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Abstract
We generalize the framework of virtual substitution for real quanti-

fier elimination to arbitrary but bounded degrees. We make explicit the
representation of test points in elimination sets using roots of parametric
univariate polynomials described by Thom codes. Our approach follows
an early suggestion by Weispfenning, which has never been carried out ex-
plicitly. Inspired by virtual substitution for linear formulas, we show how
to systematically construct elimination sets containing only test points
representing lower bounds.

1 Introduction
After Tarski’s seminal paper [23] there has been considerable research on quan-
tifier elimination for real closed fields. One research line lead to complexity
results and asymptotically fast algorithms [2, 11, 19, 24]. Unfortunately, these
algorithms turned out not to be feasible in practice [12].

From a practical point of view, the invention of quantifier elimination by
cylindrical algebraic decomposition (CAD) was an important step [6]. Several
enhancements [7, 18] of the original procedure combined with an efficient im-
plementation [4] made it possible to apply CAD-based algorithms to real-world
problems to some extent [13]. One principal drawback of all CAD-based al-
gorithms is the fact that parameters significantly contribute to the theoretical
complexity [5].

Virtual substitution is an alternative approach, particularly strong for for-
mulas with low degrees of the quantified variables, which is not sensitive to
the number of parameters. Similarly to CAD there exist efficient implementa-
tions [9]. The original description of the method as well as first improvements
and implementations were limited to linear formulas [24, 17]. The next im-
portant step focused on formulas up to total degree two of the quantified vari-
ables [27]. That publication furthermore suggested in a very abstract way to
extend the procedure to arbitrarily large degree bounds, and mentioned Thom’s
lemma [3] as a possibility for distinguishing real polynomial roots. In another
publication Weispfenning made precise how to perform virtual substitution up
to degree three, without using Thom codes, however [26].
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Recently, virtual substitution has been playing some role in satisfiability
modulo theory solving [1, 8]. There appears to be considerable interest in higher
degrees [16], focusing on the software aspect rather than on theoretical founda-
tions.

The present work picks up the original idea of Thom codes for generalizing
virtual substitution to arbitrary but fixed degree bounds, developing theoreti-
cally precise foundations and a rigorous framework. Our original contributions
are the following:

1. We describe an encoding of parametric polynomial roots based on Thom’s
lemma. We prove that this encoding uniquely determines a root of a
parametric univariate polynomial.

2. For a given encoding we specify formal necessary and sufficient conditions
for the existence of a corresponding root. This allows to discard redundant
elimination terms.

3. Our encoding allows to easily identify roots representing lower in contrast
to upper bounds of relevant intervals.

4. We generally reduce the size of elimination sets by considering exclusively
lower bounds of relevant intervals. This improves even the well-known
elimination sets for the quadratic case.

The plan of the paper is as follows: In Section 2 we describe our root en-
coding based on Thom’s lemma. In Section 3 we introduce our framework by
specifying what elimination terms look like and how they are substituted. We
prove the correctness of the framework. In Section 4 we reduce the size of elim-
ination sets by considering exclusively lower bounds of relevant intervals. In
Section 5 we discuss our framework in the context of alternative approaches in
the literature. We furthermore point at its compatibility with various general-
izations of quantifier elimination by virtual substitution. In Section 6 we discuss
practical issues related to possible implementation strategies.

2 Parametric Roots
Let p ∈ Z[y1, . . . , ym][x] with deg p = n, and let α1, . . . , αm ∈ R. Denote
by 〈α1, . . . , αm〉 : Z[y1, . . . , ym] → R the evaluation homomorphism in postfix
notation, i.e., we have p〈α1, . . . , αm〉 ∈ R[x]. Consider arbitrary f ∈ R[x]. For
ξ ∈ R we define the sign sequence of length k at ξ as follows:

sgnξ(f, k) = (sgn(f(ξ)), sgn(f ′(ξ)), . . . , sgn(f (k−1)(ξ))).

A sign sequence s = (s1, . . . , sn) ∈ {−1, 0, 1}n is consistent with p if there exist
α1, . . . , αm, ξ ∈ R such that the following conditions hold:

(C1) deg p〈α1, . . . , αm〉 > 0,

(C2) p〈α1, . . . , αm〉(ξ) = 0,

(C3) sgnξ(p〈α1, . . . , αm〉′, n) = s.
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s Γ(p, s) f
(−1,−1) a < 0 ∧ 4ac− b2 < 0 −x2 + x
(−1, 0) a = 0 ∧ b < 0 −x+ 1
(−1, 1) a > 0 ∧ 4ac− b2 < 0 x2 − 3x+ 2
(0,−1) a < 0 ∧ 4ac− b2 = 0 −x2 + 2x− 1
(0, 1) a > 0 ∧ 4ac− b2 = 0 x2 − 2x+ 1
(1,−1) a < 0 ∧ 4ac− b2 < 0 −x2 + 3x+ 2
(1, 0) a = 0 ∧ b > 0 x− 1
(1, 1) a > 0 ∧ 4ac− b2 < 0 x2 − x

Table 1: Consistent sign sequences and guards

It follows that (0, . . . , 0) is not consistent with any q ∈ Z[y1, . . . , ym][x]. The
idea is that s uniquely describes a real root ξ of p〈α1, . . . , αm〉.

