening and storage (Babst et al., 2013a). This effect is often visible
in tree-ring data as a positive relationship with previous fall climate (Wettstein et al.,
2011). Depending on their sign, climate anomalies in this season may thus enhance
or mitigate the impact of extremes on forest growth in the subsequent year, because5

they directly affect the growing season length and the related replenishment of car-
bon storage (Kuptz et al., 2011). Also the interaction of carbon accumulation with seed
production (i.e. mast years) may sometimes lead to low growth events regardless of cli-
matic conditions, thus putting certain restrictions on using stem growth alone as proxy
for total biomass production (Mund et al., 2010).10

Overall, the impacts of extreme events under current and past conditions remain in-
sufficiently documented. This is a natural consequence of the low occurrence probabil-
ity of the events accompanied by chronically scarce observations (Innes, 1998; Smith,
2011). Hence, it is difficult to predict impacts of expected increases of extreme events
(Barriopedro et al., 2011; Field et al., 2012) on the terrestrial carbon cycle (Reichstein15

et al., 2013). In this context terrestrial biosphere models play a crucial role for quanti-
fying the impact of climate extremes on the terrestrial carbon cycle, most importantly
on the net primary productivity (NPP, Keenan et al., 2012). One prerequisite is, how-
ever, that models are well tested for their capacity to reproduce the relevant signatures
of extreme impacts in the recent past. These models simulate carbon accumulation20

in different plant compartments such as root, stem and leaves. Annual variation and
impacts of extreme events are in these models reflected best by NPP.

One critical issue is identifying suitable benchmarks for testing terrestrial biosphere
models as suggested for average climate conditions (Dalmonech and Zaehle, 2013;
Kelley et al., 2013; Luo et al., 2012). There is, however, a lack of process understand-25

ing in biosphere models amplified by data paucity to benchmark model performance
under extreme conditions. Annual radial growth increments (tree-ring chronologies) are
increasingly understood as a valuable long-term observational reference offering one
of the few opportunities to quantify ecosystem responses on time-scales sufficient to
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observe multiple extreme events (Babst et al., 2012). With certain restrictions, tree-ring
chronologies can be interpreted as long-term proxies for the variability of stand-scale
productivity and thus offer a possibility to relate long-term tree growth to climate fluc-
tuations at regional and continental scale and to quantify the impact of single extreme
years (e.g. Babst et al., 2012; Battipaglia et al., 2010).5

In this study, we propose a generic method to evaluate dynamic vegetation models in
relation to tree ring chronologies by exploiting the coincidence of extremes in tree ring
width (TRW) and climate variables in long (> 50 yr) time series. This analysis framework
is based on the general method of coincidence analysis that was put forward by Donges
et al. (2011) in a different context and is in the present study tailored to address the10

following question:

– Do state-of-the-art dynamic vegetation models agree with observed responses to
climate extremes?

– How can long-term observations help us understanding biotic responses to ex-
treme events?15

The goal of our study is to benchmark dynamic vegetation models regarding their re-
sponse to extreme climate events by using long-term observations of tree-ring width.
In our study, we focus on the biotic response to drought and heat events. We first
compare the reductions in tree-ring width indices (TRW) and simulated NPP during
climatic extremes, thereby acknowledging that TRW and simulated NPP may respond20

differently to the considered climate extremes. Climate extremes may not be the only
driver for anomalous behavior of TRW but also disturbances, such as insect outbreaks
or fire, forestry management and lag effects play an important role (e.g. Franke et al.,
2013). These drivers are, except for fire, not included in our model simulations. On the
other hand, simulated NPP integrates different effects than visible in tree ring records25

and responds more directly to climate extremes. Thus, our generic approach for com-
parison seems suitable and will contribute to an increased process understanding. We
do therefore not directly compare extreme responses in TRW with simulated NPP but
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rather search for possible causal relationships between climate extremes and TRW and
between climate extremes and simulated NPP. We systematically evaluate observed
and simulated responses to climate extremes by analyzing regional response patterns
and identifying years with strong responses to extreme events. We also consider in-
stantaneous and lagged effects of climate extremes on forest growth in the analysis.5

The present study advances the quantification of sensitivity of forest growth to climate
extremes and provides suggestions for biosphere model improvement.

