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Kurzfassung

In dieser Arbeit werden Experimente zu den Kohärenzeigenschaften von Bose-Einstein
Kondensaten und Atomlasern vorgestellt, die durch die Entwicklung einer neuartigen
Apparatur ermöglicht wurden. In dieser wird ein Bose-Einstein Kondensat (BEC) mit
einem optischen Resonator extrem hoher Güte kombiniert. Einzelne aus einer magne-
tisch gefangenen Wolke ausgekoppelte Atome können mit sehr hoher Emp�ndlichkeit
nachgewiesen werden, indem der Resonator als Einzelatomdetektor verwendet wird. Dies
ermöglichte zum ersten Mal den zeitaufgelösten Nachweis einzelner Atome aus einem
quantenentarteten Gas.

Langreichweitige Ordnung in den Nichtdiagonalelementen der Dichtematrix ist eine
de�nierende Eigenschaft eines Bose-Einstein Kondensats und ist äquivalent zu langreich-
weitiger Phasenkohärenz. Sie entsteht in einem komplexen Prozess mit spontaner Sym-
metriebrechung. Wir konnten die Ausbildung dieser langreichweitigen Phasenkohärenz
beobachten, während eine ultrakalte Wolke aus Rubidiumatomen den Phasenübergang
zu einem Bose-Einstein Kondensat überschritt. Zwei überlappende Atomlaserstrahlen
aus unterschiedlichen Bereichen des Kondensats �elen in den Resonator. Der Kontrast
des resultierenden Materiewellen-Interferenzmusters ist durch die Kohärenz zwischen
den beiden untersuchten Regionen bestimmt. Er kann aus der Modulation des Atom-
�usses gewonnen werden, der mit Einzelatomau�ösung gemessen wird, wohingegen der
Mittelwert des Flusses Rückschlüsse auf die Dichte der Wolke ermöglicht.

Mittels Schockkühlung wurde eine Atomwolke in einem Nichtgleichgewichtszustand
kurz oberhalb des Phasenübergangs präpariert. Während der nachfolgenden Therma-
lisierung kehrte das System in ein Gleichgewicht mit einem kleinen Kondensatanteil
zurück. Mittels unserer minimalinvasiven Messmethode konnten die Phasenkohärenz
und die Dichte der Probe während des Phasenübergangs in Echtzeit beobachtet wer-
den. Das Wachstum der Kohärenz begann später, verlief schneller und endete früher als
der Anstieg der Dichte. Der kohärente Bereich wuchs mit einem Fünftel der Schallge-
schwindigkeit.

Die vollständige Zählstatistik eines Atomstrahls wurde mithilfe von zeitaufgelös-
tem Einzelatomnachweis aufgenommen. Unter Verwendung eines Korrelationsverfah-
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rens, das auf Hanbury Brown und Twiss zurückgeht, wurde eine konstante Korrelati-
onsfunktion zweiter Ordnung g(2)(τ) = 1.00 ± 0.01 gemessen. Hiermit konnten wir die
Kohärenz zweiter Ordnung des Atomlasers und die Abwesenheit überschüssiger Inten-
sitäts�uktuationen nachweisen, wie sie in einem pseudothermischen Strahl beobachtet
wurden. Die Auswertung der Zeitabstände zwischen den einzelnen Atomen des Strahls
bestätigte dieses Ergebnis. Durch den Nachweis, dass der Atomlaser eine Poissonsche
Teilchenstatistik besitzt, konnte auch seine Kohärenz höherer Ordnung gezeigt werden.

Der Welle-Teilchen-Dualismus für Materie wurde in Analogie zum Doppelspalt-Expe-
riment mit Photonen untersucht. Zwei interferierende Atomlaser wurden im Einzelatom-
detektor in einen Zustand mit keinem oder einem Atom in der Resonatormode projiziert.
Der Fluss von Atomen zwischen Quelle und Detektor wurde so niedrig gehalten, dass
sich im Mittel nur ein einziges Atom im Interferometer befand. Nach vielen Durchläufen
bildete sich ein Interferenzmuster mit hohem Kontrast. Dieser Versuch zeigt, dass die
Interferenz auch für Atome ein Einteilchene�ekt ist.

Die konzeptionell neuartige Apparatur, welche die oben dargestellten Experimente er-
möglicht hat, wird im Detail beschrieben und ihre Eigenschaften werden charakterisiert.
Der optische Hoch�nesse-Resonator be�ndet sich knapp unterhalb der Magnetfalle, in
der das Kondensat gehalten wird. Er ist innerhalb der Vakuumapparatur auf derem
austauschbaren Boden�ansch montiert, welcher viel Platz für Proben und Analyseme-
thoden bietet. Atomlaser mit einem über sechs Gröÿenordnungen regulierbaren Fluss
können aus dem Kondensat ausgekoppelt werden. Einzelne Atome aus diesem Strahl
werden mit einer Detektionse�zienz von 25% mithilfe des Resonators nachgewiesen.
Die Kopplung zwischen einem einzelnen Atom und dem Lichtfeld ist gröÿer als alle
dissipativen Prozesse. Damit ist der Resonator im Regime starker Kopplung und die
Apparatur ideal geeignet für zukünftige Untersuchungen der kohärenten Wechselwir-
kung zwischen Materiewellen und dem quantisierten Lichtfeld des Resonators.
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Abstract

This thesis features fundamental experiments on the coherence properties of Bose-
Einstein condensates (BEC) and atom lasers, made possible by a newly developed ap-
paratus combining a Bose-Einstein condensate with an ultrahigh �nesse optical cavity.
Using the cavity as a single atom detector, atoms extracted from a trapped cloud are
detected with unprecedented sensitivity, and the �rst time-resolved counting of single
atoms from a quantum degenerate source was demonstrated.

O�-diagonal long-range order is a de�ning property of a BEC and equivalent to long-
range phase coherence. Its formation is a complex process accompanied by spontaneous
symmetry breaking. We witnessed this formation in an ultracold cloud of 87Rb atoms
crossing the phase transition of BEC. Two overlapping atomic beams originating from
di�erent positions inside the condensate propagated downwards into the cavity. They
showed a matter wave interference pattern with a visibility determined by the coherence
of the probed regions. The modulation of the �ux of atoms, recorded with single-atom
resolution, yields the visibility, whereas its mean value gives information about the
density of the sample.

By shock cooling, a cloud of atoms was prepared in a highly nonequilibrium state
slightly above the phase transition. While the ensemble subsequently relaxed, it crossed
the phase transition into an equilibrium with a small condensate fraction. Employing
our minimally invasive measurement method, the growth of both the �rst-order coher-
ence and the density of the sample was tracked in real time while the system crossed
the phase transition. The growth of the coherence was found to start later, proceed
faster and �nish earlier than the increase in density. The coherent region increased at
one �fth of the speed of sound.

Employing time-resolved single atom counting with the cavity detector, the full
counting statistics of an atom laser beam was recorded. In a Hanbury Brown and
Twiss type experiment, the second-order correlation function was found to be constant
g(2)(τ) = 1.00±0.01, proving the atom laser's second-order coherence and the absence of
excess intensity �uctuations that were observed in a pseudothermal beam. An analysis
of the time interval distributions of atoms in the beam con�rmed these �ndings. The
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higher-order coherence of the atom laser was also shown, manifested in a Poissonian
atom number distribution.

Matter wave-particle duality was studied in an atomic counterpart of Young's double
slit experiment. Two interfering atom laser beams propagating through the detector
were projected into a state with zero or one atom inside the cavity mode. The �ux of
atoms from the source to the detector was kept so low that on average only a single atom
was in the interferometer. After many repetitions of the experiment, a high-contrast
interference pattern was observed, illustrating the single-particle character of such an
interference e�ect with atoms.

The conceptually novel apparatus facilitating the research outlined above is described
in detail and its performance is characterized. The ultrahigh �nesse optical cavity is
located slightly below the magnetic trap con�ning the BEC and resides on an inter-
changeable �science platform� providing large spatial access for samples and probes.
Atom lasers with a �ux adjustable over six orders of magnitude can be output coupled
from the condensate. Single atoms from this beam are detected with an e�ciency of
about 25% using the cavity which operates in the strong coupling regime of cavity
quantum electrodynamics. Therefore the coupling between the cavity �eld and a single
atom is much stronger than all dissipative processes. This makes the apparatus ide-
ally suited for future studies of coherent interactions between a matter wave and the
quantized light �eld of the cavity.
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1 Introduction

More than eighty years ago, Planck, Einstein and Bohr used the quantization of energy
to explain physical phenomena which at their time were not understood. Since then,
this idea has developed into a sound theoretical framework: quantum mechanics. At
about the same time, the idea of matter waves was introduced by de Broglie. Since
then, innumerable experiments have proven the success of this theory. Even so, people
are still puzzled by the consequences this theory brings about. We seem to lack some
of the intuition that we have for other physical e�ects when it comes to the domain of
very small scales. E�ects on these small scales, where quantum mechanics is prevailing,
are just not a part of our everyday life and experience. This explains the astonishment
and enthusiasm created when quantum mechanical e�ects manifest themselves on a
macroscopic scale. A prime example of such a system is a macroscopic matter wave.
The �rst realization of Bose-Einstein condensation in dilute atomic gases [1, 2, 3] was a
milestone in this respect. It sparked a whole new area of research and for many physicists
today the observation of matter wave interference with a charge-coupled device (CCD)
camera is a standard procedure.

An appealingly simple de�nition of a Bose-Einstein condensate (BEC) is that a macro-
scopic number of atoms (of the order of the total number of atoms) occupies the same
quantum state of the system, usually its ground state. However, a direct veri�cation
of this criterion is rather di�cult. There are other de�nitions of Bose-Einstein conden-
sation suggesting more obvious experimental strategies to test a BEC. A criterion �rst
introduced by Penrose and Onsager [4] requires o�-diagonal long-range order (ODLRO)
[5]. If a system shows ODLRO, the phase at one end of the system is correlated to the
phase at the other end. Naturally, the existence of phase coherence in the limit of in-
�nitely large distances can not be met by particles con�ned to a limited region in space.
However, a non-zero �rst-order correlation function at distances much larger than the
thermal de Broglie wavelength is a unique property of a quantum degenerate gas. The
long-range order is preluded by a change of the decay of the correlation function from
exponential to algebraic in the critical regime near the phase transition and can not be
found in thermal atoms [6].
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Chapter 1. Introduction

Phase transitions are of great interest to researchers in many, very di�erent areas of
physics, amongst other things because they show universality. At a phase transition,
the properties of a system fundamentally change, evoked by only small changes in
the external conditions controlling it. For instance, a slight decrease in temperature
triggers the phase transition of a weakly interacting gas to a Bose-Einstein condensate.
Experimental research into this speci�c transition seems particularly worthwhile, since
the two-body interactions between the atoms are well known and the gas is free of
impurities. More than sixty research groups world-wide do research on Bose-Einstein
condensates and employ their unique properties. However, the intricate process of
condensate formation itself is still not fully understood.

Substantial theoretical e�ort has been made to explain and model the stages that
lead to the �nal Bose-Einstein condensate. In many studies, the process of condensate
formation is divided into di�erent stages [7]. During the �rst, the kinetic stage, collisions
between the atoms induce a restructuring of the population of di�erent energy states
which leads to an increased population in low-energetic states. The quantum kinetic
theory developed by Gardiner et al. [8] models the time-dependent population of the
condensate state and hence the growth of the condensate fraction. A di�erent approach
is to numerically solve the quantum Boltzmann equation [9, 10, 11, 12]. A second, so
called coherent stage plays a signi�cant role only in the regime of very large densities
or scattering lengths. It is characterized by the existence of quasicondensates, patched
regions of locally constant phase. Quasicondensates are an intermediate stage of the
condensation process. The relaxation of nonequilibrium phase �uctuations and the
annihilation of vortices �nally lead to the formation of o�-diagonal long-range order [7].

Despite all this theoretical interest, condensate formation is experimentally largely
unexplored. Why have so few experiments focused on gaining a deeper understanding
of the condensation process? This becomes understandable when considering the ex-
perimental challenges that have to be tackled. First, the system has to be brought into
a nonequilibrium situation so that during the following relaxation process it crosses the
phase transition. Second, a method is needed for the time-resolved measurement either
of the �rst-order correlation function or the coherence length of the cloud, preferably in
real time and with minimal disturbance of the condensation process.

The growth of the condensate fraction [13, 14] and the change in momentum spread
[15, 16] have been subject of earlier studies. During the course of this thesis, the �rst-
order correlation function and with it the formation of long-range order were observed in
real-time for the �rst time. The growth of the density is closely linked to the increasing
population of low-energetic states of the system, whereas the occurrence of long-range
phase coherence is a consequence of the extinction of density �uctuations and the for-
mation of a uniform phase. Since the two processes are closely linked but neither the
same nor necessarily synchronous, a simultaneous study of their relative progression is
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particularly revealing. O�-diagonal long-range order can be found in other super�uid
systems than gaseous Bose-Einstein condensates or in superconductors as well. How-
ever, a dilute degenerate Bose gas is ideally suited for experimental investigations of the
formation of ODLRO because of its rather long relaxation times and the weak coupling
to the environment.

In our experiment we achieved the simultaneous observation of the growth of phase
coherence and density during Bose-Einstein condensation using a novel measurement
setup. The results are presented in this thesis. Starting with an atomic cloud slightly
above the transition temperature to BEC, we created a strongly nonequilibrium situ-
ation by removing the high energy tail of the Bose distribution. During the following
relaxation process, we constantly recorded information on the �rst-order correlation
function and the density of the atom cloud until equilibrium with a small condensate
fraction was reached. The speed of the growth of coherent regions was determined as
well as the times for the growth processes of coherence and density. Because the coher-
ence was probed up to half the size of the �nal condensate, the formation of long-range
order was directly observed.

The study of the coherence between two regions of an atom cloud was facilitated
by a special matter wave interference technique: Two overlapping atomic beams are
output coupled from di�erent positions in an atom cloud. The visibility of the resulting
interference pattern is proportional to the degree of phase coherence between the two
regions in the condensate. To determine the visibility of the interference pattern, an
accurate detection of the time-dependent atom �ux is necessary. The ultrahigh �nesse
optical cavity which is an integral part of the setup presented here, is ideally suited for
this job. In the experiment, its single-atom resolution allowed very weak output coupling
with minimal in�uence on the condensation process. We �rst used this technique to
realize a matter wave analogue of Young's double slit experiment. In this text book
experiment we observed the build-up of a matter wave interference pattern from single
atom detection events. The detection of single atoms from two interfering matter waves
is a prime example of wave-particle duality. Inside the cavity the coupling between
a single atom and the quantized light �eld is much larger than the two dissipation
processes, namely decay of atomic excitation and decay of the intracavity �eld. This
facilitates the detection of single atoms via a signi�cant drop in the transmission of a
probe laser resonant with the empty cavity. This measurement process projects the
extended matter wave into a state with zero or one atom inside the cavity mode. We
theoretically studied this localization process and the timescales involved.

The �rst evidence of Bose-Einstein condensation was the anisotropic expansion of the
condensate when released from an anisotropic trap. This e�ect, when considering an
ideal gas, is a direct consequence of the uncertainty principle and a very clear example
of a quantum e�ect on a macroscopic length scale. However, the mutual interactions
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Chapter 1. Introduction

between the atoms also lead to the anisotropic expansion of a dense classical gas in the
hydrodynamic regime [17]. The observation of interference between two Bose-Einstein
condensates made the wave nature of matter visible, but was likewise not su�cient to
prove that the atom cloud was a true condensate, since matter wave interference can also
be observed with ultracold thermal atoms [18]. So which other properties distinguish a
BEC from a thermal cloud?

Generally, bosons have the tendency to bunch together. This means that the prob-
ability to �nd two particles at a certain distance smaller than the coherence length is
higher than to �nd them at any other, larger distance. This was demonstrated in a
groundbreaking series of experiments by Hanbury Brown and Twiss [19, 20, 21] when
they evidenced the correlations between photons in two beams of light. These corre-
lations can be envisioned as a direct consequence of the Bose-Einstein distribution. In
a di�erent description of the same physics they are due to large intensity �uctuations
which themselves are a consequence of the interference of many independent elementary
waves. A coherent source of bosons�atoms as well as photons�behaves di�erently. It
obeys Poissonian statistics and therefore shows reduced intensity �uctuations that van-
ish in the limit of in�nitely large intensities. In addition, there are no correlations
between the particles. Therefore a doubtless distinction between a Bose-Einstein con-
densate and a thermal cloud of atoms is possible by probing the intensity correlations
between the atoms.

The same properties mark the distinction between an atom laser and a thermal beam
of atoms. An atom laser possesses all the distinct properties of an optical laser: it is
highly directed, bright, monochromatic and obeys Poisson statistics and therefore shows
minimum intensity �uctuations. While the �rst three properties can also be achieved for
a thermal beam by �ltering spatially and in the frequency domain, the counting statistics
of the beam ultimately reveal its true character. In an experiment accomplished in the
course of this thesis, we showed that an atomic beam output coupled from a Bose-
Einstein condensate is indeed the matter wave analogue of an optical laser: its two-
particle correlation function is constant unity, proving the second-order coherence of an
atom laser. We also observed the absence of excess intensity �uctuations as manifested
in a Poissonian counting statistics. At the same time, the absence of spatial correlations
in an expanding BEC of metastable bosonic 4He and later antibunching in fermionic
3He was observed by another group [22, 23].

All studies mentioned above were possible because of the unique properties of our
newly developed apparatus. It combines the production of Bose-Einstein condensates
and atom lasers with an ultrahigh �nesse optical cavity. The con�icting vacuum re-
quirements for the initial magneto-optical trapping and subsequent evaporative cooling
of the 87Rb atoms are met by two nested vacuum chambers. The cavity is mounted
on an interchangeable �science platform� and can be supplemented with or replaced by
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additional samples and probes.

An atom coupled to an optical cavity in the strong coupling regime is a prime example
of a cavity QED system. The rate at which energy is exchanged between a single
electromagnetic mode of the cavity and a single atom is greater than all dissipative
processes, leading to a resolvable vacuum Rabi splitting of the coupled atom-cavity
system [24, 25]. The detection of single atoms [26], trapping of single atoms with
single photons [27, 28], cavity cooling of atoms [29], and single photon sources [30, 31]
are just a few examples of the impressive achievements with such a system. A great
advantage of the cavity over other single atom detection schemes [22, 32, 33] is that
the atoms are neither absorbed nor ionized. It should be possible to detect single
atoms nondestructively and state preserving by implementing a heterodyne detection
technique [34].

In the experiments presented in this thesis, the cavity was utilized as a time-resolving
single atom detector, adding unprecedented sensitivity to the research on Bose-Einstein
condensates including interferometric measurements and the investigation of particle
correlations. An atom laser is a bright source of coherent atoms, allowing a precisely
controllable �ux of ultracold atoms with well de�ned internal and external degrees of
freedom through the cavity. The transport of the BEC into the cavity and subsequent
trapping in the cavity mode realizes a system with maximum control over the state of
matter and light �eld and extremely strong coupling between the two.

The work presented in this thesis was carried out in close collaboration with Anton
Öttl and Michael Köhl. Additional information on the experiments and the apparatus
can be found in their PhD thesis [35] and habilitation thesis [36], respectively.
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Chapter 1. Introduction

Outline of this thesis

� In chapter 2 an introduction to the theoretical aspects of Bose-Einstein conden-
sation is given, with special attention to coherence and phase transitions. This is
followed by a section about atom lasers and the output coupling process in par-
ticular. Furthermore, the basics of cavity QED and single atom detection using a
high �nesse optical cavity are discussed.

� The newly developed apparatus is presented in chapter 3. Its building blocks are
described in detail and the performance of the system is characterized. We present
measurements on the beam pro�le of an atom laser and the investigation of cold
atomic gases both using the cavity-based single atom detector. The chapter closes
with the introduction of a new technique to very sensitively detect and quantify
dipole oscillations of a BEC via phase modulation of two atom laser beams.

� Our measurements on the formation of o�-diagonal long-range order in a Bose-
Einstein condensate are reported in chapter 4. It is opened by a short review
of quasicondensates, the theory of condensate formation and a presentation of
related experimental work. We study the speci�cs of the measuring method in
more detail and present our results.

� The time-resolved detection of single atoms from an atom laser beam allowed us to
study its second-order coherence, time interval distributions and counting statis-
tics. The measurements and results�con�rming the second-order coherence of
the atom laser�are presented in chapter 5 and are contrasted with measurements
on a pseudothermal beam.

� Chapter 6 reports on a matter wave analogue to Young's double slit experiment
with individual quanta. In addition, the quantum measurement performed by the
cavity detector on the extended matter wave is studied theoretically.

� The thesis closes with an outlook on our very recent experiments in the critical
regime of the Bose-Einstein phase transition in chapter 7. First steps towards the
transport of the BEC into the ultrahigh �nesse cavity are also presented.
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2 Theoretical framework

In the following chapter, a brief introduction to the physics of Bose-Einstein condensates
(BECs), atom lasers and cavity QED in the strong coupling regime will be given. The
intention is to brie�y review theoretical and experimental aspects important for the
understanding of the experimental work presented in later chapters. For a more detailed
and complete overview the reader is referred to the standard literature. Important
articles, textbooks and reviews will be mentioned in the respective sections.

2.1 Bose-Einstein condensation

In a paper published 1924, D. Bose presented a derivation of Planck's law of black-body
radiation using statistical mechanics [37]. Einstein used the same method to derive the
quantum theory of an ideal gas [38]. He found that for a given temperature the non-
zero energy states can only accommodate a limited number of atoms and immediately
realized that this leads to the condensation of excess atoms into the zero momentum
state. There is an alternative picture of Bose-Einstein condensation: The size of the
wave packet of a single atom is roughly given by the thermal de Broglie wavelength

λdB =
√

2π~2/(mkBT ) . (2.1)

When an ensemble of atoms is cooled to ultralow temperatures, their de Broglie wave-
lengths become comparable to the mean interatomic separation. Consequently the
atoms overlap and become indistinguishable. The system undergoes the phase transi-
tion to a BEC (see Fig. 2.1). Already in 1938, London realized that the super�uidity of
liquid 4He was due to Bose-Einstein condensation[39, 40]. However, the strong inter-
actions between the atoms in liquid 4He limit the condensate fraction to below 10%.
Bose-Einstein condensates of a dilute atomic vapor, �rst realized in 1995 [1, 2, 3], can on
the other hand be made virtually pure. They are also largely accessible for experimental
investigation.

A detailed discussion of the theory of Bose-Einstein condensation can be found in
review articles [41, 42] and textbooks [43, 44]. An introduction to the experimental
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Chapter 2. Theoretical framework

c) d)b)a)

Figure 2.1: A BEC is created by evaporative cooling. All pictures were taken after

ballistic expansion during 22ms time of �ight following the switch-o� of the anisotropic

trapping potential. Starting from a thermal cloud (a), the temperature of the ensemble

is lowered by evaporative cooling. Below the critical temperature Tc, a BEC forms [(b)

and (c)]. The condensate is easily distinguishable from the isotropically expanding

thermal cloud by its distinctive anisotropic expansion. Cooling further leads to a

virtually pure Bose-Einstein condensate (d).

aspects and methods is given in [45].

2.1.1 The ideal Bose gas

We consider a noninteracting gas of N bosons in a three-dimensional harmonic trap. At
a temperature T , the mean number ni of particles in an energy eigenstate with energy
εi is given by the well known Bose-Einstein distribution

ni =
1

e(εi−µ)/kBT − 1
. (2.2)

kB denotes the Boltzmann constant and the chemical potential µ is determined by the
normalization to the total number of particles N :

∑
i ni(µ, T ) = N . We set ε0 ≡ 0.

Bose-Einstein condensation occurs when one (�simple BEC�) or more of the eigenvalues
ni are of the order of the total number of particlesN [46]. The condensation temperature
is de�ned as Tc = T |µ→0− . In the case of a harmonic trapping potential

Vext(r) =
1

2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

(2.3)

and for atoms of mass m and trapping frequencies ωx, ωy and ωz one �nds

TC =
~
kB

(
Nωxωyωz

ζ(3)

)1/3

, (2.4)

where ζ is the Riemann zeta function. For T < TC a BEC forms as a macroscopic
population of the lowest single-particle state. The number of condensed atoms N0 at a
temperature T is given by

N0(T ) = [1− (T/TC)
3]N . (2.5)
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2.1. Bose-Einstein condensation

2.1.2 The weakly interacting Bose gas

The typical peak density density of a BEC of a dilute gas is n ≈ 1020m−3. The scattering
length of spin-polarized 87Rb atoms is a = (106 ± 4) a0 [47], which is a typical value
for alkali atoms. Here a0 denotes the Bohr radius. The mean interparticle separation
is thus much smaller than the scattering length, i.e. n|a|3 � 1. This is the de�nition
of the weakly interacting regime, where the interaction between atoms is completely
characterized by the s-wave scattering length a. The true interaction potential can in
general not be calculated. In the Born approximation it is replaced by an e�ective
contact interaction

V0 =
4π~2a
m

δ(r − r′) = U0δ(r − r′) . (2.6)

Assuming a fully condensed state, the wave function of the N-particle system can be
written as a product of single-particle states φ(ri):

Ψ(r1, r2, . . . , rN ) =

N∏
i=1

φ(ri) (2.7)

Now we introduce the wave function of the condensed state as

ψ(r) =
√
Nφ(r) . (2.8)

Taking the interaction between the atoms into account in a mean-�eld approximation
leads to a nonlinear Schrödinger equation

i~
∂

∂t
ψ(r, t) =

(
− ~2

2m
∇2 + Vext(r, t) + U0|ψ(r, t)|2

)
ψ(r, t) , (2.9)

the so called Gross-Pitaevskii equation [48, 49]. It describes a condensate at T = 0 and
neglects in this form any excitations and interactions with thermal atoms.

If the interaction energy per particle is large compared to the zero-point energy of the
harmonic oscillator, the kinetic energy term in the Gross-Pitaevskii can be neglected.
This is the so called Thomas-Fermi approximation, which is valid for Na/ā� 1, where
ā =

√
~/(mω̄) is the characteristic length scale for the quantum-mechanical harmonic

oscillator and ω̄ = (ωxωyωz)
1/3 is the geometric mean of all three oscillator frequencies.

For the system studied in this thesis, this is the case for condensates of more than 103

atoms. In the Thomas-Fermi approximation, one can calculate the density distribution
of the BEC:

n(r) = max

[
µTF − Vext(r)

U0
, 0

]
(2.10)

The chemical potential is given by

µTF =
1

2

(
15~2

√
mNω̄3a

)2/5
, (2.11)
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Chapter 2. Theoretical framework

and the condition Vext(rTF,i) = µTF gives the radius of the condensate

rTF,i =

√
2µTF

mω2
i

, i = x, y, z , (2.12)

the so called Thomas-Fermi radius. For large atom numbers, the results of the Thomas-
Fermi approximation are excellent, apart from a small region at the border of the
condensate. While the approximation predicts a sharp edge, the real wave function,
that can be calculated by numerically solving the Gross-Pitaevskii equation, falls of
exponentially on a length scale given by 1/

√
8πna, the so called healing length.

The Gross-Pitaevskii equation was introduced here to describe the wave function of
the condensed state. This approach neglects quantum �uctuations, which are taken into
account by the Bogoliubov theory. It can be used to describe elementary excitations in
a BEC, which are found to behave like noninteracting quasiparticles. Their dispersion
relation reads

ε(p) =

√
(cp)2 +

(
p2

2m

)2

(2.13)

where c =
√
U0n/m denotes the speed of sound. For small momenta (p � mc),

eqn. (2.13) becomes ε(p) ≈ cp, i.e. phonon-like, whereas for p � mc one �nds the
dispersion law for free particles ε(p) ≈ p2/(2m) + U0n. Quantum �uctuations lead to
excitations even at zero temperature, with the consequence there is a quantum depletion
of the condensate. Because dilute atomic gases are usually very weakly interacting, the
depletion is negligible in these experiments. In liquid helium however it is responsible
for the low condensate fractions of only about 10%.

2.1.3 Theory of coherence and phase transitions

For a non-interacting gas of Bosons, the criterion for Bose-Einstein condensation is
simply the macroscopic population of one of the single-particle energy states, usually
the ground state. This collection of atoms in the ground state is called a Bose-Einstein
condensate, whereas atoms occupying higher energy levels are attributed to the thermal
fraction. This simple and intuitive picture becomes problematic when the interactions
between the particles are of importance. It no longer makes sense to use the one-particle
states as eigenfunctions of the trapping potential. As an alternative, the condensate
can be described as a macroscopic wave function ψ, which is a complex quantity with
amplitude and phase. This wave function takes the role of an order parameter. The
idea of introducing an order parameter is a general concept in physics. Often one is
interested in speci�c properties of a many-body systems, as, e.g., the magnetization
of a magnet. Trying to understand this property of the bulk by keeping track of all
properties of its constituents is a hopeless endeavor. Instead, one uses the concept of
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2.1. Bose-Einstein condensation

an order parameter to describe the interesting property of the system. In the case of a
BEC, the order parameter is given by its wave-function.

Spontaneous symmetry breaking

The description of the interacting condensate starts from a pure, bosonic N -body state
of �xed particle number and energy. In second quantization, one uses the equivalence
between a system of N particles and a quantized �eld [6] generated by the quantized
boson �eld operator Ψ(r). The Hamiltonian describing the system is invariant under
the global gauge transformation Ψ(r) → eiθΨ(r) with θ being real and independent of
position. The system is characterized by ψ(r) ≡ 〈Ψ(r)〉 = a(r) eiφ(r), the complex order
parameter of the transition, also called the condensate wave function. For temperatures
above the critical temperature ψ(r) = 0 shows global phase symmetry. When Bose-
Einstein condensation happens, the global gauge invariance is spontaneously broken,
i.e. ψ becomes �nite with a certain phase φ. This is in close analogy to the magneti-
zation of a ferromagnet: While the Hamiltonian describing the system is rotationally
invariant in the absence of external �elds, the ground state possesses a spontaneously
broken symmetry and the magnetization points in a de�nite direction. An immediate
consequence of the spontaneous symmetry breaking is that no phase correlations be-
tween completely independent condensates can be expected [50]. However, the appear-
ance of a �xed relative phase between two initially independent, interfering condensates
is not in contradiction with the two condensates initially being in a Fock state [51, 52].
Lieb et al. have proven the equivalence between spontaneous gauge symmetry breaking
and Bose-Einstein condensation in the quasi average sense [53].

Penrose-Onsager criterion of Bose-Einstein condensation

The one particle density matrix of a system of bosons can be written as

ρ1(r, r
′) = 〈Ψ̂†(r)Ψ̂(r′)〉 , (2.14)

where 〈. . .〉 denotes the ensemble average. Since Ψ̂(r) is the Bose �eld annihilation
operator and Ψ̂†(r) the creation operator, ρ1(r, r′) is the probability to �nd a particle
at r after removing one at r′. For a homogeneous, ideal Bose gas, one �nds [6]

ρ1(r, r
′) =

〈n0〉
V

+

∫
d3k

(2π)3
eik·(r−r′)〈nk〉 . (2.15)

The interpretation of this result is instructive. The existence of a Bose-Einstein con-
densate, i.e. a macroscopic number of atoms n0 occupying the same momentum state,
implies

ρ1(r, r
′) −−−−−−→

|r−r′|→∞

〈n0〉
V

, (2.16)
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Chapter 2. Theoretical framework

i.e. in a homogeneous, noninteracting system and for large separations ρ1 is given by
the number of condensed atoms. In the case of a thermal gas in the critical regime (see
chapter 7) and for r � λdB, correlations decay as

ρ1(r, r
′) ∝ 1

r
e−r/ξ . (2.17)

The correlation length is given by ξ = ~/
√

2mkBT | ln z| and the fugacity z related to the
chemical potential µ via z = exp [µ/(kBT )]. In a three-dimensional harmonic oscillator
potential z is de�ned via g3/2(z) = (TC/T )

3/2g3/2(1), with the Bose or polylogarithm

function gp(z) given by gp (z) =
∑∞

l=1
zl

lp . Close to the critical temperature, that is
for t = (T − Tc)/Tc → 0, the correlation length diverges as ξ ∝ |t|−ν . The critical
exponent ν characterizes the divergence and is 1 for a homogeneous and 1/2 for a
trapped noninteracting system.

For interacting particles, Penrose and Onsager [54, 4] and Yang [5] proposed a criterion
for Bose-Einstein condensation:

〈Ψ̂†(r)Ψ̂(r′)〉 −−−−−−→
|r−r′|→∞

〈Ψ̂†(r)〉〈Ψ̂(r′)〉 . (2.18)

This is also the de�nition of the existence of o�-diagonal long-range order (ODLRO) in
ρ1 [5]. The concept of ODLRO describes a de�ning property of a BEC and is equivalent
to long-range phase coherence of the system. When the spatial extension of the o�-
diagonal elements is as large as or larger than the spatial extension of the diagonal
elements, i.e. the density of the system, it is said to possess o�-diagonal long-range
order.

In summary, a condensate can be described by an order parameter, its (macroscopic)
wave function. The concept of broken gauge symmetry is one of the fundamental prin-
ciples for understanding BEC. O� diagonal long-range order or long-range phase coher-
ence describe the same concept [55].

Coherence and correlation functions

The normalized �rst- and second-order correlation functions, measuring the degree of
coherence, can be de�ned as [56]

g(1)(r, r′) =
ρ1(r, r

′)√
ρ1(r, r)

√
ρ1(r′, r′)

, (2.19)

and

g(2)(r, r′) =
〈Ψ̂†(r)Ψ̂†(r′)Ψ̂(r′)Ψ̂(r)〉

ρ1(r, r)ρ1(r′, r′)
. (2.20)
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2.1. Bose-Einstein condensation

Both functions yield one in the case of perfect coherence. g(1) characterizes �uctuations
in the phase of the �eld amplitude. It is experimentally directly accessible as the
visibility

V =
Imax − Imin

Imax + Imin
(2.21)

of an interference pattern in an experiment with perfect detectors. This interference is a
single-particle e�ect. In contrast, g(2) is proportional to the joint probability to measure
one atom at r and another at r′ and therefore a two-particle e�ect. The two-particle
correlation function is an ideal measure for the bunching behavior of thermal bosons
[57, 58], that is their tendency to cluster. In chapter 5, we present a measurement of
the temporal two-particle correlation function of an atom laser beam. An important
di�erence between the theory of coherence in a BEC and optical coherence [59] is given
by the interactions of the atoms. They strongly in�uence the second-order correlations
on small length scales. The �rst-order correlation function g(1) is of great importance
for the measurement of the condensate formation presented in chapter 4.

2.1.4 Quasicondensates

A quasicondensate is distinct from a true condensate in that it shows large phase �uctu-
ations and therefore no long-range phase coherence, even though it possesses the same
density pro�le and local correlation properties as a true condensate. The presence of
quasicondensates could be revealed by the momentum distribution of a gas below the
critical temperature. Large phase �uctuations are very common in low-dimensional sys-
tems. In very elongated 3D condensates axial phase �uctuations exist even well below
Tc [60]. In such a geometry, the wavelength of the elementary excitations can become
larger than the radial size of the system. In the axial direction low-energy excitations
then show a 1D behavior and strong phase �uctuations can be observed. Neglecting
correlations in the thermal cloud, the correlation function is given by

〈Ψ̂†(r)Ψ̂(r′)〉 =
√
n0(r)n0(r′)e

−〈[δφ̂(r,r′)]2〉/2 . (2.22)

The mean square thermal �uctuations of the phase in the center of the cloud are found
to be

〈[δφ̂(z, z′)]2〉 = δ2L
|z − z′|
L

, (2.23)

where L denotes the axial size of the cloud. Therefore it depends on the magnitude of
δ2L whether phase �uctuations control the system. For δ2L ≥ 1 this is surely the case. δ2L
is given by [60]

δ2L =
T

Tc

(
N

N0

)3/5

δ2c , (2.24)
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where δ2c depends on atomic properties, particle number N and trapping frequencies

δ2c =
32µ(N0 = N)

15N2/3~ω̄

(
ωρ

ωl

)4/3

. (2.25)

Experimentally, quasicondensates have been observed in very elongated traps [61, 62,
63]. The phase �uctuations lead to stripes in the density distributions of the atom
cloud after ballistic expansion. These could be observed in traps with aspect ratios
exceeding 25 and for temperatures not too far below Tc. In a similar trapping geometry
the Hannover group measured the spatial second-order correlation function of phase
�uctuating condensates [64, 65]. Using two Bragg pulses a condensate was split in two
parts with a separation determined by the time between the two pulses. The absorption
images of the interfering clouds showed strong modulations in the density pro�le due to
interference which could be quanti�ed by the intensity correlation function. From this
the coherence length of the sample was inferred.
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2.2. Atom lasers

2.2 Atom lasers

5
0
0
¹
m

Quantum optics and research on ultracold atoms would not be conceiv-
able without lasers. They have become reliable workhorses for cooling,
trapping, manipulating and detecting single atoms as well as ensembles
and they provide the experimentalist with a true realization of a coherent
state, sometimes also called Glauber state [59]. It is the closest quantum
mechanical realization of a classical wave with �xed intensity and phase.
Laser light has many desirable properties which one also wants for atomic
beams. An atom laser should likewise be bright, highly directed, largely
monochromatic and on the quantum level obey Poissonian statistics [66].
Since the atoms in a Bose-Einstein condensate all occupy the same mode,
they make a perfect source for an atom laser.