A guard Γ(p, s) for p and s = (s1, . . . , sn) ∈ {−1, 0, 1}n is a quantifier-free
equivalent in variables y1, . . . , ym of the Tarski formula

∃x
(
p = 0 ∧

|s|∧
i=1

(p(i) σ(si) 0)
)
,

where

σ(si) =


“<” if si = −1,
“=” if si = 0,
“>” if si = 1.

Lemma 1. Let p ∈ Z[y1, . . . , ym][x] with deg p = n > 0. Let s 6= (0, . . . , 0) be a
sign sequence of length n, and let α1, . . . , αm ∈ R. The following are equivalent:

(i) Γ(p, s) holds for α1, . . . , αm.

(ii) There exists a unique ξ ∈ R such that conditions (C1)–(C3) hold.

Proof. Assume (i). It is easy to see that there exists ξ ∈ R such that (C2) and
(C3) hold. Denote p〈α1, . . . , αm〉 by pα. Then s 6= (0, . . . , 0) implies that at
least one of polynomials p′α, . . . , p

(n)
α , is not identically zero. Hence, pα is of

positive degree, i.e., (C1) holds as well. The uniqueness of ξ follows directly
from Thom’s little lemma [3].

Assume (ii). Then it is easy to see that α1, . . . , αm satisfy Γ(p, s), even with
a unique x.

Lemma 1 ensures that s 6= (0, . . . , 0) is consistent with p if and only if
Γ(p, s) is satisfiable. In the positive case, Γ(p, s) gives a necessary and sufficient
condition for p to have a root that is described by s.

As an example consider p = ax2 + bx + c. Table 1 lists all sign sequences
consistent with p along with their respective guards. The polynomials f in
the table are obtained from p by substituting for a, b, and c suitable values
satisfying the corresponding condition Γ(p, s) in the table. They all have 1 as a
root described by the corresponding s, formally, sgn1(f ′, 2) = s.

Let s be consistent with p. We call the pair (p, s) a parametric root of p.
Recall from the definition of consistency of s with p that there are particular
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α1, . . . , αm ∈ R such that s uniquely describes a real root of p〈α1, . . . , αm〉.
Note that these α1, . . . , αm ∈ R need not be unique. The possible choices for
α1, . . . , αm are in fact described by Γ(p, s).

The following lemma considers two such possible choices, and states that
the signs of the obtained univariate polynomials in the neighborhoods of the
corresponding roots are invariant with respect to the two choices.

Lemma 2. Let p ∈ Z[y1, . . . , ym][x] with deg p = n > 0. Let s = (s1, . . . , sn)
be consistent with p, where α1, . . . , αm, ξ ∈ R, and β1, . . . , βm, ζ ∈ R are
two possible sets of choices in (C1)–(C3). Denote p〈α1, . . . , αm〉 by pα, and
p〈β1, . . . , βm〉 by pβ . Let ε be a positive infinitesimal number. Then the follow-
ing hold:

(i) sgn(pα(ξ − ε)) = sgn(pβ(ζ − ε))

(ii) sgn(pα(ξ + ε)) = sgn(pβ(ζ + ε)).

Proof. We show only (i), the proof of (ii) is similar. To start with, note that
(C1)–(C3) ensure that

sgnξ(p′α, n) = sgnζ(p′β , n) = s. (1)

We show by induction that for i ∈ {n, . . . , 0} the following holds:

sgn(p(i)
α (ξ − ε)) = sgn(p(i)

β (ζ − ε)).

For i = n, observe that p(n)
α , p(n)

β ∈ R. From (1) it follows that sgn(p(n)
α (ξ)) =

sgn(p(n)
β (ζ)) = sn, and we can conclude that sgn(p(n)

α (ξ− ε)) = sgn(p(n)
β (ζ− ε)).

Let now k ∈ {n−1, . . . , 0}, and assume that sgn(p(k+1)
α (ξ−ε)) = sgn(p(k+1)

β (ζ−
ε)). We have to show that sgn(p(k)

α (ξ − ε)) = sgn(p(k)
β (ζ − ε)). We distinguish

cases. If sk 6= 0, then (1) ensures that sgn(p(k)
α (ξ)) = sgn(p(k)

β (ζ)) = sk 6= 0.
If follows that sgn(p(k)

α (ξ − ε)) = sgn(p(k)
β (ζ − ε)), because ε is infinitesimal.

Assume now that sk = 0, and distinguish three cases:

(a) sgn(p(k)
α (ξ − ε)) = 0: Since sgn(p(k)

α (ξ)) = sk = 0, and ε is infinitesimal,
p

(k)
α is the zero polynomial. Thus, p(k+1)

α is the zero polynomial as well.
The induction hypothesis and our assumption sk = 0 yield that p(k+1)

β is
the zero polynomial as well. This means that p(k)

β is a constant polynomial.
On the other hand, sgn(p(k)

β (ζ)) = sk = 0. Therefore, p(k)
β is the zero

polynomial, in particular sgn(p(k)
β (ζ − ε)) = 0.

(b) sgn(p(k)
α (ξ−ε)) = 1: Since ε is positive and infinitesimal and p(k)

α (ξ−ε) >
p

(k)
α (ξ), it follows that p(k)

α is decreasing at ξ − ε. Therefore, we have
sgn(p(k+1)

α (ξ − ε)) = −1. By the induction hypothesis, it follows that
sgn(p(k+1)

β (ζ − ε)) = −1. Therefore, p(k+1)
β is decreasing at ζ − ε. Finally,

our assumption sk = 0 ensures that sgn(p(k)
β (ζ)) = sk = 0. Since ε is

infinitesimal, we have p(k)
β (ζ − ε) > 0, i.e., sgn(p(k)

β (ζ − ε)) = 1.