2 Material and methods

2.1 Observed and modeled data

2.1.1 Measurements of tree ring widths10

We used tree ring width index (TRW) chronologies from 606 sites across Europe
and parts of Northern Africa (10◦ W–40◦ E, 30–70◦ N). These data represent a sub-
set of the European tree-ring network (Babst et al., 2013b) which includes measure-
ments from 36 tree species. For the purpose of this study, we grouped sites into three
categories: common needle-leaved species (e.g. Larix decidua, Picea abies, Pinus15

Syvestris, Abies alba; 116 sites), broadleaved species (e.g. Fagus silvatica, Quercus
robur, Quercus petraea; 378 sites) and other species (mainly Mediterranean conifers;
112 sites). For the detection of growth extremes, low frequency variability including
the biological age/size trend characteristic for tree-ring data was removed from the
constituent tree-ring time-series at each site using a spline detrending with a 50 % fre-20

quency cutoff response at 30 yr (Babst et al., 2012). Prior to detrending, the variance
of each time-series was modified using an adaptive power transformation as described
by Cook & Peters (1997) and the mean of the tree-ring data corrected for changes in
sample replication (Frank et al., 2007) to reduce biases in the detection of growth ex-
tremes induced by variance changes throughout the tree-ring chronologies. The tree-25

2543

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

ring detrending and standardization procedure converts the tree-ring width data into
dimensionless indices (so-called tree-ring width indices, TRW) with a mean of approx-
imately unity. The tree ring dataset spans most of terrestrial Europe, but is not evenly
distributed across the continent (see Babst et al., 2013b and Fig. 3). Conifer sites are
most frequent in Scandinavia, in the Alpine region, and in the Mediterranean, while5

broadleaved species are predominantly located in Central Europe and Northern Spain
(Babst et al., 2013b).

2.1.2 Climate data

We use the WATCH-ERA-Interim daily climate data at 0.25 latitude/longitude resolution
based on down-scaled WATCH climate data (Weedon et al., 2011) for the years 1901–10

2001 and extended to 2010 using downscaled ERA-Interim climate data (Dee et al.,
2011). Daily temperature, precipitation and solar radiation were used to drive the model
runs. For the coincidence analysis with TRW and simulated NPP, we calculate annually
average temperature (T ) and sums of precipitation (P ) over the growing season from
the climate data set (see below).15

2.1.3 Simulated net primary productivity (NPP)

Simulations of monthly NPP are performed with the dynamic global vegetation model
LPJmL (Bondeau et al., 2007; Sitch et al., 2003) with a fully coupled carbon and water
cycle (Gerten et al., 2004). The model is driven by temperature, radiation, precipitation
and atmospheric CO2 concentration. Productivity of vegetation (GPP) for each plant20

functional type (PFT) is simulated by a process-based photosynthesis scheme based
on Farquhar (Farquhar et al., 1980) that adjusts carboxylation capacity and leaf ni-
trogen seasonally and within the canopy profile (Haxeltine and Prentice, 1996). Net
primary production (NPP) is derived by subtracting maintenance and growth respira-
tion from GPP. LPJmL simulates the allocation of accumulated carbon to the plant’s25

compartments (leaves, stem, root and reproductive organs) according to allometric
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constraints. Responses of the modeled vegetation to climate extremes include the in-
hibition of photosynthesis and increased maintenance respiration at high temperatures,
and reduced stomatal conductance and thus reduced photosynthesis with water stress.

For the present study, we ran LPJmL in its natural vegetation mode not considering
land management and land-use change. Process-based simulation of fire is included5

by the SPITFIRE model which is coupled to LPJmL (Thonicke et al., 2010). Simulation
runs were performed at 0.25◦ ×0.25◦ degree spatial resolution based on the WATCH-
ERA-Interim daily climate data. A global value of annual atmospheric CO2 concen-
tration was prescribed for the 1901–2010 period based on NOAA-ESRL (2013). The
transient runs from 1901 to 2010 were preceded by a spin-up of 1000 yr using 30 yr of10

the climate drivers in order to obtain equilibrium carbon pools and fluxes and vegeta-
tion cover. Model parameterization and soil types were as in Gerten et al. (2004) and
Sitch et al. (2003).