Atom lasers draw their desirability from their unique properties. For
example in interferometry, the coherence and reduced intensity �uctuations
of the atom laser as compared to a thermal beam will enable experiments
with formerly unthinkable precision. With atom interferometers, inertial
sensing and the precise measurement of fundamental constants is possible
and they considerably bene�t from the outstanding properties of an atom
laser. In atom lithography, one can gain from the high brightness and
directionality of the beam. Foci of about 1 nm, well below what is feasible
with optical beams, seem possible. Using holography, the di�raction of
atoms can be used to produce very small structures due to the much smaller
wavelengths of atoms compared to light [67, 68].

The analogy between an optical laser and an atom laser not only pertains
to the properties of the beam. All the important components of an optical
laser can also be found in an atom laser. Atoms trapped in the ground
state of a con�ning potential are the analogue of photons occupying a
single mode of an optical cavity. In the same way that a mirror with higher
transmission acts as an output coupler for the intracavity photons, there
are several possible mechanisms of coupling the trapped matter wave to
the continuum of untrapped states. These mechanisms will be presented
in the next paragraph. At the heart of both lasers lies the e�ect of Bose
stimulation, constituting the necessary gain mechanism. The presence of
N bosons in one particular mode leads to a transition probability into this
state proportional to N + 1. This leads to an enhanced population of
an already highly occupied state, which is the cavity mode in an optical
laser and the ground state in an atom laser. The idea of producing a
matter wave analog to the optical laser goes back to ideas from the early
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Chapter 2. Theoretical framework

times of the experimental realization of BEC in atomic vapors and even before that
[69, 70, 71, 72, 73]. A review on the theory of atom lasers is given in reference [74].

2.2.1 The output coupling process

The �rst realization of a pulsed output coupler for atoms [75] from a BEC marked
the beginning of the experimental realization and research on atom lasers. Atoms in
a �low-�eld seeking� internal state are trapped in the minimum of a magnetic �eld
con�guration. The principle idea is to couple the trapped state the atoms are in to
a second state that is magnetically insensitive. Then the atoms will fall under the
in�uence of gravity, forming the (possibly pulsed) atom laser beam. Several other
output coupling mechanisms are possible. Lowering the trap depth for atoms con�ned
in a vertical optical standing wave potential for example also produces a pulsed atom
laser [76]. Two counter propagating Raman laser beams can be used to output couple
atoms while at the same time imparting a momentum of 2~k [77]. This allows for
propagation directions di�erent from the one given by gravity. Also, the interaction
time between output coupled atoms and the trapped condensate can be drastically
reduced, therefore facilitating the production of beams with extremely low divergence
[78]. Due to the temporal change in the magnetic �eld of the trap used in [77], the
stimulated Raman process needs to be pulsed. A quasi-continuous beam can be created
by pulsing with a repetition rate equal to an integer fraction of the phase evolution of
the output coupled matter wave. The �rst atom laser with a truly continuous wave (cw)
output coupler was demonstrated in a magnetically shielded setup of a Bose-Einstein
condensate in a QUIC trap [79]. The shielding allowed for the stable output coupling
with only one radio frequency from a de�nite region within the condensate. This is
the method used in the setup presented in this thesis. Continuous output coupling was
also demonstrated for a BEC trapped in a horizontally oriented, tightly focused dipole
trap [80]. It is achieved by simply lowering the power in the trapping beam. In such
a setup, magnetic �eld �uctuations only enter via the second-order Zeeman e�ect, but
the stability of the atom laser now crucially depends on the stability of the trapping
laser intensity. The atom lasers we have called �continuous� so far share the property
that their coherence length can be much longer than the size of the condensate they
stem from. In all experiments up to date, the �nal limit on the length of the atom
laser is given by the size of the reservoir they are output coupled from. Producing a
truly continuous atom laser with no principle limit to its length and duration mainly
requires a continuous replenishment of the trapped BEC [81]. A di�erent route pursued
is to create a magnetically guided beam of optically pre-cooled atoms, that might in
the future be cooled to quantum degeneracy by evaporation [82, 83].
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Figure 2.2: Hyper�ne structure of the 52S1/2 ground state of 87Rb in a weak

magnetic �eld. Starting with atoms in the trapped |F = 2,mF = 2〉 state, output

coupling of an atom laser can be achieved via two radio-frequency transitions into

the untrapped |F = 2,mF = 0〉 state. The same �nal state can be reached with a

microwave transition from the |F = 1,mF = −1〉 state. Alternatively, an atom laser

in the |F = 1,mF = 0〉 state can be produced starting with a trapped cloud in the

|F = 1,mF = −1〉 state.

2.2.2 Radio-frequency output coupling

In the experiments presented in this thesis, atom laser output coupling from a magnetic
trap using radio- or microwaves was used. A theoretical description of atom lasers
produced by rf output coupling is based on a set of coupled generalized Gross-Pitaevskii
equations and has led to a one-dimensional model [84, 85]. A fully quantum mechanical
calculation (assuming a source with a Gaussian density distribution) in three-dimensions
con�rms the basic results for condensate sizes exceeding 1µm [86, 87]. Here, we will
present a semi-classical picture for the case of a BEC of 87Rb atoms trapped in the
harmonic potential of a magnetic trap.

The 52S1/2 ground state of 87Rb has two hyper�ne states, F = 1 and F = 2. Their
splitting in the presence of a magnetic �eld is depicted in Fig. 2.2. Magnetic trap-
ping of atoms in the �low-�eld-seeking� states |F = 1,mF = −1〉, (|F = 2,mF = 1〉 and
|F = 2,mF = 2〉 is possible. These are the states whose energy is lowered when the
magnetic �eld is decreased. The splitting of the two hyper�ne states at zero magnetic
�eld is ∆Ehfs = hνhfs ≈ h × 6.8GHz [88]. In the limit of weak magnetic �elds, the
splitting of the di�erent mF states is called anomalous Zeeman e�ect and is�to lowest
order�given by ∆E|F,mF 〉 = mFµBgFB with Landé factors given by gF=1 ≈ −1/2 and
gF=2 ≈ 1/2. The exact energy eigenvalues are given by the Breit-Rabi formula [89, 88],
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Figure 2.3: Energy diagram illustrating the output coupling mechanism used for

producing an atom laser beam from a magnetically trapped BEC. The potentials

for trapped (red) and untrapped (blue) atoms are coupled via a radio or microwave

frequency (green). The wave function of the atom laser beam in the gravitational

potential is an airy function (yellow). Note that the potential for trapped atoms

has been scaled up by about a factor of twenty to bring out the contribution of the

mean-�eld.

which also incorporates the second-order Zeeman shift. As one can see from Fig. 2.2,
with a radio-frequency ν = 1

2µBB/h and the selection rule ∆mF = 0,±1, transitions
from the trapped |F = 1,mF = −1〉 to the untrapped |F = 1,mF = 0〉 state are possi-
ble. However, the same frequency couples the |F = 1,mF = 0〉 to the |F = 1,mF = 1〉
state. Only if the second-order Zeeman e�ect is signi�cant, the mF = 0 → mF = 1

transition is suppressed [90]. From |F = 2,mF = 2〉 a transition into the untrapped
state |F = 2,mF = 0〉 involves two radio frequency (rf) photons. In a 1D mean-�eld
model, an atom laser based on the latter transition was shown to exhibit signi�cant
density �uctuations even for weak output coupling [91]. To realize a clean two-level sys-
tem, for most of the experiments presented here we use a microwave frequency (mw) to
couple atoms from the trapped |F = 1,mF = −1〉 into the untrapped |F = 2,mF = 0〉
state. There is no other transition at the same resonance frequency.

Fig. 2.3 illustrates the position dependence of the output coupling resonance. For
simplicity, only the dependence on the vertical position with the horizontal location
kept constant is shown. Atoms in the low-�eld seeking |mF = −1〉 state are trapped
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2.2. Atom lasers

magnetically. The harmonic potential of this trap (red line) is altered by the mean-�eld
due to the repulsive interaction of the atoms so that all condensate atoms have the
same energy equal to the chemical potential µ. Output coupling is achieved using a
radio or microwave of frequency νmw. It couples the trapped atoms to the untrapped
state |mF = 0〉. The potential for the |mF = 0〉 atoms (blue line) is the sum of the
linear gravitational potential and a mean-�eld contribution. In 87Rb, trapped and
untrapped atoms experience the same mean �eld, because their scattering lengths are
approximately equal. The energy di�erence between the minimum of the trapping
potential and the energy of the untrapped atoms is given by the anomalous Zeeman
e�ect and therefore proportional to the magnetic �eld. From the �gure it is apparent
that there is a unique relationship between the energy hνmw of the rf or mw photon and
the vertical position. In a classical picture, output coupling occurs in a region where the
energy di�erence between the two potentials is equal to the energy of the photon. The
eigenfunction of the atom laser beam in the linear gravitational potential are given by
Airy functions (plotted in yellow) ΦE ∼ Ai (ζE(z)) with ζE = (z − E/(mg))/l and the
length scale given by l = (~2/(2m2g))1/3. The classical in�ection point of a particle of
energy E coincides with the in�ection point of the �rst maximum of the Airy function
at ζE = 0. The probability for an atom to be output coupled is given by [92]

Woc =
hΩ2

0

4
| 〈ΨBEC| ΦE〉 |2 (2.26)

with | 〈ΨBEC| ΦE〉 |2 being the Franck-Condon factor between the bound and free state
ΦE. The Rabi frequency is given by

Ω0 = µ12Bmw/~ , (2.27)

where µ12 is the magnetic dipole matrix element between the two coupled states and
Bmw the magnetic �eld of the microwave radiation [93].

The overlap integral between the bound state and the Airy function is non-zero only
in a very narrow region of order l = 0.3 µm around ζE = 0. Therefore the region of
output coupling is well de�ned by the classical resonance condition [84].

The classical resonance condition is a consequence of energy conservation. This is of
course not only true in the one-dimensional situation considered so far but also in three
dimensions. Output coupling occurs at positions within the condensate at which the
local magnetic �eld B(r) ful�lls the resonance condition νmw = (∆Ehfs−gFµBB(r))/h.
In Fig. 2.4, cuts through the minimum of the combined magnetic and gravitational
potential are plotted. The magnetic potential is that produced by the quadrupole Io�e
con�guration (QUIC) trap [94] used in this work. The lines indicate regions of constant
magnetic �eld. Without gravity, the atoms would sit in the harmonic potential around
the minimum of the B-�eld. The e�ect of the linear gravitational potential however is
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Figure 2.4: Location of the trapped BEC in the magnetic �eld of the QUIC trap. (a),

(b) and (c) show a section through the minimum of the trapping potential in x, y and

z direction, respectively. y is the Io�e axis and gravity acts along −z. The black lines

are regions of constant magnetic �eld. Due to gravity, the position of the condensate

(blue ellipse) is shifted downwards by about 159µm with respect to the minimum

of the magnetic �eld. Because of this large gravitational sag, the degeneracy of the

trapping frequencies ωx and ωz is lifted and the long axis of the condensate is tilted

by 3.2 ° with respect to the horizontal. The drawing is to scale for a pure condensate

of 106 atoms.

a shift downwards of the trapping potential. This gravitational sag amounts to zsag =

g/ω2
z , where g is the acceleration due to gravity. If the sag is smaller than the region of

linearly varying magnetic �eld, the harmonicity of the trap is preserved. We simulate
the magnetic �eld in our trap con�guration using the experimentally determined values
for the trapping frequencies to �ne adjust the positions of the coils. From this we �nd
a gravitational sag of zsag = 159 µm. This is much larger than the size of a condensate.
For 106 atoms the Thomas-Fermi radii are (10, 53, 13) µm along the two horizontal
axes and the vertical axis of the trap, respectively. Therefore the sections between the
condensate and the shells of constant magnetic �eld (see for example the red lines in
Fig. 2.4) are nearly planar, horizontal surfaces. The smaller the condensate, the more
these cuts resemble horizontal planes, because their radius of curvature, given by zsag,
is much larger than the size of the condensate.

As can be seen from equations (2.26) and (2.27), the output coupling rate is propor-
tional to the power of the microwave. Hence the �ux of an atom laser is approximately
proportional to the product of the number of atoms in the output coupling slice and
the mw power [95]. However, this is only true for a two-level system and small Ω0. In
this case, the �ux of the atom laser beam is homogeneous as can be seen in Fig. 2.5(a).
The residual �uctuations visible in the image are due to atomic shot noise and the noise
of the imaging system. This was con�rmed in a measurement presented in chapter 5 of
this thesis. We measured the two-particle correlation function g2(τ) of a weakly output
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2.2. Atom lasers

200¹m

(a) (b)

200¹m

Figure 2.5: Sections of an atom laser in the |F = 2,mF = 0〉 state. (a) Weak output

coupling. (b) Du to a very strong microwave, the atom laser shows a substructure.

Both images show the same �eld of view and have been scaled equally concerning

brightness and contrast.

coupled atom laser beam and found it to be constant within our measurement accuracy
of 1%. We can call Ω0 small as long as it is less than the inverse coupling time. This is
the time it takes for an atom to leave the region in which it is resonant with a photon
of the output coupling frequency νmw [78].

When the Rabi frequency is increased, the regime of strong coupling is reached.
Figure 2.5(b) shows the e�ect of such strong output coupling. The beam appears frag-
mented due to large density �uctuations originating from the complex coherent output
coupling dynamics. Atoms already in the untrapped |mF = 0〉 state) of the atom laser
beam but still in the spatial region where the output coupling resonance is ful�lled are
being coupled back into the condensate (in the trapped |mF = −1〉 state). Complex co-
herent dynamics are to be expected even in a two state system. They have already been
observed in the �ve-state system of a condensate and an atom laser both in the F = 2

manifold (see Fig. 2.5(b) and [96]). The three state system of the F = 1 manifold was
found to be comparable to the two-state system (|F = 1,mF = −1〉 ↔ |F = 2,mF = 0〉)
in terms of density �uctuations when the output coupling was weakly enough to avoid
strong density �uctuations [91]. However, the highest coupling e�ciency can clearly be
achieved with the two-state system, i.e. by output coupling using a microwave frequency.

The spatial structure of an atom laser beam has been studied theoretically [97] as
well as experimentally [98, 99]. Moreover, the temporal coherence of an atom laser
beam has been found to be Fourier limited by its length [100]. The �nal and maybe
most exclusive property of an atom laser left to be proven experimentally is its higher-
order coherence. This was achieved as a part of this thesis (see chapter 5 and [101]).
More detailed studies of the amazing general properties of atom lasers as well as of the
tailoring of its speci�c features, e.g., by applying feedback [102, 103], are one interesting
future direction of research. What seems even more appealing is to use the atom laser
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Chapter 2. Theoretical framework

to advance other �elds in physics. In an experiment presented in this thesis, we have
used the interference between two atom lasers to study the process of Bose-Einstein
condensation itself. While section 2.2.3 will give a short introduction to this technique,
the main results on the condensate growth are presented in chapter 4.

2.2.3 Two-frequency output coupling

(a) (b)

Figure 2.6: Using two frequencies, atom lasers

originating from two di�erent planes in the con-

densate (a) are output coupled, forming an inter-

ference pattern (b).

When output coupling with two frequen-
cies ω1 and ω2 from the trapped conden-
sate, two overlapping atom laser beams
are generated [see Fig. 2.6(a)]. They in-
terfere and a high-contrast interference
pattern can be observed [see the absorp-
tion image in Fig. 2.6(b)]. Their dif-
ference in energy ∆E = ~(ω2 − ω1) is
�xed by the di�erence of the two fre-
quencies, which also determines the pe-
riodicity of the interference pattern. As
a result of energy conservation, atoms
resonant with ω1 are spatially separated
from those resonant with ω2 by ∆z =

∆E/(mg), where m denotes the mass of
an atom and g the acceleration due to
gravity. Two nearly planar and parallel,
horizontal surfaces are the sources of two
atom laser beams. As the beams over-
lap, a high-contrast interference pattern
forms. The frequency of this interfer-
ence pattern only depends on the verti-
cal distance ∆z between the regions the atom lasers originate from. This is analogous to
Young's double slit experiment, where equivalently only the displacement between the
two slits has to be considered. In particular, the distance between two arbitrarily picked
point sources, one from each slit, is irrelevant. For the situation considered here, the
interference occurs along the propagation direction of the atom lasers given by gravity.
The interference between two point sources will occur at a frequency solely determined
by their di�erence in the gravitational potential, because this energy di�erence controls
the relative phase evolution relevant for the beat frequency.

A detector at a �xed position in space, as for example an ultrahigh �nesse optical
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2.2. Atom lasers

cavity sensitive to single atoms, will detect a sinusoidally modulated �ux of atoms

f(t) = A (1 + V sin [(ω2 − ω1)t+ φ]) (2.28)

at exactly the di�erence frequency of the two output coupling waves. In absorption
imaging [see Fig. 2.6(b)], when an image of the interference pattern is taken at a partic-
ular time, the interference pattern is not equidistant, because the velocity of the atoms
increases due to gravity. The resulting vertical density distribution as a function of
position is given by [104, 85]

n(z) =
A√
|z|

[
1 + V cos

(√
2

g
(ω2 − ω1)

√
|z|+ (ω2 − ω1)t+ φ

)]
. (2.29)

The contrast of the interference pattern is characterized by its visibility V and depends
on the coherence between the two regions the atom lasers originate from. Unequal in-
tensities in the two beams, non-perfect mode overlap, and other e�ects can lead to a
reduction in V that might especially be dependent on ∆z. These e�ects and their in�u-
ence on V are discussed in Sec. 4.3.6 of this thesis. Neglecting their residual curvature,
the regions of output coupling are identi�ed by their position z along the vertical axis.
Using two frequencies, we can probe the condensate at z and z′ and �nd the associ-
ated visibility V (z, z′). Starting from equations (2.14) and (2.19) it was shown that the
visibility is very well approximated by the normalized �rst-order correlation function:

V (z, z′) ≈ g(1)(z, z′) . (2.30)

This is an extremely important result, since it presents a method to map out the �rst-
order correlation function of a BEC. The method is not limited to pure condensates,
but can equally well be applied to partially condensed ensembles and thermal gases well
above TC or even in the critical regime. For all these di�erent situations, a measurement
of the visibility of the interference pattern gives information on the correlation function
of the sample. It is especially worth noting that these measurements can be done time
resolved.
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Chapter 2. Theoretical framework

2.3 Cavity QED

The theory of quantum electrodynamics (QED) describes the interaction between elec-
trically charged particles by the exchange of photons and therefore the interaction be-
tween light and matter. Several phenomena in atomic physics, as e.g. spontaneous emis-
sion, can be described by the coupling of an atom to the radiation �eld of free space.
In cavity QED, the mode spectrum of free space is altered by introducing boundary
conditions and the quantization of the electromagnetic �eld is a natural consequence.
Inside an optical resonator for example, only a fraction of all modes of the free space
continuum can exist. The light �eld inside the cavity can be described as a superposi-
tion of Fock states, which are states with a �xed photon number that form a quantum
mechanical basis of the electromagnetic �eld. If the re�ectivity of the mirrors is su�-
ciently high, the interaction between an atom and one of the cavity modes can be larger
than its coupling to all other modes including those of free space.

The coupling between the atom and the one particular mode of the cavity is char-
acterized by the atom-cavity coupling constant g0. There are two loss-processes in the
system: The decay of the electromagnetic �eld inside the resonator is described by
the cavity decay rate κ = ∆ν/2, which is half the linewidth of the cavity. It is due
to transmission through the mirrors and additional scattering or absorption losses not
caused by the atom. The decay of the atomic dipole moment due to coupling to the
environment γ = Γ/2 is given by half the linewidth of the atomic transition. If the
atom-cavity coupling is larger than all other loss processes and the inverse dwell time
τ−1 of the atom inside the cavity, i.e. g0 � γ, κ, τ−1, the system is in the strong coupling
regime of cavity QED. The good isolation of such a strongly coupled system from the
environment greatly minimizes decoherence rates and allows for the study of coherent
dynamics, as for example required for the implementation of quantum logic gates.

In the following sections, we will �rst review basic resonator theory. It is followed
by an introduction to the Jaynes-Cummings model which is subsequently extended to
incorporate dissipation. A discussion on how single atom detection can be achieved using
a high-�nesse optical cavity and the in�uence of di�erent parameters on the detection
e�ciency closes the chapter. For additional information the reader is referred to the
comprehensive review articles on the subject [105, 106, 107, 108].

2.3.1 Optical Resonators

To quantize the electromagnetic �eld, boundary conditions need to be introduced. In
the experiment, this is achieved with a cavity. Many di�erent types of cavities used
for this purpose exist, ranging from superconducting cavities in the microwave range
to microspheres, photonic bandgap cavities, monolithic microtoroidal resonators, or
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2.3. Cavity QED

Bragg mirrors in the optical and near-infrared spectrum. The resonator used in the
work presented in this thesis consists of two macroscopic, concave Bragg mirrors. The
characteristics of such a cavity will be presented in the following section.

Fabry-Pérot interferometer

A Fabry-Pérot interferometer consists of two planar, parallel and highly re�ecting mir-
rors. The mirrors need not but in many cases are assumed to be identical. The interfer-
ometer is characterized by its length lres and the properties of the two mirrors. These
properties are their re�ectivity R, their transmission T , and their losses L. The losses
can be due to scattering, di�raction or absorption. We have R + T + L = 1 and in
general, all three are wavelength dependent. Light incident on a Fabry-Pérot interfer-
ometer (in the following often shortly called �resonator� or �cavity�) will be re�ected or
transmitted depending on its wavelength. By superimposing the incident electromag-
netic wave with the re�ected part and the part leaking out of the resonator, constructive
and destructive interference can occur. In case that one round trip of length 2 lres is
equal to an integer multiple of the wavelength,

2 lres = nλ, n ∈ N , (2.31)

maximum transmission Tmax
FP occurs. However, the maximum transmission is very dif-

ferent from the transmission T of a single mirror because of interference at the resonator.
The frequency dependent transmission of an empty cavity with identical mirrors is given
by [109]

TFP(ν) =
Tmax
FP

1 + 4R
(1−R)2

sin2(2πlresνc )
≈
(

T
1−R

)2 1

1 +
(
2F
π sin(2πlresνc )

)2 , (2.32)

where F denotes its �nesse and c is the speed of light.

The distance between two neighboring frequencies with maximum transmission is
called the free spectral range

∆νFSR =
c

2 lres
(2.33)

which is equal to the inverse of the round trip time of a photon. The �nesse is de�ned
as the ratio of the free spectral range ∆νFSR and the linewidth ∆νc of a cavity, i.e. the
full width at half maximum of a transmission peak,

F =
∆νFSR
∆νc

. (2.34)

If there are no intracavity losses, the �nesse depends on the re�ectivity of the mirrors
only

F =
π 4
√
R1R2

1−
√
R1R2

, (2.35)
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where the indices 1 and 2 denote the �rst and second mirror, respectively. The decay
rate of the �eld in the resonator is κ = π∆νFSR/F = πc

2lresF . This is half the decay rate
of the intensity inside the resonator, which in turn is equal to the inverse of the lifetime
of a photon in the cavity. The power inside the resonator is F/π times larger than the
input coupled power, because an atom traverses the resonator F/π times on average.

In the following, we consider two identical mirrors and assume that there are no
losses due to scattering or absorption inside the cavity other than those on the mirror
substrates denoted by L. This is a good assumption when the cavity resides in an
ultrahigh vacuum environment. We will also assume perfect spatial mode matching of
the incident beam. Under these conditions, the maximum transmission of a Fabry-Pérot
interferometer on resonance Tmax

FP can be calculated using basic resonator theory (see
for example [110])

Tmax
FP =

(
T

1−R

)2

=

(
T

T + L

)2

. (2.36)

The fraction of light re�ected on resonance is RFP = L2/(T + L)2 , and therefore the
maximally achievable input coupling is given by

ηin = 1−RFP = 1−
(

L
T + L

)2

. (2.37)

For very high re�ectivities and using eqn. (2.35), the �nesse can be approximated by

F =
π
√
R

1−R
R→1≈ π

1−R
=

π

T + L
(2.38)

Equation (2.38) provides an easy way to determine the re�ectivity of the mirrors by
measuring the �nesse of the cavity: R = 1 − π/F . Combining equations (2.36) and
(2.38) yields for the transmissivity of the mirrors

T =
π

F
√
Tmax
FP . (2.39)

T + L+R = 1 gives

L = 1− (T +R) =
π

F

(
1−

√
Tmax
FP

)
. (2.40)

Tmax
FP is measurable if one can ensure perfect spatial mode matching. The �nesse can

be determined from measurements of the free spectral range and the cavity linewidth.
Therefore using equations (2.39) and (2.40), the properties of the mirrors constituting
the cavity can be inferred from measured properties of the Fabry-Pérot resonator.

To calculate T and L using the above equations, a precise determination of Tmax
FP with

perfect mode matching is necessary. Since the latter is very di�cult to achieve and not
necessary for all other purposes, another method independent of the mode matching is
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better suited. The power Pin incident on the cavity, the re�ected and the transmitted
power, labeled by Pr and Pt respectively, can easily and accurately be measured. Then
the transmission of each mirror is given by

T =
2π

F
(
1 + Pin−Pr

Pt

) , (2.41)

and by inserting equation (2.41) into equation (2.38) and solving for L one �nds the
losses at each mirror to be

L =
π

F
− T =

π

F

(
1− 2

1 + Pin−Pr
Pt

)
. (2.42)

Transverse modes

For practical purposes, a Fabry-Pérot resonator with its two plane parallel mirrors
has the critical disadvantage of only being marginally stable. This means that minute
deviations from the parallel con�guration result in an unstable cavity. In a ray optics
picture no closed trajectory for a light ray exists in such a situation. Therefore concave
mirrors with a radius of curvature RC are usually used instead of plane ones. They
support discrete resonator modes � Gaussian beams � which are solutions of the
paraxial wave equation [111, 110]. To make a symmetric resonator stable, the radius of
curvature of the mirrors has to be chosen such that ∞ > RC > lres/2 with lres being the
cavity length. The two limiting cases are the planar cavity RC = ∞ and the concentric
resonator with RC = lres/2 and are both only marginally stable.

In principle, an in�nite number of spatial modes can be supported by the cavity. A
resonator mode is characterized by the three integers l,m, n, where l and m describe the
�eld variations in the transverse direction, i.e. the transverse modes, whereas n describes
the order of the longitudinal mode. The transverse modes are classi�ed as TEMlm

(�transverse electromagnetic�). The lowest-order transverse mode called TEM00 has a

purely Gaussian pro�le ∝ exp
(
−x2+y2

w(z)2

)
, while the higher orders are given by Hermite

functions. The radius of the beam is a function of the distance z from the waist

w(z) = w0

√
1 +

(
z

zR

)2

, (2.43)

with the waist radius w0 and the Rayleigh range given by [111]

zR =
πw2

0

λ
. (2.44)

In a cavity, the curvature of the wavefronts

R(z) = z +
z2R
z

(2.45)
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at the position of the mirrors needs to match their radius of curvature RC. For a
symmetric cavity with concave mirrors this determines the mode waist radius via

w2
0 =

λlres
2π

√
2|RC|
lres

− 1 . (2.46)

The mode volume Vm of a cavity can be calculated by integrating the mode function
over the length of the cavity along its axis (z direction) and over all space radially. In
addition, the standing wave structure needs to be accounted for. The exact result is

Vm =
1

4
πw2

0lres +
1

48π

(
λ

w0

)2

l3res =
1

4
πw2

0lres

(
1 +

1

3 (2RC/lres − 1)

)
. (2.47)

In a near-planar cavity the radius of curvature RC of the mirrors is much larger than the
length of the cavity lres. This leads to a Rayleigh range zR much larger than the length
of the cavity and therefore the divergence of the Gaussian mode within the cavity can
be neglected. Then the cavity mode volume can very well be approximated by

Vm =
π

4
w2
0lres . (2.48)

The frequency spectrum of a near-planar cavity is given by

νlmn =
c

2 lres

[
n+

(1 + l +m)

π
arccos

(
1− lres

RC

)]
≈ c

2 lres

[
n+

(1 + l +m)

π

√
2 lres
RC

]
. (2.49)

2.3.2 The Jaynes-Cummings model

The system of a single, stationary two-level atom interacting with the single mode of
a perfect cavity is described by the Jaynes-Cummings model [112, 113, 114, 115]. The
atom is modeled as a two level system with its ground state |g〉 and excited state |e〉 split
by ~ωA (see Fig. 2.7). The basis of the light �eld consists of Fock states |n〉 , n ∈ N

separated by the energy of a single intracavity photon ~ωC. The Jaynes-Cummings
Hamiltonian in the rotating wave approximation reads

HJ.C. =
1

2
~ωAσ̂z + ~ωC (â†â+

1

2
) + ~g(r)[σ̂+â+ â†σ̂−] , (2.50)

where â† and â are the photon creation and annihilation operators, respectively and
σ̂+, σ̂− and σ̂z are the Pauli matrices of the atomic pseudospin. The eigenvalues of σ̂z
applied to |e〉 and |g〉 are +1 and −1, and σ̂+ = |e〉 〈g| and σ̂− = |g〉 〈e| are the raising
and lowering operators, respectively. Without interaction, the states |g, n+ 1〉 and
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Figure 2.7: Energy diagram of the James-Cummings model. The combined system

of a two-level atom (blue) and a single cavity mode (yellow) can be expressed in the

bare state basis (green). Introducing a coupling between the two systems leads to the

dressed states (red) of the atom-cavity molecule.

|e, n〉 are split by ~∆, where ∆ = ωC−ωA is the detuning between the cavity resonance
frequency and that of the atomic transition. The coupling between the two systems
leads to a splitting of ~ΩR with the Rabi frequency given by ΩR =

√
Ω2 +∆2. The

atom-�eld coupling constant Ω = 2
√
n+ 1g0ψ(r) is a function of the photon number

n and the position r of the atom in the cavity mode. The position dependence of the
coupling constant g(r) = g0ψ(r) is due to the Gaussian standing wave pro�le

ψ(r) = cos(2πz/λ) exp
[
−(x2 + y2)/w2

0

]
(2.51)

determined by λ and the cavity mode waist radius ω0. The cavity axis is oriented along
the z-axis. 2g0 is called the single-photon Rabi frequency and g0 is given by

g0 = d · E/~ =
d

~

√
~ωC

2ε0Vm
cos(∠[d,E]) , (2.52)

where d is the dipole matrix element of the atomic transition, E the maximum electric
�eld of a single photon in the cavity and their directions are given by the polarization
of the atom and the �eld mode, respectively.

In Fig. 2.8 the eigenenergies of the bare states (dashed green lines) and the dressed
states (solid red lines) are plotted. The energies of the states |g, 0〉 and |e, 0〉 are inde-
pendent of the detuning ∆. The energies of all other bare states |g, n〉 and |e, n〉 change
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Figure 2.8: Energy diagram of the Jaynes-Cummings model as a function of the

detuning ∆. The green dashed lines are the bare states valid for the uncoupled system.

The dressed states (solid red lines) result from the coupling between atom and cavity

�eld.

as n~∆, proportional to the number of �eld quanta in the cavity mode n. The dressed
states |n,±〉 = ci |g, n+ 1〉 + cj |e, n〉 are introduced by the coupling between pairs of
states |g, n+ 1〉 and |e, n〉. At ∆ = 0, there is an avoided crossing and the two dressed
states |n,±〉 are split by ~Ω.

2.3.3 The dissipative system

The Jaynes-Cummings model describes a closed system. The real-world system however
exhibits two dissipative processes, namely the decay of the population of the excited
state of the atom due to coupling to the free-space electromagnetic background and
cavity losses due to transmission through the mirrors, absorption other than by the
atom or scattering. They are characterized by the decay rate of the excited state γ and
the decay rate of the �eld inside the cavity κ, respectively. In addition, the cavity might
be excited by an external laser �eld. To incorporate these couplings to the environment,
the Jaynes-Cummings model has to be extended [116, 114].

The atom-cavity system is modeled as being coupled to two baths, which are continua
of harmonic oscillators. In the Born-Markov approximation 1, the dynamics of the

1In the Born approximation, a weak coupling between the system and the environment is assumed,

i.e. the in�uence of the system on the environment is small and the density matrix of the complete
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2.3. Cavity QED

system is governed by the master equation for the density operator ρ of the joint atom-
cavity system. In the electric dipole and rotating wave approximation it reads [117, 118]:

ρ̇ = − i

~

[
Ĥ0, ρ

]
+ γ (2σ̂−ρσ̂+ − σ̂+σ̂−ρ− ρσ̂+σ̂−) + κ

(
2âρâ† − â†âρ− ρâ†â

)
(2.53)

Ĥ0 = HJ.C. +Hpump

= −~∆câ
†â− ~∆aσ̂+σ̂− + ~g

[
âσ̂+ + â†σ̂−

]
+ ~ε

(
â+ â†

)
(2.54)

∆c = ωL − ωC is the detuning between the probe �eld of frequency ωL and the cavity
resonance frequency ωC. The detuning between ωL and the atomic resonance frequency
ωA is denoted by ∆a = ωL −ωA. Note that the coupling constant is in general position
dependent, even though we have omitted it here for clarity. Ĥ0 is the Hamiltonian of
the system without dissipation. It consists of the Jaynes-Cummings Hamiltonian and a
pump term. The pump rate ε is de�ned such that the mean number of photons inside
the resonator without any atom present (i.e. g = 0) is given by

n =
ε2

κ2 +∆2
c

. (2.55)

The quantum master equation can be solved numerically, e.g. using a Monte-Carlo
wave function approach [119, 120]. It is valid for arbitrarily large photon numbers
and therefore takes saturation e�ects into account. In the weak pump limit, i.e. when
the excitation of the atom is small, an analytical solution for the stationary state of a
strongly coupled system can be found. The expectation value of the intracavity photon
number becomes [118]

ñ = 〈a†a〉 = ε2
∆2

a + γ2

(∆cγ +∆aκ)
2 + (g2 −∆a∆c + γκ)2

. (2.56)

It is proportional to the cavity transmission and plotted in Fig. 2.9 as a function of
the detuning of a probe laser of frequency ωL from ω0 ≡ ωC = ωA. The blue graph
shows the spectrum of the bare cavity (g = 0) with a maximum at zero detuning and
a linewidth of 2κ. The red curve is the spectrum for g = g0. Due to the coupling,
the peak is split into two much smaller peaks separated by 2g0. This is the so called
vacuum Rabi splitting, �rst observed in 1992 [24]. The two peaks are well separated if
the splitting is larger than the width of the peaks.

system can be written as a tensor product of the reduced density matrix and a stationary state of the

environment. In the Markov approximation the temporal evolution of the state of the system at time t

is assumed to only depend on the current state ρ(t). This approximation is justi�ed if the timescale on

which the state of the system changes is large compared to the timescale on which correlations between

the system and the environment decay.
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Figure 2.9: Spectrum of the coupled atom-cavity system for ∆L = ωL − ω0 with

ω0 ≡ ωC = ωA. The blue curve shows the transmission of the empty cavity, i.e. with

no atom present. The red curve is the transmission with one atom maximally coupled

to the cavity (g = g0). Note that the red curve has been enlarged by a factor 10 to

make it better visible.

The mean excitation of the atom in the weak pump limit is given by

〈σ̂+σ̂−〉 = ε2
g2

(∆cγ +∆aκ)
2 + (g2 −∆a∆c + γκ)2

= ñ
g2

∆2
a + γ2

. (2.57)

The criterion of low atomic excitation can be quanti�ed as 〈σ̂+σ̂−〉 � 1. On resonance
and for a system in the strong coupling regime, empty cavity driving �elds of n� g2/κ2

give a weak �eld response. Only in this regime the semiclassical theory is valid [121, 122].

Two important dimensionless parameters are frequently used to characterize the cou-
pling in an atom-cavity system. The critical atom number

N0 =
2γκ

g20
(2.58)

determines how many atoms are required to alter the intracavity light intensity signi�-
cantly. The critical photon number

m0 =
γ2

2g20
(2.59)

gives the number of photons necessary to create the saturation intensity Isat in the cavity
mode volume Vm with the resonant single-photon interaction rate g0. The criterion for
low excitation on resonance can be restated as ñ� m0.
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2.3. Cavity QED

Strong coupling regime

Loosely speaking, one enters the strong coupling regime of cavity QED when a photon
emitted into the cavity mode is more likely to be reabsorbed by the atom than to escape
the resonator and when an excited atom is more likely to emit the photon into the cavity
mode than into free space. This is equivalent to N0 and m0 both being much smaller
than unity. In addition, the coupling time τ , which is the time the atom interacts with
the cavity mode, needs to be larger than the inverse coupling strength 1/g, so that
coherent dynamics can evolve. This last criterion is usually easily ful�lled. All these
requirements can be combined to give a de�nition of the strong coupling regime:

g � γ, κ, τ−1 (2.60)

An atom and a cavity in the strong coupling regime constitute a true quantum system
whose properties are drastically changed by the addition or subtraction of a single
atom or photon. This immediately implies that the presence of a single atom within
the cavity mode volume is easily detected via a large change in the properties of the
coupled system. Since in the strong coupling regime the critical photon number m0

is much smaller than one, only one mean intracavity photon is su�cient to take the
system into the regime of strong driving. The strongly coupled system of a single atom
and a cavity is instructively called �atom-cavity molecule�. The coupling creates a new
system with properties very di�erent from those of its constituents, similar to a molecule
formed by two atoms. Because of the large coherence times, a cavity QED system in
the strong coupling regime is ideally suited for the implementation of quantum gates
and quantum information processing.