(c) sgn(p(k)
α (ξ − ε)) = −1: Similar to (b).
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Consider a parametric root (p, s), and let α1, . . . , αm ∈ R be such that Γ(p, s)
holds. By Lemma 1 there exists a unique ξ ∈ R such that (C1)–(C3) hold. We
define the left sign of (p, s) as sgnl(p, s) = sgn(p〈α1, . . . , αm〉(ξ − ε)). Similarly,
the right sign of (p, s) is defined as sgnr(p, s) = sgn(p〈α1, . . . , αm〉(ξ+ ε)). This
is well-defined by Lemma 2. Notice that (C1) ensures that both sgnl(p, s) and
sgnr(p, s) cannot be zero.

The left and the right sign of (p, s) can be computed as follows:

1. Find α1, . . . , αm ∈ R satisfying Γ(p, s).

2. Compute an isolating interval ]l, r[ of the root ξ of p〈α1, . . . , αm〉 identified
by s such that p〈α1, . . . , αm〉(l) 6= 0 and p〈α1, . . . , αm〉(r) 6= 0.

Then sgnl(p, s) = sgn(p〈α1, . . . , αm〉(l)) and sgnr(p, s) = sgn(p〈α1, . . . , αm〉(r)).

3 Elimination Terms and Elimination Sets
Let n ∈ N\{0}, and let ϕ be an ∧-∨-combination of atomic formulas {pi %i 0}i∈I ,
where pi ∈ Z[y1, . . . , ym][x] and %i ∈ {=, 6=, <,6,>, >}. Assume that deg pi 6 n
for all i ∈ I. We say that ϕ is of degree at most n in x. In this section we are
going to describe a method for eliminating ∃x from the formula ∃xϕ.

Our method is not self-contained. It depends on an algorithm A that is
capable of eliminating a single existential quantifier from formulas of degree n
in x, which have a very particular shape. We are going to describe these formulas
along with the definition of virtual substitution of elimination terms. Later in
Section 6 we will show that it is even sufficient to consider only finitely many
such formulas. Since the real numbers admit effective quantifier elimination, it
is clear that such an algorithm A exists. The key challenge with the approach
proposed here is going to be to find short quantifier-free equivalents, possibly
including considerable human intelligence at least for post-processing.

We start with the description of the set Ei of elimination terms generated
by a particular atomic formula (pi %i 0) in ϕ:

Ei =
{
{(pi, s) | (pi, s) is a parametric root of pi} if %i ∈ {=,6,>},
{(pi, s) + ε | (pi, s) is a parametric root of pi} if %i ∈ {6=, <,>}.

Consider an atomic formula (q % 0), where q = bnx
n + · · · + b1x + b0 ∈

Z[y1, . . . , ym][x]. The virtual substitution (q % 0)[x // r] of an elimination term
r = (p, s) for x into (q % 0) is the quantifier-free formula computed by A for

∃x
(
p = 0 ∧

|s|∧
i=1

(p(i) σ(si) 0) ∧ (q % 0)
)
.

Let N and P be the sets of all sign sequences t consistent with q such that
sgnr(q, t) < 0 and sgnr(q, t) > 0, respectively. Furthermore, let be ν((p, s), (q, t))
the quantifier-free formula computed by A for

∃x
(
p = 0 ∧

|s|∧
i=1

(p(i) σ(si) 0) ∧ q = 0 ∧
|t|∧
i=1

(q(i) σ(ti) 0)
)
.
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In these terms, the virtual substitution (q % 0)[x // r + ε] of r+ ε for x is defined
as follows:

(q = 0)[x // r + ε] : bn = 0 ∧ · · · ∧ b0 = 0
(q 6= 0)[x // r + ε] : bn 6= 0 ∨ · · · ∨ b0 6= 0

(q < 0)[x // r + ε] : (q < 0)[x // r] ∨
∨
t∈N

ν((p, s), (q, t))

(q > 0)[x // r + ε] : (q > 0)[x // r] ∨
∨
t∈P

ν((p, s), (q, t))

(q 6 0)[x // r + ε] : (q < 0)[x // r + ε] ∨ (q = 0)[x // r + ε]
(q > 0)[x // r + ε] : (q > 0)[x // r + ε] ∨ (q = 0)[x // r + ε].

Note that, in contrast to [27, Section 3], our definition of virtual substitution
of r + ε is not recursive. The deeply nested subformulas introduced with the
recursive definition of ν for quadratic quantifier elimination in [27, Section 3]
are a considerable obstacle for simplification. A good choice of A might help to
overcome this.