2.1.4 Determination of the growing season for TRW and simulated NPP

To determine the length of the growing season (GSobs) for each tree ring site, we use15

the fraction of photosynthetically absorbed radiation derived from remote sensing and
interpolated to daily values (FAPAR from MODIS, Pinty et al., 2011). We constrain
GSobs based on a mixture of absolute and relative heuristic criteria. First, we flagged
days as no growing season where FAPAR values drop below 0.12 or are below −0.8
standard deviations of FAPAR. To ensure that the second criterion does not affect ev-20

ergreen sites, we reset all values> 0.43 to growing season. We then searched for
the connected phases of GSobs, but used the restriction that the minimum duration of
GSobs is one month. Note that we only allow for one single GSobs in Europe, as we
assume that double growing seasons do not play a substantial role. The dynamic def-
initions of the GSobs derived from FAPAR allow for adjustment of the growing seasons25

to the effective local conditions; these local GSobs were used for the determination of
coincidences of climate extremes during the growing season and in the tree ring data.
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To determine the length of the growing season for each simulated grid cell (GSsim),
we use the simulation results for NPP. As GSsim we define here the longest period of
subsequent months per year with monthly NPP> 0.

2.1.5 Preprocessing of climate data, TRW and simulated NPP for coincidence
analysis5

The coincidence analysis requires pairing each point in the TRW dataset with local
T and P variability. Accordingly, each TRW site is associated with the site-specific
(i.e., geographically encompassing) climate grid cell of the WATCH-ERA-Interim data
at 0.25◦ ×0.25◦ spatial resolution. By doing so, we obtain 606 pairs of time-series rep-
resenting tree-ring growth and climatological data. Monthly temperature and precip-10

itation data are averaged and summed, respectively, over the growing season (see
Sect. 2.1.5). The maximum temporal overlap between each pair of time series deter-
mines the length of the period for coincidence analysis.

To obtain pairs of time-series for the comparison of simulated NPP with P and T in
a comparable way as for TRW, we calculate the sum of simulated NPP over the growing15

season (see Sect. 2.1.5). Analogously to the coincidence analysis between TRW and
climate data we again compute the average temperature and total precipitation over
the growing season, where NPP> 0. We obtain pairs of simulated NPP and climate
drivers for each grid cell.

The TRW data set consists of 606 time series at selected measurement sites20

throughout Europe. For comparison with simulated NPP, we select the corresponding
grid cells centers nearest to the measurement sites.

2.2 Coincidence analysis and definition of extreme events

For our analysis, we search for coincidences (Donges et al., 2011) between specific
percentiles in the pairs of biotic and climate time series. In the case of TRW and NPP,25

values smaller than the 10th percentiles were used (low-productivity extremes). In the
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climate records, all values exceeding the 90th percentiles of mean growing season
temperature (hot extremes) and being less than the 10th percentile of the total growing
season precipitation (dry extremes) were defined as extreme events. This combination
of climatic and biotic extremes implicitly tests the link between extremely high tem-
perature or low precipitation in causing low growth responses at all sites. At alpine or5

boreal sites, particularly high temperatures may even lead to better growth conditions
(e.g. Jolly et al., 2005). Similarly, extremely low temperatures during the growing sea-
son could cause low growth extremes, e.g. in the Alps or the boreal zone (e.g. Babst
et al., 2012). We therefore carefully interpret our results regarding these issues. The
method of coincidence analysis would also allow for evaluating other types of extremes10

but this is out of the scope of the present paper.
To obtain the number of coincidences, K , between two given time series, we count

the number of extreme events that both time series have in common simultaneously
or allowing for a predefined lag. For the determination of K there are two parameters
in the coincidence analysis: (1) ∆t determines the width of the time window (in years,15

y) in which a TRW or NPP extreme can fall after a T or P extreme. For ∆t = 1y only
coincidences between TRW or NPP with T or P during one year are counted. For
∆t = 2y , coincidences between TRW or NPP with T or P during a time window of
two years are counted, all coincidences falling in this time window are counted as
K = 1. (2) tau determines the time lag between the TRW or NPP extreme and the T20

or P extreme. We distinguish ∆t = 1y and tau= 0y (which account for coincidences
occurring in the same year, i.e. instantaneous growth responses) and ∆t = 1y and
tau= 1y to investigate lagged effects, i.e. extreme growth responses in the following
year (Fig. 1 and see also Donges et al., 2011). We then normalize K by the total number
of extreme events N in the climate time-series of T or P to obtain the coincidence rate25

r with 0 ≤ r ≤ 1 (0 if no coincidences occur and 1 if the maximum number of possible
coincidences occurs).
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2.3 Testing the significance of coincidences