Design considerations for optimal coupling

To have an atom-cavity system deep in the strong coupling regime, some design con-
siderations for the cavity are important. The single photon cooperativity parameter

C1 =
g20
2γκ

∝ Fλ2lres
Vm

(2.61)

should be made as large as possible. Because g20 and γ are both proportional to the
square of the dipole matrix element d, it cancels. Therefore C1 is not dependent on d
or the linewidth of the transition and consequently the special properties of the atom
and the speci�c transition chosen only enter via the dependence on the wavelength
of the transition. The �nesse F is only dependent on the re�ectivity of the mirrors
[see eqn. (2.35)], so if large cooperativity is the only demand, the highest re�ectivity
available should be chosen.
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Chapter 2. Theoretical framework

When analyzing the best parameter range in the complete region of stable cavities
0 < lres ≤ 2RC, the exact formula for the cavity mode volume [eqn. (2.47)] needs to
be used instead of the approximate expression in equation (2.48). Inserting eqn. (2.47)
into eqn. (2.61), one �nds that the cooperativity parameter increases with decreasing
cavity length. For a given cavity length, C1 has a maximum with respect to RC at
RC = 2

3 lres. However, both lres as well as RC can not be made arbitrarily small.
Concerning the radius of curvature of the mirrors, the surface quality of the substrate
limits the re�ectivity via scattering losses, and polishing substrates with very small RC

is technically di�cult. Therefore a tradeo� between maximal re�ectivity and minimal
radius of curvature has to be made. Usual extremely low-loss mirrors are available with
radii of curvature down to RC = 75mm. Consequently, in order to be able to enter the
strong coupling regime, a near-planar con�guration has to be chosen. In that case

C1 ∝
Fλ2

w2
0

∝ Fλ√
RC lres

for lres � RC . (2.62)

The wavelength of the transition only enters linearly and the cooperativity is inversely
proportional to the square root of the cavity length lres. Taking the best mirrors avail-
able, the cavity length is the last free parameter and should be made as small as possible.
However, a lower bound on lres is set by the requirement of enough space between the
cavity mirrors to allow for the transmission of several trapping and imaging beams
perpendicular to the cavity axis.

2.3.4 Single atom detection

In the course of this PhD project, the �rst detection of single atoms from quantum
degenerate gases was presented. The interaction of a single atom with the light �eld
inside an ultrahigh �nesse cavity is so strong, that the latter is signi�cantly altered by
the presence of a single atom [26, 123]. Therefore an atom can be detected via a drastic
change in the light transmitted through the cavity.

Several other methods to detect single atoms exist. For a single atom trapped in
an optical dipole trap, detection of its �uorescence has been successful [124, 125]. For
freely falling atoms, the collection e�ciency for the �uorescence photons has been in-
creased using a special mirror setup [126]. For metastable noble gas atoms, another
technique exists. Because they are in a metastable excited state, they contain a large
amount of internal energy and individual atoms can be detected spatially resolved us-
ing a microchannel plate detector [127, 22]. Proposals to use impact ionization of the
atoms using a scanning electron microscope [33] or photoionization [32] both followed
by detection of the resulting ion have been published lately.

In the following, the qualities of a cavity QED detector will be considered in more
detail. The transmission of a probe laser beam through the cavity is monitored, and the
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2.3. Cavity QED

presence of one or several atoms can be inferred from the change in this transmission.
From equations (2.55) and (2.56) one �nds for the relative cavity transmission

T (r)

T0
=
ñ

n
=

κ2
(
γ2 +∆2

a

)
(∆cγ +∆aκ)

2 + (g2(r)−∆a∆c + γκ)2
, (2.63)

with T0 = (ε/κ)2 being the transmission of the empty cavity (g(r) = 0) for the on-
resonant probe laser (∆c = 0). The position dependence of the coupling constant is
due to the Gaussian standing wave pro�le. Because of this dependence, the position of
an atom inside a cavity can (with some ambiguity) be inferred from the transmission
[121, 27, 28, 128].

On resonance, i.e. with ∆a = ∆c = 0 one �nds

T (r)

T0
=

1(
1 + g2(r)

κγ

)2 =
g(r)→g0

1

(1 + 2C)2
. (2.64)

It is obvious that with C on the order of one or larger, the presence of a single atom
in the cavity can clearly be detected. The cooperativity parameter C = NC1 is the
product of the number of atoms N and the single atom cooperativity parameter C1 [see
eqn. (2.61)]. In a more intuitive picture, as e.g. developed in the framework of optical
bistability, the atomic cooperativity parameter C is given by the ratio of the round trip
atomic absorption loss divided by the round trip cavity loss due to the transmissivity
of the mirrors: C = α0l

2T with α0 being the absorption coe�cient, l the length of the
medium and T the transmissivity of the mirrors [129].

A system is called optically bistable [129, 130, 131, 132] if for one input power two
output powers can be observed. It depends on the history of the input which of the
two output states is found. Classical theory predicts optical bistability for a cavity
with a cooperativity parameter C > 4 if the intracavity intensity is on the order of
the saturation intensity. In the experiments described in this thesis however, optical
bistability is not expected. In the weak �eld limit the bistability is not observable
and for larger driving strengths, the quantization of the cavity �eld has to be taken
into account explicitly. Because this quantization is not included in the semi-classical
theory, it is no longer a correct description of the system [133, 121].

The detunings ∆a and ∆c are in principle free parameters when setting up a cavity
system to detect single atoms. However, there is a certain range of parameters that
guarantees high detection e�ciency and a large signal-to-noise ratio. To identify those,
eqn. (2.63) is plotted in Fig. 2.10(a) for one maximally coupled atom, i.e. with g(r) = g0.
The plot is related to Fig. 2.8, which shows the dressed states |0,±〉 of the atom-cavity
molecule. Spectroscopy of the dressed states, setting E = ~ωL and including dissipation
leads to the graph in Fig. 2.10(a). Note however that the axes have been changed. The
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Figure 2.10: (a) Transmission through the cavity with one atom maximally coupled

to the light �eld. This is the solution of equation (2.63), normalized to the transmission

of a cavity with no atom and ∆c = 0. (b) Height of the dipole potential inside the

high �nesse optical cavity due to the detection light. Negative values of the potential

height indicate an attractive potential. The parameters used for both graphs are the

same as given in Table 3.2.

red curve in Fig. 2.9 is a cut through Fig. 2.10(a) with ωC = ωA. Two regions of high
transmission of the coupled atom-cavity system can be identi�ed.

Forces inside the resonator

When an atom enters the cavity, it is no longer only subject to gravity, but intracavity
forces become important [134, 135]. Of course, the situation in a cavity is much more
complex than the channeling in a classical standing wave [136], since the position of
the atom in�uences the light �eld intensity. Velocity dependent forces [117, 118] and
di�usion due to spontaneous emission and dipole �uctuations will not be discussed here,
even though they can in�uence the atom's dynamics [137, 138]. Of great importance
is the conservative dipole force exerted by the intracavity light �eld [139, 140]. The
associated potential is depicted in Fig. 2.10(b):

U =


−ε2~∆a
Im(A) arctan

(
Re(A)
Im(A)

)
if Im(A) 6= 0,

−2ε2~∆a
Re(A)3

if Im(A) = 0,
(2.65)

with Re(A) and Im(A) denoting the real and imaginary part of A = γκ+ g2 −∆a∆c −
i (∆cγ +∆aκ) respectively [128]. The plot is for one intracavity photon, i.e. with ε = κ,
for maximum coupling g = g0 and with the potential set to zero for vanishing coupling.
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Figure 2.11: Di�erence between the transmission of the empty cavity and the coupled

atom-cavity system. Positive values denote larger transmission for the empty cavity,

and therefore in this parameter range atoms manifest themselves as dips in the cavity

transmission. In the blue regions (negative values), the presence of an atom shifts the

cavity closer to resonance and consequently the signature of an atom inside the cavity

is a peak in the cavity transmission.

As can be seen from the plot, the potential strongly depends on the detunings. For
∆a < 0 (red-detuned) it is attractive, whereas for ∆a > 0 (blue-detuned) it is repulsive.

The potential is also position dependent, because the coupling strength g varies with
the spatial structure of the cavity mode [see eqn. (2.51)]. Therefore the dipole force can
be used to trap an atom inside the cavity by ramping up the intensity of the probe laser
once the atom enters the resonator [27, 28, 141]. Alternatively, a second, far-detuned
laser beam copropagating with the probe beam has been used [142]. The trapped atom
is strongly heated, which �nally limits the trapping times. To overcome this problem,
several cooling schemes for single atoms inside a high-�nesse optical cavity have been
experimentally tested [143, 144, 145, 146, 29, 147, 148].

Choice of optimal detunings

The detection e�ciency of a cavity QED detector strongly depends on the detunings
of the probe laser and the cavity with respect to the atomic resonance. Because an
atom transit is identi�ed via a change in cavity transmission, a large di�erence in
transmission between the empty cavity (Tempty) and a maximally coupled atom-cavity
system (Tatom) is desirable. The �rst can be inferred from eqn. (2.32) setting ν = ∆c

and is independent of ∆a. The latter is given by eqn. (2.63) plotted in Fig. 2.10 (a). The
di�erence is proportional to the strength of the signal in single atom detection and is
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Figure 2.12: Detectability of single, maximally coupling atoms (see text). (a) The

power of the probe light incident on the cavity is constant [eqn. (2.66)]. (b) The

intracavity photon number is held constant [n̄ = 1, eqn. (2.67)], independent of whether

there is an atom in the cavity or not.

plotted in Fig. 2.11. Two main parameter ranges can be identi�ed. Close to ∆c = 0 the
empty cavity transmission is high and the coupling to an atom will lead to a decrease
in transmission. This decrease will be large for ∆a = 0 and decrease with increasing
detuning from the atomic resonance. The second range of parameters is in the vicinity
of the dressed states of the coupled atom-cavity system. Since they are signi�cantly
away from the cavity resonance for modest ∆a, the empty cavity transmission will
be very small. With an atom present it will increase and peaks will be the resultant
manifestation of an atom transit through the cavity. Note that the latter signal is much
smaller than the �rst due to the reduced height of the resonance maxima with an atom
present.

The size of the signal alone is not signi�cant to characterize the detectability of single
atoms. The shot noise of the probe light constitutes an inevitable uncertainty that
has to be taken into account to identify optimal parameters. Determination of this
noise depends on the concrete mode of operation. We consider two cases. In the �rst,
the power of the probe light incident on the cavity is held constant, independent on
the detunings chosen. The shot noise on Tempty and Tatom individually is proportional
to their square root, because the detected number of photons is proportional to the
transmission. Then error propagation gives the total noise as the square root of the
sum of the squares of the individual errors. The resulting detectability [128]

D̃ =
|Tempty − Tatom|√
Tempty + Tatom

(2.66)
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is plotted in Fig. 2.12(a). Obviously, a small parameter range around ∆a = ∆c = 0

yields best results, with the dependence on ∆a being much weaker than on ∆c. For
every ∆a 6= 0 there exists a ∆c so that the transmission of the empty cavity and that
with one atom are equal and therefore the detection of single atoms is impossible. In
Fig. 2.12(b) the detectability is plotted for an intracavity photon number n̄ = 1 which
is kept constant, independent of whether an atom is in the cavity or not:

D̃∗ =
|Tempty − Tatom|

max
(√

Tempty,
√
Tatom

) . (2.67)

In this mode of operation, the power of the light incident on the cavity is not independent
on the detunings chosen. It is adjusted such that the intracavity photon number is
never larger than one. For detunings where the atom leads to a reduction in the cavity
transmission (�dips�), the intracavity photon number of the empty cavity is set to one.
If the presence of an atom increases the transmission (�peaks�), n̄ = 1 when the atom
couples maximally to the cavity. This choice of the probe light intensity ensures that a
certain power level behind the cavity is never exceeded. This is important for example
when a single photon counter is used as a detector and a maximum power level should
not be crossed to avoid saturation e�ects. As can be seen from the plot, this increases
the parameter range where single atom detection can be performed with good e�ciency.
Especially the dependence of the detectability on ∆c is less pronounced as compared to
the case with constant probe power.

Of course, the absolute signal-to-noise ratio (SNR) will to a great extend depend
on the number of photons that constitute the signal. The signal is proportional to
the integration times and the intensity of the detection light as long as saturation or
spontaneous e�ects are avoided. Therefore long interaction times between atom and
cavity and high light intensities are desirable. Their in�uence on the signal-to-noise
ratio and de�nite values thereof, speci�c for the apparatus presented in this thesis, will
be calculated in Sec. 3.5.5.
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3 A hybrid apparatus for BEC and cavity

QED

We have designed and built the �rst apparatus to integrate an ultrahigh �nesse op-
tical cavity in a Bose-Einstein condensation system, which�despite recent signi�cant
progress [149, 150]�still is a pending, central goal for atom chip experiments [151, 152].
With this experimental setup we are able to detect single atoms from a quantum degen-
erate source with high e�ciency by output coupling an atom laser aimed into the cavity
mode. The atom laser allows for a very high rate and controllable delivery of atoms
into the cavity mode, which facilitates research of cavity QED in the strong coupling
regime with single atoms. Moreover, the cavity as a single atom detector opens up the
�eld of quantum atom optics and is especially useful to probe ultracold atomic clouds in
situ and time resolved, particularly near the phase transition [153, 154]. Furthermore it
is an extremely sensitive tool to detect atomic beams for high precision interferometry
measurements and to investigate particle correlations [101].

The experimental di�culties in merging the two research �elds of quantum degenerate
gases and cavity QED arise mainly from adverse vacuum prerequisites and sophisticated
topological requirements on both of these state-of-the-art technologies. For example,
limited spatial access prevents the inclusion of a high �nesse optical cavity in conven-
tional Bose-Einstein condensation setups.

Our apparatus (Fig. 3.1) overcomes these experimental challenges with a conceptually
novel design. It provides good access to the condensate for diverse samples and probes
which are modularly integrable on an exchangeable �science platform.� This is rendered
feasible by means of a nested vacuum chamber design with a high vacuum (HV) enclo-
sure inside the ultrahigh vacuum (UHV) main chamber and a short in vacuo magnetic
transport. Two distinct pressure regions are required since the two common stages
towards Bose-Einstein condensation, a magneto-optical trap (MOT) for laser cooling
and trapping a large number of atoms and evaporative cooling, have con�icting require-
ments on their vacuum environment. We utilize a short magnetic transport [155, 156]
to convey the cloud of cold 87Rb atoms from the MOT to the main chamber, where we
perform evaporative cooling to quantum degeneracy. From the Bose-Einstein conden-
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Figure 3.1: Schematic sketch of the experimental setup illustrating the nested vac-

uum chambers, the short magnetic transport and the �science platform� bearing the

ultrahigh �nesse optical cavity on top of the vibration isolation system. The atomic

cloud captured in the magneto-optical trap (MOT) is transferred through a di�eren-

tial pumping tube into the ultrahigh vacuum region and evaporatively cooled towards

quantum degeneracy. We output couple a continuous atom laser from the BEC and

direct it to the cavity mode where single atoms are detected.

sate we output couple a continuous atom laser and direct it into the cavity mode. The
ultrahigh �nesse optical cavity is integrated on the science platform and rests on top
of an UHV compatible vibration isolation system which is vital for its stable operation.
The cavity is located 36mm below the BEC and enables us to detect single atoms from
thermal and quantum degenerate sources. In the following, the modular experimental
building blocks of our hybrid BEC and cavity QED apparatus are presented in more
detail, before we describe the operation and highlight the performance of our quantum
atom optics experiment.

Parts of this chapter have been published as [157]: A. Öttl, S. Ritter, M. Köhl, and T.
Esslinger. `Hybrid apparatus for Bose-Einstein condensation and cavity quantum elec-
trodynamics: Single atom detection in quantum degenerate gases'. Review of Scienti�c

Instruments 77, 063118 (2006).
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Figure 3.2: Overview of the complete vacuum system showing the pumping sections

for the two nested vacuum regions, high vacuum (HV) and ultrahigh vacuum (UHV),

respectively. The overall length is close to 2m. The main tank o�ers multiple opti-

cal and electrical access and is sealed o� by two CF200 cluster �anges called �BEC

production rig� and �science platform.�

3.1 Vacuum system

The vacuum system presented here consists of two nested steel chambers, where the
higher pressure (HV) MOT chamber is situated inside the lower pressure (UHV) main
tank. The HV region houses the alkali dispenser source. Both vacuum regions are
pumped separately and a di�erential pumping tube maintains a pressure ratio of 102.
The setup grants multiple optical access for laser cooling as well as for observation and
manipulation of the resulting Bose-Einstein condensate.

3.1.1 Main chamber

The objective of the vacuum system (Fig. 3.2) is to attain an UHV environment at
10−11mbar for e�cient evaporative cooling of the laser precooled atomic cloud. Center-
piece of our vacuum system is the custom-welded, cylindrical main tank of nonmagnetic
stainless steel (AISI type 316). It has a diameter of 20 cm and features multiple access
in form of optical grade viewports and electrical feedthroughs with standard CF sealing.
The viewports are antire�ection coated on both sides (see Fig. 3.3). Two custom-made
CF200 cluster �anges cap the main chamber from above and below. The top �ange
(called �BEC production rig�) features optical and electrical access (see Fig. 3.3), since
most of the electromagnetic coil con�guration is mounted on this �ange and placed
inside the UHV. In addition a liquid nitrogen compatible feedthrough is supplied for
cooling the magnet coils, and resistive temperature sensors (PT100) are used to monitor
their temperature. The bottom �ange (called science platform) serves as an exchange-
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able mount for the inclusion of samples and probes into our system. Besides viewports
and electrical feedthroughs (Fig. 3.3) to connect to electromagnetic coils, PT100 sensors
and the piezo element of the optical cavity design, it includes a cold �nger and a 300 l/s
nonevaporable getter (NEG) vacuum pump. The core vacuum pumping is performed
by a titanium sublimation pump and a 150 l/s ion getter pump. A right angle valve is
included in this pumping section for rough pumping the system.

The HV part of the system (Fig. 3.2) connects to the MOT chamber which protrudes
into the UHV main chamber and serves as a repository for rubidium atoms. It can be
shut o� with a gate valve between the MOT chamber and the rubidium dispenser source
[158, 159]. The HV region is pumped by an ion getter pump (75 l/s) whose pumping
speed can be derated by a rotatable disk inside the tube reducing its conductance. This
serves to control the rubidium vapor pressure which is monitored with a wide range
pressure gauge. Also a right angle valve is included for rough pumping purposes.

Our rubidium repository consists of seven alkali metal dispensers �xed in star shape
to the tips of an eight pin molybdenum electrical feedthrough where the center pin
serves as the common ground. Beforehand, the conductors were bent by 90 ◦ so that
the dispensers aim towards the MOT chamber. Dispenser operation may be viewed
through a viewport mounted from above. The dispensers can easily be exchanged
without breaking the ultrahigh vacuum in the main chamber by closing the gate valve
between the MOT chamber and the dispenser source.

3.1.2 MOT chamber

The MOT chamber as part of the high vacuum region is situated inside the ultrahigh
vacuum main tank (Fig. 3.3). However, the fact that both pressure regions are well in
the molecular �ow regime allows for relatively simple sealing techniques. The purpose
of the MOT chamber is to contain a higher background vapor pressure of rubidium
atoms for an e�cient loading of the magneto-optical trap.

Our MOT chamber was milled out of a single block of nonmagnetic stainless steel
(AISI type 316). This material was chosen to reduce eddy currents produced by fast
switching of the magnetic �elds. Bores of 35mm diameter give optical access for the
six pairwise counterpropagating laser beams forming the magneto-optical trap. These
bores are sealed o� by standard optical grade laser windows (BK7) with double-sided
antire�ection coating and are clamped to the MOT chamber by stainless steel brackets.
At the metal glass interface we use thin (0.2mm) Te�on rings to protect the windows.
We also took precautions in the form of ceramic screens to prevent coating of the win-
dows by the titanium sublimation pump. An additional bore provides the connection of
the MOT chamber to the HV pumping section and the dispenser source. This connec-
tion is sealed against the UHV main tank with a tight �t stainless steel bushing inside
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Figure 3.3: Section through the UHV system illustrating the realization of the nested

chambers design and revealing the details and objectives of the divers optical axes.

The position of the BEC and cavity are marked by (•) and (�), respectively. The

high vacuum MOT chamber is suspended from the �BEC production rig� and sealed

by a tight �t bushing against the UHV main tank. The �science platform� provides

space for additional components such as the ultrahigh �nesse optical cavity. Note that

for clarity in the illustration, the magnet coil con�guration (Fig. 3.5) and the optical

cavity assembly (Fig. 3.8) are omitted in this �gure.

the CF40 socket. The bushing is tightened to the MOT chamber thereby pressing its
circular knife edge into a custom-made annealed copper gasket. A screen to prevent a
direct line of sight from the hot dispensers to the center of the MOT is included in the
laser cut gasket.

The MOT chamber is sandwich mounted between the two magnet coil brackets for
the magnetic transport (see Sec. 3.2) and simultaneously functions as a spacer for the
magnet coil assembly. The whole structure is suspended from the top �ange by four M8
thread bars and represents our BEC production rig. A di�erential pumping tube inter-
faces the MOT chamber with the main tank. It serves for conveying the cloud of cold
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Chapter 3. A hybrid apparatus for BEC and cavity QED

atoms with the magnetic transport from the MOT into the UHV main chamber. The
aluminum di�erential pumping tube is mounted with a press �t in the MOT chamber
and can be exchanged. It has an inner diameter of 6mm over a length of 45mm and
can maintain a di�erential pressure of 102-103 depending on the actual pumping speed
in the UHV main chamber. Its conductance for rubidium at room temperature is about
0.3 l/s.

3.1.3 Installation

All components of the system were electropolished (the custom-welded parts were pick-
led afore), cleaned, and air baked at 200� before assembly [160]. Additionally, all
critical in vacuo materials like Stycast 2850FT and Kapton used for the magnet coil
brackets (see Sec. 3.2), VitonA, and Wolfmet utilized for the vibration isolation stack
(see Sec. 3.3) as well as plastic (Te�on and Vespel) and ceramic (Macor and Shapal)
parts were externally outgassed by vacuum baking them at 200�. The bakeout [161] of
the fully assembled system was performed at 120� which is the maximum temperature
rating of the piezotube used in our optical cavity assembly. The ultimate attainable
pressure in the UHV system is 3× 10−11mbar. It is measured directly inside the main
chamber in close proximity of the magnetic trap for Bose-Einstein condensation. In the
HV part we maintain a pressure in the range of 10−9mbar.

3.2 Magnetic �eld con�guration

A magnetic transport [155, 156] is a reliable and controlled way to transfer the cold
atomic cloud from the MOT to a region of considerably lower background pressure for
evaporative cooling. Only an in vacuo magnet coil arrangement in conjunction with
nested vacuum domains allows for a short transport design and grants spacious access
volume inside the main chamber. However, care must be taken to meet the UHV
requirements with the materials chosen for the magnet coil structure.

Besides spatial and optical accessibility, the requirement on the magnetic trap is
mainly magnetic �eld stability to enable stable atom laser output coupling. Therefore
we employ a magnetic quadrupole Io�e con�guration (QUIC) trap [94], because its
simplicity allows for a compact design and ensures an easy and stable operation at
very low power consumption (∼ 2W). A magnetic shielding enclosure and additional in
vacuo coils for manipulating atoms in connection with the cavity round o� the magnetic
con�guration of the system.
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realize the compression of the cold atomic cloud (negative times) and the magnetic

transport.

3.2.1 Magnetic transport

The magnetic transport design consists of two partially overlapping electromagnetic coil
pairs (called �MOT coils� and �transfer coils�) producing quadrupole potentials and the
�nal QUIC trap coils [Fig. 3.4(a)]. The overall potential minimum can be moved over
a distance of 82mm so that the cold atoms in a low �eld seeking Zeeman state are
conveyed from the position of the MOT directly into the �nal magnetic QUIC trap.
The transfer coil pair provides su�cient overlap between the two to achieve a smooth
transfer of the magnetic potential without signi�cant heating of the cold atomic cloud.

The magnet coils were wound from rectangular copper wire (3×1 and 1×1mm) for op-
timal �lling fraction. We chose Kapton �lm isolated wire which is temperature durable
and suitable in the ultrahigh vacuum environment. The coils were integrated in two
mirror-inverted, custom-made copper brackets and encapsulated with Stycast 2850FT, a
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It illustrates the arrangement of magnet coils, the inner chamber, and the cavity with

respect to each other. Functional units of the magnet coil con�guration are the two

transport brackets that sandwich the inner chamber and the laterally mounted Io�e

frame (elements between dashed lines). These parts, including the top gradient coil,

are �xed to each other and mounted from the top �ange. The optical cavity on top

of the vibration isolation system, the surrounding coils, and the bottom gradient coil

are mounted on the science platform.

thermally conductive epoxy. The brackets are slotted in order to suppress eddy currents
from switching the magnetic �eld. The magnet coil assembly was �xed in a sandwich
structure around the MOT chamber and suspended from the top �ange by M8 thread
bars (Fig. 3.5). The complete assembly including the QUIC trap represents the BEC
production rig.

A cooling system to remove the heat dissipated by the electromagnetic coils is supplied
in form of a copper pipe with 4mm inner diameter. It is soldered in a loop around each
coil bracket and connected to the liquid nitrogen feedthrough. A temperature stabilized
recirculating chiller permanently pumps pure ethanol cooled to −90� through the
system. Thereby we maintain a maximum operating temperature below 0�. This in
turn lowers the power consumption of the magnet coils whose surface temperature is
monitored with PT100 sensors and interlocked to the power supplies.

The geometry and arrangement of the magnetic transport coils [Fig. 3.4(a)] are dom-
inated mainly by constraints set by the size of the MOT chamber, the required length
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of the di�erential pumping tube, and the optical access to the MOT, BEC, and cavity.
For instance, the square shape of the MOT coils best achieves a large overlap with the
transfer coils while granting optical access to the cavity axis. The aspect ratio A/R of
the coil separation (2A) to the coil radius (R) could be tuned to a balanced tradeo�
between a maximally strong (A/R = 0.5) and a maximally long (A/R = 0.87) lin-
ear gradient region [162]. The anti-Helmholtz con�guration is advantageous for tight
con�nement and deep trap depths whereas long linear gradients yield large handover
regions between two coil pairs. Furthermore, the power consumption of a coil pair for
a given �eld gradient can be minimized by choosing a well matched ratio of axial to
radial windings.

In order to �nd an optimum current sequence for the magnetic transport [155] we
calculate the magnetic �eld of the coil con�guration analytically and discretize it along
the transport axis on a 100µm grid. The currents needed to transfer the magnetic
minimum smoothly from the MOT to the QUIC are then computed numerically in ac-
cordance with several constraints. Limited by a maximum available electrical current we
optimized the magnetic �eld gradients and trap depths especially during the handover.
Furthermore, we tried to minimize deformations of the trapping potential. The result-
ing spatial sequence of currents per coil is converted into a temporal sequence including
an acceleration and deceleration phase by taking into account the limited bandwidth of
the current control servo [Fig. 3.4(b)].

The magnetic transport sequence initiates with a fast (400 µs) ramp to 20A in the
MOT coils after magneto-optical trapping and optical pumping the cold atoms into a
low �eld seeking state. The ramp needs to be fast with respect to the expansion of the
cloud but adiabatic on the spin degree of freedom. It is followed by a slow (100ms)
compression of the atomic cloud to the maximum �eld gradients. Increasing the current
in the transfer coils pulls the atoms towards their center, and by decreasing the MOT
coil current the zero of the potential is handed over [Fig. 3.4(b)]. The �eld of the QUIC
is aiding at this point to maintain a constant aspect ratio. The magnetic transport
�nishes by ramping down the current through the transfer coils in favor of the QUIC
coils. The atomic cloud is conveyed through the di�erential pumping tube directly into
the magnetic QUIC trap which stays on for the subsequent evaporative cooling stage.

The trajectory of the magnetic transport [Fig. 3.4(a)] is slightly bent so that atoms
in the �nal magnetic trap position have no direct line of sight into the higher pressure
MOT chamber. This suppresses background gas collisions which would shorten the
lifetime of the Bose-Einstein condensate. The bend is achieved by laterally o�setting
the center of the QUIC trap by 3mm from the di�erential pumping tube.

The MOT and transfer coils are powered by 5 kW dc power supplies. However, since
their internal current control bandwidth is too slow to sample the time-current sequence
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MOT Transfer QUIC

Resistance (mΩ) 200 50 300
Inductance (µH) 1000 70 450
Maximum current (A) 115 170 15
Maximum �eld gradient (G/cm) 310 290 320

Table 3.1: Electromagnetic properties of the magnet coils.

for the MOT coils, we externally feedback control it by a closed-loop servo. It is imple-
mented with a current transducer and a MOSFET bench. The fast initial ramp to 20A
is additionally supported by current from four large capacitors (15mF each) charged to
60V. The electromagnetic properties of the coils with resulting maximum currents and
�eld gradients are listed in Table 3.1.

The magnetic transport is performed over a period of 1 s. We maintain a minimum
trap depth of ∼ 70G equivalent to about 2mK. The total power required is approxi-
mately 2 kW which corresponds to an average power consumption of ∼ 34W at a duty
cycle of 1/60.

3.2.2 QUIC trap

The magnetic QUIC trap consists of three coils connected in series. This is advantageous
to diminish relative current �uctuations and therefore magnetic �eld �uctuations. Two
coils (called �quadrupole coils�) produce a quadrupole �eld, and one smaller coil (called
�Io�e coil�) mounted orthogonally between the quadrupole coils lifts the magnetic zero
to a �nite value and adds a curvature to the resulting potential [94]. Having a nonzero
magnetic �eld minimum is crucial when evaporatively cooling atoms towards quantum
degeneracy in order to circumvent losses due to Majorana spin �ips.

The geometry of the QUIC trap potential is approximately cylindrically symmetric
with respect to the Io�e coil axis. Along this direction the curvature and therefore the
con�nement is weaker than in the radial directions. In our case this results in cigar
shaped Bose-Einstein condensates with an aspect ratio of 5:1. The exact position and
dimension of the Io�e coil are very critical to yield the desired magnetic bias �eld B0

which should be on the order of a few Gauss. A low bias �eld is preferential because
the trap frequencies scale as B′/

√
B0, where B′ is the magnetic �eld gradient and high

trap frequencies permit faster and more e�cient evaporative cooling.

The construction of the Io�e coil is done in the same way as for the transport coils.
It is integrated in a slotted copper frame and potted with Stycast. The Io�e frame
is mounted laterally between the transport coil brackets which hold the quadrupole
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Figure 3.6: Photograph of the preassembled mu-metal hull before it is mounted

around the main vacuum tank. It consists of seven large and several small individual

pieces.

coils. Additionally, the Io�e frame serves as a spacer for the two transport brackets.
The mechanical contact is accomplished with sapphire sheets in order to prevent eddy
currents by simultaneously maintaining good thermal conductivity (Fig. 3.5). The large
mass of the complete magnet coil structure functions as a thermal low-pass �lter which
contributes to the good temperature stability. In the Io�e frame we have integrated
additional coils on the same axis as the Io�e coil to be able to manipulate the �nal trap
geometry inside the vacuum system after bakeout. Two few-winding coils are employed
to �ne-tune the value of the magnetic �eld minimum B0. One larger coil (called �o�set
coil�) a little further away from the trap center can be used to change the aspect ratio
of the trap and make it approximately spherical. Furthermore, the Io�e frame features
a conical bore which allows us to image the BEC through the center of the Io�e coil.

The electrical connections of the coils forming the magnetic QUIC trap are realized
outside the vacuum. We have included a 1.4MHz low-pass �lter in parallel to the Io�e
coil to avoid any radio frequency pickup because of its low inductance of 4µH. The
QUIC trap is operated with a 150W power supply speci�cally tuned to our inductive
load. The average power consumption of the magnetic trap is maximally 60W but can
be as low as 2W when operated at 3A (see Sec. 3.4).
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3.2.3 Magnetic shielding

We clad the main vacuum chamber in a mu-metal shielding (Fig. 3.6) of 1mm thickness
to minimize the in�uence of residual external magnetic �eld �uctuations on the cold
atoms. A magnetically quiet environment is essential for stable continuous wave (cw)
operation of the atom laser.

Mu-metal is a magnetically soft nickel alloy with a very high relative magnetic per-
meability µr ∼ 105 which attenuates magnetic �elds inside an enclosure. The magnetic
shielding factor S of a sphere of mu-metal with a thickness d and an inner radius of ri is
roughly S = 2µrd

3ri
+ 1 [163]. Magnetic �eld lines penetrate an opening roughly as far as

its diameter. Therefore we have attached a stub around the pumping tube of the main
vacuum tank to attain a better aspect ratio at the position of the BEC. The design of
the mu-metal hull was aided by computer simulations using an electromagnetic CAD
program. The mu-metal was machined and cured as recommended by the manufacturer.
After demagnetization we have measured a dc magnetic extinction ratio of ∼ 40 in the
vertical and ∼ 100 in the horizontal direction at the position of the BEC.

3.2.4 Auxiliary coils

Since the mu-metal shielding prevents any manipulation of the atoms with external
magnetic �elds, we have arranged supplementary magnet coils inside the mu-metal
enclosure. All extra coils were potted with Stycast either in a slotted copper or Shapal
frame for good thermal conductivity and mechanical sturdiness.

Two large coils (called �gradient coils�) are included in the main vacuum chamber to
compensate the gravitational force for the weakest magnetic sublevel (30.5G/cm) with
22A. Their total resistance and inductance is about 0.2Ω and 0.9mH, respectively.
The gradient coils were mounted inside the vacuum chamber on the transport bracket
(Fig. 3.5) and on the science platform around the cavity (Fig. 3.8), respectively. With the
latter we should be able to reach the widest Feshbach resonance of 87Rb (at ∼ 1008G)
[164] at the position of the cavity.

Around the cavity we have placed two pairs of tiny coils (4Ω, 0.4mH) along and
perpendicular to the cavity axis (Fig. 3.5). They can be used to create magnetic �eld
gradients of about 200G/cm (with 1A) for tomography experiments. In combination
with a �fth tiny coil (1Ω, 0.1mH) mounted above, a magnetic trap at the position
of the cavity can be formed. These �ve small coils (called �cavity coils�) were wound
from 0.04mm2 Kapton isolated copper wire on Shapal frames to be penetrable by radio
frequency.

In addition to the magnet coils inside the vacuum tank we have wound three mutually
orthogonal pairs of large extra coils around the main tank. They are still within the mu-
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metal hull and serve to produce homogeneous magnetic �elds, for example for optical
pumping.

3.3 Science platform and cavity setup

We have designed this apparatus with attention to versatile access for samples and
probes to the BEC. Therefore we have implemented two independent sections of com-
plementary functionality, i.e. the BEC production rig (see Secs. 3.1 and 3.2) and the
science platform. The latter is a modular, interchangeable �ange, which in the current
con�guration supports our single atom detector in form of the ultrahigh �nesse optical
cavity. The design of the cavity was guided by the need for stability, compactness, and
ultrahigh vacuum compatibility. It rests on top of a passive vibration isolation stack
which can be positioned on the science platform.

3.3.1 Cavity design

The Fabry-Pérot optical cavity is formed by two dielectric Bragg mirrors of ultrahigh
re�ectivity and ultralow scattering losses. They consist of SiO2/TiO2 coating on BK7,
speci�ed by the manufacturer to provide T < 4 × 10−6 and L < 10−5 (�best e�ort�).
The re�ection band is 40 nm wide and centered around 780 nm. We have determined
a �nal quality factor of Q = 1.6 × 108 after bakeout from the linewidth of the cavity
(∆νc = 2.4MHz). The initial Q immediately after cleaning the mirrors was higher by
about a factor of two. The cylindrical mirrors (3mm diameter, 4mm length) having
a radius of curvature of 75mm are separated by 176µm which results in a Gaussian
mode waist of w0 = 25.5 µm. A detailed characterization of the optical properties of
the cavity is given in section 3.4.4.

Each mirror was bonded with superglue into a speci�cally fabricated ceramic (Shapal)
ring structure. It positions and �xes the mirror inside the piezoceramic tube [123].
A piezoelectric actuator is required to �ne-tune the length of the cavity and as the
actuator for the cavity lock (see Sec. 3.4.3). The l = 7mm long piezo tube has inner
and outer diameters of di = 5.35mm and do = 6.35mm, respectively. It is equipped
with nonmagnetic wraparound electrodes (silver) which allow the inner electrode to
be contacted from the outside. Additionally, the piezo tube features four radial holes
of 1mm diameter for lateral access of atoms and lasers perpendicular to the cavity
axis. The piezo is made of BM532 which features an especially high charge constant of
d31 = −270×10−12C/N. The excursion can be calculated as∆l/V = d31l/t = 3.8nm/V,
with t = (do − di)/2 being the wall thickness of the tube. To be able to set the cavity
at resonance with light of arbitrary frequency, the cavity length needs to be changeable
by λ/2, which is 415 nm. The e�ective length of the piezo tube is reduced by the wrap
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science platform. (d) Modeled frequency response of our vibration isolation stack.

around electrodes and the four holes. We experimentally �nd that tuning over a free
spectral range at 830 nm is accomplished by changing the applied voltage by about
190V (∼ 2.2 nm/V).

The cavity assembly is mounted by a speci�cally designed compact �xture (called
�clamp�) making use of mechanical joints [Fig. 3.7(a)]. It was manufactured by spark
erosion from titanium in order to be nonmagnetic while having good elastic properties.
Further design considerations aimed at high mechanical eigenfrequencies to avoid reso-
nances within the bandwidth of the cavity lock (∼ 40 kHz), that means a small size and
high sti�ness are favorable. We estimate the lowest eigenfrequency of our �xture with
a simple mechanical �xed-hinged beam model [165] to be ∼ 50 kHz.