Another somewhat special elimination term is −∞. It is not generated by
any atomic formula, but will generally occur in every elimination set. The
virtual substitution (q % 0)[x //−∞] of −∞ for x is defined as follows:

(q = 0)[x //−∞] : bn = 0 ∧ · · · ∧ b0 = 0
(q 6= 0)[x //−∞] : bn 6= 0 ∨ · · · ∨ b0 6= 0
(q < 0)[x //−∞] : µ<(q, n) ∨ · · · ∨ µ<(q, 0)
(q > 0)[x //−∞] : µ>(q, n) ∨ · · · ∨ µ>(q, 0)
(q 6 0)[x //−∞] : (q < 0)[x //−∞] ∨ (q = 0)[x //−∞]
(q > 0)[x //−∞] : (q > 0)[x //−∞] ∨ (q = 0)[x //−∞],

where for k ∈ {0, . . . , n} we define

µ<(q, k) : bn = 0 ∧ · · · ∧ bk+1 = 0 ∧ (−1)kbk < 0
µ>(q, k) : bn = 0 ∧ · · · ∧ bk+1 = 0 ∧ (−1)kbk > 0.

As usual, the key idea of virtual substitution is to map not terms to terms,
but atomic formulas to quantifier-free formulas, which gives us the freedom to
describe its results in the Tarski language. That mapping on atomic formulas
naturally induces virtual substitution on arbitrary quantifier-free formulas.

In the sequel we prove that the terms generated by all atomic formulas
occurring in ϕ together with −∞ constitute an elimination set E for ∃xϕ in the
following sense:

R |= ∃xϕ←→
∨
e∈E

ϕ[x // e].

The following lemma is an immediate consequence of our definition of virtual
substitution:

Lemma 3. Let (q % 0) be an atomic formula, where q ∈ Z[y1, . . . , ym][x].
Consider a parametric root (p, s). Assign values α1, . . . , αm ∈ R to the variables
y1, . . . , ym. Then the following hold:
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(i) If (q % 0)[x // (p, s)] holds, then Γ(p, s) holds as well.

(ii) If (q % 0)[x // (p, s) + ε] holds, and % ∈ {<,>}, then Γ(p, s) holds as well.

Lemma 4. Consider {pk %k 0}k∈K , where K is finite, pk ∈ Z[y1, . . . , ym][x],
and %k ∈ {=, 6=, <,6,>, >}. Assign values α1, . . . , αm ∈ R to the variables y1,
. . . , ym. Consider a parametric root (p, s).

(i) There exists ϑ ∈ R such that for all k ∈ K the following holds: If (pk %k
0)[x // (p, s)] holds, then ϑ satisfies (pk %k 0).

(ii) There exists ζ ∈ R such that for all k ∈ K the following holds: If (pk %k
0)[x // (p, s) + ε] holds, then ζ satisfies (pk %k 0).

Proof. To begin the proof of (i), note that if there is no k ∈ K such that
(pk %k 0)[x // (p, s)] holds, there is nothing to prove. Assume w.l.o.g. that (p1 %1
0)[x // (p, s)] holds. Lemma 3 implies that Γ(p, s) holds as well. Consequently,
Lemma 1 ensures that there is a unique ξ ∈ R such that (C1)–(C3) hold. Let
now k ∈ K and assume that (pk %k 0)[x // (p, s)], i.e.,

∃x
(
p = 0 ∧

|s|∧
i=1

(p(i) σ(si) 0) ∧ (pk %k 0)
)
,

holds. The uniqueness of ξ satisfying conditions (C1)–(C3) now ensures that
(pk %k 0) holds for ξ. This proves (i).

To prove (ii) we first assume that there is some l ∈ K such that (pl <
0)[x // (p, s) + ε] or (pl > 0)[x // (p, s) + ε] holds. Again, Lemma 3 ensures that
Γ(p, s) holds, and Lemma 1 ensures that there is a unique ξ ∈ R such that
conditions (C1)–(C3) hold. Pick ζ from the open interval ]ξ, ξ′[, where

ξ′ = min{δ | j ∈ K ∧ deg pj > 0 ∧ pj(δ) = 0 ∧ δ > ξ}.

Let now k ∈ K, and assume that (pk %k 0)[x // (p, s) + ε] holds. If %k is “=,”
then pk is identically zero, so (pk = 0) trivially holds for ζ. If %k is “<,” then
there are two cases to consider:

(a) In the first case (pk < 0)[x // (p, s)] holds. Since ξ ∈ R is unique satisfying
conditions (C1)–(C3), we deduce that (pk < 0) holds at ξ. The choice of
ζ now guarantees that there is no root of pk in [ξ, ζ], so we obtain that
(pk < 0) holds at ζ, as well.

(b) In the second case

∃x
(
p = 0 ∧

|s|∧
i=1

(p(i) σ(si) 0) ∧ pk = 0 ∧
|t|∧
i=1

(p(i)
k σ(ti) 0)

)
holds for some t, and sgnr((pk, t)) = −1. Again, from the uniqueness of
ξ ∈ R satisfying (C1)–(C3) we deduce that pk = 0 holds at ξ. Finally,
since the right sign of (pk, t) is negative, and there is no root of pk in ]ξ, ζ],
so we conclude that pk < 0 holds at ζ.

7



If %k is “>,” then the proof is done similarly as for “<.” If %k is “ 6=,” we apply
the lemma either to (pk > 0)[x // (p, s)+ε] or to (pk < 0)[x // (p, s)+ε] to obtain
that (pk 6= 0) holds for ζ. When % ∈ {6,>} the proof is similar.