Autocorrelations as well as the specific shape of the distribution of amplitudes in the
considered climatological and biotic time series can have a profound influence on the
observed bivariate coincidence rates. To control for these effects and assess the sta-
tistical significance of the computed coincidence rates r we create 1000 iAAFT (itera-5

tive Amplitude Adjusted Fourier Transformation, Schreiber and Schmitz, 2000; Venema
et al., 2006) surrogate time series for each site and grid cell. The iAAFT surrogates are
fully statistically independent from the original time series, but characterized by the
same amplitude distribution and most importantly, the same autocorrelation proper-
ties. Hence, we can investigate what would be the coincidence rate of extremes that10

we would expect to arise by chance between two time series of a given autocorrelation
structure. We calculate for each site and grid cell the distribution of the coincidence
rates of the iAAFT surrogate time series. The coincidence rate r (calculated from cli-
mate and biotic extremes) is assumed to be significant, if it is higher than the 90 %
percentile of the surrogate distribution. In the following analysis, we only consider TRW15

sites and simulated grid cells with a significant coincidence rate r . For brevity, these
locations are in the following addressed as significant sites or grid cells.

2.4 Detection of European-wide extreme years

To identify years with a pronounced European wide forest response to climate ex-
tremes, i.e. years that yield a high number of coincidences occurs across the continent,20

we take the sum over all coincidences at significant sites/grid cells occurring during
a specific year and divide it by the number of all significant sites/grid cells, again yield-
ing a number between 0 and 1 (0 if no coincidences occur at significant sites/grid cells
and 1 if all significant sites show a coincidence in the year considered). As “European-
wide extreme years” we define all values one standard deviation above the average25

annual significant coincidence rate.
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3 Results and discussion

In the following we first discuss the general picture of the impact of climate extremes on
measured TRW and modeled NPP and then focus on patterns of spatial and temporal
coincidence rates at significant sites/grid cells.

3.1 Down-regulation of forest growth by extreme events5

To estimate potential effects of extreme events on tree growth and productivity, we
evaluated deviations of TRW and simulated NPP during climatically attributable ex-
treme years from growth responses in average climate years. 16 % (53 %) and 13 %
(53 %) of the TRW values are below two (one) standard deviations in years with ex-
tremely high temperatures and low precipitation, respectively (Fig. 2a and b). At TRW10

sites, 30 % and 26 % (79 % and 73 %) of simulated NPP values are below two (one)
standard deviations in years with precipitation and temperature extremes, respectively
(Fig. 2c and d). The stronger reduction in NPP compared to TRW may partially reflect
the fact that the same climate forcing data are used to drive simulated NPP (i.e. a higher
probability for coincidences between climate and NPP extremes than coincidences be-15

tween climate and TRW extremes). The stronger reduction in NPP compared to TRW
shows also that responses in TRW may be buffered, e.g. by stored carbohydrates (Car-
bone et al., 2013; Dietze et al., 2013; Richardson et al., 2013) and responses may not
or only be seen in the years after the extreme event. In contrast to that, the short-term
carbon storage product NPP responds rather instantly to extreme events. Our defini-20

tion of extremes additionally neglects any impacts of extreme events that occur outside
the growing season which could have significant impact on forest productivity such as
respiratory carbon losses in autumn and winter depleting carbon storage pools and
reduce growth in the next year (e.g. Piao et al., 2008). Extremely warm temperatures
in winter may also increase the snow amount in the boreal zone leading to a delayed25

start of the next growing season (Helama et al., 2013). In contrast to that, warm win-
ter/spring temperatures are beneficial for an earlier start of the next growing season
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(Polgar and Primack, 2011). This aggregated picture (Fig. 2) suggests that TRW and
simulated NPP show subtle differences in their response to climate extremes and that
the seasonality of climate anomalies may be of vital importance in this respect. Hence,
an in-depth investigation as to how these differences can be attributed and to what
extent TRW can be used to benchmark dynamic vegetation models for responses to5

extreme events is necessary.