Our design of the cavity mount consists of the t-shaped clamp and a baseplate
with integrated bearings to which the clamp is tightened with a plate nut. It transfers
the downward force onto the cavity assembly and �rmly holds it together. Moreover,
it provides the piezo with a load. A hole of 1.2mm diameter in the baseplate and
plate nut grants optical access to the cavity from below. This cavity setup is highly
modular and easily interchangeable because it freely rests on the vibration isolation
stack [Fig. 3.7(b)].
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3.3.2 Vibration isolation system

The aforementioned baseplate simultaneously acts as the top mass of our vibration iso-
lation stack [166] which consists of �ve layers of massive plates (Wolfmet) with rubber
dampers (VitonA) in between [Fig. 3.7 (c)]. Viton has good vibration damping prop-
erties and is suitable for an ultrahigh vacuum environment. The 5mm diameter Viton
pieces rest in hexagonal grooves that are radially arranged in 120 ◦ graduations. Con-
secutive layers are rotated by 60 ◦ to prevent a direct �line of sound.� Hexagonal shaped
grooves best avoid squeezing and creeping of the rubber and provide good lateral sta-
bility. Position, angle, and tilt reproducibility of this structure are excellent because of
the frustum shaped bottom mass with keel. It centers the stack in an inverted, trun-
cated conelike support and assures mechanical stability by lowering the center of mass
to below the support points. The complete stack has a central 10mm bore for vertical
optical access to the cavity.

Its damping properties can be modeled by regarding the structure as a system of cou-
pled masses and springs [167] and calculating its frequency dependent transfer function
[Fig. 3.7(d)]. For attenuation at low frequencies large masses and small spring constants
are favorable [168, 169]. Therefore we have fabricated the plates from a heavy metal al-
loy (Wolfmet) and employed short (10mm) Viton pieces. Our vibration isolation stack
works well for acoustic frequencies above 200Hz.

Additional precautions to counter low-frequency excitations such as building vibra-
tions include setting up the experiment on a damped rigid optical table in a basement
laboratory having its own independent foundation and choosing a position with little
�oor vibration within this laboratory. The quality of the vibration isolation system is
such that we could easily operate the cavity in the vicinity of a turbo-molecular pump.
Furthermore the vibration isolation stack kept the cavity in place when the whole optical
table accidentally dropped by about 2 cm as we tried to tilt it.

3.3.3 The science platform layout

The self-contained, interchangeable science platform �ange was prepared to support
and align the complete cavity mount. Its layout provides manual positioning ability of
the cavity mount by ± 2mm along and perpendicular to the cavity axis, respectively.
This is rendered feasible by an octagonal support (nonmagnetic steel) of the vibration
isolation stack which can be deterministically moved and �xed in a larger octagonal
cutout on the �ange.

The second objective of the support is to sustain the arrangement of cavity coils and
the gradient coil (see Sec. 3.2.4), which are positioned around the cavity without direct
contact to it. The coil assembly is mounted on two nonmagnetic steel sustainers which
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optical cavity.

are �xed to the vibration isolation support.

In order to remove the heat dissipated by the electromagnetic coils, we have con-
nected the copper bracket of the gradient coil to a power feedthrough serving as a heat
bridge (�cold �nger�). Outside the vacuum the 19mm diameter copper conductor can
be connected to the cooling circuit and cooled to −90�. The copper rod serves as a the
main drain for the heat because of the low thermal conductivity of the steel sustainers
and support.

The mounting of the independent BEC production rig and science platform within
the main vacuum chamber has to be noncontact but within a fraction of a millimeter.
This results in a �nal position of the optical ultrahigh �nesse cavity being 36.4mm
below the BEC. The orientation of the cavity axis is at 90 ◦ with the symmetry axis of
the magnetic trap (Io�e axis).

3.4 Performance of the apparatus

The design of our setup has been carried out along complex performance objectives,
yielding the device presented in the preceding sections. The capabilities of the apparatus
will become clear in the following sections, where we characterize its performance and
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Figure 3.9: Photograph of the laser setup. The square boxes on the right side of

the table are grating stabilized diode lasers. The four lasers in the foreground and

the corresponding optics are used for stabilization and probing of the ultrahigh �nesse

cavity. The laser system used for laser cooling, optical pumping and imaging resides

in the rear part of the table.

present initial experiments highlighting the new experimental possibilities. One example
is the �rst detection of single atoms from a quantum degenerate gas using a cavity QED
detector.

The experiment is operated periodically with a cycle time of 60 s. During each cycle
we produce a new BEC from which we output couple an atom laser. It is directed to the
ultrahigh �nesse optical cavity situated 36.4mm below the BEC where single atoms are
detected. The cavity is probed by a resonant laser and its length is actively stabilized by
an o�-resonant laser with respect to the atomic transition. The experimental sequence
is fully computer controlled using a software developed in Borland C++. 64 digital
channels, 16 analog channels (8×12 bit and 8×16bit), and a General Purpose Interface
Bus (GPIB) for control of frequency synthesizers via the IEEE488 interface connect the
computer with the elements of the experimental setup.

The experiment is distributed on two self-contained optical tables, one for the laser
system and one for the vacuum apparatus. They are linked by optical �bers. A picture
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of the laser table is shown in Fig. 3.9. The laser setup for locking and probing the
ultrahigh �nesse optical cavity covers the front half, whereas the optics for laser cooling
and probing the BEC are at the rear end of the table.

3.4.1 BEC

We form a Bose-Einstein condensate of 87Rb in dilute atomic vapor, starting with a
dispenser-loaded magneto-optical trap (MOT). After loading the atoms into a magnetic
trap and subsequent magnetic transport, the atoms are cooled to quantum degeneracy
by means of rf-induced evaporation [45, 156].

The MOT operates on the D2 line of 87Rb (5 2S1/2 → 5 2P3/2) with a linewidth of
Γ = 2π × 6MHz at a wavelength of λ = 780 nm. About 100mW of light at the cooling
transition |F = 2〉 → |F ′ = 3〉 are available from a tapered ampli�er which is injection
seeded with a home built external cavity diode laser [170]. To allow for frequency
tuning, the laser is o�set-locked [171] to the |F = 2〉 → |F ′ = 2〉 transition with an
o�set of about 250MHz. An additional laser (called �repumper�), directly locked to the
|F = 1〉 → |F ′ = 2〉 transition by Doppler-free rf-spectroscopy [172], is used to avoid
atomic losses into the |F = 1〉 dark state and delivers a power of 1mW in each MOT
beam.

An important design parameter is the size of the MOT beams. For a given laser
power, the MOT beam diameter D should be chosen such that an intensity of about
5 × Isat at the center of the MOT beams is reached [173]. The maximum number of
atoms that can be trapped in a MOT is proportional to D3.6 if the intensity is kept
constant [174, 175]. We chose a beam diameter of D = 31.2mm; small enough to not
lose more than 3% of the laser power at the windows in the inner chamber with a
diameter of 34mm. With 17 mW in each of the six MOT beam one �nds an intensity
of about 2.7 × Isat at the center of the beam and even at its edges (limited by the
windows of the inner chamber) there is still an intensity of about Isat to assure e�cient
cooling. For optimum collection e�ciency the detuning of the cooling laser from the
|F = 2〉 → |F ′ = 3〉 transition is set to −3Γ.

During the �rst 20 s of each cycle we load the magneto-optical trap with atoms from
the pulsed alkali dispenser source [159]. The dispensers are operated at ∼ 7A with a
temporal o�set of −3 s to the actual MOT phase. Only atoms with a velocity below the
calculated capture velocity vc = Γ/k = 4.7m/s for the 87Rb D2 line are captured and
cooled. The number of atoms with v < vc in the Boltzmann distribution is proportional
to v4c .

For the magneto-optical trap we set a magnetic �eld gradient of 10G/cm by running
a current of 3.5A through the MOT coils. No earth �eld compensation is required
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because of the mu-metal shielding. We collect about 1× 109 atoms in the MOT before
we switch o� the magnetic �eld and sub-Doppler cool the atoms in a 10ms optical
molasses phase. While the lowest achievable temperature in the MOT is the Doppler
temperature TD = ~Γ/(2kB) = 146µK for the 87Rb D2 line, polarization gradient
cooling in the optical molasses decreases the temperature under optimal conditions
by a factor 2δ/Γ. Here δ is the detuning from the atomic transition. The minimal
kinetic energy is certainly limited to a few times the recoil energy with Trecoil = 362 nK
[176, 88]. In contrast to the optimal detuning δ = −Γ/2 for a standard optical molasses,
we therefore choose a large detuning of −19Γ, which was experimentally found to yield
optimal results.

The atoms in the MOT and molasses populate all Zeeman levels of the 52S1/2 |F = 2〉
state. The |F = 1〉 manifold is not populated, since the repumper light is on even a
few ms after the end of the MOT phase. Before magnetically trapping and transport-
ing the cold atomic cloud, the atoms are optically pumped into the low �eld seek-
ing |F = 1,mF = −1〉 hyper�ne state. For that purpose we �rst apply σ−-polarized
light resonant with the |F = 2〉 → |F ′ = 2〉 transition in addition to the repumping
light, until all atoms populate the |F = 2,mF = −2〉 state. After switching o� the re-
pumper, a short pulse of π-polarized light resonant again with the |F = 2〉 → |F ′ = 2〉
transition excites the atoms to the 52P3/2 |F ′ = 2,mF ′ = −2〉 state. From there they
can decay to the 52S1/2 |F = 2,mF = −2〉 or |F = 2,mF = −1〉 state, which will lead
to another excitation by the π- or σ−-polarized light, respectively. Or they fall into
the 52S1/2 |F = 1,mF = −1〉 state we want to populate, which is a dark state for the
|F = 2〉 → |F ′ = 2〉 light. Optical pumping is performed over 2ms at a homogeneous
magnetic �eld of 4G. All light �elds are o� when the transport sequence starts with
adiabatically compressing the cloud [Fig. 3.4 (b)]. The magnetic transport conveys the
atoms within 1 s through the di�erential pumping tube over a distance of 8 cm directly
into the magnetic QUIC trap. We estimate a transport e�ciency of > 90% by trans-
ferring the atoms back into the magneto-optical trap and measuring their �uorescence.
The losses are mainly due to background collisions and depend on the pressure in the
MOT chamber.

We operate the magnetic QUIC trap initially with a maximum current of 15A. This
yields the highest trap frequencies of ωx = ωz = 2π×135Hz and ωy = 2π×28Hz with a
bias �eld B0 of 4.7G and a �eld gradient B′ of ∼ 300G/cm. Here ωy and ωx denote the
trapping frequencies along and perpendicular to the Io�e axis, respectively and ωz is in
the vertical direction. Over a period of 23 s we perform rf-induced evaporative cooling
with an exponential frequency ramp and a radio frequency power of 24 dBm. The radio
frequency is radiated by a coil inside the vacuum chamber which consists of ten turns of
Kapton clad copper wire (1mm2) encircling an area of 3 cm2. It is mounted 2 cm away
from the center of the trap and is oriented at 90 ◦ with respect to the Io�e axis. This
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Figure 3.10: Absorption images of cold atom clouds. (a) Thermal cloud at a tem-

perature T above the critical temperature Tc. (b) Bimodal distribution for T < Tc.

(c) �Pure� Bose-Einstein condensate at T � Tc. The images were taken after 30ms

time of �ight with a detuning of 2Γ to avoid saturation.

results in a Brf of about 30mG at the position of the cold atoms.

Before reaching the critical phase space density for Bose-Einstein condensation we
relax the trap to the �nal parameters of ωx = 2π × 38.6Hz, ωy = 2π × 7.2Hz and
ωz = 2π×29.1Hz with B0 = 1.2G and B′ = 60G/cm by powering the QUIC trap with
3A. The initial trap symmetry is lifted by the large gravitational sag. For a perfectly
harmonic trap it is given by zsag = g/ω2

z ≈ 290µm, where g is Earth's gravitational
acceleration. However, taking the anharmonicity of the trap far from the center of the
magnetic �eld minimum into account, combined measurements on and simulations of
our setup yield zsag = 159 µm. Furthermore, the long axis of the BEC is inclined by
about 3.2◦ with respect to the horizontal plane (see Sec. 2.2.2 and Fig. 2.4). The opening
of the trap is performed adiabatically (ω̇/ω � ω) over a period of 1 s. During this time
an rf shield limits the trap depth to prevent heating of the cold atomic cloud. In the
weak trap we further cool the atoms evaporatively over 5 s and achieve Bose-Einstein
condensates of up to 5 × 106 atoms (see Fig. 3.10). The density in the weak trap is
considerably lower so that the losses due to inelastic collisions are reduced. We have
measured a 1/e-lifetime for condensates of about 30 s. The typical size of the Bose-
Einstein condensate is (23 × 120 × 30) µm3 (Thomas-Fermi diameter) with a chemical
potential µ of about 1 kHz.

Resonant absorption imaging of the cold atoms after a free expansion time of 30ms
allows us to extract the number of atoms in the cloud and its temperature. We �t the
resulting density distribution with the sum of a Gaussian and a Thomas-Fermi pro�le.
The spatial resolution of our imaging system (f/10) is limited to 9µm by the diameter
of the windows. We employ a charge coupled device (CCD) camera with an according
pixel size.
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3.4.2 Atom laser

An atom laser is a coherent atomic beam extracted from a Bose-Einstein condensate
(Fig. 3.11). The trapped condensate, being in a quantum degenerate state, serves as the
source for the freely propagating atom laser. A steady-state output coupling process
establishes a coupling between the ground state of the trap and the energy eigenfunctions
of the linear gravitational potential and produces a continuous atom laser. The resulting
cw atom laser [79], in contrast to optical lasers, consists of interacting massive particles
propagating downwards in the gravitational �eld. But like an optical laser it is a matter
wave in a coherent state as de�ned by Glauber in the quantum theory for optical lasers
[59] and exhibits higher-order coherence [101].

In order to output couple atoms we locally change their internal spin state from the
magnetically trapped |F = 1,mF = −1〉 into the untrapped |F = 2,mF = 0〉 hyper�ne
state. The spin �ip is induced by a coherent microwave �eld at the hyper�ne splitting
frequency of 87Rb (∆Ehfs/h = 6.8GHz) [88]. This microwave output coupling scheme
is equivalent to a two-level system because of the Zeeman splitting (∼ 1MHz) in the
hyper�ne niveaus (see Sec. 2.2.2). Therefore it is superior to rf output coupling which
mutually couples all states from a Zeeman manifold [96]. The microwave signal is
produced by a synthesizer locked to a 10MHz global positioning system (GPS) reference.
We use a home-built resonant helix antenna with 14 dB gain [Fig. 3.11(a)] placed inside
the ultrahigh vacuum chamber to radiate the microwave �eld. The antenna is connected
and impedance matched to a commercial microwave feedthrough.

The energy conservation for the resonance condition of the microwave output coupling
is only satis�ed at regions of constant magnetic �eld where ∆Ehfs−gFµBB(r) = hνmw.
Here νmw is the microwave frequency, B(r) the magnetic �eld of the trap at position
r, and µB the Bohr magneton. The hyper�ne Landé g factor gF applies to the BEC
state. The magnetic moment of the output coupled atoms is zero to the �rst order.

The resonant regions for output coupling are ellipsoidal shells given by the geometry
of the magnetic �eld, centered at the minimum of the magnetic potential. However, the
center of the actual harmonic trapping potential for massive particles is lowered by the
gravitational sag with respect to the magnetic �eld minimum. For our experimental
conditions the resonant output coupling shells intersect the Bose-Einstein condensate
almost as horizontal planes (see Fig. 2.4).

The Rabi frequency Ω of the microwave output coupling process is given by µ12Bmw/~,
where µ12 is the magnetic dipole matrix element between the two coupled states and
Bmw the magnetic �eld of the microwave radiation [93]. The magnetic dipole transition
has selection rules ∆mF = ±1. In the weak output coupling regime (Ω � ωz) an atom
leaves the condensate much faster than the Rabi frequency and does not undergo Rabi
oscillations [95]. The atom laser output coupling rate depends on the number of atoms
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Figure 3.11: Coherent microwave output coupling of a continuous atom laser. (a)

Helix antenna built for 6.8GHz mounted on a vacuum feedthrough. (b) Resonant

absorption image of the atom laser after a propagation of 2mm.

in the condensate NBEC and the overlap | 〈ΨBEC| ΦE〉 |2 between the BEC wave function
ΨBEC and the energy eigenfunction ΦE of the free atom laser [92, 74]. For given atom
number NBEC and microwave frequency the output coupling rate is proportional to Ω2

and therefore to the power of the incident microwave radiation [84].

Producing a coherent cw atom laser crucially depends on the temporal stability of the
resonance condition. We take experimental care to avoid any �uctuations or drifts of
the magnetic resonance position. A temperature controlled cooling circuit for the large
mass magnet coil structure and a GPS locked synthesizer permit excellently reproducible
conditions. The magnetic shielding enclosure together with the hermetic steel vacuum
chamber eliminate external electromagnetic �eld �uctuations (see Secs. 3.1.1 and 3.2.3).
The only detectable noise source is the low noise current supply powering the magnetic
QUIC trap. We have measured a magnetic �eld stability of better than 5µG/

√
Hz (at

3 kHz) or 50µG overall (bandwidth: 50 kHz). This enables us to produce second-order
coherent atom lasers and output couple a cw atom laser over the duration of the BEC
lifetime. Due to the extremely low atom �uxes measurable with the cavity detector we
do not have to deplete the condensate signi�cantly.

The atom laser freely propagates downwards for 86.1ms before entering the ultrahigh
�nesse optical cavity where single atoms are detected. The cavity is placed 36.4mm
below the BEC which results in a velocity of 0.84m/s for the atoms traversing the
cavity mode. This velocity corresponds to a deBroglie wavelength of about 5 nm which
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could be useful for applications in coherent atom lithography [177] or as an atom laser
microscope [178, 179].

3.4.3 Cavity lock

In order to engage the ultrahigh �nesse optical cavity as a single atom detector we have
to stabilize its length to better than 0.5λ/F ≈ 1pm with respect to the wavelength of
the probe laser.

We choose a cavity locking scheme [34] that allows us to independently adjust the
frequencies of the cavity resonance (ωC) and of the probe laser (ωL). Furthermore it
enables us to keep the cavity permanently locked even during atom detection since
the e�ect of a single atom transit on the far-detuned stabilization laser is negligible
and vice versa. A sketch of the locking scheme is depicted in Fig. 3.12. The 780 nm
master laser is stabilized to a D2 line of 87Rb using radio frequency spectroscopy. Its
absolute frequency stability is transferred to a transfer cavity with a free spectral range
∆νFSR of 1GHz by locking the latter to the 780 nm master laser using the Pound-
Drever-Hall (PDH) technique [180, 181]. The transfer cavity consists of two identical
mirrors with radius of curvature RC = 25 cm. Its length is 15 cm and the resulting
mode waist radius w0 = 169 µm. The PDH lock acts on a piezo in between the two
mirrors, keeping the optical path length at the locking wavelength constant. The so
called 830 nm master laser is locked to the transfer cavity and therefore inherits its
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absolute frequency stability. The 830 nm and 780 nm slave lasers are used to stabilize
and probe the ultrahigh �nesse cavity, respectively. In order to be freely tunable, the
actual probe and stabilization slave lasers are phase locked [182] with a frequency o�set
of ±(0�500)MHz to their respective master lasers. The length of the science cavity
is then actively controlled by a Pound-Drever-Hall lock to the stabilization slave laser
with a bandwidth of 38 kHz. We create the necessary sidebands for the lock with a
home-built electro-optical modulator (EOM) [183]. It works at 362MHz to have the
sidebands well o�-resonant with the cavity, which has a �nesse of only F = 3.8 × 104

at 830 nm and therefore a linewidth of 22MHz.

One advantage of the Pound-Drever-Hall technique is its insensitivity against inten-
sity �uctuations. The slope of the error signal is 4

√
PCPS/(π∆νc), with ∆νc being the

cavity linewidth and PC and PS the power in the carrier and one of the (equally intense)
sidebands, respectively. The signal is maximal when the combined power in both side-
bands is equal to the power in the carrier. With an EOM, a maximum of 34% of the
total incident power can be transferred into each of the �rst-order sidebands, leaving
10% in the carrier. For many experiments it is desirable to minimize the power inside
the cavity to minimize the interaction between stabilization light and atoms. Both the
scattering rate and the dipole potential should be as low as possible. However, a certain
minimal size of the PDH error signal is needed in order to stabilize the cavity. The
ration between the size of the error signal and the power inside the resonator for a
given total power is

√
1/Pc − 1, which suggests making the carrier very small. There

is however the limit of the minimum relative carrier power of 10% mentioned above.
The solution to this problem is to lock the cavity to one of the sidebands, which is
possible because the PDH lock also works with only a single sideband. The sidebands
can in principle be made arbitrarily small without any restriction on the power of the
carrier. Since only the weak sideband is resonant with the cavity, the strong carrier is
not coupled into the cavity and therefore does not interact with the atoms. We have
stabilized the cavity to one of the sidebands containing only 3.2% of the total power.
This yields only 2 nW of power behind the cavity, which corresponds to 35µW of light
at 830 nm inside the resonator. Consequently, the scattering rate is as low as 1mHz and
is about a factor of 150 better than what we typically achieve by locking to the carrier.

We actively control the power of the stabilization and probe laser incident on the
cavity to about 2µW and 3 pW, respectively. In order to have a good spatial overlap,
the two lasers are guided through the same optical �ber. Their power ratio of 10−6

is realized with an optical color �lter that transmits most of the light at 830 nm but
strongly attenuates the probe light. We can couple about 25% of the incident probe
laser power into the cavity TEM00 mode being limited by the non-optimal impedance
matching.

The transfer cavity only serves as a rigid frequency linker as long as the refractive

64



3.4. Performance of the apparatus

index in between its two cavity mirrors is constant. The refractive index of air however
depends on environmental parameters αi like temperature, pressure, and its composition
in a wavelength dependent manner. In case one of these parameters changes, the PDH
lock counteracts changes of the optical path length at 780 nm by changing the cavity
length. At 830 nm however, the index of refraction might have changed by a di�erent
amount and therefore the frequency of the 830 nm master laser is shifted. The change
in its frequency f with the physical quantity α is in general given by

∂f

∂αi
=

(
∂n1
∂αi

n2 −
∂n2
∂αi

n1

)
f

n1n2
(3.1)

where n1 and n2 denote the refractive index of air at 780 nm and 830 nm, respectively
[184]. For typical conditions (T=20� , p=1013mbar and a relative humidity of 50%)
we �nd a change of the 830 nm laser frequency of -0.4MHz/� and 0.1MHz/mbar. The
refractive indices were calculated using a program provided by the National Institute of
Standards and Technology (NIST)[185]. Since ambient temperature drifts in the lab of
1�2� during the day and daily variations of the atmospheric pressure of one millibar
are common, we observe a drift of the 830 nm laser with respect to the 780 nm laser
of up to 1MHz. This is especially annoying since all the locks employed in stabilizing
the relative frequency between cavity and detection laser o�er much better stability.
Putting the transfer cavity in vacuum should eliminate this problem and a chamber to
hold it has already been designed. Another advantage would be an improved decoupling
of the cavity from changes in ambient temperature. Even though expansion of the spacer
supporting the mirrors is counteracted by the piezo, once its maximum length change is
reached, the lock collapses and the cavity and 830 nm lasers need to be relocked. This
would happen less often if the cavity was isolated thermally from the environment by
putting it inside a vacuum chamber.

3.4.4 Cavity parameters

Since the ultrahigh �nesse cavity is a central part of the experiment, measurements
done to determine its parameters are presented in the following section. The results are
summarized in Table 3.2.

Cavity length

We have determined the length of the ultra-high �nesse optical cavity in two di�erent
ways. The length of a near-planar cavity can be calculated by determining the ratio of
the frequency interval between two neighboring transverse modes ∆νtr [see eqn. (2.49)]
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to the free spectral range ∆νFSR of the cavity, to be

lres ≈
π2RC

2

(
∆νtr
∆νFSR

)2

, (3.2)

where RC is the radius of curvature of the two equal mirrors. However, this method is
not very accurate, since it relies on the linearity of the change in cavity length with the
piezo voltage.

The second method yields much more accurate results but requires not only one but
two freely tunable lasers. Their wavelengths λ1 and λ2 need to be tuned in resonance
with two TEM00 modes that are simultaneously resonant with the cavity. Then the
length of the resonator can be calculated as

lres =
∆nλ1λ2

2 (λ2 − λ1)
=

c∆n

2 (ν1 − ν2)
, (3.3)

where ∆n is an integer characterizing the di�erence in longitudinal modes between the
two wavelengths. Taking two neighboring modes (∆n = 1) with λ1 = 825.605nm and
λ2 = 827.526nm we �nd lres = 177.8µm.

The same calculation can be done for the two wavelengths used during operation of the
cavity as a single atom detector. They are 780.246 nm for the detection laser resonant
with the 87Rb D2 transition and 829.689 nm for the stabilization laser used for locking
the high-�nesse cavity. From the measurement with two adjacent longitudinal modes
we can reason that ∆n = 27 in this case. The resulting cavity length is lres = 176.8µm.
Following the results from [186], the discrepancy results from the leakage of the cavity
mode into the mirror coatings. Wavelengths di�ering from the center wavelength leak
deeper into the coating, which explains why a longer resonator length is measured with
both laser detuned about 45 nm from the center frequency of the coatings of 780 nm.
Extrapolating to the cavity length at the center wavelength we �nd lres = 175.9 µm. The
maximum length change achievable with the piezo is 0.4 µm, and therefore the de�nite
cavity length depends on the precise operation conditions.

One needs to discriminate the mechanical length of the cavity, given by the distance
between the inner sides of the two mirrors and the e�ective cavity length. The latter
is larger by about 0.6 µm for our parameters than the �rst because the electromagnetic
mode extends into the stack of coating layers. The e�ective cavity length is determined
with the methods described above. It is the physically relevant quantity as for example
required to calculate the cavity mode volume Vm.

Linewidth and �nesse

After assembly, the cavity was tested in a separate vacuum chamber. Its linewidth was
determined in a cavity ringdown measurement, whose results are shown in Fig. 3.13.
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Figure 3.13: Cavity ringdown to determine the lifetime of a photon in the cavity.

The inset shows a logarithmic plot of the same data as in the main graph. The red

line is a �t to the data.

A probe laser is locked to the cavity, leading to a constant transmission of light. At
t0 = 215 ns, it is switched o� and the decay of the intracavity light �eld can be observed.
Fitting an exponential I(t) = A exp (−(t− t0)/τc) to the data, the time constant for the
intracavity intensity can be determined as τc = (147± 0.3)ns. From this, the linewidth
is calculated as ∆νc = 1/(2πτc) and the decay rate of the electromagnetic �eld inside
the cavity is

κ = 2π
∆νc
2

=
1

2τc
. (3.4)

The system to measure the cavity ringdown was characterized independently. With-
out the cavity in the optical path, the decay of the photo diode signal from 90% to
10% took only 11 ns. It was limited by the switching time of the AOM and not by
the photodiode. Therefore the in�uence of the systems switching time on the ringdown
measurement is very small. This is con�rmed by the strictly linear shape of the cavity
transmission in the semilogarithmic plot shown as an inset in Fig. 3.13. As a supple-
mentary evidence we �tted the decay starting only at t0 = 315ns, which is 100 ns after
the beginning of the switch o�. By then the e�ect of the switching time of the AOM
should be completely negligible. A decay time of τc = (141 ± 5)ns is found, basically
con�rming the result of the �t to the complete data range. Using the independently
measured cavity length of lres = 176nm, we �nd a �nesse F = πcτc

lres
> 7.5× 105.
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Unfortunately, the �nesse dropped to F = 4×104 over a period of about three month
following its installation in the main vacuum chamber and the subsequent bake-out.
Several attempts to clean the cavity mirrors without having to break the vacuum were
carried out. However, neither local heating nor illumination of the cavity mirrors with
ultraviolet light increased the �nesse. Therefore the cavity was taken out of the vacuum
chamber and disassembled. The mirrors were thoroughly cleaned mechanically, using
lens cleaning tissue, acetone and isopropanol. After reinstallation and bake-out the
result was a �nesse of 3.4× 105 which has now been stable for about three years.

Even though a cavity ringdown measurement is the method of choice to determine the
�nesse once its length is known, in the �nal setup the signal to noise of the ringdown was
not su�cient. The optical setup is optimized for very low light intensities and therefore
only about 20 µW of light were available for input coupling. Since the photodiode used
for detection needs to be very fast (the single photon counter's count rate is much to low
for this), the photo current needs to be monitored as a voltage drop over a very small
resistor (∼ 50Ω). But then the signal is simply to small for a su�cient signal-to-noise
ratio.

We therefore chose to measure the cavity linewidth directly by determining the width
of the decrease of re�ected light on resonance, using the sidebands created by an EOM
for the Pound-Drever-Hall stabilization as frequency markers. The choice of the right
scan speed of the piezo is crucial for accurate results. Nonlinearities in the voltage to
length conversion by the piezo were taken into account as well as heating of the cavity
once it �lls with resonant light, which leads to a slightly asymmetric transmission curve.
When scanning over the resonance by increasing the cavity length, the resonance curve
appears slightly narrower because the heating of the substrates increases the growth in
cavity length. The opposite e�ect can be observed when scanning from shorter to longer
cavity lengths. Scanning both ways and averaging as well as using low light intensities
minimizes these e�ects. A linewidth of ∆νc = 2.5MHz at 780 nm and ∆νc = 22.4MHz
at 830 nm are measured. This factor of 9 di�erence in the linewidths is a property of the
mirror coatings. They are optimized for 780 nm (design wavelength) and 50 nm away
from the design wavelength a signi�cantly higher transmission is to be expected.

We found that the cavity mirrors are birefringent, which leads to a splitting of the
resonance frequencies between two orthogonal axis of linear polarization by about the
cavity linewidth ∆νc at 780 nm.

The maximum fraction of light that can be input coupled into the cavity has been
determined as ηin = 1 − R, with R being the measured fraction of light re�ected from
the input coupling mirror. The theoretical value (�theory�) of ηin has been calculated
from eqn. (2.37). The discrepancy between the theoretical and experimental values is
due to imperfect mode matching. The same is true for the maximum transmission on
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Cavity parameters

wavelength λ
780.246 nm 829.689 nm

length lres 175.9 µm 177.8 µm

free spectral range ∆νFSR 852GHz 843GHz

linewidth ∆νc 2.5MHz 22.4MHz

�nesse F 342× 103 38× 103

max. input coupling ηin (exp.) 24% 57%

max. input coupling ηin (theory) 43% 91%

Tmax
FP (exp.) 3.4% 30%

Tmax
FP (theory) 6.1% 49%

mirror transmission T 2.3 ppm 58 ppm

mirror losses L 6.9 ppm 25.3 ppm

mirrors, radius of curvature RC 75 mm

mode waist radius w0 25.25 µm 26.11 µm

mode volume Vm 88× 103 µm3 95× 103 µm3

decay rate of the atomic dipole moment γ 2π × 3.0MHz

decay rate of the intracavity �eld κ 2π × 1.3MHz 2π × 11.2MHz

atom-cavity coupling constant g0 2π × 10.6MHz

cooperativity parameter C 29.5

Table 3.2: Properties of the ultrahigh �nesse cavity. Details are given in the text.

resonance Tmax
FP , with the theoretical value calculated from eqn. (2.36). T , L, w0, and

Vm have been determined using equations (2.41), (2.42), (2.46), and (2.47), respectively.
The atomic resonance (ωA) we employ for single atom detection is the cycling transition
|F = 2〉 → |F ′ = 3〉 of the D2 line of 87Rb. The decay rate of the atomic dipole moment
is given by half the natural linewidth γ = Γ/2 [88] and is much smaller than the
atom �eld coupling rate g0. The same is true for the cavity �eld decay rate κ and
the inverse atom transit time τ−1 = 2π × 3 × 10−3, The latter means that the atom
is always in a quasi steady state with the cavity �eld during the transit. g0 has been
calculated using eqn. (2.52) and assuming an isotropic dipole matrix element [88]. Since
g0 � (γ, κ, τ−1), we operate in the strong coupling regime of cavity QED (see section
2.3.3).
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3.5 Single atom detection

The detection of single atoms with an ultrahigh �nesse optical cavity [26] can heuristi-
cally be viewed as the refractive index of a single atom being su�cient to signi�cantly
shift the cavity resonance. Consequently, the transmission of an initially resonant,
weak probe laser is measurably reduced. In quantum mechanical terms the coupling of
a single atom with the quantized electromagnetic �eld in the cavity mode dominates
the dissipation losses (strong coupling regime) which means the level splitting of the
Jaynes-Cummings model [112, 113] can be resolved (see section 2.3.4). On the other
hand, the quantum mechanical detection process on the longitudinally delocalized atom
within the atom laser beam projects and localizes them inside the cavity mode [187].

We can e�ciently study these cavity QED interactions of single atoms having an atom
laser as an unprecedentedly bright, controllable, reproducible, and well de�ned source
of atoms. Here, we present experimental results that characterize the performance of
our combined BEC and ultrahigh �nesse optical cavity system.

3.5.1 Analysis

In order to identify single atom transits, we record the transmission of a weak, resonant
probe laser beam through the cavity with a single-photon counting module (SPCM). A
typical recording showing single atom transits is presented in Fig. 3.14.

Photon detection system

The light coming from the cavity is �ltered with a 780 nm bandpass and a 830 nm notch
�lter to block the stabilization light. Their combined relative optical density (OD) at
830 nm is 12. The SPCM employs a silicon avalanche photodiode [188] with a nominal
dark count rate < 50 s−1 and a nominal photon detection e�ciency of 60%. It is located
inside a light-tight enclosure (�blackbox�) and we experimentally �nd an overall photon
dark count rate of ∼ 100 s−1. An accurate determination of the quantum e�ciency
of the SPCM would be desirable. Comparing the SPCM output with the reading of
a calibrated power meter gives ηSPCM ≈ 50% which is not a very accurate number.
Using correlated photon pairs would be far superior and is especially independent of an
external standard [189, 190, 191], but has not been deployed due to its minor relevance
for the work presented here. The SPCM produces TTL pulses of 35 ns length for each
detected photon and has a measured dead time of 58 ns. Therefore the maximally
achievable count rate is about 2 × 107 s−1 and already at a count rate of 5 × 106 s−1

the typical linearity correction factor is 1.4. The pulses are counted by a Multiscaler
(Fast ComTec P7882) with a minimum dwell time of 100 ns. In the current mode of
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Figure 3.14: Cavity detection of atoms from an atom laser. The atom �ux is about

four orders of magnitude lower than in Fig. 3.11(b). Single atom transits through

the cavity are clearly identi�ed as dips in the cavity transmission (green data). Dips

larger than 4 times the shot noise (4σ, red dotted line) of the empty cavity transmission

(blue dashed line) are identi�ed as single atoms transits by a custom-made software

algorithm (red squares).

operation the maximum recording time is limited by the amount of on-board memory of
the card allowing the storage of 5×105 time bins. Therefore 2 s of continuous recording
are possible with a resolution of 4µs. We found the existence of very short intervals of
insensitivity between adjacent time bins, contrary to the manufacturers speci�cation of
zero dead time. For practical purposes however, they can be neglected.

Photon detection e�ciency

The intracavity intensity on its axis is given by

Ic =
2Pc

πw2
0

, (3.5)

where Pc = N̄ichνc/lres is the power inside the cavity of length lres given by the average
number of intracavity photons N̄ic of frequency ν. Every time a photon hits the output
coupling mirror, it is transmitted with a probability given by the transmission of the
output coupling mirror T . Therefore the power behind the output coupling mirror Poc

is the product of T and the power inside the cavity: Poc = T Pc. The rate at which
photons impinge on the output coupling mirror is given by the free spectral range∆νFSR.
Therefore one intracavity photon is equivalent to an optical power of P = hν∆νFSRT
behind the cavity.
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Chapter 3. A hybrid apparatus for BEC and cavity QED

The detection e�ciency for an intracavity photon is

ηic =
T

T + L
× 1

2
× ηo × ηSPCM × (1− τdcr) . (3.6)

The two contributions coming from the cavity are the ratio of mirror transmission
to total cavity losses and a factor 1/2 to account for equal transmission probability
through both mirrors. ηo = 85% accounts for the losses of photons at the optical
elements between the cavity and the SPCM and ηSPCM ≈ 0.5 is the photon detection
e�ciency of the single photon counter at low count rates. The last factor in eqn. (3.6)
represents the reduced detection e�ciency of the SPCM for large count rates cr due to
its dead time of τd = 58 ns. The cumulative detection e�ciency is ηic = 5.2% if the
count rate is so low that the detector dead time can be ignored.

At a count rate cr of the SPCM, the mean intracavity photon number N̄ic is given by

N̄ic =
2lres

cηT
(

1
cr
− τd

) , (3.7)

where η = ηo×ηSPCM× (1− τdcr) = 43% is the detection e�ciency for photons leaving
the cavity via the output coupling mirror. Solving eqn. (3.7) for cr gives

cr =

(
τd +

2lres
N̄icηT c

)−1

≈ ηT c
2lres

N̄ic , (3.8)

where we have ignored the dead time of the SPCM in the last term. In order to achieve
a large signal-to-noise ratio for single atom detection, we usually work with an SPCM
count rate of about 5 photons/µs, which is equivalent to an average intracavity probe
photon number of about 8. This corresponds to an intensity on the cavity axis of about
100 Isat using the saturation intensity for isotropically polarized light Isat = 35.8W/m2.
The detection e�ciency for an intracavity photon is ηic = 3.8% in this case.