To finish the proof of (ii), we assume that for every l ∈ K the formulas
(pl < 0)[x // (p, s) + ε] and (pl > 0)[x // (p, s) + ε] do not hold. Let ζ be any
real number. Let now k ∈ K, and assume that (pk %k 0)[x // (p, s) + ε] holds.
Our assumption together with the definition of [x // (p, s) + ε] imply that (pk %k
0)[x // (p, s) + ε] is equivalent to (pk = 0)[x // (p, s) + ε], which shows that (pk =
0) holds for ζ.

Lemma 5. Let (q % 0) be an atomic formula, where q ∈ Z[y1, . . . , ym][x], and
% ∈ {=, 6=, <,6,>, >}. Consider a parametric root (p, s). Assign values α1,
. . . , αm ∈ R to the variables y1, . . . , ym. Assume that Γ(p, s) holds, and denote
the unique real number satisfying conditions (C1)–(C3) by ξ. Then the following
hold:

(i) If ξ satisfies (q % 0), then (q % 0)[x // (p, s)] holds.

(ii) Let ξ′ ∈ R be such that all ζ ∈ ]ξ, ξ′[ satisfy (q % 0). Then (q %
0)[x // (p, s) + ε] holds.

Proof. Since (q % 0) holds for ξ ∈ R, and ξ is unique such that (C1)–(C3) hold,
we obtain that (

p = 0 ∧
|s|∧
i=1

(p(i) σ(si) 0) ∧ (q % 0)
)
.

holds for ξ. By the definition of [x // (p, s)], we see that (q % 0)[x // (p, s)] holds.
This proves (i).

To prove (ii), we begin with the case when % is “=.” Since (q = 0) holds in
a non-empty interval, q is the zero polynomial, so (q = 0)[x // (p, s) + ε] follows.
If % is “ 6=,” (q 6= 0) holds in a non-empty interval, so q is a non-zero polynomial.
Therefore, (q 6= 0)[x // (p, s) + ε] holds. If % is “<,” there are two possibilities.
If (q < 0) holds at ξ, then by (i) we have that (q < 0)[x // (p, s)] holds, so
(q < 0)[x // (p, s) + ε] holds, as well. If (q < 0) does not hold for ξ, then (q = 0)
holds for ξ, because (q < 0) holds for all ζ ∈ ]ξ, ξ′[. Therefore, there is a Thom
code t identifying ξ as a root of q, and the right sign of (q, t) is negative. This
ensures that (q < 0)[x // (p, s) + ε] holds in this case, as well. The proof for the
case when % is “>” is similar. Finally, the cases % is “6” or “>,” boil down to
cases which we have just proven. Finally, we conclude that (ii) holds.

Theorem 6 (Correctness of the Elimination Set). Consider a formula ϕ of
degree at most n in x, which is an ∧-∨-combination of atomic formulas {pi %i
0}i∈I , where pi ∈ Z[y1, . . . , ym][x], and %i ∈ {=, 6=, <,6,>, >}. Let Ei be the
set of elimination terms generated by (pi %i 0) as described above. Then the
following is an elimination set for ∃xϕ:

E =
⋃
i∈I

Ei ∪ {−∞}.

Proof. We have to show that

R |= ∃xϕ←→
∨
e∈E

ϕ[x // e].
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Assign values α1, . . . , αm ∈ R to variables y1, . . . , ym. The sets Si ⊆ R satisfying
(pi %i 0)—and therefore also the set S ⊆ R satisfying ϕ—are now finite unions
of pairwise disjoint (closed, half-closed, open, semi-infinite, or infinite) intervals.
We show that

∨
e∈E ϕ[x // e] holds if and only if S 6= ∅. Since α1, . . . , αm are

arbitrary real values, this will imply the theorem.
First assume that

∨
e∈E ϕ[x // e] holds. Thus, ϕ[x // e] holds for some e ∈ E.

If ϕ[x //−∞] holds, then the set of values satisfying ϕ is unbounded from below,
i.e., non-empty.

Now suppose that ϕ[x // (p, s)] holds for some parametric root (p, s). By
Lemma 4(i), there exists ϑ ∈ R such that for any i ∈ I we have: (pi %i 0) holds
for ϑ whenever (pi %i 0)[x // (p, s)] holds. The fact that ϕ is an ∧-∨-combination
of atomic formulas ensures that ϕ holds for ϑ.

Assume that ϕ[x // (p, s) + ε] holds for some parametric root (p, s). By
Lemma 4(ii), there exists ζ ∈ R such that for any i ∈ I we have: (pi %i 0)
holds for ζ whenever (pi %i 0)[x // (p, s)] holds. Again, ϕ is an ∧-∨-combination
of atomic formulas, so ϕ holds for ζ.

We continue by assuming that S is non-empty. To begin with, notice that if S
is unbounded from below, then ϕ[x //−∞] holds. In the following we therefore
assume that S is bounded from below. Since S is a finite union of pairwise
disjoint (closed, half-closed, open, semi-infinite, or infinite) intervals, there exists
infimum ξ of S such that ξ is a root of some polynomial occurring in ϕ. There
are two cases to consider.

In the first case ξ ∈ S. This implies that there is some i ∈ I such that
(pi %i 0) holds for ξ, and %i ∈ {=,6,>}. Moreover, ξ is a root of pi with Thom
code r. By the definition of Ei we conclude that (pi, r) ∈ E. Now Lemma 5(i)
together with the fact that ϕ is an ∧-∨ combination of atomic formulas ensure
that ϕ[x // (pi, r)] holds.