3.2 Extreme years as determined from coincidences across Europe

To analyze responses of forest growth to drought and heat extremes found in models
and observations, it is necessary to first evaluate whether the timings of the climate
driven reductions in TRW and simulated NPP events match reasonably well. In this10

context, we determine European-wide extreme years as described in Sect. 2.4. For
both, TRW and simulated NPP, we identify the years 1911, 1921, 1945, 1947, 1976
and 2003 (Fig. 3, dark grey boxes) as dry extremes with substantial biotic impacts.
Extreme years with high temperatures are detected in 1934, 1945, 1947, 1949, 1950,
2002 and 2003 (Fig. 3). These results are in good agreement with earlier studies which15

identified events during these years. Babst et al. (2012) show in their analysis that 1947
had extremely low growth in southern and southeastern and Central Europe due to dry
conditions. Neuwirth et al. (2007) reveal 1921 as negative extreme year in Rhone-
valley, Jura, Northern Bavaria, Northern Germany and 1947 as negative extreme year
in Western Poland, Northwestern Germany and Slovenia. Battipaglia et al. (2010) re-20

constructed temperature extremes from tree rings and found extremely warm condi-
tions in 1911, 1921, 1964 and 2003. Extreme fire years are reported in 1947 and 1976
in Germany (Goldammer, 2001). The effects of the extreme year 2003 in Europe are
well known (e.g. Ciais et al., 2005). Thus, we demonstrate the possibility to identify
European-wide extreme years regarding heat and drought based on our coincidence25

analysis.
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3.3 Spatial distribution of responses to extreme events

In a next step, we focus on the regional patterns of biotic responses revealed by coinci-
dence analysis. The value of tree ring records as model benchmarks under climate ex-
tremes will crucially depend on the matches in these spatial patterns. Figure 4 identifies
areas where simulated NPP of broadleaved and needleleaved trees show significant5

coincidences with precipitation and temperature extremes, respectively. Analogously,
Fig. 5 shows this picture for TRW. The predominant pattern is that we find more signif-
icant grid cells with high coincidence rates between simulated NPP and precipitation
(n = 259 at grid cells with TRW site) than with temperature extremes (n = 74 at grid
cells with TRW site; Fig. 4) during the growing season, which may be related to an10

overestimation of the modeled P sensitivity of NPP (Babst et al., 2013b; Beer et al.,
2010). It also shows that water is an important driving factor at many sites particu-
larly under extreme conditions (Reichstein et al., 2013; Zscheischler et al., 2014b).
Drought conditions may of course not only be inferred from a lack of rainfall but also
from temperature, which in dry areas, e.g. the Mediterranean region, drives the vapor15

pressure deficit (Williams et al., 2012). For observed TRW we find almost the same
amount of significant sites for coincidences with P (n = 189) as for coincidences with T
(n = 139; Fig. 5). In contrast to observed TRW, simulated NPP displays generally low
or insignificant coincidence rates with high temperature and low precipitation extremes
in mountainous areas (Figs. 4 and 5). This may be due to the mean climatology cov-20

ered in the respective grid cell resolution which does not reflect climatic differences
along steep elevational gradients in the Alps and the related responses which are dis-
played by TRW (e.g. King et al., 2013). Due to this fact, these factors in their extremes
(high temperatures, low precipitation) are not limiting simulated NPP during the grow-
ing season in this region. Thus, for correctly representing site-climate, and particularly25

site-level climate extremes, data from climate stations at the sites (of which only very
few, and of a limited time span, are available) would be ideal. This highlights the impor-
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tance of developing higher resolution long-term climate datasets based on downscaling
to local site conditions.