3.5.2 Identi�cation of single atom transits

We integrate the signal from the SPCM over 20µs with a temporal resolution between
1�4 µs. In Fig. 3.14 the mean empty cavity transmission of n̄ = 103 atoms per 20µs
timebin is marked by the dashed blue line. The threshold for single atom detection,
de�ned as a reduction by at least 4 times the shot noise (4σ), is n̄ − 4

√
n̄ = 62 and

plotted as a red dotted line. Single atom transits are automatically identi�ed using
custom-made software and are marked in the �gure by a red square. The rate of false
atom detection events is reduced to less than 0.5 s−1 due to the 4σ criterion.

In typical detection routines, a certain number of events (missing photons in this
case) must be reached for the detection to be valid. The optimal width of the inte-
gration region is dependent on the ratio between peak and background amplitude and
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in the case considered here approximately 1.2 times the full width at half maximum
(FWHM) of the transmission dip. For our average coupling time of 45µs (also de�ned
as FWHM) this would be 54µs. However, a smaller integration time can be advanta-
geous. Integrating over a large time leads to a severe decrease in the maximum dip
depth and therefore entail an underestimation of the reduction in transmission at max-
imum coupling strength. In addition, we deduce information about the presence of the
peak and especially its maximum from its shape, which gets increasingly distorted with
larger integration times. 20 µs was found to be a good compromise between the di�erent
requirements.

3.5.3 Characteristics of single atom events

The coupling of a single atom with the cavity mode can be characterized by the mag-
nitude and duration of the resulting transmission dips. A recorded typical single atom
transit is shown in Fig. 3.17(a). The 4σ threshold here corresponds to about 50% reduc-
tion in the probe light transmission of about 70 photons per 20µs. We analyze detected
events and show histograms in Figs. 3.17(b) and 3.17(c) for atom laser data taken in 184
iterations of the experiment. The atom �ux was set to ∼ 1× 103 s−1, so the probability
[101] for unresolved multiatom events within the dead time of our detector (∼ 70 µs) is
less than 0.3%.

Atom trajectories inside the cavity

The power of the 780 nm probe laser and the 830 nm stabilization laser in the cavity
are 1.46 µW and 5.15mW, respectively. From this we can calculate the intensity on
the cavity axis to be I780c = 2Pc/(πω

2
0) = 1.43 × 103W/m2 = 40s0 and I830c = 5.05 ×

106W/m2, respectively. The resulting maximum dipole potential for the 780 nm light is
reached at a red detuning of 3.3ΓD2 and equals −4200Erecoil for an atom at an antinode.
For the stabilization light at 830 nm one �nds a potential depth of −71Erecoil. Since
the potential due to the detection light is about 60 times larger than that due to the
stabilization laser, in the following we will only consider the e�ects of the detection light
at 780 nm, which is assumed to be red detuned to give the maximum possible potential
depth. This is also the detuning for which we experimentally �nd the highest detection
e�ciency (see above). The scattering rates are 0.13Hz for 830 nm and 107Hz for the
probe laser red detuned by 3.3Γ from the D2 line. The latter is half the maximally
possible scattering rate. The number of photons scattered during an atom transit is
thereby rather limited by the decay of atoms into the F=1 state, which is not resonant
with the detection light, and we do not scatter 450 atoms as one would naively calculate
from the mean time atoms spend in the cavity. The scattering rate of the stabilization
laser can be reduced by about a factor of 150 to 10−3Hz when fully exploiting the
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Figure 3.15: Trajectories of atoms through the cavity mode. The red shading indi-

cates the depth of the dipole potential where darker red marks a deeper potential. In

(a) the cavity is viewed from the side. The six trajectories plotted are those of atoms

entering the cavity at a horizontal distance of (0.98, 0.9, 0.7, 0.5, 0.3, 0.1)×λ/4 from an

antinode of the cavity and on axis along the other direction. Note that the horizontal

axis shows only 1/30 of the region of the vertical axis and therefore the oscillations

are greatly enhanced. (b) View along the cavity axis. Perpendicular to it, the dipole

force is weak and leads to a small de�ection of the atoms. The atoms are injected at

an antinode with a distance (1.25, 1, 0.75, 0.5, 0.25, 0)×w0 from the cavity axis. w0 is

the waist radius of the cavity mode.

potential of stabilizing the cavity with very low light intensities (see section 3.4.3).

To be able to better understand the cavity transmission signals, the trajectories of
atoms in the cavity need to be studied [192, 193]. They determine the position- and
therewith time-dependent coupling. In chapter 6 we show that upon entering the cavity
an atom is localized in less than a microsecond. Therefore it is justi�ed to use a
semiclassical model, where the internal state of the atom and the cavity mode are
treated quantum mechanically but the motion of the atom is treated classically. In the
case of a weakly driven cavity the force on an atom is given by [118]

〈F (~r)〉 = −2n̄~κ2∆ag(~r)∇g(~r)
(∆Cγ +∆Aκ)

2 + (g2(~r)−∆A∆C + γκ)2
. (3.9)

The mean number of photons in the empty cavity is set to n̄ = 3.4. Therefore the
condition of weak driving is strictly speaking only ful�lled in the case of a strongly
coupling atom. The condition of low excitation of the atom is well ful�lled. We ignore
all velocity dependent forces and all forces associated with spontaneous emission.
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3.5. Single atom detection

Solving the coupled equations of motion for an atom in three dimensions, subject
to gravity and the position dependent dipole force [eqn. (3.9)] yields the trajectories of
atoms in the cavity. As one can see from Fig. 3.15(a), the dipole forces along the cavity
axis can alter the trajectories considerably because of the large intensity gradients.
Atoms entering the cavity between a node and an antinode oscillate around the nearest
node, leading to an e�ectively higher coupling of the atom to the light �eld as compared
to the case without dipole forces. In the y-direction, which is perpendicular to the
cavity axis and gravity, the forces are much weaker [see Fig. 3.15(b)]. Even though the
de�ection of the atom is noticeable, the coupling is only slightly increased.

The in�uence of the light force on the trajectory depends strongly on the position at
which the atom enters the cavity. The transit time is shortened most when an atom
traverses the cavity at the center of an antinode, coupling maximally to the light �eld.
The shortest transit time is found for ∆a = 2π × 12MHz and ∆c = 2π × 1.1MHz,
reducing it by 1.6 µs. The e�ect is quite small due to the high vertical velocity of the
atoms of 0.84m/s upon entering the cavity mode. It can be understood in a classical,
one-dimensional model. Due to the attractive potential the velocity of an atom is always
higher than or equal to what it would be in free fall. Since the potential is assumed to
be conservative in the simulations, the total velocity of the atom well below the cavity
does not di�er from the free fall case. The overall e�ect is a faster transit of the atom
through the cavity compared to free fall.

In three dimensions however, an extension of the transit time can also be observed.
In this case, the z-component of the velocity is reduced because the atom is de�ected
by the potential. The e�ect is largest when the atom traverses the cavity close to the
cavity axis and very close to a node of the standing wave (within 7% of λ/4). In
this case, the atom is accelerated towards the antinode but not trapped in it. This
results in a large de�ection of the atom and a slower transit. The maximum increase
in transit time is of the same magnitude as the maximum decrease. Considering atoms
injected radially on axis and averaging over all possible positions along the cavity axis,
one �nds an average decrease in transit time of about 1.3µs. When the atom enters
with a horizontal distance to the cavity axis, the decrease in transit time diminishes
approximately proportional to the decrease in coupling.

Dead time of the single atom detector

The dead time of the single atom detector can be inferred from the two-particle corre-
lation function g(2)(τ) of an atom laser at small τ . Figure 3.16 shows a histogram of
the time di�erences τ between single atom events detected in an atom laser beam (see
chapter 5). The limited measurement time and atom �ux lead to an average number of
80 entries per time bin of 1µs. The resulting shot noise for time intervals larger than
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Figure 3.16: The beginning of the two-particle correlation function g(2)(τ) gives

valuable information on the dead time of the single atom detector. The red curve is a

�t to the data with the 90% and the 99% point marked by the vertical red lines. The

error bar indicates the size of shot noise on the data.

the dead time of the detector is indicated by the exemplary error bar. The red curve is
a sigmoidal Boltzmann �t to the data giving g(2)(τ) = (1 + exp [−(τ − 46µs)/7µs])−1.
The 90% and 99% points are indicated by the two vertical red lines at 61µs and 78 µs,
respectively. From this we can infer that for atom arrivals separated by more that 80µs
no reduction in detection e�ciency due to preceding atoms is present. The atom detec-
tion routine used here discriminates between dips caused by single and multiple atoms.
For single atom dips, a maximally allowed full-width at half-maximum (FWHM) can
be set. It is usually chosen to be 90µs, the minimal size of a dip at which one can hope
to accurately discriminate between the arrival times of two atoms. 1.3% of all dips are
found to be wider than this threshold.

The origin of the detector dead time is the insensitivity to a second atom during the
coupling times of a preceding atom. The distribution of the coupling times, de�ned
as FWHM of the transmission dips, is shown in Fig. 3.17(b). It is mainly determined
by the radial size of the Gaussian cavity mode and the velocity of the atoms during
their transit. For a radial coupling strength g(r) = g0e

−r2/w2
0 with w0 = 25.5µm and an

initial velocity of 84.1 cm/s we �nd from numerical simulations an average coupling time
of 45±12µs [Fig. 3.17(b), gray]. Note that for two atoms separated by this time interval
a detection e�ciency of 50% was determined by analyzing g(2)(τ). Taking the classical
free fall velocity is justi�ed since the induced momentum uncertainty by projecting the
longitudinally delocalized atom into the cavity mode is on the order of 10µm/s.
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Figure 3.17: Characteristics of detected single atom events. (a) The transit of a

single atom signi�cantly reduces the probe light transmission through the cavity. We

integrate the signal with a 20µs sliding average and set the detection threshold to

4σ of the photon shot noise. (b) Distribution of measured coupling times (FWHM)

(red) compared to the distribution of simulated events (gray). (c) Distribution of

measured transmission reduction magnitudes. An evaluation with a 4σ threshold

(red) is compared to a 2σ threshold (gray) revealing the discrimination of the events

from the photon shot noise. (d) Dependency of the transmission reduction on the

coupling time due to the non-Gaussian shape of the dips.

In the numerical simulations (see section 3.5.3) we take into account photon shot
noise and the features of our peak detect routine, namely, the 20µs sliding average.
The e�ect of the dipole potential on the transit time is small, because the slight gain in
velocity (< 2µs) is counteracted by an e�ectively stronger and therefore longer coupling
[Fig. 3.17(d)]. The mean of the measured coupling time distribution [Fig. 3.17(b), red]
is in accordance with the expected value. However, the distribution deviates from the
expected shape and exhibits an excess of short and long transit times. We attribute
the shorter transits to optical pumping of atoms into the dark state |F = 1〉 because
their number is intensity dependent on the probe light. Longer transit times could be
explained by di�raction of the atomic beam, scattering of spontaneous photons or cavity
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cooling e�ects, if the cavity axis is slightly nonorthogonal with respect to the atom laser
(possibly 10−2 rad) and by unresolved multiatom events.

Maximum coupling

The magnitudes of the cavity transmission dips [Fig. 3.17(c)] re�ect the di�erent maxi-
mum coupling strengths for single atom transits. Depending on its radial position, an
atom will experience a varying peak coupling strength according to the Gaussian pro�le
of the cavity mode. In the axial direction, however, the light force is strong enough
to channel the atoms towards the intensity maxima of the standing wave [136]. Arbi-
trarily weak coupling transits cannot be resolved due to the shot noise in the empty
cavity transmission. We set the single atom detection threshold to 4σ of the original
transmission to achieve a large signal-to-noise ratio.

The resulting histogram of peak depths is displayed in Fig. 3.17(c)(red) compared
to data for a lower threshold level of 2σ in Fig. 3.17(c)(gray) unveiling the photon shot
noise. The weakest detectable single atom events correspond to peak atom �eld coupling
strengths of gmin

0 = 2π × 6.5MHz. The strongest attainable coupling strengths for our
cavity are gmax

0 = 2π×10.4MHz, which would be equivalent to a reduction of 80% in the
cavity transmission [187]. We do not observe a sharp cuto� in the histogram but rather
an equal distribution of transmission reductions from 50�80% with smeared out edges
due to the comparatively large photon shot noise at the minimum of the transmission
dip. This is consistent with numerical simulations for single atom events.

The dependence of the probe light transmission of the coupled atom-cavity system is
nonlinear in the atom-�eld coupling strength [187]. Therefore the shape of the trans-
mission dips is not Gaussian as the cavity mode and we observe a dependency of the
magnitude in transmission reduction on the coupling time and vice versa [Fig. 3.17(d)].

The knowledge about the signatures of single atom events facilitates the discrimina-
tion of �true� single atom events from �false� shot noise events or unresolved multiatom
events. However, the broad distributions make it di�cult to distinguish two weakly
coupling atoms from a strongly coupling one. Yet, the observed characteristics of the
detected events are in good agreement with the theoretical predictions for single atom
transits.

3.5.4 Linearity

Having an atom laser as the source for atoms that couple with the cavity mode o�ers
several advantages. For instance it provides well reproducible starting conditions and
allows us to precisely control the �ux of atoms over a wide range by varying the mi-
crowave output coupling power. The attainable atom �ux is orders of magnitude larger
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Figure 3.18: The ultrahigh �nesse optical cavity functions as a linear detector on

the output coupling rate, which is the atom �ux, over three orders of magnitude.

Saturation occurs at a count rate of about 5× 103 atoms per second.

than in experiments employing a magneto-optical trap as the source of cold atoms.

We have con�rmed that our single atom detector functions as a linear detector on the
atom �ux over three orders of magnitude (Fig. 3.18). The measured count rate of atoms
is proportional to the microwave output coupling power (see Sec. 3.4.2). Saturation
occurs at a �ux of about 5× 103 atoms per second. At higher rates multiatom arrivals
within the dead time of our detector become dominant and single atom events cannot
be resolved anymore. At a very low atom �ux the error bars become increasingly large
due to atom shot noise, which is determined by the Poissonian distribution of atom
numbers. Additionally, a very weak atom �dark count� rate without intentional output
coupling may be present. It is likely due to stray magnetic or optical �elds and depends
on the size of the Bose-Einstein condensate. However, the dark count rate is still less
than 5 atoms per second on average for a BEC with 2× 106 atoms.

3.5.5 Detection e�ciency

The theoretical aspects of single atom detection have been described in section 2.3.4.
Here, we extend those considerations to yield concrete results for the signal-to-noise
ratio, and we will present measurements determining the optimum parameters for single
atom detection.

In order to determine the detection e�ciency for single atoms from the Bose-Einstein
condensate we make use of the linear behavior of the atom �ux on the microwave
output coupling power (Fig. 3.18). We output couple a signi�cant number of atoms

79



Chapter 3. A hybrid apparatus for BEC and cavity QED

0 5 10 15 20 25 30
0

1

2

3

S
N

R
C

mean empty cavity photon number n

Figure 3.19: Detectability D (see equation 3.10) as a function of the mean number

of photons inside the empty cavity n. Both curves are results of numerical simulations

with a resolution of 0.25 n. The blue curve shows the behavior for cavity and probe

laser tuned to the atomic resonance (∆a = ∆c = 0). The red curve has been obtained

for the those parameters typically used in the experiments and yielding the maximum

detection e�ciency (∆a = −3Γ = −18MHz and ∆c = 1MHz).

measurable by absorption imaging while being still in the weak output coupling regime.
This number is compared to the number of atoms detected by the cavity at a much
lower microwave power and the resulting lower atom �ux, including the corresponding
ratio of the output coupling powers. The atom number in absorption imaging has been
calibrated with the atom number at the critical temperature which is well known for
our trap frequencies. For optimum settings of the cavity and laser detunings we are
able to detect (24 ± 5)% of the output coupled atoms with the cavity detector. This
number is mainly limited by the spatial extent of the atom laser beam being larger than
the cavity mode (see Sec. 3.6).

Signal-to-noise ratio

Because of the very stable and low-noise cavity lock, the cavity transmission is shot
noise limited. Therefore the noise of our cavity transmission signal is given by

√
crτ ,

where cr is the mean count rate of the single photon counter for the empty cavity
transmission and τ is the duration of an atom transit. In the experiments presented
here, the mean interaction time τ = 45 µs is predetermined by the cavity mode diameter
and the velocity of the atoms after falling the 36mm from the position of the QUIC trap.
cr however can be tuned by changing the power of the probe laser. In the following, we
will investigate the dependence of the signal-to-noise ratio on the probe power intensity.
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Since the above considerations suggest working with high intracavity photon numbers,
the system might no longer be in the weak pump limit. Therefore universal results from
numerically solving the quantum master equation [see eqn. (2.53)] are required. In
analogy to the de�nition of the detectability D introduced in eqn. (2.66) we de�ne

D =
|n− 〈â†â〉|√
σ2n + σ2〈â†â〉

. (3.10)

Here, n is the mean number of photons in the empty cavity, 〈â†â〉 is the mean number of
photons in the cavity maximally coupled to a single atom and σn and σ〈â†â〉 denote their
respective standard deviations. Figure 3.19 shows the dependence of D on n with the
parameters listed in Table 3.2 and for two di�erent sets of detunings. On resonance (blue
curve), it shows a pronounced maximum at n ≈ 9. An even higher value of D ≈ 3.2

is found for the typical parameters used in the experiment, which are ∆a = −3Γ =

−18MHz and ∆c = 1MHz (red curve). The maximum is reached at n ≈ 16. This
simulation is oversimpli�ed in that we have assumed a constant coupling of the atom to
the cavity mode during the whole transit. It is assumed to be equal to the maximum
coupling and therefore the results constitute an upper limit on the signal-to-noise ratio.

The ultimate signal are the photons detected with the SPCM. Therefore, to get
absolute values for the signal-to-noise ratio, D has to be multiplied with the square root
of the number of photons detected during an average atom transit for a cavity with no
atom and one mean intracavity photon. We obtain

SNR = D ×
√
crτ = D ×

√
T ηc
2lres

τ , (3.11)

where cr denotes the count rate of the single photon counter [eqn. (3.8)] for one intracav-
ity photon (N̄ic = 1). With the mean coupling time τ = 45µs and ignoring the SPCM
dead time this gives SNR = D × 6. The dead time of the SPCM however limits the
maximum count rate via a declining detection e�ciency [see eqn. (3.8)], so that working
at n = 8 gives best results, even though the maximum of D is at larger n (see red curve
in Fig. 3.19). Including the dead time and for n = 8 we get SNR = D× 5 = 14. This is
a very large value if one considers that a signal-to-noise ratio of 3 already gives a 95%
probability of detecting an event that is truly present if there is no background [194].

In principle, the discrimination between di�erent numbers of atoms inside the cavity
should be possible with our apparatus [195]. It was unnecessary for the work presented
here, because the typical �ux of atoms was so low that the probability of simultaneously
having two atoms inside the cavity mode volume is negligible. In addition, the discrim-
ination between di�erent atom numbers would require to work at a set of detunings ∆a

and ∆c which are not optimal for single atom detection.
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Optimal parameters

The single atom detection e�ciency of the ultrahigh �nesse optical cavity strongly
depends on the frequencies chosen [128] for the probe laser (ωL) and the cavity resonance
(ωC) with respect to the atomic transition (ωA). Furthermore, the e�ective coupling
strength g0 and therefore the detection probability are determined by the polarization
of the probe light with respect to the quantization axis of the atomic spin.

In our experimental con�guration we have a residual vertical magnetic �eld at the
position of the cavity of about 16G which represents the quantization axis for the atoms.
The �eld originates from the magnetic QUIC trap which is on during the detection of
single atoms from the atom laser.

We set the probe light to horizontal (within 10 ◦) polarization which yields a four
times higher atom count rate as vertically (within 10 ◦) polarized light. Only these two
distinct polarization settings are feasible, since we experience birefringence of the mir-
rors leading to a splitting of the cavity resonances for these two polarizations by about
its linewidth. The horizontal polarization of the probe light produces a higher atom �eld
coupling rate because it drives σ+ and σ− transitions compared to the fewer and weaker
π transitions for vertically polarized light. The exact atom �eld interactions are more
complex because of the Zeeman splitting and the resulting optical pumping dynamics
inside the cavity. However, for red detuned probe light the atoms entering the cavity
in the |F = 2,mF = 0〉 state will predominantly be pumped into the |F = 2,mF = −2〉
stretched state and undergo cycling transitions driven by the σ− polarization compo-
nent. Therefore this cycling transition will be the main contribution in the single atom
detection process. The imbalance is due to a redshift for the σ− component and a
blueshift for the σ+ component of ∼ 22MHz in the magnetic �eld of 16G at the cavity.

The number of detected atoms critically depends on the detuning between probe
laser and atomic resonance ∆a = ωL − ωA and probe laser�cavity detuning ∆c =

ωL−ωC as illustrated in Fig. 3.20. Here ωA refers to the bare atomic transition without
magnetic �eld. For most e�cient single atom detection we work with a probe laser
�atom detuning ∆a between -30 and -40MHz and a probe laser�cavity detuning ∆c ≈
0.5 � 1MHz. By taking into account the 22MHz Zeeman shift of the cycling transition
|F = 2,mF = −2〉 ↔ |F ′ = 3,mF ′ = −3〉 (vertical dashed line in Fig. 3.20) the probe
laser red detuning for optimum single atom detection is about 3Γ. This value is close
to the maximum of the dipole potential created by the probe laser [see section 2.3.4
and Fig. 2.10(b)]. That means the dipole force channels the atoms in the axial direction
towards the antinodes of the standing wave [136] which are simultaneously the areas of
the highest atom �eld coupling strength. In the radial direction the dipole force is too
weak to signi�cantly modify the trajectory of the atoms within the cavity mode (see
above).
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Figure 3.20: Dependence of the single atom detection e�ciency on the detunings ∆a

and ∆c. The vertical dashed line represents the cycling transition which is Zeeman

shifted by 22MHz from the zero �eld atomic transition. Best single atom detection

is achieved with a probe laser red detuned by about 3Γ from the cycling transition

(close to the maximum of the dipole potential created by the probe laser) and a cavity

detuning of about ∆ν/2. The second local detection maximum corresponds to a blue

detuned probe laser. Therefore the dipole potential is repulsive and the atom count

rate reduced.

The second set of parameters in Fig. 3.20 where single atom transits are detected
is around ∆a ≈ −18MHz and ∆c ≈ −1MHz. However, the count rate is reduced
considerably because the probe light is blue detuned from the cycling transition and
therefore the dipole potential is repulsive. In the other two quadrants spanned by
the resonances of the cavity and the cycling transition of Fig. 3.20 (dashed lines), atom
transits result in increased probe laser transmission versus the empty cavity transmission
[28]. We do not use those events for single atom detection because the e�ciency is
reduced as compared to evaluating dips. Additionally, the peaks exhibit a substructure
consisting of single photon bursts which makes it more di�cult to discriminate single
consecutive atom transits.

3.5.6 Accuracy of arrival time determination

Once an atom transit is identi�ed, a precise determination of the time when the atom
traverses the cavity axis in z-direction (�atom arrival time�) is necessary. The method
employed determines the two points in time when the decrease in transmission is half
maximum and sets the atom arrival time to be halfway between these times. We have
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Figure 3.21: Jitter in the determination of atom arrival times. The mean deviation

from the true atom arrival time is 1.9µs for a resolution of 1µs (a) and 2.6 µs for

4 µs resolution (b). (c) Fourier transform of (a). It is equivalent to the maximally

observable contrast of a fully modulated matter wave interference pattern of frequency

∆ν due to timing jitter.

compared this method with two alternatives. The �rst was taking the time of the
minimum of the transmission as the atom arrival time. In the second method, the
arrival time is the intersection of the two straight lines through the half minimum
points with their respective slopes equal to those in the half minimum points. Using
simulated atom transits (see below), both methods were found to be inferior to the
main one in that they show an increased jitter in the determined atom arrival times.
This is immediately plausible for the �rst alternative method, since the exact position
of the minimum is subject to the strong �uctuations in photon �ux due to shot noise.
The second alternative method also showed a systematic o�set of the determined atom
arrival times which was not present when comparing the main and the �rst alternative
method. This is probably due to the asymmetry of the peaks with di�ering magnitudes
of the slopes on both sides of the dip.

We have characterized the accuracy of the determination of atom arrival times by
analyzing arti�cial data. The position dependent coupling strength g(~r) between atom
and cavity was calculated for atoms falling through the cavity mode at a mean velocity
of v̄z = 0.84m/s. Starting positions are equally distributed over both transverse axes of
the cavity, resulting in traces of all possible maximum coupling strengths. The coupling
strengths are translated into relative cavity transmission using the relation found from
numerically solving the quantum master equation of the system. Finally, multiplying the
value for the relative transmission with a shot noise limited empty cavity transmission
yields a list of numbers of photons per timebin, as usually recorded from the SPCM.
These data are fed into our detection software. The resulting atom arrival times are
compared to the true values used in the simulation. The resulting di�erence is plotted in
Fig. 3.21. In (a), the timebin width and therefore the resolution was set to 1µs, whereas
in (b) the dwell time is 4µs. The mean deviation of the automatically determined atom
arrival times is 1.9µs for (a) and 2.6µs for case (b), respectively. The reason for the
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o�set of about 0.5µs of the distribution from zero in (a) is due to the quantization of
time by 1 µs. When an atom arrival time is determined to lie between two timebins it
is by convention assigned to the upper one. This minimizes the error in determining
time intervals between atom arrivals, which is e.g. important when measuring the two-
particle correlation function g(2)(τ) (see chapter 5). This o�set is not present in the
data with a dwell time of 4µs. The mean deviation of the atom arrival times is nearly
a factor of two smaller for maximally coupling atoms than for an ensemble with all
possible couplings.

From the simulation we �nd that about once in 2 s shot noise leads to an atom de-
tection event without any being present, which is about what one expects from the
classically unavoidable Poissonian �uctuations in the detection light. From 104 fake
atoms coupling maximally to the cavity each was detected. The same is true for atoms
coupling with 75% of the maximum value. This success rate of course decreases dra-
matically when atoms coupling less strongly are considered. Therefore in selecting a
speci�c threshold for the coupling one can optimize between a minimum number of false
detections and maximum detection e�ciency.

The timing jitter leads to a decrease in the achievable contrast when output coupling
from a BEC with two di�erent frequencies (see section 2.2.3). The larger the separation
between the two frequencies, the smaller the achievable contrast. This dependency is
described by the Fourier transform of the timing jitter. For the data of Fig. 3.21(a) it
is plotted in (c). At a frequency di�erence of 20 kHz the contrast is limited to 95%.

3.6 Atom laser beam pro�le

Obviously, in order to see single atoms with the cavity, the atom laser has to propagate
through the cavity mode. However, this is technically demanding, because the BEC
production rig and the science platform are completely independent entities of the ex-
perimental apparatus and the alignment has to be better than a few millirad without
knowing the exact position of the cavity mode. Furthermore, the second-order Zeeman
e�ect slightly bends the trajectory of the atom laser in the |F = 2,mF = 0〉 state and
modi�es its �nal lateral position by hundreds of micrometers. Although we have aligned
the cavity with respect to the BEC position as accurately as possible with plummets
during the assembly of the apparatus, the atom laser did not innately hit the cavity
mode. We correct these deviations by tilting the whole optical table on which the exper-
iment rests employing its height adjustable legs. The tilt is monitored with a dual-axis
inclinometer having its axes aligned along and perpendicular to the cavity axis. With
this method we direct the atom laser exactly into the cavity mode and maximize the
atom count rate [Fig. 3.22(a)].
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Figure 3.22: (a) The detected atom count rate for a constant atom �ux is shown

with respect to the inclination of the optical table along the two axes. The rectangle

represents the active area of the cavity mode and the ellipse is the reconstructed size

(1/e diameter) of the atom laser at the position of the cavity. [(b) and (c)] Fit (red)

to the measured data (black) by the convolution of the active size of the cavity mode

with a Gaussian beam pro�le along the Io�e (b) and cavity (c) axes. It is compared

to the expected shape from numerical simulations of the Gross-Pitaevskii equation

(gray). (d) Visualization of the extracted two-dimensional atom laser beam pro�le

clipped by the active area of the cavity mode.

Moreover, tilting the setup enables us to experimentally deduce the diameter of the
atom laser after a propagation of 36.4mm. The active area of the cavity mode is
approximately (35 × 150)µm2. The size in the radial direction is determined by the
weakest coupling gmin

0 = 2π × 6.5MHz at which an atom transits can still be detected.
In the axial direction it is given by the projection of the cavity length clipped by the
curved mirrors.

A deconvolution of the measured angle dependent count rates with this active area
assuming a Gaussian atom laser beam pro�le yields 1/e diameters of 80µm and 110 µm
along and perpendicular to the Io�e axis, respectively [Figs. 3.22(b) and 3.22(c), red].
The mapped atom laser, being output coupled from the center of a Bose-Einstein con-
densate with 1 × 106 atoms, is slightly inverted compared to the trap geometry but
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3.6. Atom laser beam pro�le

almost round at the cavity. Here, its divergence is about 2mrad along the (�fast�) cav-
ity axis and less than 0.5mrad along the Io�e axis, which makes it the best collimated
atom laser to date [79, 77, 90].

The repulsive mean �eld interaction from the remaining trapped BEC is considerable
only along the fast axis where it acts as a defocusing lens for the atom laser beam.
This results in an expansion about four times larger than expected from Heisenberg's
uncertainty principle. Along the weakly con�ning Io�e axis the lensing e�ect is negligible
and the size of the atom laser is consistent with a free expansion of the initial ground
state in the trap. The size of the atom laser and therefore its divergence can be reduced
further, especially along the fast axis, by output coupling below the center plane of the
BEC [90] and by using smaller condensates (see Sec. 3.7.2).

We compare the measured atom laser pro�les along its symmetry axes with numerical
simulations of its time evolution using the Gross-Pitaevskii equation. The resulting
density distributions of the atom laser deviate slightly from a Gaussian shape [99], but
the measured convolutions with the cavity mode agree very well with the simulated
curves [Figs. 3.22(b) and 3.22(c), gray]. The overestimated width along the Io�e axis
can be explained by the angle of the BEC axis with respect to the horizontal plane,
reducing the spatial width of the output coupling region along the Io�e axis. Along
the cavity axis the slight deviation at the edges is probably due to pointing variations,
i.e. transverse oscillations of the atom laser beam. Small collective oscillations in the
trap are translated into de�ections of the atom laser beam over which we integrate
with our detection method. The collective oscillations, mainly dipole oscillations in the
trapped Bose-Einstein condensate, can be excited by radio frequency evaporation or
incautious relaxation of the magnetic trap.

3.6.1 Guiding the atom laser

The reason for the single atom detection e�ciency not being unity is mainly the mis-
match of the atom laser and cavity mode sizes [Fig. 3.22(d)]. Their overlap is only about
50% when replacing the cavity mode by a box given by the projected length of the cav-
ity mode and a minimum peak atom �eld coupling strength of gmin

0 = 2π × 6.5MHz in
the radial direction [see Fig. 3.22(a)]. We have performed classical simulations of atom
trajectories inside the cavity. The sensitivity of the cavity-based atom detector is highly
position dependent due to the standing wave structure of the cavity mode. By taking
into account the channeling e�ect of the dipole potential, from our simulations we �nd
a maximum single atom detection e�ciency of 80% and an averaged e�ciency of about
50% within the aforementioned box. Therefore the overlap of the atom laser beam and
the �sensitive area� of the cavity is only about 25% to 40%. Comparing this to the
measured detection e�ciency of about 1/4 (see Sec. 3.5.4), we �nd an e�ciency close to
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unity for atoms traversing the sensitive area of the cavity detector to be detected.

In order to increase the overlap and therefore the number of detectable atoms it is
possible to funnel the atoms with a dipole potential created by a far red-detuned guiding
laser (850 nm, up to 100mW, beam waists of (30× 60) µm2) into the cavity mode. By
doing so we are able to improve the single atom detection e�ciency by about a factor of
two to around 50%. This number still di�ers from a perfect detection e�ciency because
the dipole potential formed by the probe laser is simply not strong enough to perfectly
localize the atoms in the axial direction at the antinodes of the standing wave.

Although we are able to increase the single atom detection e�ciency, employing the
guiding laser involves some disadvantages. Scattering and heating rate in the dipole
potential formed by the guiding laser can in�uence the atom arrival times which is
undesirable for many experiments [101]. Furthermore, the guiding laser acts on both
thermal and quantum degenerate atoms and therefore diminishes a characteristic fea-
ture of our detector, namely, the very sensitive discrimination between thermal and
condensed atom count rates (see Sec. 3.7).

3.7 Investigation of cold atomic gases

The combination of a Bose-Einstein condensate with an ultrahigh �nesse optical cav-
ity enables us to detect single atoms from a quantum degenerate gas with very high
sensitivity. Therefore we can employ the cavity as a minimally invasive probe for cold
atomic clouds. This allows us to perform nondestructive measurements on the ensemble
of cold atoms in situ and time resolved.

Assuming a constant, weak output coupling power, the atom count rate of the cavity
detector depends on the properties of the source via two factors. First, the number of
output coupled atoms is proportional to the number of atoms ful�lling the resonance
condition, which in turn is proportional to the density at the output coupling plane.
Second, the atom count rate depends on the probability for an output coupled atom to
hit the cavity mode. Because of its �nite active area the cavity functions as a �lter in
momentum space.

3.7.1 Thermal clouds

For a thermal cloud the density at the output coupling central plane is proportional
to Nth T

−1/2 and the probability to hit the detector is proportional to 1/T assuming
Gaussian density and momentum distributions. Therefore the thermal atom count rate
detected with the cavity is proportional to Nth T

−3/2. This dependency is shown in
Fig. 3.23. At the critical temperature of Tc ≈ 180nK for 107 atoms only about 0.6% of
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Figure 3.23: Investigation of atom count rates for thermal beams. The count rate is

proportional to Nth T
−3/2 for temperatures above the critical temperature and sharply

increases when cooling across the phase transition. Just above Tc the density and

momentum distributions of the thermal cloud are governed by a Bose distribution and

obey a di�erent scaling law than expected for a Gaussian distribution.

the output coupled thermal atoms will �y through the cavity mode and can possibly
be detected. The onset of Bose-Einstein condensation can be clearly seen in the sharp
increase in the number of detected atoms [196, 197]. Close to the critical temperature
however, the detected atom �ux slightly deviates from the expected behavior because
the Gaussian distributions for density and momentum are not valid approximations
anymore near Tc. The thermal cloud is correctly described by the more peaked Bose
distribution which yields an increased atom detection rate of about 30% near the critical
temperature of 180 nK compared to the Gaussian distribution (see also Sec. 4.3.2).

3.7.2 Quantum degenerate gases

For Bose-Einstein condensates the probability for an atom to hit the cavity mode and
therefore the atom count rate detected with the cavity is independent of temperature.
The number of resonant atoms participating in the output coupling process is propor-
tional to the density of the BEC and the area of the output coupling plane. This means
the atom �ux is proportional to N4/5

BEC (when output coupling from the center of the BEC
with respect to the vertical axis), because the Thomas-Fermi radius of a BEC scales as
N

1/5
BEC. However, this dependency is only true for Bose-Einstein condensates of interme-
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erate samples. The scaling with the atom number in a pure BEC and at constant

output coupling power exhibits three di�erent regimes. The expected N
4/5
BEC behavior

is only valid for intermediate particle numbers. Very small and very large condensates

obey di�erent scaling laws due to an increased Heisenberg limited momentum spread

and the mean �eld repulsion of the remaining condensate, respectively.

diate size (Fig. 3.24) and deviates for very small and very large condensates. Output
coupling from small condensates accounts for a faster quantum mechanical expansion of
the initial ground state wave function in the atom laser. Therefore the overlap between
the transverse atom laser wave function and the cavity mode is reduced. Large conden-
sates on the other hand exhibit increased divergence because of the mean-�eld repulsion
exerted on the atom laser propagating through the BEC. The condensate acts as an
imperfect diverging lens and displaces the maximum density outwards [90, 99, 98]. This
results in a weaker scaling of the detected atom �ux with the number of atoms in the
BEC and possibly a decrease when the atom laser pro�le becomes more �donut-mode-
like.� These three regimes are displayed in Fig. 3.24 for measured atom count rates
versus the number of atoms in the �pure� BEC. The exact position of the crossover
between these regimes depends on the active area of the single atom detector.

3.7.3 Phase Transition

Our single atom detector in form of the ultrahigh �nesse optical cavity is extremely
sensitive and selective to quantum degenerate atoms not only because of the increased
density at the output coupling region but also due to the �ltering in transverse mo-
mentum space. This means we can more accurately observe the onset of Bose-Einstein
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and measuring the resulting atom count rate with the cavity. The pro�les for three

di�erent temperatures around Tc are shown in comparison with the absorption images.