In the second case ξ /∈ S, so there is some i ∈ I such that (pi %i 0), %i ∈
{6=, <,>}, holds for all ζ ∈ ]ξ, ξ′[, where

ξ′ = min{δ | j ∈ I ∧ deg pj > 0 ∧ pj(δ) = 0 ∧ δ > ξ}.

Furthermore, ξ is a root of pi with Thom code r. By the definition of Ei we
have (pi, r) + ε ∈ Ei. Now Lemma 5(ii) together with the fact that ϕ is an
∧-∨ combination of atomic formulas ensure that ϕ[x // (pi, r) + ε] holds. This
concludes the proof of the theorem.

We conclude this section with Algorithm 1, which eliminates a single exis-
tential quantifier. We explicitly point to places where the external quantifier
elimination algorithm A is used. The correctness of Algorithm 1 follows from
Theorem 6.

4 Smaller Elimination Sets
In this section we are going to considerably reduce the size of our elimination
sets by generalizing a well-known idea from the linear quantifier elimination [17]
to arbitrary degrees: An elimination term t is added to the elimination set for
ϕ only if t possibly represents a lower bound of a satisfying interval of ϕ for
some choice of parameters y1, . . . , ym.
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Algorithm 1: Elimination of ∃x
Input: ϕ
ϕ is an ∧-∨-combination of atomic formulas (pi %i 0), i ∈ I, where
%i ∈ {=, 6=, <,6,>, >}, and pi ∈ Z[y1, . . . , ym][x], with deg pi 6 n.
Output: ψ
ψ is a quantifier-free formula equivalent to ∃xϕ.

1 foreach i ∈ I do
2 Ei := ∅
3 foreach s ∈ ({−1, 0, 1}n \ {(0, . . . , 0)}) do
4 Use A to compute Γ(pi, s).
5 if Γ(pi, s) is satisfiable then
6 if % ∈ {=,6,>} then
7 Ei := Ei ∪ {(pi, s)}
8 else
9 Ei := Ei ∪ {(pi, s) + ε}

10 ψ := false
11 foreach e ∈

(
{−∞} ∪

⋃
i∈I Ei

)
do

12 Use A to compute ϕ[x // e].
13 ψ := ψ ∨ ϕ[x // e]
14 return ψ

Consider a single atomic formula (p 6 0), where p ∈ Z[y1, . . . , ym][x]. Let
α1, . . . , αm ∈ R, and assume that the polynomial p〈α1, . . . , αm〉 is of positive
degree and has a real root ξ ∈ R. There are four possibilities how p〈α1, . . . , αm〉
can look in the neighborhood of ξ, all of which are pictured in Figure 1. The
corresponding satisfying sets of (p 6 0) are shown in red. Observe that only
in the second and the third case ξ is a lower bound of the respective satisfying
interval of (p 6 0), i.e., only when p〈α1, . . . , αm〉 is positive on the left-hand side
of ξ. Consequently, if p〈α1, . . . , αm〉 is negative on the left-hand side of ξ, then
there is either another root ζ smaller than ξ, or p〈α1, . . . , αm〉 holds at −∞.

Similar ideas apply to all other relations, which motivates the following re-
vised definition of the sets of elimination terms E′i generated by (pi %i 0), where
again (pi, s) is a parametric root of pi:

(pi = 0) : { r | r = (pi, s) }
(pi 6= 0) : { r + ε | r = (pi, s) }
(pi < 0) : { r + ε | r = (pi, s) ∧ sgnr(r) = −1 }
(pi > 0) : { r + ε | r = (pi, s) ∧ sgnr(r) = 1 }
(pi 6 0) : { r | r = (pi, s) ∧ sgnl(r) = 1 }
(pi > 0) : { r | r = (pi, s) ∧ sgnl(r) = −1 } .

Theorem 7 (Correctness of the Smaller Elimination Set). Theorem 6 remains
correct for E′i instead of Ei.

10



Figure 1: p〈α1, . . . , αm〉 near its root ξ

Proof. We have to show that

R |= ∃xϕ←→
∨
e∈E

ϕ[x // e].

We proceed similarly as in the proof of Theorem 6. Assign values α1, . . . , αm ∈
R to variables y1, . . . , ym, respectively. Again, the sets Si ⊆ R satisfying
(pi %i 0) and also the set S ⊆ R satisfying ϕ are finite unions of pairwise
disjoint (closed, half-closed, open, semi-infinite, or infinite) intervals. We show
that

∨
e∈E ϕ[x // e] holds if and only if S 6= ∅. This will imply the theorem.

If
∨
e∈E ϕ[x // e] holds, the proof of the fact that S 6= ∅ is exactly the same

as in the proof of Theorem 6.
Assume that S is non-empty. To begin with, notice that if S is unbounded

from below, then ϕ[x //−∞] holds. In the following we therefore assume that
S is bounded from below. Since S is a finite union of pairwise disjoint (closed,
half-closed, open, semi-infinite, or infinite) intervals, there exists infimum ξ of
S such that ξ is a root of some polynomial occurring in ϕ. There are two cases
to consider.

In the first case ξ ∈ S. Define the following sets of indices:

I1 = {k ∈ I | %k is “=” ∧ deg pk > 0 ∧ pk(ξ) = 0},
I2 = {k ∈ I | %k is “6” ∧ deg pk > 0 ∧ pk(ξ) = 0},
I3 = {k ∈ I | %k is “>” ∧ deg pk > 0 ∧ pk(ξ) = 0}.