Zonal patterns become more obvious from binning of results (Fig. 6). For both, simu-
lated and observed growth responses, we find a ∼ 40 percent probability that a climatic
extreme is associated with a biotic extreme, i.e. reduced growth response in the cur-5

rent or subsequent year. The simulated NPP at tree ring sites displays an increase
in the coincidence rate r along a mean annual temperature gradient with lower r in
low temperature zones and higher r in high temperature zones (Fig. 6, blue dots).
The coincidence rates between simulated NPP and P range between r ≈ 0.38 to 0.54
(Fig. 6a), whereas for NPP and T they scatter around ∼ 0.4 (Fig. 6b). Also here, the10

overestimation of the P sensitivity of simulated NPP in comparison to TRW is visible.
TRW displays rather constant coincidence rates of ∼ 0.4 with T (Fig. 6a, red dots) and
P (Fig. 6b) along the temperature gradient. The lower coincidence rates in TRW may
be driven by adverse effects of extreme T , e.g. in mountainous areas, where high tem-
peratures during the growing season may even lead to increased growth (Jolly et al.,15

2005). Also, the importance of non-structural carbohydrates (NSCs) should not be un-
derestimated. NSCs can be stored up to 10 yr, used as resources during unfavourable
growth conditions, and thus buffer the effect of extreme events (e.g. Carbone et al.,
2013; Richardson et al., 2013).

3.4 Instantaneous and lagged responses to extreme events20

To further assess responses in tree-growth to climate extremes found in models and ob-
servations, we need to analyze the dynamics of biotic responses to climatic extremes.
Therefore, we compare the coincidence rate r in the same year (i.e. instantaneous ef-
fects, calculated with ∆t = 1 and tau= 0) with the coincidence rate in the year after the
climate extreme (i.e. lagged effects, calculated with ∆t = 1 and tau= 1, Fig. 7 and see25

also Fig. 1). In TRW there appears to be a higher number of coincidences in the year
after the extreme compared to the instantaneous response, thus the response of tree
rings to climate extremes seems to be lagged, mainly in response to extreme drought
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(Fig. 7, upper row). Hence, we can confirm that negative precipitation anomalies com-
bined with positive temperature extremes lead to reduced growth not only in the current
but also in the following year. Similarly, other studies (e.g. Babst et al., 2012; Franke
et al., 2013) have emphasized the importance of considering lagged effects in mea-
sured TRW. Babst et al. (2012) found that particularly late growing season extremes5

lead to reduced forest productivity in the following year. Another important finding is
that this behavior is not as strong in simulated NPP (Fig. 7, lower rows). In the model,
lagged effects in NPP are simulated when unfavorable climate conditions lead to low
productivity and high respiration costs during the current year and thus less accumu-
lation of biomass. Constant or less accumulated biomass then leads to reduced NPP10

during the following year. Since NPP represents a rather short-term measure of carbon
use compared to TRW, it thus responds more instantaneously to changes in photo-
synthesis and respiration during extreme events. In contrast, TRW integrates carbon
accumulation and growth over a whole growing season, relies in part on stored car-
bohydrates, and may even be influence by longer-term response to canopy and root15

architecture. These considerations may explain why TRW may therefore not react in
a similar way as NPP to extreme events.

4 Conclusions

We present a simple method for detecting impacts of extreme events in time series of
climate and forest growth that is based on coincidence analysis. The coincidence met-20

ric can be seen as a “unit-free” neutral measure for biotic responses to climate impacts.
The method is general and independent of units, so that we do not have to, e.g., con-
vert tree ring width to NPP for comparison with model output; instead we can compare
the results of the coincidence analysis to test for possible causal relationships between
extreme climate and extreme growth responses. These methods are particularly suit-25

able for the analysis of extreme events since they are not based on correlations but on
coincidences of events in time series.
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Tree rings are long-term observational time series related to forest productivity and
are thus valuable archives for improving our process-understanding of forest responses
to extreme events and thus, for evaluating dynamic vegetation models. Our study
shows that high temperature and low precipitation extremes lead to substantial losses
in forest productivity, which is 50 to 80 % below one standard deviation during extreme5

years. Based on the coincidence analysis, we are able to quantify for the first time
the probability that a climate extreme triggers an extreme reaction in the terrestrial bio-
sphere (e.g., ∼ 40 % for T extremes in both TRW and modeled NPP, and 40 vs. 60 % for
P extremes). We identified years with climate extremes which caused extreme ecosys-
tem responses in Europe for the 20th century, which are consistent with previously10

reported evidence.
From our comparison of observed and modeled data, we conclude that (a) the im-

pact of heat and drought on European forest ecosystems is severe, (b) to improve
our understanding of related processes, very high resolution long-term climate data at
site level are needed, (c) process-based models should be improved for site-specific15