The high sensitivity of the cavity detector to quantum degenerate atoms allows for

the precise observation of the onset of Bose-Einstein condensation and the deviations

from a Gaussian pro�le (gray curve).

condensation as compared to absorption imaging techniques. The exact determination
of the critical temperature in combination with the precisely measured trap frequencies
(Fig. 3.28) allows one in turn to calibrate the atom number obtained by the absorption
images. Furthermore we are able to survey the density distribution in the trap along
the vertical direction by scanning the resonant plane for the output coupling process
through the trapped cloud of cold atoms (Fig. 3.25). For temperatures close to the crit-
ical temperature the density distribution of the thermal cloud already deviates from the
Gaussian shape and has to be described by the more peaked Bose distribution (Fig. 3.25,
134 nK). For temperatures slightly below Tc single atom detection with the cavity allows
us to observe and map very small condensates that are not visible in absorption images
(Fig. 3.25, 128 nK and 123 nK). This is a valuable tool to study the temporal and spatial
evolution of a bosonic gas at the phase transition.
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3.8 Detecting phase modulation of an atom laser beam�A

new tool for precision measurements of dipole oscilla-

tions

The measurement of collective excitations has been a tool to study condensate physics
from right after its �rst experimental realization [198, 199, 200]. It was further used to
characterize a BEC of molecules [201], the super�uid to Mott insulator transition in 1D
[202] and a degenerate gas of fermions at the BEC�BCS crossover [203]. To determine
the oscillation frequency, all these measurements rely on the accurate detection of the
position (dipole oscillation) and shape (quadrupole oscillations) of the atom cloud after
di�erent times with respect to the start of the oscillation. This is usually achieved by
absorption imaging. In situ imaging allows for the direct observation in position space
but requires a high-resolution imaging system and a rather large oscillation amplitude.
An alternative is to switch o� the trapping potential after a variable time delay and wait
for some constant time of �ight before imaging. In this case the momentum distribution
of the sample can directly be imaged and in principle even very small momenta are
detectable when allowing for very long �ight times. Since momentum and position are
conjugate variables, both techniques o�er the same information on the oscillations.

Complementary to the methods described above, we have developed a technique to
determine the amplitude and frequency of the center of mass oscillation along the ver-
tical axis of one and the same trapped Bose-Einstein condensate in situ. Applying two
microwave frequencies, we output couple atoms from the BEC which will subsequently
form two overlapping atom laser beams. These atomic beams show an interference pat-
tern at the di�erence ∆ν between the two microwaves (see Sec. 2.2.3). Using the cavity-
based single atom detector, we record the arrival times of all atoms falling through
the cavity mode. This constitutes a �ux measurement of extremely high e�ciency and
accuracy on the single atom level. In the case of a BEC at rest, the Fourier transform of
the histogram exhibits a peak exactly at ∆ν. Due to the high temporal coherence of the
atom laser [100], the width of this Fourier peak is given by the inverse of the duration
of output coupling. Certainly, the precision in determining its center frequency is much
higher.

The appearance of the frequency spectrum changes when collective, vertical dipole
oscillations are present. In this case, the interference pattern of the two atom lasers gets
phase modulated. In addition to the carrier, sidebands at the vertical trap frequency
and multiples thereof are present (see Fig. 3.26). Their heights are dependent on the
amplitude of the oscillation and the di�erence frequency ∆ν of the two microwaves.
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Figure 3.26: Fourier transform of the atom �ux in an experiment to determine the

frequency and amplitude of vertical oscillations (see text). The sidebands are separated

from the carrier at 3 kHz by multiples of the oscillation frequency.

3.8.1 Theoretical model

In a semi-classical picture neglecting interactions, one can understand this e�ect as be-
ing due to di�erent times of �ight for atoms from the two atom lasers. Due to energy
conservation, atoms are output coupled from regions which can be well approximated
as the intersection of a horizontal plane and the BEC (see Sec. 2.2.2). For the following
considerations, a one-dimensional model along the direction given by gravity is su�-
cient. Each atom laser originates from a well de�ned position in space. At a frequency
di�erence ∆ν between the two microwave frequencies used for output coupling, the sep-
aration between the two origins is given by ∆x = h∆ν/(mg), with m being the atomic
mass and g the acceleration due to gravity (see Sec. 2.2.3).

The time it takes for a particle with initial velocity v to fall the distance l from its
position of output coupling into the cavity is given by

tf =

√
2 l

g
+

(
v

g

)2

− v

g
. (3.12)

The output coupling frequencies are chosen such that the origins of the atom laser
beams are symmetric with respect to the center of the trapped cloud. Let d be the
distance between this center and the cavity axis. ∆x is much smaller than d and we let
l = d±∆x/2. If the cloud oscillates in the trap, the atoms will have a time dependent
initial velocity v = v0 cosωzt which oscillates at the vertical trap frequency ωz. The
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maximal velocity of a harmonic oscillator is given by v0 = Aωz, where A is the spatial
amplitude of the oscillation.

The di�erence in time of fall tf from the upper and the lower slit is given by

∆t =

√
2(d+∆x/2)

g
+

(
v1
g

)2

− v1
g

−

√2(d−∆x/2)

g
+

(
v2
g

)2

− v2
g

 , (3.13)

assuming initial velocities v1 and v2 for the atoms from the upper and lower origin,
respectively. It can be approximated by

∆t ≈ ∆x√
2dg

+
v2 − v1
g

(3.14)

to �rst order in ∆x and ∆v in case v �
√
2lg. This is equivalent to A �

√
2lg/ωz =

4.6mm. This criterion is easily ful�lled.

∆t needs to be evaluated for atoms reaching the cavity at the same time, because
only these will interfere. If an atom from origin 1 reaches the cavity at time t, it was
output coupled at time t − tf,1. At that time, the cloud in the trap and therefore also
the atom under consideration had the velocity v1 = v0 cos (ωz (t− tf,1)). Equivalently,
for an atom from the second slit we get v2 = v0 cos (ωz (t− tf,2)). This means that
atoms arriving at the cavity at the same time were output coupled at di�erent times
and therefore with di�erent velocities. The di�erence between v2 and v1 oscillates in
time. So we get

∆t ≈ ∆x√
2dg

+
v0
g
[cos (ωz (t− tf,2))− cos (ωz (t− tf,2))]

=
∆x√
2dg

− 2
v0
g
sin
[ωz

2
((t− tf,2) + (t− tf,1))

]
sin
[ωz

2
∆t
]

=
∆x√
2dg

− 2
v0
g
sin [ωzt+ φ0] sin

[ωz

2
∆t
]
.

(3.15)

where φ0 = −ωz(tf,1 + tf,2)/2 is constant to zero order in v. We replace ∆t in the
argument of the second sine by equation (3.14) to zeroth order in v and �nally �nd

∆t ≈ ∆x√
2dg

− 2
v0
g
sin (ωzt+ φ) sin

(
ωz∆x√
8dg

)
. (3.16)

We look at the interference of the two atom lasers by adding two plane waves of
energy ~ωi at the position of the cavity:

|ψ|2 ∝ |eiω1(t−tf,1) + eiω2(t−tf,2)|2

= 2 (1 + cos [ω1(t− tf,1)− ω2(t− tf,2)])

= 2 (1 + cos [(ω1 − ω2) t− ω1tf,1 + ω2tf,2])

= 2

(
1 + cos

[
(ω1 − ω2) (t− t̄f)−

ω1 + ω2

2
∆t

])
,

(3.17)
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where we have used tf,1 = t̄f +∆t/2 and tf,2 = t̄f −∆t/2. The energy di�erence between
the two atom lasers and between the two microwaves (~∆ω) are the same and equal to
the potential di�erence of the atom laser origins: ~(ω1 − ω2) = ~∆ω = mg∆x. Using
the same argument we �nd ~(ω1 + ω2)/2 = mg d for atoms of mass m. Assuming t̄f to
be constant and inserting equation (3.16) into (3.17) we �nd

|ψ|2 ∝ 1 + cos

[
∆ωt+

2mdv0
~

sin

(
ωz~∆ω

m
√
d(2g)3/2

)
sin (ωzt+ φ0) + Φ0

]
, (3.18)

having absorbed all terms in the cosine which are not time dependent into the global
phase Φ0. This is the formula of a sinusoidally phase modulated signal (often also called
frequency modulated) with carrier frequency ∆ν = ∆ω/(2π), modulation frequency
ωz/(2π) and modulation index

β =
2mdv0

~
sin

(
ωz~∆ω

m
√
d(2g)3/2

)
≈ v0ωz

√
d∆ω√

2g3/2
=

2πAω2
z

√
d∆ν√

2g3/2
. (3.19)

We have linearized the sine, which is a very good approximation since its argument is
typically three orders of magnitude smaller than one.

Now we are in a position to understand the frequency spectrum in Fig. 3.26: Rewriting
equation (3.18) and setting all phases to zero we get

|ψ|2 ∝ 1 + cos (2π∆νt+ β sin (2πνzt))

= 1 +
∞∑

k=−∞
Jk(β) cos (2π (∆ν + kνz) t) , k ∈ Z .

(3.20)

The signal contains a peak at zero frequency due to the constant o�set, the carrier at
∆ν, and sidebands around this carrier spaced by νz. The amplitudes of the frequency
components are given by Bessel functions of the �rst kind Jk(β).

3.8.2 Example measurements

Figure 3.27 shows the amplitudes of the Fourier peaks at∆ν and∆ν±νz as a function of
the microwave frequency di�erence ∆ν. They are well �tted by the zero order and �rst-
order Bessel functions respectively. The solid lines are �ts of J0,1(β) to the data. The
agreement is very good for ∆ν < 14 kHz. For larger slit separations the signal gets too
small to be accurately discriminated from the noise. The trap frequency νz = 29.4Hz
can be determined very accurately by �tting the peaks in Fig. 3.26. The error is certainly
below one percent. We �nd β/∆ν = (0.497 ± 0.003)ms for the data presented in
Fig. 3.27. From this we can infer the amplitude of the oscillation to be

A =

√
2g3/2

2πω2
z

√
d

β

∆ν
= 0.54 µm (3.21)
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Figure 3.27: Dependence of the relative amplitudes of carrier and sidebands on the

carrier frequency ∆ν. The data points are extracted from Fourier transforms of �ux

measurements like the one in Fig. 3.26. The error bars indicate statistical errors of the

mean of three measurements. By �tting Bessel functions to the data (solid lines), the

amplitude of the oscillation can be deduced.

We can measure d very accurately by transporting the atoms from the QUIC trap into
the cavity and counting the number of half-wavelengths necessary to shift the atoms by
this distance. Since the transport laser wavelength is stabilized to an atomic transition,
it is accurately known. The uncertainty in g is also much smaller than 1%, and therefore
the error in A is dominated by the errors in β/∆ν and νz. It is on the order of 1%,
demonstrating a measurement of the oscillation amplitude on the nm scale.

3.8.3 Potential of the method

What are the limits in the determination of extremely small amplitudes? In principle,
increasing d, νz and ∆ν all improve the sensitivity. However, increasing d is experimen-
tally rather di�cult and also not very e�cient since the sensitivity only shows a square
root dependence on d. Increasing the trapping frequency however is easily achieved. At
the maximally available current for our QUIC-trap, we �nd ωz = 2π × 135Hz, which
results in a 20-fold increase in sensitivity. For di�erence frequencies of up to 6 kHz we
�nd 100% visibility of the interference fringes, signi�ed by a carrier peak of half the
height of the peak at zero frequency. For larger separations the signal decreases faster
than ∆ν increases. The smallest modulation index βmin we can detect depends on the
signal-to-noise ratio in the Fourier transform. Following a usual convention, we assume
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Figure 3.28: The Fourier spectrum of the detected atom laser �ux exhibiting the

trapping frequencies and their harmonics. A fast and precise tool to measure frequen-

cies of collective oscillation in the trap.

that a signal-to-noise ratio of at least three is necessary to accurately discriminate the
sidebands from the noise, which is roughly given by the square root of the number of
detected atoms. We can detect up to 2000 atoms per second without signi�cant de-
crease in detection e�ciency. Therefore the maximum detection time and ultimately
the damping rate of the oscillation limits the sensitivity of our measurement. The same
is true for the accuracy in determining the oscillation frequencies. The width of the
peaks is Fourier limited, i.e. given by the inverse of the recording time, and their center
can be determined with much higher accuracy.

At a vertical trapping frequency of ωz = 2π × 135Hz and within only one second
of measurement time, we are sensitive to amplitudes as small as A = 2nm. To get
the same resolution in absorption imaging, assuming an imaging resolution of 1µm, a
time of �ight of 590ms during which the cloud falls by 1.7m would be necessary and
is rather impractical. The larger the trapping frequency in the vertical direction, the
greater the advantage of the new detection method employing the cavity, because the
smallest detectable amplitude scales as ω−2

z compared to ω−1
z in absorption imaging.

3.8.4 Oscillations along the horizontal directions

So far, we have presented a method to measure the frequency and amplitude of oscil-
lations in the vertical direction. The same is possible for the two horizontal axes. As
mentioned earlier, transverse oscillations of the BEC are translated into de�ections of
the atom laser. Because the beam is larger than the active area of the cavity and has
an approximately Gaussian density pro�le, pointing variations will lead to changes in
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the atom �ux detected with the cavity. This e�ect can be exploited to precisely de-
termine the frequencies of excited collective oscillations in the trap by analyzing the
Fourier spectrum of the atom count rate. The baseband of such a spectrum is shown in
Fig. 3.28 exhibiting harmonics of the trap frequencies (dipole oscillations) and mutual
sidebands. The frequencies can be measured in situ with one and the same experimental
implementation of a Bose-Einstein condensate to high precision (mHz), Fourier limited
by the duration of the atom laser recording. Even the vertical trapping frequency is vis-
ible, because the region of output coupling is �xed in space whereas the BEC oscillates.
Therefore the local density at the position of output coupling and with it the atom �ux
changes periodically.

3.8.5 Conclusions

We have presented an extremely sensitive method to detect the amplitude and frequency
of collective oscillations of a magnetically trapped Bose-Einstein condensate. It relies on
the precise detection of the time-dependent �ux of an atom laser beam output coupled
from the BEC. It is important to note that even though a small reduction in the number
of condensate atoms due to the output coupling is inevitable, the remaining cloud is
not heated. Also the in�uence of the output coupling on the oscillations is very weak.
Therefore experiments with a pure BEC directly following the accurate determination
of its oscillation amplitude and frequency are feasible. Oscillations along all three trap
axes can be resolved simultaneously and with minimum disturbance of the atom cloud.
The detection of vertical oscillations is especially sensitive. The method presented
here was used to determine the trapping frequencies of our apparatus. In addition,
it was essential for the experiments on condensate formation presented in chapter 4.
Oscillations induced by shock cooling an ultracold atom cloud had to be minimized to
allow for the accurate determination of coherence and density growth during condensate
formation. The high sensitivity of the method allowed to test and descry procedures
to avoid the excitation of oscillations. In addition, it facilitated the determination of
a quantitative upper limit for residual oscillations and their e�ect on the measurement
(see Sec. 4.3.6).
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4 Observing the formation of long-range

order during Bose-Einstein condensation

We experimentally investigated the formation of o�-diagonal long-range order in a gas
of ultracold atoms. A magnetically trapped atom cloud prepared in a highly nonequi-
librium state thermalized and thereby crossed the Bose-Einstein condensation phase
transition. The evolution of phase coherence between di�erent regions of the sample
was constantly monitored and information on the spatial �rst-order correlation function
was obtained. We observed the growth of the spatial coherence and the formation of
long-range order in real time and compared it to the growth of the atomic density. More-
over, we studied the evolution of the momentum distribution during the nonequilibrium
formation of the condensate.

Parts of this chapter have been published as [153]: S. Ritter, A. Öttl, T. Donner, T.
Bourdel, M. Köhl, and T. Esslinger. `Observing the Formation of Long-Range Order
during Bose-Einstein Condensation'. Physical Review Letters 98(9), 090402 (2007).

4.1 Introduction

When a gas of atoms is undergoing Bose-Einstein condensation a macroscopic num-
ber of particles start to occupy the same quantum mechanical state�it seems like the
randomly colliding atoms are suddenly forced into a lock-step motion. The under-
standing of this process in which phase coherence spreads over the whole gaseous cloud
has intrigued physicists long before Bose-Einstein condensation has been demonstrated
[204, 7]. In particular, the question when the characteristic long-range phase coher-
ence is established is the key point for understanding the condensation process. The
trajectory into the state of a Bose-Einstein condensate [204, 7, 205, 206] is much more
intricate than its equilibrium properties.

The transition to a super�uid or a superconducting quantum phase is a remarkable
process in which the properties of the system undergo a fundamental change. The
conceptual link between quantum phases in various systems is the o�-diagonal long-
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range order in the density matrix which describes phase correlations over macroscopic
distances [4, 5]. The �rst-order spatial correlation function G(1)(r, r′) = 〈Ψ̂†(r)Ψ̂(r′)〉
[56] quanti�es the characteristic length scale over which phase correlations exist. Here Ψ̂
(Ψ̂†) denotes the annihilation (creation) operator of the atomic �eld. To experimentally
study how long-range order is established in space and time, real time access to this
process is required. Yet, due to the short relaxation times and the strong coupling to
the environment this seems troublesome in condensed matter samples, such as liquid
helium or superconducting materials.

In a trapped atomic Bose gas the situation is distinctly di�erent. It forms an almost
closed system with negligible coupling to the environment and the relaxation time scales
are experimentally accessible. [104].

4.2 Background

Even though the question how the phase transition itself takes place in such a system
is of fundamental interest, surprisingly little experimental studies have addressed this
topic. On the theoretical side, much more work has been done. Some of the results how-
ever are still inconsistent and no complete description covering all aspects has emerged.
In the following we will give a brief summary of the recent theoretical and experimental
work related to the subject.

4.2.1 The theory of condensate formation

The process of Bose-Einstein condensation can be divided into di�erent stages. In a
�rst kinetic stage with no condensate yet present, collisions between the atoms lead
to a restructuring of the distribution function and the occupation numbers of the low-
energetic states grow. It is governed by elastic collisions and the characteristic time
scale is set by the collision time τcol = (nσvT)

−1 with n being the peak density of the
gas, σ the elastic collision cross section, and vT the average thermal velocity. The second
stage is also called coherent stage and only plays a signi�cant role in the regime of very
large density or scattering length. This is when the initiation of the condensate and the
actual phase transition characterized by the formation of long-range order take place.
The coherent stage describes the existence and subsequent merging of quasicondensates,
patched regions of locally constant phase, into a full Bose-Einstein condensate. The
growth of the condensate, associated with the decay of vortices and phase �uctuations
constitutes the �nal stage of condensate formation [7].

Several authors studied the kinetic stage by numerically solving the quantum Boltz-
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mann equation [9, 10, 11, 12]. The growth of the condensate is described by

n0(t) = n0(∞)
(
1− e−t/τ0

)
(4.1)

in [207] and [12]. However, due to computational complexity the simulations included
only a small number of atoms. This model does not reproduced a delay until atoms
start to macroscopically occupy the ground state, however, such a delay is surely to be
expected. In a full dynamical treatment Bijlsma et al. [208] �nd the same functional
behavior but with an onset time tonset already predicted by their theory, so that in
eqn. (4.1) t has to be replaced by t− tonset. Kagan et al. give the inverse of the collision
rate cR, which is the mean collision rate τcol = c−1

R for each thermal atom, as the order
of magnitude for the duration of the kinetic stage.

During the coherent stage, the kinetic energy of the atoms is smaller than their average
potential energy. Here, the kinetic equation is not valid anymore. The coherent stage
is characterized by an instability mechanism that favors the macroscopic population of
the lowest energy state [209]. Due to critical �uctuations, the ground state acquires an
energy less than the instantaneous chemical potential. This leads to a coherent transfer
of population from the low-lying excited states to the ground state. Stoof [209] states
a timescale of order (

λdB(T = Tc)

a

)2 ~
kBTc

(4.2)

for this process, which is a few hundred ms.

The existence of quasicondensates during the coherent stage is predicted by Kagan et

al. . They show suppressed density �uctuations and particles occupying a small range of
low-lying excited states with energies ε < n0U0 [204]. Large phase �uctuations are still
present though, and therefore there is no o�-diagonal long-range order. The correlation
time τc = ~/(n0U0) is found to be the time scale for evolution on the length scale of
the correlation length rc = ~/

√
2mn0U0 for this stage, so that the coherence grows

approximately at the speed of sound

vs =

√
nU0

m
∼ rc
τc
. (4.3)

Therefore the coherent stage (and the time for formation of a quasicondensate) is much
faster than the kinetic stage, with the latter hence setting the time scale for the whole
process. The formation of o�-diagonal long-range order is determined by the relaxation
of very long sound waves [7, 210]. Whether quasicondensates are an intermediate stage
of the condensation process depends on the speed of the formation of o�-diagonal long-
range order compared to that of topological long-range order. The �rst is related to the
relaxation of nonequilibrium phase �uctuations, while the latter is determined by the
time needed for the annihilation of vortices. This happens during the last stage of the
condensation process.
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Chapter 4. Observing the formation of long-range order

A quantum theory for the nucleation of a BEC, describing the kinetic and coherent
stage in a uni�ed way, was developed by Stoof [211]. He claims that the existence
of quasicondensates is not compatible with the results of that microscopic calculation
[209].

It is important to stress that the above results have been obtained for homogeneous
systems. Svistunov [205] considers the case of a weakly interacting trapped Bose gas.
He states that in the hydrodynamic (�anti-Knudsen�) regime, where the formation of
quasicondensates takes place, the external potential becomes irrelevant. The hydrody-
namic regime is characterized by τcolω � 1, with ω being the trapping frequency. This
is equivalent to demanding that the mean free path of the atoms is small compared to
the size of the cloud. However, typical BEC experiments and also the one presented here
are not in the hydrodynamic regime. Svistunov �nds that in the Knudsen regime, the
behavior of the trapped system is qualitatively similar to an isotropic homogeneous one,
apart from the di�erence in the density of states. Once the coherent regime is reached,
the discreteness of the trap levels becomes important, which leads to a slowing down
of the evolution towards lower energies, followed by a fast equilibration on a time scale
determined by the collision time τcol. In the hydrodynamic regime, a quasihomogeneous
picture of evolution is found. However, one interesting di�erence compared to the truly
homogeneous case exists: The process of quasicondensation starts at the center of the
trap and from thereon grows outwards. Also the excitation of breathing modes of the
quasicondensate are to be expected.

Khlebnikov [212] �nds that in the coherent stage of BEC formation the correlation
length ξ should grow linearly in time at a speed on the order of the speed of sound.
For the relaxation time tr, which is the duration of the kinetic stage, he gives a rough
estimate of

tr ∼
~kBT
U2
0n

2
. (4.4)

Opposed to the prediction of a linear growth of the coherence length ξ by Khlebnikov,
Lacaze et al. [213] expect a growth of ξ(t) ∼

√
~t/m = 27 µms−1/2 ×

√
t.

Quantum kinetic theory

In a series of papers, Gardiner et al. have developed a substantial description of the
kinetics of Bose-Einstein condensation in a trap. While they treat a spatially homoge-
neous, weakly condensed system in [214, 207], in [8, 215], a strongly condensed, trapped
gas was considered. In the following, we want to brie�y describe the latter theory and
results.

A Bose gas trapped in an isotropic harmonic oscillator potential is described by a �eld
in second quantization. The �eld is divided into a so called condensate band, which hosts
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all atoms with energies below a certain threshold value ER, and the noncondensate band
occupied by all atoms with energies above ER. The noncondensate band is modeled as
a fully thermalized heat bath containing most of the atoms, even after condensation.
Its dynamics in interaction with the condensate band is described by a master equation.
The condensate band consists of the trap energy levels modi�ed by the presence of the
condensate, i.e. by its mean �eld. These energy levels are described by a Bogoliubov
spectrum. The state of the condensate band can�at any time�be completely described
by the numberN of atoms in the band and the set of occupation numbers of all its energy
levels {nm}, where m = 0 is the condensate and all other m denote the quasiparticle
levels. While the total number of particles is conserved, quasiparticles corresponding to
excitations are not. Phononlike quasiparticles are neglected, because the lower of these
represent spatial oscillations of the condensate. Even though this can experimentally be
observed, it should only have a small in�uence on the growth process. Growth processes
describe collisions that change N . These are mainly collisions between two atoms from
the noncondensate band with one of them ending up in the condensate band. Scattering
processes do not change N and are predominantly given by collisions between one atom
from the condensate and one from the noncondensate band.

Initially there is no condensate present, and, due to preceding cooling, the chemical
potential µ in the noncondensate band has become nonnegative, ultimately driving the
condensation process. In the simplest approximation, the condensate band only consists
of one level and all �uctuations are neglected. In this case a di�erential equation for
the growth of the condensate is found

ṅ0 = 2W+(n0)[(1− e
µc(n0)−µ

kBT )n0 + 1] . (4.5)

µ and µc(n0) are the chemical potential of the bath and the condensate, respectively.
Note that the bath is assumed to have constant chemical potential µ and temperature
T and not to be depleted by the condensation process. Equation (4.5) depicts some
important aspects of the condensation process: The spontaneous emission term given
by the +1 in the squared brackets starts the condensate formation. Once there is
some population in the lowest level, the gain term, and therefore the di�erence in the
chemical potentials between condensate and bath, dominates the process. A steep rise
in the condensate number is followed by a slow approach towards the �nal condensate
number because the chemical potential of the condensate µc(n0) approaches the chemical
potential of the bath µ.

Assuming a Maxwell-Boltzmann distribution for the Wigner function of the noncon-
densed atoms, the prefactor in (4.5) is given by

W+(n0) =
4m(akBT )

2

π~3
e2µ/(kBT )

[
µc(n0)

kBT
K1

(
µc(n0)

kBT

)]
≈ 4m(akBT )

2

π~3
e2µ/(kBT ) ,

(4.6)
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Figure 4.1: Growth of the condensate occupation n0 according to the simple growth

model [eqn. (4.5)]. W+(n0) has been calculated using the parameters typical for the

apparatus used in this thesis with a �nal condensate number of 2.5× 105 atoms and is

a factor of 3 larger than given by eqn. (4.6) to resemble the result of a more realistic

model (see text).

where K1(z) is a modi�ed Bessel function and the approximation on the right hand side
is well ful�lled for realistic parameters. While the exponential in eqn. (4.6) is close to
one for our parameters, the other factor is approximately equal to the elastic collision
rate

cR =
1

τcol
=

√
2n̄σthv̄ =

4a2mNωxωyωz

πkBT
. (4.7)

Here n̄ = Nωxωyωz (m/(4πkBT ))
3/2 is the mean density for a harmonically trapped gas

in equilibrium, σth = 8πa2 is the scattering cross section between thermal atoms and
v̄ =

√
8kBT/(πm) the mean velocity of thermal atoms at temperature T [216]. The

equality between 4m(akBT )2

π~3 and cR is easily seen when evaluating the �rst expression at
the transition temperature given by eqn. (2.4) and setting ζ(3) ≈ 1. For our parameters
with a �nal condensate size of 2.5× 105 atoms, the collision rate is cR ≈ 33 s−1.

A more accurate extension of the theory [217, 215] takes more energy levels of the
condensate band into account. Furthermore, the full Bose-Einstein distribution is used
to give a more realistic Wigner function. Equation (4.5) stays valid, but W+(n0) is
about a factor of three larger. This results in a speedup in all stages of the condensation
process by this factor. A growth curve as described by this theory is plotted in Fig. 4.1.
The S shape of the curve is characteristic for a growth process. The �rst stage is very
slow, since spontaneous transitions to the lowest level are the only mechanism by which
the condensate can grow. Once there is a substantial population of condensate atoms,
there is a stage of fast growth due to stimulated transitions. Subsequently, as the
chemical potential of the condensate approaches the chemical potential of the bath, n0
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slowly approaches its equilibrium value.

Neglecting �uctuations and quasiparticle e�ects is not a good approximation during
the initial stage of the condensation process�the �nucleation� of a very small condensate
consisting of a few atoms. Without scattering processes the only way for population
of the condensate level is directly from the noncondensate band. However, during the
thermalization process, excess population in the other levels of the condensate band
develops. By including scattering e�ects atoms from these higher condensate levels can
now directly be transferred into the condensate. This signi�cantly speeds up the �rst
stage of the growth process until a very small condensate has formed. The rest of the
process however is basically unaltered [218].

Also the full quantum dynamics of the system have been solved numerically, i.e. the
bath of the noncondensate band has been replaced by the discrete energy levels of
the system [219]. Good agreement with the model described here was found for �nal
condensate fractions of up to 10%, and only for larger �nal condensate fractions the
depletion of the thermal cloud had a signi�cant in�uence on the growth process. Because
the �nal condensate fractions in the experiments to be presented here are only of the
order of 3%, the above description is su�cient.

4.2.2 Earlier experimental work

Most previous experimental work has either concentrated on the growth of density and
condensate fraction or on the coherence properties of a BEC in thermal equilibrium. In
contrast, we here report on the time-resolved observation of the coherence properties
of an atom cloud crossing the phase transition to BEC. We nevertheless want to give a
short overview of the main previous work and results.

Growth of the condensate fraction

Two experiments on the dynamics of the growth of the number of condensate atoms
have been performed. The earlier one studied the growth following a sudden remove of
atoms during a shock cooling stage of 10ms duration [13]. The number of condensate
atoms was inferred from phase-contrast images of the trapped cloud by �tting the
density distributions with a bimodal function. Condensates smaller than 105 atoms
could not be detected with this method. A typical S shape curve similar to the solution
of eqn. (4.5) was found to �t the growth of the number of condensate atoms well for those
experimental runs where no condensate existed immediately after the shock cooling
stage. The �nal condensate fraction was between 5% and 20%, depending on the
precise conditions chosen. However, the speed of the condensate formation was found
to be 3 to 15 times slower than predicted in [8]. A more detailed analysis of the theory
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and the same experimental data [217, 218] gives better agreement between theory and
experiment, but some discrepancy still remains.

The growth of the condensate size in a situation of continuous cooling of the atom
cloud was studied by Köhl et al. [14]. After preparing the sample closely above Tc, they
abruptly lowered the radio frequency used for evaporative cooling to a value limiting
the trap depth to εcut = ηkBTi. Here, Ti is the temperature of the thermal cloud before
the jump and the evaporation parameter η was varied to study di�erent situations. For
a period of 6 s the radio-frequency �eld was held constant and the growth of the number
of condensed atoms was observed by �tting the density distribution of the atoms after
17ms time-of-�ight. When limiting the trap depth to very low values corresponding to
�nal condensate fraction exceeding 30%, a �t of eqn. (4.1) showed good agreement with
the theory [12, 208, 217, 177]. In the case of slow cooling with η ∼ 4.6 however, a largely
increased initiation time and a two-stage growth process were observed. During a �rst
stage, the condensate number grows approximately linearly. It then proceeds with an
eight times larger rate and can be described by eqn. (4.1). The transition between the
�rst and the second stage is always observed at condensate fractions in the range between
1.5% and 3.5%. The authors give two possible reasons for the discrepancy between
theory and experiment for slow cooling. On the theoretical side, assumptions like the
ergodicity of the system and other approximations might fail in accurately describing
the complex physics of the system. Secondly, the formation of quasicondensates in the
early stage of the condensation process might lead to a signi�cant reduction in the
growth rate compared to the quantum kinetic calculation.

Experiments on coherence properties of condensates

A landmark experiment was the �rst observation of interference between two initially
separated Bose-Einstein condensates [17]. They were released from separate traps and
overlapped during the subsequent ballistic expansion. A high-contrast interference pat-
tern was observed as a consequence of the coherence of the condensates.

Using Bragg spectroscopy, the momentum distribution of an atom cloud can be mea-
sured. The minimum momentum spread is given by the coherence length of the sample,
provided that the contribution of other e�ects like the mean-�eld energy of the sample
are small. The presence of phase �uctuations leads to a broadening of the momentum
distribution, because the velocity �eld of a Bose-Einstein condensate is proportional to
the gradient of its phase. In practice, the inhomogeneous density distribution leads to an
inhomogeneous mean-�eld shift of the Bragg resonance and therewith to a broadening
of the momentum distribution. Depending on the precise properties of the investigated
system, it can be the largest contribution to the momentum width and therefore render
an accurate measurement impossible. In [220], Bragg spectroscopy was applied to a

106



4.2. Background

BEC and a momentum spread dominated by the radial size of the condensate was mea-
sured. This con�rmed a coherence length equal to the size of the sample and therewith
the long-range order of the condensate. A complementary measurement using Bragg
scattering in the time domain was also demonstrated [221]. A 1D optical lattice was
used to di�ract a part of the condensate. The fraction of di�racted atoms as a func-
tion of the delay between two such Bragg pulses showed and oscillatory behavior. The
slow decay of the fringe amplitude with increasing temporal separation between the two
pulses was found to be consistent with a uniform global phase of the trapped BEC.

Bragg spectroscopy in the frequency domain was also used to study the coherence
properties of an elongated condensate in equilibrium [222]. For an extremely elongated
BEC, a Lorentzian shape of the resonance was found. This is to be expected for a qua-
sicondensate with its momentum distribution dominated by phase �uctuations. At the
same time, density �uctuations were found to be suppressed, supporting the existence
of quasicondensates in the investigated system.

A very successful method to study the coherence properties of a thermal gas or a
BEC is the atomic analog to Young's double slit experiment. Two atomic beams are
output coupled from slit-like regions of an atom cloud and the interference between the
two beams falling under the in�uence of gravity can be observed [104]. The distance
between the two slits can be varied and therefore the �rst-order coherence of the atom
cloud can be probed as a function of distance. This method was presented in detail
in Sec. 2.2.3 of this thesis. It was introduced in [104] and used to measure the spatial
correlation function of a trapped Bose gas above and below the phase transition. They
found a Gaussian decay of the correlation function for a purely thermal sample and a
decay to a constant value given by the condensate fraction below Tc. The contrast of
the interference pattern was determined by absorption imaging. A signi�cant extension
of the method is achieved by replacing the destructive imaging technique. Utilizing
a cavity based single atom detector, the coherence of the atom cloud can be probed
continuously with negligible back-action on the investigated sample.

The method of condensate focussing was introduced in [15]. By a shock cooling pro-
cedure, clouds with a small condensate fraction were produced, showing large, strongly
damped shape oscillations. By switching o� the trapping potential during an inward
phase of such an oscillation, the axial size of the condensate reached a focus after a spe-
ci�c time of ballistic expansion, when the compression was balanced by the increasing
mean-�eld due to the growing chemical potential. Much larger foci than theoretically
expected for a true BEC were found and attributed to local variations in the expansion
velocity due to the presence of phase �uctuations, indicating local thermalization and
the existence of quasicondensates.

Investigations of local second- [223] and third-order [224] correlations in Bose-Einstein
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condensates found evidence for the theoretically expected reduced correlations compared
to thermal ensembles. In the study of the second-order correlations, the dependence
of the interaction energy on the probability for two atoms to be close together was
exploited by analyzing time-of-�ight measurements. A corresponding relation between
measured three body recombination rates and g(3)(∆r = 0) was used in the second
experiment.

Dynamical studies of phase coherence

Hugbart et al. have studied the growth process of a BEC in a largely anisotropic trap
(ωz/ω⊥ ≈ 100) [16]. By shock cooling, they have produced an over-saturated thermal
cloud. They then measured the temporal evolution of the number of condensed atoms in
absorption imaging and the momentum width of the sample using Bragg spectroscopy.
Apart from an initial delay, the growth of the number of condensed atoms could quite
nicely be explained by a theoretical model based on [225]. The momentum width was
compared to the expected equilibrium value and a decaying excess momentum width
could be observed and explained by the excitation of a quadrupole mode. Measurements
during the �rst 100ms after the end of the shock cooling process were impossible, and
therefore the existence of quasicondensates in an early stage of BEC formation could not
be observed. For times larger than 100ms after the onset of condensation they were not
present in the data. This is in qualitative agreement with the theoretical predictions by
Kagan et al. [204, 7, 226]. The method of Bragg spectroscopy used requires condensate
fractions in excess of 5% to work. Therefore the very interesting initial stage of the
condensate formation could not be investigated. In order to acquire data for later stages
of the condensation process, a �nal equilibrium state with a larger condensate fraction
needed to be achieved. This requires the extraction of a larger fraction of atoms during
shock cooling and also a sample prepared closer to Tc before shock cooling. This might
imply that condensate nucleation has already taken place before the end of the shock
cooling stage.

4.3 Methods

Here we present an experimental study of the evolution of o�-diagonal long-range order
during the formation of a Bose-Einstein condensate out of a nonequilibrium situation.
We start from a Bose gas above the phase transition temperature and suddenly quench
the gas into a strongly nonequilibrium state [13, 14, 15, 16]. Subsequently, the gas can
be regarded as a closed system which evolves into a Bose-Einstein condensed phase.
The o�-diagonal long-range order is measured by studying the interference pattern of
atomic matter waves originating from two di�erent locations in the atom trap [104].
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The visibility of this interference pattern measures the phase coherence between the
two regions and its temporal evolution uncovers the formation of long-range order. We
continuously monitor the visibility of the interference pattern and the time-dependent
atom �ux during the formation using a single atom counter with high temporal reso-
lution [101]. Varying the vertical distance ∆z between the two locations allows us to
experimentally map out the evolution of the phase coherence and density in the trapped
Bose gas.

With this method, the coherence of the trapped sample is probed in situ and the
growth can be monitored real time. Because of the high detection e�ciency, the dis-
turbance of the atom cloud and the condensation process is kept at a minimum and is
orders of magnitude smaller than in the case of absorption imaging [104].