Since ξ ∈ S, we have (I1 ∪ I2 ∪ I3) 6= ∅.
If I1 6= ∅, then there exists i ∈ I such that ξ is a root of pi with Thom

code s. By the definition of E′i, it follows that (pi, r) ∈ E. Now Lemma 5(i)
together with the fact that ϕ is an ∧-∨ combination of atomic formulas ensure
that ϕ[x // (pi, s)] holds.

Now assume that I1 = ∅. We show that there is either some i ∈ I2 such that
pi is positive at ξ − ε, or some j ∈ I3 such that pj is negative at ξ − ε. Assume
the opposite, i.e., for every k ∈ I2 ∪ I3, the atomic formula (pk %k 0) holds at

11



ξ − ε. Let ζ ∈ ]ξ′, ξ[, where

ξ′ = max{δ | l ∈ I ∧ deg pl > 0 ∧ pl(δ) = 0 ∧ δ < ξ}.

Since I1 = ∅, the following implication holds for all m ∈ I: If (pm % 0) holds for
ξ, then it holds for ζ. This together with the fact that ϕ is an ∧-∨-combination
of atoms implies that ϕ holds for ζ; a contradiction. Therefore, there is either
i ∈ I2 such that pi is positive for ξ − ε, or j ∈ I3 such that pj is negative for
ξ − ε. In the first case ξ is a root of pi with Thom code s, so the definition
of E′i ensures that (pi, s) ∈ E′i. Now, Lemma 5(i) together with the fact that
ϕ is an ∧-∨ combination of atoms ensure that ϕ[x // (pi, s)] holds. Finally, in
the second case ξ is a root of pj with Thom code r, so the definition of Ej
ensures that (pj , r) ∈ Ej . Again, Lemma 5(i) together with the fact that ϕ is
an ∧-∨-combination of atoms ensure that ϕ[x // (pj , r)] holds.

We continue by assuming that ξ /∈ S. Define the following sets of indices:

I4 = {k ∈ I | %k is “ 6=” ∧ deg pk > 0 ∧ pk(ξ) = 0},
I5 = {k ∈ I | %k is “<” ∧ deg pk > 0 ∧ pk(ξ) = 0},
I6 = {k ∈ I | %k is “>” ∧ deg pk > 0 ∧ pk(ξ) = 0}.

Since ξ /∈ S it follows that (I4 ∪ I5 ∪ I6) 6= ∅. Define

ξ′ = min{δ | k ∈ I ∧ deg pk > 0 ∧ pk(δ) = 0 ∧ δ > ξ}.

If I4 6= ∅, then there exists i ∈ I such that (pi %i 0) holds for all ζ ∈ ]ξ, ξ′[.
Moreover, ξ is a root of pi with Thom code s. By the definition of E′i, it follows
that (pi, s) + ε ∈ E. Now Lemma 5(ii) together with the fact that ϕ is an ∧-∨
combination of atomic formulas ensure that ϕ[x // (pi, s)] holds.

Now assume that I4 = ∅. We show that there is either some i ∈ I5 such that
pi is negative at ξ+ε or some j ∈ I6 such that pj is positive at ξ+ε. Assume the
opposite, i.e., for every k ∈ I5 ∪ I6, the atomic formula (pk %k 0) does not hold
at ξ + ε. Since I4 = ∅, the following implication holds for all m ∈ I: If (pm % 0)
holds in ]ξ, ξ′[, then it holds for ξ. This together with the fact that ϕ is an
∧-∨-combination of atomic formulas ensure that ϕ holds for ξ; a contradiction.
Therefore, there is either i ∈ I5 such that pi is negative at ξ + ε or some j ∈ I6
such that pj is positive at ξ + ε. In the first case ξ is a root of pi with Thom
code s, so the definition of E′i ensures that (pi, s) + ε ∈ E′i. Now Lemma 5(ii)
together with the fact that ϕ is an ∧-∨-combination of atoms guarantee that
ϕ[x // (pi, s) + ε] holds. In the second case ξ is a root of pj with Thom code r, so
the definition of Ej ensures that (pj , r) + ε ∈ Ej . Again, Lemma 5(ii) together
with the fact that ϕ is an ∧-∨-combination of atoms ensure that ϕ[x // (pj , r)+ε]
holds. This finishes the proof of the theorem.

Theorem 7 ensures the correctness of Algorithm 2, which employs the idea
of smaller elimination sets.

5 Relation to Other Work
The idea to use Thom’s lemma as a basis for a virtual substitution-based quan-
tifier elimination method originally appeared as an outlook in Weispfenning’s

12



Algorithm 2: Elimination of ∃x (smaller elimination sets)
Input: ϕ
ϕ is an ∧-∨-combination of atomic formulas (pi %i 0), i ∈ I, where
%i ∈ {=, 6=, <,6,>, >}, and pi ∈ Z[y1, . . . , ym][x], with deg pi 6 n.
Output: ψ
ψ is a quantifier-free formula equivalent to ∃xϕ.