applications by improving the representation of processes related to lag effects (e.g.
storage of non-structural carbon and monthly allocation). Since most general dynamic
vegetation models are developed for rather “average” conditions, the representation of
responses to extreme events has to be improved for a better understanding of e.g. the
long-term fate of the European carbon balance.20
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Fig. 1. Example for coincidence analysis between a time series of (A) precipitation (P) and (B)
tree ring width indices (TRW). The dashed horizontal line represents the lower 10 % quantile.
Events in precipitation or tree ring width that fall below this threshold are counted as extreme
events, as indicated by the dotted vertical lines for P (blue) and TRW (red). Grey bars indicate
the coincidence of extreme P and TRW events within a time window of two years (∆t = 2)
and are counted as one coincidence. In this example, we count 11 climate extremes and 7
coincidences with TRW for ∆t = 2, resulting in a coincidenced rate r = 7/11 = 0.64. Note that
if there are two TRW extremes coinciding with one P extreme in the time window of ∆t = 2,
this would account for only one extreme. The letters “I” and “L” indicate instantaneous and
lagged effects (i.e. carry-over effects), respectively. When setting the time window to ∆t = 1
and tau= 0, five coincidences are counted and for ∆t = 1 and tau= 1, two coincidences are
counted in this example.
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a) TRW and precipitation
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b) TRW and temperature

Standard deviations in extreme years (Z−scores)

F
re

qu
en

cy

−6 −4 −2 0 2 4 6

0
10

0
20

0
30

0
40

0 TRWext < −1 σ
52.87%

c) NPP and precipitation

Standard deviations in extreme years (Z−scores)

F
re

qu
en

cy

−6 −4 −2 0 2 4 6

0
10

0
20

0
30

0
40

0 NPPext < −1 σ
79.5%

d) NPP and temperature
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Fig. 2. Histograms of standard deviations of growth responses of TRW (a, b) and NPP (c,
d) in extreme years (Z-scores). The vertical dashed grey line marks one negative standard
deviation. Note that in the coincidence analysis for ∆t = 2, deviations can also be positive since
growth responses are accounted for in the year of the climate extreme. Thus, positive deviations
indicate a positive growth response during the extreme year and a negative lagged response.
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Fig. 3. Extreme years during the period 1901–2010 as detected by the coincidence analysis for
TRW and NPP (only at TRW sites) with precipitation (upper two rows) and temperature (lower
two rows). Dark grey bars indicate that extreme years were detected in TRW and in NPP.
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Fig. 4. Map of coincidence rates between extremes in simulated NPP and precipitation for (A)
broadleaved and (B) needleleaved trees. Coincidence rates between extremes in simulated
NPP and temperature for (C) broadleaved and (D) needle-leaved trees. The color bar gives
the coincidence rate r for the coincidence analysis with ∆t = 2. Only grid cells with significant
coincidence rates are colored, non-significant grid cells are marked in grey. Note that the sig-
nificance level for each grid cell is determined separately.
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Fig. 5. Map of tree ring sites and coincidence rates at each site. Given are coincidence rates be-
tween extremes in TRW and precipitation for (A) broadleaved, (B) needleleaved and (C) other
tree species. In the lower row, coincidence rates between extremes in TRW and temperature
for (D) broadleaved, (E) needleleaved and (F) other tree species are displayed. Non-significant
sites are marked in transparent colors. The color bar gives the coincidence rate r for the coin-
cidence analysis with ∆t = 2.
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Fig. 6. Significant coincidence rates of TRW (red dots) and simulated NPP at TRW sites (blue
dots) in climate space (as given in temperature classes, x-axis) averaged over all tree species.
Sites/grid cells with significant coincidences are aggregated in 5 ◦C mean annual temperature
classes. Error bars give the standard deviation among sites/grid cells. Note that for some bins,
for TRW or site NPP only one value exists.
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Fig. 7. Instantaneous (r calculated for ∆t = 1 and tau= 0) vs. lagged (r calculated for ∆t = 1
and tau= 1) coincidences of extreme events. The size of the dots is proportional to the amount
of significant coincidences, i.e. larger dots indicate a higher number of sites/grid cells with
significant coincidences. Note that the regular grid of coincidence rates results from consistent
time series length for simulated NPP while the length of the time series for TRW differs.
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