4.3.1 Setup

We start by preparing a thermal cloud of atoms in the |F = 1,mF = −1〉 hyper�ne
ground state of 87Rb in the harmonic trapping potential of the magnetic QUIC trap.
The trapping frequencies are (ωx, ωy, ωz) = 2π × (39, 7, 29)Hz, where z denotes the
vertical axis. The temperature of the atom cloud T = 240 nK is slightly above the tran-
sition temperature Tc = 215nK for Bose-Einstein condensation for the given number of
atoms N = 1.3× 107. This results in a collision time of τcol ≈ 30ms. Temperature and
atom number are measured by absorption imaging. The atom cloud is then brought
into a strong nonequilibrium situation by rapidly lowering the trap depth to 620 nK
and removing the high-energy tail of the Maxwell-Boltzmann distribution. This �shock
cooling� experimentally reproduces the theoretical situation of a thermal bath and a
condensate band. The usual way of producing a condensate by slow adiabatic cool-
ing is not suitable to observe the intrinsic dynamics of condensate formation, because
the evaporation is done so slowly that the vapor stays close to thermodynamic equi-
librium. To study the fundamental processes underlying the condensate formation, a
freely evolving system is preferable. Many authors show that the shock cooling will �rst
lead to a thermalization of the high-energy atoms from the noncondensate band with
the lower levels following later [207, 226, 12]. Within the 100ms of shock cooling we re-
move 30% of the atoms. Subsequently, the cloud relaxes from its highly nonequilibrium
state and within a few hundred milliseconds 3% of the atoms form a Bose-Einstein con-
densate. During the relaxation process particle number and total energy are conserved
with minimal disturbance due to the detection process. Moreover, we take great care
to not excite oscillations of the condensate as a consequence of the shock cooling.

We detect the evolution of both the density and the long-range order of the cloud
simultaneously and in real time using radio frequency output coupling (Sec. 2.2.2 and
[79]) and single atom counting (Sec. 3.5 and [101, 187]). For output coupling we ap-
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ply a weak monochromatic microwave frequency �eld which spin-�ips atoms from the
magnetically trapped state into the untrapped state |F = 2,mF = 0〉. The untrapped
atoms form a downwards propagating atomic beam. The output coupling region is de-
�ned by a surface of constant magnetic �eld and can be approximated by a horizontal
plane within the atom cloud (Sec. 2.2.2 and [79]). Applying two microwave �elds with
di�erent frequencies realizes output coupling from two vertically separated surfaces of
constant magnetic �eld (Sec. 2.2.3 and [104]) which are chosen symmetric about the
center of the cloud. The two overlapping atomic beams interfere with each other. The
mean �ux re�ects the local density of atoms at the position of output coupling within
the transverse momentum interval measured by our detector. The visibility of the in-
terference pattern re�ects the phase coherence. The interference pattern is detected in
time with single atom resolution using the ultrahigh �nesse optical cavity. Our system
permits a precise measurement of the time-dependent atom �ux.

4.3.2 Filtering of atoms by the detector

The cavity detector is a �lter for the atoms output coupled from the magnetic trap. The
probability for an atom to reach the detector depends on its position and momentum
at the time of output coupling. Since those atoms that enter the detector are a subset
of the complete thermal ensemble, their velocity distribution is markedly di�erent. In
the following, the two are compared, which gives important insight into the properties
of our single atom detector.

We consider an ideal gas trapped in a three-dimensional harmonic oscillator potential
V (~r) = 1

2m(ω2
xx

2 + ω2
yy

2 + ω2
zz

2). In the local density approximation1, the Wigner
function2 of the system is given by [56]

W(r,p) =
1

(2π~)3
1

exp [(p2/2m+ V (r)− µ) /kBT ]− 1
. (4.8)

Free parameters are the temperature T and the chemical potential µ. The chemical
potential µ determines how far the system is above the condensation temperature Tc
via (

T

Tc

)3

=
g3(1)

g3(z)
, (4.9)

1The local density approximation here assumes that the momentum dependence in the Wigner

function is that of a spatially homogeneous system with the potential energy equal to the local value.

It is valid as long as the de Broglie wavelength is small compared to the variations in the con�ning

potential.
2The Wigner function is the quantum mechanical analogue of the phase space probability distri-

bution. Due to the uncertainty principle in quantum mechanics only a phase space quasi-probability

distribution exists�the Wigner function. For a given state it can be calculated from its density matrix.
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with the fugacity z = eµ/(kBT ). The analytical density distributions for thermal atoms
are

nT (r) =
1

λ3dB
g3/2

(
e[µ−V (r)]/kBT

)
(4.10)

in position space after integration in momentum space and

nT (p) =
1

ωxωyωz(λdBm)3
g3/2

(
e[µ−p2/(2m)]/kBT )

)
(4.11)

in momentum space after integration in position space. For the thermal component at
or below Tc one has to set µ = 0. The Bose or polylogarithm function gp(z) is given by

gp (z) =
1

Γ(p)

∞∫
0

xp−1

z−1ex − 1
dx =

∞∑
l=1

zl

lp
, (4.12)

where Γ(p) is the Euler gamma function.

Only atoms with a certain combination of position and momentum at the moment
of output coupling will �nally fall into the cavity. To get results incorporating these
velocity �ltering properties of our geometry as well as the coupling between position
and momentum, a Monte-Carlo simulation was performed. While z denotes the vertical
axis, x and y are along and perpendicular to the long axis of the cavity, respectively. The
cavity is modeled to have a horizontal, square shaped sensitive area of (150 × 35) µm2

(see Sec. 3.6). We simulate a thermal gas at 200 nK, 0.2% above the critical temperature
(µ/(kBT ) = −0.005).

We output couple atoms from a nearly planar, horizontal surface perpendicular to
gravity close to the center of the magnetic trap (z ≈ 0). In the following we will therefore
only consider atoms with z = 0.

Figure 4.2 shows the distribution of positions and velocities at the moment of output
coupling. The red squares show the distributions of the complete trapped atom cloud.
Only 0.97% of all atoms will �nally traverse the sensitive area of the cavity. Their
distributions in the magnetic trap are shown as blue histograms. Note that all distri-
butions have been normalized to their peak values to make their shapes comparable.
The most striking di�erence between the two ensembles is the strongly reduced velocity
spread for the atoms that will traverse the cavity, which is a consequence of the small
size of the cavity compared to its distance from the magnetic trap.

To calculate the momentum distribution nz=0(p) of all output coupled atoms, the
Wigner function [eqn. (4.17)] is evaluated at z = 0 and integrated over the two remaining
spatial coordinates. This gives

nz=0(p) ∝ g1(e
[µ−p2/(2m)]/kBT )) . (4.13)
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Figure 4.2: Comparison of position [(a) and (b)] and velocity [(c) and (d)] distri-

bution in the magnetic trap of all atoms versus those detected by the cavity. The

red squares show the distribution of all atoms, whereas the blue histogram includes

only the subclass of those atoms that will later hit the cavity. The curves have been

normalized to their respective peak values to make the shapes of the distribution com-

parable. The total number of atoms in the subclass (blue data) is only about 1% of

the complete ensemble of all trapped atoms (red data).

Integration over px and py yields the velocity distribution along gravity of all atoms
output coupled at z = 0

vz(z = 0) ∝ g2(e
−( 1

2
mv2−µ)/kBT ) . (4.14)

In Fig. 4.3, only atoms from a horizontal plane with z = 0 in the cavity are considered.
This closely matches the situation of atoms output coupled from the center of the
trapped cloud. The distribution of the vertical velocity vz of these atoms is plotted as
black squares and a red line in Fig. 4.3(a). While the black squares are the result of a
Monte-Carlo simulation, the red line is a �t of eqn. (4.14). The good agreement between
the two con�rms the accuracy of the simulation. This distribution of all output coupled
atoms can now be compared to vz for those atoms from the beam that will traverse the
cavity. While the change of the velocity in z-direction is much less pronounced than in
the two horizontal directions, it is nevertheless found to be signi�cantly altered by the
�ltering process.
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Figure 4.3: Velocity distributions of atoms in the magnetic trap. In contrast to

Fig. 4.2, only atoms with z = 0 are considered. These are the atoms addressed by

output coupling. While in (a) only the z-component is plotted, graph (b) shows the

magnitude of the total velocity. The black squares are the results of a Monte-Carlo

simulation while the red line is an analytical �t. The blue triangles are the velocities

in the trap of that subclass of atoms which will fall into the cavity.

In Fig. 4.3(b), the absolute value |v| =
√
v2x + v2y + v2z of the velocity is compared

for all output coupled atoms (black data) to those �ltered by the cavity (blue data).
Transforming eqn. (4.13) into spherical coordinates yields

|v| ∝ v2g1(e
−( 1

2
mv2−µ)/kBT ) . (4.15)

and has been �tted as a red line to the black data in Fig. 4.3(b). The �ltering process
strongly changes the distribution and especially reduces the mean energy of the �ltered
ensemble (blue triangles) compared to the primal entity.

In the derivation of the �rst-order correlation function from the Wigner function (see
Sec. 4.3.3), we assume to only detect atoms with px = py = z = 0, independent of their
initial radial position. Both assumptions are not completely ful�lled. Neither do we
only collect atoms with zero horizontal momentum [see Fig. 4.2(c) and (d)] nor is the
detection probability independent of the horizontal position of the atoms at the time
of output coupling. To ensure that it still is a very good approximation, we compare
in Fig. 4.4 the distribution of vz for atoms that will hit the detector (blue circles) to an
ensemble with arbitrary x and y and px = py = 0 (red squares). Both curves have been
normalized to the same number of atoms. The agreement is very good, apart from the
approximated curve being slightly more peaked, resulting in a slightly larger fraction of
atoms around vz = 0.

4.3.3 Interference and �rst-order correlation function

The visibility of the interference pattern of two overlapping atomic beams along their
propagation axis is approximately given by the normalized �rst-order correlation func-
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Figure 4.4: Probability distribution for the vertical velocity vz of atoms output

coupled from z = 0. Atoms that reach the cavity detector (blue circles) are compared

to those with px = py = 0 (red sqares). All data are the result of a Monte-Carlo

simulation (see text).

tion g(1)(z, z′) along the same axis [104]. The (non-normalized) �rst-order correlation
function G(1) of a partly condensed gas is given by [56]

G(1)(r, r′) = ψ∗(r)ψ(r′) +

∫
dp e−ip ·(r−r′)/~W

(
p,

r + r′

2

)
. (4.16)

ψ∗(r)ψ(r′) is basically the condensate density [6], and the second term is the Fourier
transform of the Wigner function of the uncondensed part. The Wigner function of
an ideal, thermal gas in a three-dimensional harmonic trapping potential in the local
density approximation is given by

W(p, r) =
1

(2π~)3
1

exp [(p2/2m+ V (r)− µ) /kBT ]− 1
, (4.17)

with p = (px, py, pz) and r = (x, y, z).

Our measuring method has got some speci�cs that require a closer analysis to under-
stand the connection between the measured visibility and the correlations in the atom
cloud. Atoms are output coupled from two nearly planar, horizontal planes symmetric
about the center of the trapped cloud along the z-axis de�ned by gravity. With the
origin at the center of the cloud, this implies z + z′ = 0. The distance between two
output coupling planes is ∆z = z − z′ = 2z. In principle atoms from everywhere in the
trapped cloud can contribute to the signal of detected atoms. It can be modeled by
integrating over the whole space along x and y. This is an approximation because the
detection probability of atom is not independent from its position at output coupling
[see Fig. 4.2(a) and (b)]. Atoms with arbitrary momentum along the z-axis are detected,
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whereas the velocity �ltering properties of our detector geometry are such that we can
approximate it to only detect atoms with px = py = 0 [see Fig. 4.2(c) and (d)].

The phase of an atom or a matter wave only depends on its vertical position, because
only along this z-axis a potential gradient exists and therefore a phase shift can only be
acquired along this axis. Consequently, the frequency of an interference pattern between
two matter waves only depends on the vertical separation of their regions of origin and
not on their absolute spacing.

We will �rst consider the thermal component only, which is described by the second
term in eqn. (4.16). Under the approximations given above, we measure

∞∫
−∞

dpz

∞∫
−∞

dx

∞∫
−∞

dy e−ipz ·∆z/~W (px = 0, py = 0, pz;x, y, z = 0) . (4.18)

This can be shown to be equivalent to

G
(1)
T

(
z, z′

)
=

∞∫
−∞

d3p e−ipz ·∆z/~W(p;x = 0, y = 0,
z + z′

2
) , (4.19)

which in turn is equal to the second term in eqn. (4.16) for x = y = 0. The important
result is, that for an ideal, thermal gas the visibility we measure with the cavity detector
is equivalent to the �rst-order correlation function

g
(1)
T

(
r = [0, 0, z], r′ = [0, 0, z′]

)
, (4.20)

which is the correlation function along the vertical axis, radially in the center of the
cloud. The same basic argument is valid for a strongly interacting gas.

Concerning the condensed part, which is described by the �rst term in eqn. (4.16),
again interference will only occur along the gravitational axis. Perpendicular to it the
atoms will not acquire a phase shift because there is no potential gradient and therefore
no interference pattern will occur. For the condensate part we measure

G
(1)
C (z, z′) =

∞∫
−∞

dx

∞∫
−∞

dy ψ∗(x, y,
−∆z

2
) ψ(x, y,

∆z

2
) . (4.21)

The visibility of a pure BEC is 100% (see Sec. 4.3.6) assuming perfect mode overlap
of the two atom laser beams and for not to large ∆z (see Sec. 4.3.6). The �rst-order
correlation function of a partly condensed system is the sum of equations (4.19) and
(4.20) with their corresponding scaling factors (see Sec. 4.3.5). In equilibrium, it will
show a constant o�set due to the condensed part and proportional but not equal (see
Sec. 4.3.5) to the condensate fraction.
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Figure 4.5: Buildup of density and o�-diagonal long-range order during condensate

formation. We plot the histogram of the atom arrival times modulo 1ms for ν = 4 kHz.

The data are summed over 18 repetitions of the experiment. The black lines are �ts

to the data with a �xed phase to extract the mean atom �ux A and the visibility V

of the interference pattern (see text).

4.3.4 Data analysis

The mean atom �ux and the visibility of the atomic interference pattern are determined
in time bins of 50ms length. In Fig. 4.5 three di�erent situations of the condensate
formation are shown. For the cloud immediately after shock cooling [Fig. 4.5(a)], the
visibility is zero and the mean atom �ux is low. As the condensation process develops
[Fig. 4.5(b)], the atom �ux increases and interference arises. Both continue to grow up
to a �nal value [Fig. 4.5(c)] determined by the condensate fraction and detector function.
The black lines are a �t of

f(t) = A [1 + V sin (2πνt+ φ)] (4.22)

to the data. The frequency ν is the di�erence of the two microwave frequencies used for
output coupling. The phase φ is determined by the relative phase of the two microwave
�elds which is locked to the experimental cycle. It is determined once for our setup
and therefore only A and V are free parameters in the �t. The output coupling of
atoms with a rate ≈ 5× 104 atoms per second is essentially not perturbing the density
dynamics of the condensate formation. In particular, it has no detectable in�uence on
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Figure 4.6: Linear density distribution of a thermal cloud and a BEC of the given

number of atoms in our magnetic trap. The linear density is obtained by integrating

the tree-dimensional density over both horizontal coordinates.

the �nal condensate fraction.

4.3.5 Detector characteristics

The observation of long-range order even at a very small condensate fraction poses a
severe technical challenge. Our detection scheme has speci�c properties which render
the present measurement possible.

Even in equilibrium after shock cooling the condensate fraction is only 2.7%. The
peak density of a BEC of 2.5×105 atoms in the Thomas-Fermi approximation is 48µm−3

while that of a thermal cloud of 9.2 × 106 atoms is 22µm−3. It can be shown that
when output coupling with a certain frequency, the atom �ux is proportional to the
integrated density in a horizontal slice through the cloud of trapped atoms [86, 87].
The above statement is valid under the re�ection approximation, which is analogous to
the local density approximation and neglects the kinetic energy of the output coupled
atoms unlike their energy in the gravitational potential. The probabilities to be output
coupled are equal for a condensed and a thermal atom that both ful�ll the resonance
condition. Therefore the number of output coupled atoms is proportional to the number
of atoms in resonance with the microwave or radio frequency. The ratio between output
coupled thermal and condensed atoms will therefore be given by the ratio of their
radially integrated density distributions. Changes to the density distribution of one
component induced by the presence of the other component are neglected. As a result,
the radially integrated, linear density of the BEC and the thermal cloud are plotted
as a function of the vertical position z in Fig. 4.6. Two features are important. First,
the linear density of the BEC even at its maximum is about 7 times smaller than that
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Figure 4.7: We examine a system with 9.2 × 106 thermal and 2.5 × 105 (2.7%)

condensed atoms in our magnetic trap. Atoms are output coupled from two horizontal

slices separated by ∆z symmetrically around the center of the trap. (a) The fraction of

condensed atoms in the atomic beam as a function of ∆z. (b) Taking only those atoms

from the atomic beam that fall into the cavity detector, the percentage of atoms from

the condensate is shown as a function of ∆z. It is drastically increased as opposed to

the fraction in the beam, because of the much lower probability for a thermal atom to

traverse the cavity mode volume.

of the thermal cloud. Secondly, due to the much smaller size of the condensate, the
ratio of condensed to thermal atoms within one horizontal slice through the condensate
drops to zero when the distance of the slice from the center of the cloud equals the
Thomas-Fermi radius Rz = 10 µm.

The fraction of condensed atoms from the total number of output coupled atoms is
plotted in Fig. 4.7(a) as a function of the separation ∆z of the two horizontal planes
symmetric with respect to the center of the trap. Therefore each plane has a distance
of ∆z/2 from the center. It is instructive to relate the condensate fractions in the beam
and in the trapped cloud. One �nds that the total fraction of condensed atoms is a
factor of four larger in the beam than in the trapped cloud. In other words, the output
coupling probability for a condensed atom is a factor of four larger than for a thermal
atom. The reason is the higher local density of the BEC in the center of the trap.

Moreover, we observe unequal detection e�ciencies for condensed and noncondensed
atoms. For thermal atoms the transverse velocity spread is larger which reduces the
probability for an atom to be detected in the cavity. The detection e�ciency for con-
densed atoms is about 25%. Taking into account the standing wave structure of the
cavity mode and the threshold on coupling used in single atom detection, we �nd a prob-
ability of 50% for an atom traversing the rectangular �active area� of the cavity (see
Sec. 3.6) to be detected. Therefore the probability to hit the cavity mode is about 50%
for a condensed atom, whereas for a thermal atom it is only about 1% (see Sec. 4.3.2).
For this reason the fraction of condensed atoms hitting the cavity detector, as plot-
ted in Fig. 4.7(b), di�ers dramatically from the same quantity in the atomic beam [see
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Figure 4.8: Visibility of a matter wave interference pattern. Two overlapping atom

lasers are output coupled from two regions separated by ∆z in a cloud of 2.4 × 106

atoms with a condensate fraction of 75%. The visibility declines with increasing ∆z

to about 50% for the largest separation measured.

Fig. 4.7(a)]. Because of these e�ects the visibility of the interference pattern greatly
exceeds the condensate fraction and reaches a maximum of 70% for ∆z > λdB.

4.3.6 Detection uniformity

To understand the speci�cs of our measuring method, it is instructive to study the
visibility of an interference pattern from a quantum degenerate ensemble in thermal
equilibrium. Unfortunately, no data for a pure condensate are available. The largest
condensate fraction for which we measured the dependence of the visibility on the
separation of the two output coupling regions is 75%. The data is shown for a cloud
of 2.4 × 106 atoms in Fig. 4.8. Two important observations can be made. First, the
observed visibility greatly exceeds the condensate fraction, which has been explained
in Sec. 4.3.5. Second, the visibility declines with increasing ∆z, which is not obviously
explained by the properties of our setup discussed so far. In the following, we will
discuss several e�ects that all contribute to this decay and estimate their magnitude. In
an independent measurement we have con�rmed that with a pure condensate and for
∆z < 3µm perfect visibility (100% within the measurement accuracy of a few percent)
can be be observed.

In the following, we will discuss and quantify some of the e�ects that lead to a decay
of the visibility with increasing ∆z. All numbers refer to the parameters speci�c for the
measurement presented here, i.e. 9.4× 106 atoms and a condensate fraction of 2.7%.
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Chapter 4. Observing the formation of long-range order

Small condensate size

From Fig. 4.7(b) it can be seen that the fraction of detected condensed atoms reduces
with increasing separation ∆z, because the condensate is much smaller, both in particle
number and in size, than the thermal cloud (see Sec. 4.3.5). In a simple model, one can
treat the thermal and condensate fraction separately. While atoms from the condensate
are assumed to show perfect interference, the thermal component is assumed to show
no interference for separations ∆z much larger than the de Broglie wavelength. Then
the decrease in the fraction of atoms from the condensate will lead to a decrease in
the visibility for increasing ∆z. It amounts to about 5% for the largest ∆z = 8.4µm
measured in the experiment.

Time resolution of the detector

We have discussed the temporal accuracy of the cavity detector in section 3.5.6. The
shot noise on the detection light leads to an uncertainty in the determination of the
atom arrival times with a mean of 1.9µs for a recording time of 0.5 s and 2.6µs for 2 s,
respectively. This limits the achievable contrast as a function of slit separation as shown
in Fig. 3.21(c). For 18 kHz one �nds a reduction of 5%.

The cavity detector might be slightly tilted from the horizontal. Atoms entering the
detector on the higher side would be detected earlier than those entering on the lower
side. This e�ectively leads to an additional uncertainty in arrival time determination,
which for a moderate tilt of 0.5° is already of the same size as the jitter due to shot
noise.

Residual oscillations of the trapped atoms

During initial experiments, large oscillations in the atom �ux detected by the cavity
were observed. Dipole oscillations perpendicular to the cavity axis were observed as
large peaks in the Fourier transform of the atom �ux at the lowest trapping frequency
ωy/(2π) and its second and third harmonic. Oscillations in this direction are expected
to have relatively large amplitude due to the low con�nement. In addition, the cavity
detector has a size of only 35µm in this direction and therefore spatial oscillations
of the beam lead to large changes in the atom �ux. By starting the shock cooling
stage of constant duration at the right time of the experimental cycle, we �nd that
we can suppress the oscillations so that no detectable periodic change in atom �ux
remains. Starting the shock cooling process τ = 2π/ωy later was found to bring back
the oscillations at maximum amplitude.

We attribute the origin of these oscillations to changes in the trapping potential in-
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duced by the strong microwave frequency used for shock cooling [227]. This is supported
by several observations. First, there are no oscillations present before shock cooling.
Second, oscillations induced by the condensation process would be random, which con-
tradicts with the observation that they are stoppable with a single choice of the shock
cooling timing. Third, they are stoppable without changing the duration of the shock
cooling stage just by changing its temporal position in the experimental cycle.

For the shock cooling experiments presented here, the e�ect of vertical oscillations
could be eliminated. In the horizontal direction however, the temporal behavior of the
atom �ux is extremely sensitive to oscillations of even smallest amplitudes due to phase
modulation of the beam (see section 3.8). This phase modulation leads to a theoretical
upper limit for the contrast, since power from the carrier frequency is shifted into the
sidebands. We �nd that for the largest measured slit separations of 18 kHz, residual
oscillations lead to a reduction in visibility of 5%. This corresponds to an amplitude
of 0.03 µm. The theoretical limit for the visibility due to this e�ect is a function of the
frequency di�erence and given by the zero order Bessel function J0(β), with β given by
equation (3.19).

Vibrations of the detector

A change in the distance between the magnetically trapped atoms and the detector
would in�uence the detected signal. The reason for such a change can either be due
to variations in the position of the magnetic trap or due to vibrations of the cavity.
The �rst would cause center-of-mass oscillations of the trapped atoms, which we can
detect with very high sensitivity as explained in the last section. Since we only observe
oscillations of extremely small amplitude, we do not expect this to be a signi�cant
contribution. The cavity rests on a vibration isolation stack which e�ectively damps
vibrations above 200Hz (see chapter 3). In principle, one expects a time dependent
Doppler shift in the detected frequency of the interference pattern. This would decrease
the visibility of the interference pattern, however we observe full contrast for frequencies
of a few kHz. Also no broadening of the Fourier peaks at the di�erence frequency can
be observed. Therefore we conclude that this e�ect has no relevant in�uence on the
measurement.

Atom laser mode overlap

The mode overlap of the two atom laser beams produced by the two output coupling
frequencies is not perfect. We have taken care to equalize the power of the two microwave
frequencies and therefore the �ux in both beams. However, several e�ects reduce the
mode overlap as the di�erence between the two frequencies increases.
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Chapter 4. Observing the formation of long-range order

First, the trapped cloud acts as a diverging lens for an atom laser beam, leading
to a strong in�uence of its mode pro�le on the position of output coupling [90, 97,
99, 98]. While the beam originating from the lower part of the condensate stays well
collimated, the upper one is spread by the mean �eld potential of the trapped atoms.
From numerical simulations we �nd this to reduce the overlap by 10% for a frequency
separation of 18 kHz.

A second contribution is due to the geometry of our trapping potential resulting in
a tilt of the long axis of the condensate by 3.2◦ with respect to the horizontal (see
Sec. 2.2.2 and Fig. 2.4). We estimate this to lead to an additional decrease in mode
overlap by 4%. Additional e�ects include the �nite size of the output coupling regions
and the residual curvature of the surfaces of constant magnetic �eld.

4.4 Results

The evolution of phase coherence in the trapped Bose gas as a function of separation
∆z of the two output coupling regions is shown in Fig. 4.9. Neglecting the speci�c
properties of our detection setup, the plot shows the temporal evolution of the �rst-
order correlation function for a Bose gas crossing the phase transition to a BEC. As
described in Sec. 4.3.6, the main in�uence of our detector is an underestimation of the
coherence at large ∆z, which however does not a�ect the temporal behavior.

In the initial nonequilibrium state just after the quench we observe purely thermal-
like short-range correlations which decay on a characteristic length scale given by the
thermal de Broglie wavelength λdB ≈ 0.4µm. After the �rst 200ms during which
little changes are detected, the length scale over which phase correlations exist expands
rapidly and the long-range order of a Bose-Einstein condensate is established after a
further 100ms. Subsequently, a stage of gradual condensate growth towards equilibrium
is observed.

The evolution of the �ux of atoms through the cavity is plotted in Fig. 4.10. It is
proportional to the density of atoms in the region of output coupling (see Sec. 2.2.2).
Note that output coupling is performed symmetrically with respect to the center of the
atom cloud. Therefore the �ux at small ∆z re�ects the density in the center of the
trap, whereas larger separations probe the density further out. Directly after the end
of the shock cooling stage, the �ux is independent of the separation ∆z. This re�ects
the homogeneous density distribution in the probed center of the thermal cloud. With
a size of about 9 µm it is much smaller than the spatial extent of the whole thermal
cloud. The situation is markedly di�erent in the equilibrium situation at times later
than 500ms. A small condensate has formed in the center of the trap. The density
distribution shows a higher value in the center of the trap which decreases signi�cantly
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Figure 4.9: Formation of long-range order. Shown is the visibility of a matter wave

interference pattern originating from two regions separated by ∆z inside a trapped

cloud. This is a measure of the �rst-order spatial correlation function of the atom

cloud. By shock cooling the gas is prepared in a highly nonequilibrium state at time t =

0 and then relaxes towards thermal equilibrium. Initially (t = 75ms) the correlations

are short ranged and thermal-like. The onset of Bose-Einstein condensation is marked

by the appearance of long-range order extending over all measured distances (t =

275ms). The largest measured distance corresponds to half of the Thomas-Fermi

diameter of the �nal condensate. The data are taken for constant separations versus

time. The substructure of the curves re�ects the scatter of the initial conditions for

each separation. The resulting variance in the onset of condensation is about 30ms.

on a length scale given by the Thomas-Fermi radius, which is about the size of the
probed region of ∆z = 9 µm. This e�ect is reduced but not negated by the fact that
the density of the BEC alone is still smaller than the central density of the thermal
component (compare Fig. 4.6). In addition, the probability for an output coupled atom
to be detected increases with decreasing temperature from about 1% for atoms about
10% above Tc to 25% for atoms from the condensate. This e�ect contributes to the
decrease of the atom �ux with increasing ∆z. In between the two limiting situations of
a thermal gas and the partly condensed system in equilibrium, a continuous growth of
the density on all lengths scales is observed.

In Fig. 4.11 we show the growth of the density re�ected in the mean atom �ux and
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Figure 4.10: Evolution of the atom �ux after shock cooling. This plot is analogous

to Fig. 4.9 but shows the atom �ux instead of the visibility. The �ux and therewith the

atom density grows rather uniformly. Starting from a nearly homogeneous situation

immediately after the end of the shock cooling stage (t = 0) the �ux grows by about a

factor of 5 until thermal equilibrium is reached (t > 500ms). The �ux in equilibrium

re�ects the signi�cantly altered density distribution due to the presence of a small

condensate.

of the visibility for a given separation of the output coupling regions. This corresponds
to a section of constant ∆z = 1.9 µm in Fig. 4.9. We have analyzed both the delay of
the formation with respect to the shock cooling stage and the speed of the formation
for density and o�-diagonal long-range order. We �t a function

g(t) = A2 + (A1 −A2) / [1 + (t/τ)p] (4.23)

to the data to quantify the growth, where τ denotes the time after which 50% of the
increase in �ux or visibility are reached.

The time after which 10%, 50%, and 90% of the total increase of the atom �ux (a)
and visibility (b) are reached for di�erent separations ∆z is plotted in Fig. 4.12. As can
be seen already from Fig. 4.10, the atom �ux is only very weakly dependent on the slit
separation ∆z. From a linear �t, one �nds a slope of (3± 1, 11± 2, 22± 6)ms/µm for
the 10%, 50% and 90% curves respectively. This in turn means that the atom density
grows approximately simultaneously across the investigated inner region of the trapped
cloud. For the visibility, the times after which a certain percentage of the growth has
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Figure 4.11: Growth curves for atom �ux and visibility of the interference pattern

during the formation of a Bose-Einstein condensate. The separation ∆z between the

two output coupling regions is 1.9µm. Before the shock cooling stage there is a low �ux

of thermal atoms and no interference. The growth in atom �ux is signi�cantly slower

than the growth of the interference pattern. The data are averaged over 20 repetitions

and the error bars indicate the statistical error of these measurements which are within

a factor of 2 of the theoretical shot-noise limit.

been reached, increases with larger slit separation by (19±4, 23±4, 23±6)ms/µm for the
three percentages. It is therefore approximately constant during the whole formation
process. The much larger o�set between the three curves in Fig. 4.12(a) in comparison
to Fig. 4.12(b) re�ects the slower growth of the atom �ux as compared to the growth of
the visibility.

The duration of the condensate formation can be quanti�ed by the time needed for
an increase of both the �ux and the visibility from 10% to 90% of the total increase.
We �nd the duration to be approximately independent of the separation ∆z of the two
output coupling regions. For the �ux this time is (421 ± 47)ms whereas the visibility
of the interference pattern grows faster in a time of (267± 48)ms.

The growth of the visibility can be compared to the atom �ux by looking at the time
di�erences between the points in Fig. 4.12. This has the advantage that systematic
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Figure 4.12: Temporal evolution of the atom �ux (a) and visibility (b) during con-

densate formation. Plotted are the times after which 10% (black squares), 50% (red

circles) and 90% (blue triangles) of the total growth has been reached. For the �ux,

there is nearly no dependence of these times on the separation ∆z of the probed re-

gions. For the visibility however, a signi�cantly increasing delay for larger separations

can be observed.

errors which simultaneously a�ect �ux and visibility, as for example nonconstant initial
conditions, cancel. The corresponding graphs are shown in Fig. 4.13. Positive values
of ∆τ indicate that the atom �ux establishes earlier than the visibility. This is the
case for the onset of the growth (de�ned by the 10% values, black squares) if one
neglects small separations with ∆z < 1.5µm. For all other separations, the onset of
the growth starts approximately 40ms earlier for the density than for the coherence. In
contrast, the visibility saturates (90% values, blue triangles) about 120ms earlier than
the density. This applies for all separations ∆z larger than the de Broglie wavelength
λdB. Separations ∆r ≤ λdB are special, because as expected they show a nonzero
visibility even immediately after the shock cooling stage. In summary, we observe
that a coherent region grows outwards and subsequently the density in this region
increases towards the �nal condensate density. This supports the picture of a kinetic
evolution of the cloud [205]. It is opposed to the picture of condensate formation via
quasicondensates, where the growth of the density precedes the formation of long-range
order [204, 7].

To learn about the spatial growth process, the dependence of ∆τ on the separation
∆z needs to be examined. From the data we �nd that the coherent region grows with a
velocity of about 0.1mm/s, which is approximately a factor of 5 slower than the speed
of sound at the peak density of the thermal cloud. The speed of sound imposes a natural
speed limit for the expansion of the coherent region.

Moreover we �nd that τ decreases with increasing size of the �nal condensate. This is
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Figure 4.13: Delay of the visibility compared to the atom �ux. The di�erence be-

tween each curve in Fig. 4.12(b) and the corresponding curve in Fig. 4.12(a) is plotted.

Looking at the 50% points (red circles), the visibility precedes the density for small

distances ∆z, while for large ∆z they are approximately concurrent. The large sep-

aration between the 10% and 90% curves is a consequence of the di�erent durations

of the growth processes (see text).

illustrated by the data in Fig. 4.14. To obtain a larger �nal condensate fraction, larger
initial clouds or the removal of a larger fraction of the atoms in the shock cooling process
are necessary. The �rst accelerates the process via an increased collision rate, and the
latter results in a larger di�erence in the chemical potentials of thermal component
and condensate. Both result in a faster equilibration process and therefore in a faster
condensate growth. Starting with an initial temperature closer to Tc is a third option.
Of course, all these changes have mutual interdependencies [219].

As the limiting cases we �nd for a �nal condensate number of 2.5 × 105 atoms τ =

(282, 320)ms and for 8.9 × 105 atoms τ = (57, 114)ms, where the �rst number in the
bracket refers to the visibility and the latter to the �ux. The numbers are averaged
over all slit separations. This decrease of the formation time for larger condensates is
proportional to the increase of the elastic collision rate due to the higher �nal density.

It is instructive to study the evolution of the vertical momentum distribution n(k)
during the thermalization process. The average momentum distribution is given by
the Fourier transform of the spatially integrated single particle correlation function
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Figure 4.14: Dependence of the duration of condensate formation on its �nal size.

Plotted are the times τ after which the atom �ux (black squares) and the visibility

(red circles) have grown by 50% as a function of the �nal number of condensed atoms.

The equilibration process towards larger condensates develops faster than that with a

small �nal condensate number.

[62]. Therefore we can infer the distribution n(k) of the detected atoms from the
Fourier transform of the visibility data of Fig. 4.9 multiplied by the average �ux [228].
The result is shown in Fig. 4.15. For the initial state directly after the quench, the
momentum distribution is well approximated by a thermal distribution (dashed line).
The thermalization process after the shock cooling leads to the formation and the growth
of a low-momentum peak which in equilibrium corresponds to the condensate.

Using the theory presented in Sec. 2.1.4 it can be calculated whether for our equi-
librium parameters a true condensate or a quasicondensate with strong residual phase
�uctuations is expected. The parameter δ2L introduced in eqn. (2.24) represents the
phase �uctuations on a length scale given by the size of the system [60]. For δ2L � 1

the �uctuations are small. Using T ≈ Tc and a condensate fraction of 3% one �nds
δ2L ≈ 0.2 for our equilibrium parameters. In equilibrium, we therefore expect a true
condensate without strong residual phase �uctuation.

In Fig. 4.15, we focus on the beginning of the condensate formation. After 225ms
of evolution, we observe a broader low-momentum peak (width in k ∼ 0.8 µm−1) than
for the �nal distribution. In contrast to the previous results, this is what one expects
to characterize a quasicondensate. Further measurements with higher resolution are
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Figure 4.15: Temporal evolution of the momentum distribution of the detected

atoms. The distribution is obtained by Fourier transformation of the visibility data.

The thermal distribution is calculated for the parameters before shock cooling includ-

ing a normalization factor.

required to consistently resolve the question of the existence of quasicondensates during
the formation of a Bose-Einstein condensate. For evolution times of 325ms and larger,
the width of the low momentum peak is limited by our measurement resolution of
2π/(16 µm), which takes into account that the correlation function is symmetric with
respect to ∆z = 0.

4.5 Summary

Our experiments have shown that quantum gases give unique access to nonequilibrium
phenomena. The technique of counting single atoms extracted from a Bose-Einstein
condensate is minimally invasive and the time evolution of a quantum system can be
followed over seconds. We have studied the fundamental question of phase ordering
during the formation of a Bose-Einstein condensate. Our data are in agreement with
the expectation that every atom undergoes several collisions before the ensemble has
thermalized and long-range order has developed. We have obtained quantitative mea-
surements which show that a coherent region grows outwards and subsequently the
density in this region increases towards the �nal condensate density, supporting the pic-
ture of a kinetic evolution of the cloud [205]. The growth of the coherent region is found
to be faster than the increase of the density. In addition, we presented the momentum

129



Chapter 4. Observing the formation of long-range order

distribution of the atoms inferred from the visibility data. The emergence of a large
peak at low momenta from the broad background of thermal atoms was observed.
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5 Correlations and counting statistics of

an atom laser

We demonstrate time-resolved counting of single atoms extracted from a weakly in-
teracting Bose-Einstein condensate of 87Rb atoms. The atoms are detected with a
high-�nesse optical cavity and single atom transits are identi�ed. An atom laser beam
is formed by continuously output coupling atoms from the Bose-Einstein condensate.
We investigate the full counting statistics of this beam and measure its second-order
correlation function g(2)(τ) in a Hanbury Brown and Twiss type experiment. For the mo-
noenergetic atom laser we observe a constant correlation function g(2)(τ) = 1.00± 0.01

and an atom number distribution close to a Poissonian statistics. A pseudothermal
atomic beam shows a bunching behavior and a Bose distributed counting statistics.