1 foreach i ∈ I do
2 E′i := ∅
3 foreach s ∈ ({−1, 0, 1}n \ {(0, . . . , 0)}) do
4 Use A to compute Γ(pi, s).
5 if Γ(pi, s) is satisfiable then
6 if %i is “=” then
7 E′i := E′i ∪ {(pi, s)}
8 if %i is “6=” then
9 E′i := E′i ∪ {(pi, s) + ε}

10 if %i is “<” and sgnr((pi, s)) = −1 then
11 E′i := E′i ∪ {(pi, s) + ε}
12 if %i is “>” and sgnr((pi, s)) = 1 then
13 E′i := E′i ∪ {(pi, s) + ε}
14 if %i is “6” and sgnl((pi, s)) = 1 then
15 E′i := E′i ∪ {(pi, s)}
16 if %i is “>” and sgnl((pi, s)) = −1 then
17 E′i := E′i ∪ {(pi, s)}

18 ψ := false
19 foreach e ∈

(
{−∞} ∪

⋃
i∈I E

′
i

)
do

20 Use A to compute ϕ[x // e].
21 ψ := ψ ∨ ϕ[x // e]
22 return ψ

article on the quadratic case [27]. Weispfenning, too, used an external quanti-
fier elimination algorithm A for realizing the virtual substitution of elimination
terms. Besides being way more explicit, there are some principal differences and
novelties in our framework developed here.

The most important difference is the length of the sign sequences s in para-
metric roots (p, s), where p ∈ Z[y1, . . . , ym][x] is of degree n. Weispfenning’s
sequences are of length n− 1, while our framework uses sequences of length n.
This implies that s imposes stronger restrictions on the graph of the univari-
ate polynomial p〈α1, . . . , αm〉 after fixing parameters around the correspond-
ing root, which we take advantage of to a considerable extent. For instance,
Lemma 2 would not hold when using sequences of length n− 1. It follows that
our notions of the left and the right sign make sense only when using sequences
of length n, which is crucial for the correctness of our optimized elimination sets
described in Section 4.

Weispfenning partitions his sign sequences into maximally consistent sets.
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This requires the computation of a case distinction on the number of real roots of
p. Our formulation of the Theorem 6 and Theorem 7 clearly exhibits that such
a case distinction is not necessary. The deeper reason for this is our following
insight: Given n ∈ N \ {0} there is p ∈ Z[y1, . . . , ym][x], where deg p = n < m
such that all 3n − 1 sign sequences (excluding the zero sequence) are consistent
with p, and therefore need be included in the elimination sets.

Independently, Weispfenning very explicitly discussed the cubic case in [26].
This treatment does not rely on an external algorithm A. However, it also does
not use Thom codes at all, but relies on a thorough analysis and case distinction
on the real type of the relevant, at most cubic, polynomials. As a matter of fact,
many ideas from that work could be combined with our framework introduced
here, either directly or for realizing A.

Our framework is compatible with various generalizations of real quantifier
elimination by virtual substitution. Positive quantifier elimination focuses on
the special case where all variables are known to be strictly positive [21, 22].
It is straightforward to adjust our framework so that this assumption is taken
into account during the construction of elimination sets, decreasing their size.
Furthermore, the external algorithm A could take advantage of this assumption,
possibly constructing shorter quantifier-free formulas.

Extended quantifier elimination keeps track of the elimination terms used
and generates parametric sample solutions for x guarded by quantifier-free con-
ditions [25, 28]. The disjunction over these conditions is actually the regu-
lar quantifier elimination result. For details we refer the reader to our recent
work [14]. There we show for fixed choices of parameters how to use post-
processing to eliminate nonstandard symbols, like −∞ and ε, from the sample
solutions. Both extended quantifier elimination and our postprocessing are com-
patible with our proposed framework.

Generic quantifier elimination makes global assumptions on non-vanishing
of parametric expressions during the elimination process. The result is correct
only under these assumptions, which form part of the output. This saves case
distinctions, which considerably increases efficiency and reduces the overall size
of the output [10, 20]. In our framework we could assume that certain derivatives
do not vanish, which would further decrease the size of the elimination sets.

6 Towards Practical Computations
Our theoretical discussion in Section 3 and Section 4 uses the external algorithm
A online during the computation of Γ(p, s), as well as during virtual substitu-
tion. However, it is a key idea of our framework to use in practice an offline
approach. This is based on the following observation, which is not hard to see:

Proposition 8 (Finiteness Property). Let n ∈ N \ {0}. Then our framework
requires only finitely many formulas to be computed by A to realize quantifier
elimination for all formulas of degree at most n.

These finitely many formulas are essentially Γ(p, s), (q % 0)[x // (p, s)], and
ν((p, s), (r, t)) for generic p = unx

n + · · ·+ u0, q = vnx
n + · · ·+ v0, and for all

possible choices of %, s, and t. Then, calls to A in our theoretical description
can be replaced by substitutions into the ui and vj .
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Practical experiments have shown that formulas computed this way using,
e.g., Qepcad [4] allow to generate such formulas for n = 2. However, using these
results our framework cannot compete with the classical approach from [27].
Having computed part of the formulas for n = 3, we assume that Qepcad [4] is
going to fail for efficiency reasons at n = 4 latest. Our vision is that researchers
would create suitable sets of formulas for given degrees n combining automated
methods with human intelligence. This can even lead to formulas of optimal size,
as Lazard has demonstrated with his famous result on the quartic problem [15].
This way, independent research results in symbolic computation could push
the limits of practically applicable quantifier elimination by virtual substitution
towards increasingly higher degrees n.
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