In addition, we determine the conditional and the unconditional detection proba-
bilities for the atoms in the two beams and �nd good agreement with the theoretical
predictions.

This chapter has been published at large in [101]: A. Öttl, S. Ritter, M. Köhl, and
T. Esslinger. `Correlations and Counting Statistics of an Atom Laser'. Physical Review
Letters 95(9), 090404 (2005).
and [229]: M. Köhl, A. Öttl, S. Ritter, T. Donner, T. Bourdel, and T. Esslinger. `Time
interval distributions of atoms in atomic beams'. Applied Physics B 86, 391�393 (2007).

5.1 Introduction

Correlations between identical particles were �rst observed by Hanbury Brown and
Twiss in light beams [20]. Their idea was that intensity �uctuations and the resulting
correlations reveal information about the coherence and the quantum statistics of the
probed system. This principle has found applications in many �elds of physics [230]
such as astronomy [231], high-energy physics [232], atomic physics [58] and condensed
matter physics [233, 234]. In optics the reduced intensity �uctuations of a laser have
been observed by Arecchi [235] only a few years after its invention, thereby disclosing the
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extraordinary properties of this light source. The bunching of photons from a thermal
source has been observed [236, 237] as well as antibunching of photons emitted by single
atoms [238].

With the realization of Bose-Einstein condensation in dilute atomic gases a novel
weakly interacting quantum system is available. The interpretation of a Bose-Einstein
condensate representing a single, macroscopic wave function has been supported in
numerous experiments highlighting its phase coherence [17, 220, 221, 104]. Correspond-
ingly, atom lasers are atomic beams which are coherently extracted from Bose-Einstein
condensates [75, 76, 77, 79]. Their �rst-order phase coherence has been observed both
in space [17] and time [100]. However, only the second-order coherence reveals whether
atom lasers exhibit a truly laser-like behavior. Thermal sources can be made to resem-
ble a laser by �ltering their output spatially and in frequency space. The result will be
a highly collimated, bright and monochromatic beam, characteristic of a laser. How-
ever, the underlying statistics are not altered by the �ltering. Therefore looking at the
statistical properties of an atom laser beam �is how to tell [a] genuine [atom] laser . . .
from a cheap imitation��as put in a scintillatingly witty introduction to atom lasers
by D. Kleppner[239]. In this respect there are no di�erences between optical and atom
lasers. Here we present a measurement of the second-order correlation function g(2)(τ)
of an atom laser in a Hanbury Brown and Twiss type experiment.

The second-order correlation function g(2)(τ) represents the conditional likelihood
for detecting a particle a time τ later than a previously detected particle and quanti�es
second-order coherence [59, 240]. For a thermal source of bosons g(2)(τ) equals 2 for τ =

0 and decreases to 1 on the time scale of the correlation time which is given by its energy
spread. For a coherent source g(2)(τ) = 1 holds for all times and therefore intensity
�uctuations are reduced to the shot noise limit. Higher-order coherence in quantum
degenerate samples was so far only studied in the spatial domain where atom-atom
interactions reveal the short-distance correlations [224, 223]. Information on the second-
order coherence was extracted from the release energy of condensates in time of �ight
measurements [223]. The di�erent decay rates of BECs and thermal clouds due to three-
body collisions were shown to be compatible with short-range third-order coherence of
the BEC [224]. In an interferometric measurement g(2)(r) has been determined for
elongated, phase-�uctuating condensates [64], and recently spatial correlation e�ects in
expanding atom clouds were observed [241, 22, 23]. Moreover, atom-atom correlations
have also been observed in the dissociation process of ultracold molecules [242].

We demonstrate detection of single atoms from a weakly interacting quantum gas by
employing a high-�nesse optical cavity [26, 123] (see Fig. 5.1). A di�erent technique
with the potential of single atom detection in quantum degenerate samples has been
demonstrated with metastable Helium atoms [127]. Detecting the arrival times of all
atoms at the cavity explicitly gives access to the full counting statistics that reveals the
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Figure 5.1: Schematic of the experimental setup. A weak continuous atom laser beam

is released from a Bose-Einstein condensate. After dropping a distance of 36mm the

atoms enter a high-�nesse optical cavity and single atoms in the beam are detected.

For the actual measurement the atomic �ux is reduced by a factor 104 as compared

to the image.

atom number distribution function and its statistical moments [243, 244]. Determining
the full counting statistics goes far beyond a measurement of the intensity correlation
function only, because it represents the full statistical information about the quantum
state. Despite recent progress, especially in mesoscopic electronic systems [245], the
full counting statistics has not been measured for massive particles before. For neutral
atoms this quantity is of special interest, since the strength of the interaction does not
overwhelm the quantum statistics as it is often the case for electrons.

5.2 Methods

Our new experimental design combines the techniques for the production of atomic Bose-
Einstein condensates with single atom detection by means of a high-�nesse optical cavity.
The apparatus consists of an ultrahigh vacuum (UHV) chamber which incorporates a
separated enclosure with a higher background pressure. Here we collect 109 87Rb atoms
in a vapor cell magneto-optical trap which is loaded from a pulsed dispenser source.
After polarization gradient cooling and optical pumping into the |F = 1,mF = −1〉
hyper�ne ground state we magnetically transfer the atoms over a distance of 8 cm out
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of the enclosure into a magnetic trap. All coils for the magnetic trapping �elds are
placed inside the UHV chamber and are cooled to below 0◦C. In the magnetic trap we
perform radio frequency induced evaporative cooling of the atomic cloud and obtain
almost pure Bose-Einstein condensates with 1.5 × 106 atoms. After evaporation we
relax the con�nement of the atoms to the �nal trapping frequencies ωx = 2π× 38.6Hz,
ωy = 2π × 7.2Hz and ωz = 2π × 29.1Hz, with the vertical z-axis de�ned by gravity.

For output coupling an atom laser beam we apply a weak, continuous microwave �eld
to locally spin-�ip atoms inside the Bose-Einstein condensate into the |F = 2,mF = 0〉
state. These atoms do not experience the magnetic trapping potential but are released
from the trap and form a well collimated beam which propagates downwards due to
gravity [79]. The output coupling is performed near the center of the Bose condensate
for a duration of 500ms during which we extract on the order of 3 × 103 atoms. Af-
ter dropping a distance of 36mm the atoms enter the high �nesse optical cavity (see
Fig. 5.1). Fine tuning of the relative position between the atom laser beam and the
cavity mode is obtained by tilting the vacuum chamber. We maintain a magnetic �eld
along the trajectory of the atom laser, which at the position of the cavity is oriented
vertically and has a strength of approximately 15G.

The cavity consists of two identical mirrors separated by 176µm. Their radius of
curvature is 75mm resulting in a Gaussian TEM00 mode with a waist of w0 = 25µm.
The coupling strength between a single Rb atom and the cavity �eld is g0 = 2π ×
10.6MHz on the |F = 2〉 → |F ′ = 3〉 transition of the D2 line. The cavity has a �nesse
of 3× 105 and the decay rate of the cavity �eld is κ = 2π × 1.3MHz. The spontaneous
emission rate of the rubidium atom is Γ = 2π × 6MHz. Therefore we operate in the
strong coupling regime of cavity QED. The cavity mirrors are mounted inside a piezo
tube which enables precise mechanical control over the length of the resonator [123].
Four radial holes in the piezo element allow atoms to enter the cavity volume and also
provide optical access perpendicular to the cavity axis. The cavity resides on top of a
vibration isolation mount which ensures excellent passive stability. The cavity resonance
frequency is stabilized by means of a far-detuned laser with a wavelength of 830 nm using
a Pound-Drever-Hall locking scheme.

The cavity is probed by a weak, near resonant laser beam, whose transmission is mon-
itored by a single photon counting module. We �nd a shot-noise-limited transmission
of photons through the empty cavity. The presence of an atom inside the cavity results
in a drop of the transmission (see Fig. 5.2). The stabilization light is blocked from the
single photon counter by means of optical �lters with an extinction of 120 dB. The probe
laser and the cavity are red-detuned from the atomic |F = 2〉 → |F ′ = 3〉 transition by
40MHz and 41MHz, respectively. The polarization of the laser is aligned horizontally
and the average intracavity photon number is 5. These settings are optimized to yield a
maximum detection e�ciency for the released atoms which is (24± 5)%. This number
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Figure 5.2: (a) Light transmission through the high-�nesse optical cavity when an

atom laser beam is traversing. (b) Details of the single atom transits. The photon

count rate is averaged over 20 µs.

is primarily limited by the size of the atom laser beam which exceeds the cavity mode
cross section. The atoms enter the cavity with a velocity of 84 cm/s giving rise to an
interaction time with the cavity mode of typically 45µs, which determines the dead time
of our detector. The dead time is short compared to the time scale of the correlations,
which allows us to perform Hanbury Brown and Twiss type measurements with a single
detector [246].

We record the cavity transmission for the period of the atom laser operation and
average the photon counting data over 20µs (see Fig. 5.2). Using a peak detection rou-
tine we determine the arrival time of an atom in the cavity, requiring that the cavity
transmission drops below its background value by at least four times the standard de-
viation of the photon shot noise. From the arrival times of all atoms we compute the
second-order correlation function g(2)(τ) by generating a histogram of all time di�er-
ences within a single trace and normalizing it by the mean atomic �ux. Due to the
�nite duration of the measurement T , the number of events with a time di�erence τi is
reduced according to 1− τi/T , which is taken into account by dividing the correlation
function by this factor. This correction increases the total number of events in the
histogram

∑T/∆τ
i=0 g(2)(τi) by a factor of 2. For N detected atoms the number of entries

in the histogram is N(N − 1)/2. Taking the in�uence of the aforementioned correction
factor into account, normalization of the correlation function is achieved by dividing
the histogram ofM time bins by N(N−1)/M . This normalization to an average of 1 is
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Figure 5.3: (a) Second-order correlation function of an atom laser beam. The data

are binned with a time bin size of 50µs. The average count number is 2× 105 per bin.

We have omitted the �rst two data points since they are modi�ed by the dead time of

our detector. (b) Probability distribution p(N) of the atom number N detected within

a time interval of T = 1.5ms. The (+) symbols show a Poissonian distribution for the

same mean value of 〈n〉 = 1.99 as the measured data. The errors indicate statistical

errors.

basically equivalent to g(2)(τ → ∞) = 1, because the measurement duration T is much
longer than the time scale on which correlations or anticorrelations can be expected.
We average these histograms over many repetitions of the experiment to obtain g(2)(τ)
with a high signal-to-noise ratio.

5.3 Results

5.3.1 Second-order correlation function and counting statistics

Figure 5.3(a) shows the measured second-order correlation function of an atom laser
beam. The value of the correlation function is g(2)(τ) = 1.00 ± 0.01 which is expected
for a coherent source. The second-order correlation function being equal to unity reveals
the second-order coherence of the atom laser beam and is intimately related to the
property that it can be described by a single wave function. Residual deviations from
unity could arise from technical imperfections. Magnetic �eld �uctuations either due to
current noise in the magnetic trapping coils or due to external �uctuations could imprint
small intensity �uctuations onto the atom laser beam. We employ a low noise current
source and magnetic shielding to minimize these e�ects. In addition, we use a highly
stable microwave source which is stabilized to a GPS disciplined oscillator. A further
contribution to a potential modi�cation of the second-order correlation function could
be due to the output coupling process itself. The spatial correlation function of atoms
output coupled from a weakly interacting condensate has been studied theoretically in a
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situation neglecting gravity [247]. The modi�cation from a constant unity second-order
correlation function was on the order of 1%, which is on the same order of magnitude
as the uncertainty in our data.

Measuring the second-order correlation function requires to detect the particles within
their coherence time and coherence volume [246]. The uncertainty of the detection
time of an atom must be smaller than the correlation time, because otherwise the
correlations vanish [58]. We estimate that the acquired time delays resulting from a
possibly misaligned detector are shorter than the dead time of our detector. It has been
measured that the coherence time of the atom laser is given by the duration of output
coupling at least for durations of 1.5ms [100].

Trapped Bose-Einstein condensates have been demonstrated to be phase coherent and
to have a uniform spatial and temporal phase [220, 221, 104]. The atom laser beam has
been theoretically described by a single wave function [247, 248] and its spatial coherence
was observed [17]. Moreover, a full contrast interference pattern was observed between
two atom laser beams extracted from separate locations inside a condensate [104]. This
indicates a high degree of spatial overlap between the two propagating modes and a
negligible distortion of the uniform spatial phase due to interactions with the remaining
condensate. From this we conclude that the atom laser leaves the condensate region
with a well de�ned spatial wavefront.

Many overlapping spatial modes at the detector wash out the correlations. In our
experimental geometry this is the case when output coupling from a thermal source,
since we can not resolve a single di�raction limited spatial mode. Therefore we do not
observe thermal bunching of non-condensed atoms.

Determining the arrival times of all detected atoms explicitly allows us to extract the
full counting statistics of the atoms. We choose a time bin length of T=1.5ms in which
we count the number N of detected atoms and plot the probability distribution p(N)

[see Fig. 5.3(b)]. The distribution is close to a Poissonian distribution

p(N) = 〈n〉Ne−〈n〉/N ! (5.1)

with a mean of 〈n〉 = 1.99. For the measured distribution we have calculated the second,
third and fourth cumulant to be κ2 = 1.75, κ3 = 1.34 and κ4 = 0.69, respectively. We
attribute the small deviation from the Poissonian distribution to having two or more
atoms arriving within the dead time of our detector. For the total �ux of 5.2 atoms per
ms this probability is 5%.

We realize a direct comparison with a pseudothermal beam of atoms by output cou-
pling a beam with thermal correlations from a Bose-Einstein condensate. This is in
close analogy to changing the coherence properties of a laser beam by means of a rotat-
ing ground glass disc [235]. Instead of applying a monochromatic microwave �eld for
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Figure 5.4: (a) Second-order correlation functions of pseudothermal atomic beams.

The red square symbols correspond to a �lter band width (FWHM) of 90Hz, the

orange triangles to a bandwidth of 410Hz, and the yellow circles to a bandwidth of

1870Hz. The data are binned with a time bin size of 50µs in which the average count

number is 8×104. We have omitted the �rst two data points since they are modi�ed by

the dead time of our detector. The lines are the experimentally determined correlation

functions of the broadband microwave �elds. (b) Probability distribution p(N) of the

atom number N within a time interval of T = 1.5ms for the 90Hz bandwidth data.

The (+) symbols indicate a Bose distribution with the same mean value of 〈n〉 = 1.99.

The errors indicate the statistical errors.

output coupling we have used a broadband microwave �eld with inherent frequency and
intensity noise. We have employed a white noise generator in combination with quartz
crystal bandpass �lters which set the bandwidth of the noise. The �lters operate at a
frequency of a few MHz and the noise signal is subsequently mixed to a �xed frequency
signal at 6.8GHz to match the output coupling frequency. For atomic beams prepared
in such a way we observe bunching with a time constant set by the bandpass �lter [see
Fig. 5.4(a)]. To compare our data with the theoretically expected correlation function
we have measured the power spectra of the bandpass �lters and calculated |g(1)(τ)|2 of
the rf �eld before frequency mixing. In Fig. 5.4(a) we plot 1 + β|g(1)(τ)|2. The nor-
malization factor β = 0.83 accounts for the deviation of the experimental data from
g(2)(0) = 2 due to imperfections in the frequency mixing process.

For the pseudothermal beam we also calculate the counting statistics and �nd a
signi�cantly di�erent behavior than for the atom laser case. For a �lter with a spectral
width (FWHM) of 90Hz we have chosen a time bin length of T=1.5ms, smaller than
the correlation time. The atomic �ux with a mean atom number 〈n〉 = 1.99 is equal
to the case of the atom laser. We compare the measured probability distribution to a
Bose distribution

p(N) = 〈n〉N/(1 + 〈n〉)1+N , (5.2)

which is expected for a thermal sample and �nd good agreement [see Fig. 5.4(b)]. From
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the distribution we have extracted the second, third and fourth cumulant to be κ2 = 4.6,
κ3 = 14.5 and κ4 = 50.6, respectively.

5.3.2 Time interval distributions of atoms

In this section, measurements of the the conditional and the unconditional probabilities
for atom detection are presented and compared to theory. This constitutes a comple-
mentary view on two-particle correlations as compared to an analysis of the second-order
correlation function. A famous example of how the statistics vary for di�erent quantum
states of light is the distinct di�erence of photon correlations in thermal light beams and
laser beams [235, 249]. For ideal bosonic atoms the same quantum statistical properties
are expected as for the case of photons.

We �rst investigate the distribution function of the time intervals between successive
atom counting events. This represents a �start-stop� measurement, where a time counter
is triggered by an atom detection event and stopped by the next detection event [249].
From the histogram of the measured time intervals we obtain the conditional probability
p(t|t + τ) of detecting the next atom a time τ later than an initial atom observed at
t. These exclusive pair correlations, for which we restrict ourselves to consecutive atom
detection events, are distinguished from the non-exclusive pair correlations measured
by the second-order correlation function g(2)(τ). There the pairwise time di�erences
between all atoms are evaluated.

For an average count rate ν the conditional detection probability density for a coherent
beam is given by [250]

pcoh(0|τ) = νe−ντ . (5.3)

In contrast, for a thermal state of bosons one �nds [250]

pth(0|τ) =
2ν

(1 + ντ)3
. (5.4)

For τ = 0 the thermal probability density is twice as large as the coherent probability
density. This re�ects the increased thermal �uctuations and the bunching behavior in
pair correlations of bosonic particles.

In Fig. 5.5(a) we compare our data with this theory. For the pseudothermal atomic
beam we have chosen a bandwidth of ∆f = 90Hz and analyzed time intervals short
compared to the coherence time τc = 1/∆f = 11ms. We normalize the measured
probability by the measured count rate νexp = 1.5× 103 s−1 and �t the result with the
functions given in equation (5.3) and equation (5.4) allowing for some overall scaling
factor. From the �ts we obtain the average count rates ν = 1.4 × 103 s−1 and ν =

1.6× 103 s−1 for the atom laser beam and the pseudothermal beam, respectively, which
compares well with the experimentally determined �ux νexp for both cases. For τ = 0
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Figure 5.5: Exclusive detection probabilities for an atom laser (blue squares) and for

a pseudothermal beam with a bandwidth of ∆f = 90Hz (red circles). (a) Conditional

detection probability p(0|τ), which is the frequency distribution of the time intervals

between two successive atom counts. The lines are �ts according to equations (5.3) and

(5.4). (b) Unconditional detection probability p(τ), given by the frequency distribution

of the length of intervals between a randomly chosen start point and the subsequent

atom detection. The lines a �ts according to equations (5.5) and (5.6).

we �nd that the data for the atom laser beam exceed p(0|τ)/νexp = 1 by approximately
15%. Similarly, the results for the pseudothermal beam exceed p(0|τ)/νexp = 2 by
approximately 30%. This could be attributed to the dead time of our detector�which
is about 70 µs (see Sec. 3.5.3)�during which we cannot detect a possible consecutive
event. We estimate the probability for a second atom arriving within the dead time of
the detector to be 5% for the atom laser beam and 10% for atoms in the pseudothermal
beam. With this probability a later atom might falsely be identi�ed being consecutive
to the initial event which overestimates the number of time intervals larger than the
detector dead time. Moreover, the experimental count rate is underestimated by the
same factor contributing also to the enhancement of the data above the theoretical
expectation.

Next we study the unconditional probability of a single atom detection event. The
unconditional probability assumes that the timer is started at a randomly chosen time
and records the time to the next atom detection event. For a coherent beam of atoms
the unconditional probability for a detection event p(τ) is equal to the conditional
probability investigated above [250]

pcoh(τ) = νe−ντ . (5.5)

This re�ects the absence of any density correlations in a coherent atomic beam. For a
thermal state one �nds

pth(τ) =
ν

(1 + ντ)2
, (5.6)
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which for τ = 0 di�ers from the corresponding conditional probability by a factor of
2. The physical reason for this di�erence lies in the bunching of thermal bosons, which
enhances the detection probability only for two nearby events measured by the condi-
tional probability. The unconditional probability measures a single particle property
and does not reveal a bunching e�ect. In Fig. 5.5(b) we show our measurements of
the atom detection probability for a randomly chosen initial start point and �nd good
agreement with the theoretical prediction. Similarly to the results for the conditional
probability we observe that the experimental data for τ = 0 are larger than the theoret-
ically expected result of p(τ)/νexp = 1 by the same relative amount as in Fig. 5.5(a). We
attribute this again to the dead time of our detector as discussed above. The apparently
better data quality of Fig. 5.5(b) as compared to Fig. 5.5(a) is due to the larger number
of available time intervals for the unconditional probability.
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6 Cavity QED detection of interfering

matter waves

We observe the build-up of a matter wave interference pattern from single atom detec-
tion events in a double-slit experiment. The interference arises from two overlapping
atom laser beams extracted from a rubidium Bose-Einstein condensate. Our detector is
a high-�nesse optical cavity which realizes a quantum measurement of the presence of
an atom and thereby projects delocalized atoms into a state with zero or one atom in
the resonator. The experiment reveals simultaneously the granular and the wave nature
of matter. We present a setup which is suited for applications in atom interferometry
and cavity QED.

This chapter has been published as [187]: T. Bourdel, T. Donner, S. Ritter, A. Öttl,
M. Köhl, and T. Esslinger. `Cavity QED detection of interfering matter waves'. Physical
Review A 73(4), 043602 (2006).

6.1 Introduction

The prediction of the duality between particles and waves by de Broglie [251] is a corner-
stone of quantum mechanics. The simple picture that matter waves show interferences
just like classical waves neglects the granularity of matter. This analogy is valid only
if the detector is classical and integrates the signal in such a way that the result is a
mean particle �ux. With quantum detectors that are sensitive to individual particles
the discreteness of matter has to be considered. The probability to detect a particle is
proportional to the square amplitude of the wave function and interferences are visible
only after the signal is averaged over many particles. Interference of single massive par-
ticles have been observed using electrons [252, 253], neutrons [254], atoms [255, 256, 257]
and even large molecules [258].

In the regime of atom optics, single atom detection has been achieved for example by
�uorescence [259], using a microchannel plate detector for metastable atoms [260] and
high-�nesse optical cavities [26]. Only very recently the single atom detection capability
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Figure 6.1: Schematic of the experimental setup. From two well de�ned regions in

a Bose-Einstein condensate (BEC), we couple atoms to an untrapped state. The real

parts of the resulting atom laser wave functions are sketched on the right hand side.

The absorption image shows an interference pattern corresponding to ∆f = 1 kHz and

an atom �ux ∼ 106 times larger than in the actual single atom interference experiment.

Monitoring the transmission of a probe laser through a high-�nesse optical cavity with

a photon counter, single atom transits are detected.

has been achieved together with quantum degenerate samples reaching the regime of
quantum atom optics [101, 22]. In our experiment, we detect single atoms from a
coherent matter-wave �eld using a high-�nesse optical cavity in the strong coupling
regime of cavity quantum electrodynamics (QED) [121, 134, 132].

For atoms with a spatially extended wave function, such as in a Bose-Einstein con-
densate or in an atom laser beam, a measurement projects the delocalized atom into a
state localized at the detector [261]. This quantum measurement requires dissipation
in the detection process. For our cavity QED detection method, we study the open
quantum system composed of coupled matter-wave and light �elds. The two sources of
dissipation are cavity losses and spontaneous emission. In particular, we calculate the
time needed for the localization of an atom along the beam in the cavity measurement
process. We then experimentally investigate atomic interferences using our detector
which can resolve single atom transits in time. The high detection e�ciency opens new
perspectives for atom interferometry such as quantum limited detection of amplitude
and phase of a matter-wave [262].
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Figure 6.2: (a) Cavity single atom detection principle. An atom detunes the high-

�nesse cavity from resonance and the cavity transmission consequently drops. (b)

Photon �ux through the high-�nesse optical cavity when an atom is detected. The

photon count rate is averaged over 20µs. The detection threshold is set to be four

times the standard deviation of the photon shot noise (dashed line).

A schematic of our experimental setup is shown in Fig. 6.1. We output couple two
weak atom laser beams from a Bose-Einstein condensate and their wave functions over-
lap and interfere [104]. The �ux is adjusted in such a way that there is on average only
one atom at a time in the interferometer. Using the high-�nesse cavity we measure sin-
gle atom arrival times in the overlapping beams. We observe the gradual appearance of
a temporal high-contrast matter-wave interference pattern as more and more detection
events are accumulated.

6.2 Quantum measurement in a cavity QED system

Single atom detection in an optical cavity can be captured in a classical picture: an
atom changes the index of refraction in the cavity and thereby shifts it out of resonance
from the probe laser frequency. In the absence of an atom, the probe beam is resonant
with the cavity and its transmission is maximal. Experimentally we use a probe power
corresponding to �ve photons on average in the cavity. The cavity lock is su�ciently
stable for the cavity transmission to be at the photon shot noise limit. The presence of an
atom results in a drop of the cavity transmission (see Fig. 6.2). We set the threshold for
an atom detection event to a drop in transmission of four times the standard deviation of
the photon shot noise in our 20µs integration time. Then the overall detection e�ciency
of atoms extracted from a Bose-Einstein condensate is measured to be 0.23(8). It is
mainly limited by the size of the atom laser which exceeds the dimension of the cavity
mode and can be increased using a laser to guide the atoms into the detector.
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Our cavity has been described before (see Sec. 3.3.1 and Sec. 3.4.4) and we only recall
here its main �gures of merit. Its length is 176µm, the mode waist radius is 25µm,
and its �nesse is 3 × 105. The maximum coupling strength between a single 87Rb
atom and the cavity �eld g = 2π × 10.4MHz is larger than the cavity �eld decay rate
κ = 2π × 1.4MHz and the atom dipole decay rate γ = 2π × 3MHz. The probe laser
and the cavity are red-detuned as compared to the atomic resonance so that the light
force pulls the atoms to regions where the coupling is large, therefore enhancing the
detection e�ciency.

To understand the actual detection process we study the dynamics of the atom-
cavity quantum system taking into account dissipation. We �rst consider a classical
atom entering a simpli�ed square shaped cavity mode so that its coupling to the cavity
�eld increases suddenly to a constant value g. Thereby we do not take into account the
atom dynamics due to the dipole potential of the standing-wave cavity mode. The cavity
�eld is initially coherent with a few photons. We use a two level approximation for the
atom description and assume a 30MHz red-detuning of the probe laser compared to the
atomic resonance Our probe beam is linearly polarized orthogonally to the magnetic
�eld direction. We therefore do not probe on a cycling transition. The 30MHz detuning
is an e�ective value chosen to match the experimental conditions. In the case of strong
coupling the following dynamics occur. On a short time scale given by 1/g, the atom-
cavity system exhibits coherent oscillations. It progressively reaches an equilibrium
state on a time scale given by 1/κ and 1/γ due to cavity loss and atomic spontaneous
emission. These are the two sources of dissipation. In the equilibrium state, the mean
photon number in the cavity is reduced and the cavity transmission drops.

To evaluate this drop quantitatively, we �nd the steady-state of the master equation
for the density matrix numerically [116, 263, 119, 264]. For our parameters the trans-
mission as a function of the coupling strength g is plotted in Fig. 6.3(a). For a maximally
coupled atom g = 2π×10.4MHz, the average intracavity photon number is found to be
reduced from 5 to 0.8, and the number of detected photons is then reduced by the same
ratio. Such a reduction corresponds well to the largest observed transmission drops.
An example is shown in Fig. 6.2. The detection threshold corresponds to a coupling
of g = 2π × 6.5MHz. Experimentally, unlike in our model, an atom feels a position
dependent coupling as it transverses the mode pro�le. However, the atom transit time
through the cavity mode (45µs) is long compared to the cavity relaxation time scales
1/κ and 1/γ and the atom-cavity system adiabatically follows a quasiequilibrium state.
Therefore the experimental transmission drops can be compared to the calculated ones.

Speci�c to our experiment is that a longitudinally extended matter wave and not
a classical atom enters the cavity [100]. Our system allows us to realize a quantum
measurement of the presence of an atom. For our low atom �ux, we can neglect the
probability of having more than one atom at a time in the cavity. The incoming con-
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Figure 6.3: (a) Normalized transmission as a function of coupling strength. The

solid line corresponds to our probe strength of 5 photons in the cavity in the absence

of an atom. The dashed line is the weak probe limit. The dotted line corresponds to

10 photons in the cavity. (b) Coherence between the states with one and no atom as a

function of time. The initial coherence is normalized to 1. Solid line: g = 2π×10MHz.

Dashed line: g = 2π × 6.5MHz. Dotted line: g = 2π × 3MHz.

tinuous wave function is thus projected into a state with one or zero atom in the cavity.
This evolution from a pure quantum state to a statistical mixture involves decoherence.
The latter is introduced by spontaneous scattering and cavity photon loss. The ori-
gin of the decoherence can be understood as unread measurements in the environment
[263, 261]. For example, if a spontaneously emitted photon is detected, there is neces-
sarily an atom in the cavity and the wave function is immediately projected. Similarly,
the more di�erent the light �eld with an atom in the cavity is from the �eld of an empty
cavity, the more di�erent is the scattered radiation out of the cavity, and the projection
occurs correspondingly faster.

We now quantify the time needed for the projection to occur. For simplicity, rather
than a continuous wave function, we consider a coherent mixture of one and zero atom
entering a square shaped cavity at a given time. We take the limit when the probability
to have one atom is low. The initial cavity �eld is the one of an empty cavity. Dissipation
e�ects are studied by computing the time evolution of the density matrix [119]. The
degree of projection of the initial state can be extracted from the o�-diagonal terms
between states with one atom and no atom in the density matrix. More precisely, we
de�ne the coherence as the square-root of the sum of the squared modulus of the o�-
diagonal terms mentioned above. This quantity is maximal for a pure quantum state
with equal probability to have an atom or not. The coherence is zero for a statistical
mixture.

In Fig. 6.3(b) the temporal evolution of the coherence is plotted. As expected, it
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decays to zero at long times due to dissipation. The decay time increases as the coupling
to the cavity is weakened. In the limit where the coupling vanishes, the coherence
is preserved. The atomic wave function then evolves as if there was no cavity. For
g > 2π × 6.5MHz, the decoherence time is found to be a fraction of a microsecond.
This time is much shorter than the 45µs transit time of an atom through the cavity,
and for all our detected atomic transits the wave function is thus well projected to a
state with one atom. Our detection scheme realizes a quantum measurement of the
presence of an atom in the cavity. However during an atom transit some photons are
spontaneously scattered and the velocity of the atom is slightly modi�ed.

6.3 Single atom interference

Using our cavity detector we can observe matter wave interferences on the single atom
level. The starting point of the experiment is a quasi pure Bose-Einstein condensate
with 1.5 × 106 rubidium atoms in the hyper�ne ground state |F = 1,mF = −1〉 [101].
The atoms are magnetically trapped with frequencies ωx = 2π × 38.6Hz, ωy = 2π ×
7.2Hz and ωz = 2π × 29.1Hz with the vertical z-axis de�ned by gravity. A weak and
continuous microwave �eld locally spin-�ips atoms from the Bose-Einstein condensate
into the untrapped |F = 2,mF = 0〉 state. This process is resonant for a section of the
condensate where the magnetic �eld is constant. Because the magnetic moment of the
spin �ipped atoms vanishes, they fall due to gravity and form a continuous atom laser
[79].

When we apply two microwave �elds of di�erent frequencies, we are able to output
couple atom laser beams from two well de�ned slices of the condensate [104]. The two
distinct atom laser wave functions overlap and interfere. At the entrance of the cavity,
the atomic wave function ψ is well described by the sum of two plane waves with the
following time dependence

ψ(t) ∝ exp(iω1t) + exp(i(ω2t+ φ)) (6.1)

∝ cos((ω2 − ω1)t/2 + φ2)

where ~ω1 and ~ω2 are the energies of the two laser beams and φ is a �xed phase
di�erence. The radial dependence of the wave function is neglected. The probability to
detect an atom is given by the square norm of the wave function which is modulated in
time and behaves like a cosine squared. The modulation frequency of the interference
signal is given by the energy di�erence between the two atom lasers. Experimentally, it
is determined by the frequency di�erence of the two microwave �elds and is chosen to be
∆f = 10Hz, which corresponds to a distance of 5 nm between the two output coupling
regions. The two microwave �elds are generated such that the interference pattern is
phase stable from one experimental run to the other.
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Figure 6.4: Histograms of the atoms detected in 5 ms time intervals. (a) Single

experimental run. (b) Sum of 4 runs. (c) Sum of 16 runs. (d) Sum of 191 runs, the

line is a sinusoidal �t. Please note the di�erent scales.

The results of the experiment are presented in Fig. 6.4. Each experimental run corre-
sponds to output coupling from a new condensate. On average ∼ 6 atoms are detected
in 0.5 s. After the detection of a few atoms, the interference pattern is not yet visi-
ble [Fig. 6.4(a)]. Nevertheless, after adding the results of several runs, it progressively
appears [Figs. 6.4(b)�6.4(d)]. Experimentally, the atom number �uctuation is found to
be dominated by the atomic shot noise and the signal to noise ratio of the interference
increases as more data are included. A �t to the histogram yields a contrast of 0.89(5).
The slight reduction of contrast is explained by a detected �ux of about one atom every
3 runs in the absence of output coupling. We attribute this e�ect to artifact detection
events and to atoms output coupled from stray microwave �elds. Using a higher �ux,
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we were able to detect an interference contrast in excess of 0.97.

Here, we work with a �ux of one detected atom per 83ms, which is about the time an
atom needs to travel from the condensate region to the cavity. We are thus in a regime
where the atoms fall one by one in the interferometer. Thereby a single atom interferes
with itself. It behaves both like a wave because its time arrival probability shows an
interference pattern and like a particle when detected. This can be similarly expressed
by saying that each individual atom is released from both slits simultaneously. Our
experiment is an atomic counterpart of Young's double slit experiment with individual
photon detection.

6.4 Summary

In conclusion, we detect matter wave interferences with a high-�nesse optical cavity
detector which realizes a quantum measurement of the presence of an atom. We explain
how dissipation plays a crucial role in the detection process and for the localization of the
atom inside the cavity. Using this detector, we are able to detect a high contrast atom
interference pattern at the single atom level. The coupling of a matter wave to a cavity
QED system opens the route to the quantum control not only of the internal state of
the atoms but also of their positions [265]. Using the presented detection technique we
can probe an atomic gas with a good quantum e�ciency and introduce only a minimum
perturbation through the measurement. This could facilitate nondestructive and time-
resolved studies of the coherence of a quantum gas, for example during the formation
of a Bose-Einstein condensate. With our setup quantum limited detection of the phase
between two distinct condensates would permit investigations of their relative phase
evolution [266, 267], build-up [268, 51, 52], or di�usion [269].
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7 Conclusions and outlook

We presented an apparatus that achieves the fusion of BEC production with the single
atom detection ability in the strong coupling regime of cavity QED. The challenge to
experimentally merge these two �elds was overcome by forging new paths for the Bose-
Einstein condensation setup and the ultrahigh �nesse optical cavity design [157]. The
cavity can be used as a highly sensitive probe for precision measurements of numerous
condensate properties. Atom lasers with accurately controllable �ux can be output
coupled from the BEC, directed into the cavity and detected with single atom resolution
using the cavity.

This setup allowed us to observe the formation of long-range order in a Bose gas cross-
ing the phase transition to a Bose-Einstein condensate [153]. A thermal cloud of atoms
closely above the phase transition temperature was prepared in a highly nonequilibrium
situation by removing the most energetic third of the atoms. In the subsequent free
evolution of the system, it crossed the phase transition. Two atom lasers of di�erent
energy, originating from di�erent regions within the atom cloud, were output coupled
simultaneously. While the visibility of the resulting interference pattern signaled the
degree of coherence of the trapped cloud, the �ux of atoms gave information on the
density of the sample. The growth of the coherence in time and space was studied and
compared to the increase in the �ux of atoms. The speed of the growth and its spatial
dependence could be quanti�ed. A particular strength of this novel measuring method
is that it yields real time information, and that at the same time the system is only
minimally disturbed.

The ability to detect single atoms with high e�ciency allowed us to measure the
second-order correlation function of an atom laser and to con�rm its second-order co-
herence as opposed to the bunching behavior of a pseudothermal beam [101, 229]. This
absence of excess intensity �uctuations is the clearest distinction between a laser and
a thermal beam. Together with measurements proving the �rst-order coherence of an
atom laser [100, 187] it proves the close analogy between an atom laser and an op-
tical laser. A very interesting extension of our measurements would be to study the
change of the two particle correlation function in close vicinity of the Bose-Einstein
phase transition.
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Study of a trapped, interacting Bose gas in the critical regime

The described method used to study the growth of a BEC is also perfectly suited to
investigate the coherence of a Bose gas in the critical regime near the Bose-Einstein
phase transition. In this regime, the length scale of critical �uctuations of the order
parameter is larger than the thermal de Broglie wavelength and the critical �uctuations
completely govern the system.

To gain a better understanding of such a system, it is instructive to look at a non-
interacting Bose gas above the critical temperature trapped in the harmonic potential
V (r), for which the �rst-order correlation function g(1) can be calculated making a few
assumptions. Here we will concentrate on the correlations as measured when output
coupling symmetrically with respect to the center of the trap (x = x′ = y = y′ = 0),
and only investigating distances along the vertical axis (z = −z′). This most closely
resembles our experimental situation (see Sec. 4.3.3). Under the assumption that the
thermal energy of the system is much larger than the energy spacing of the trap levels
kBT � ~ω and in the local density approximation the result is [56]:

g(1)(z, z′) =
g3/2

[
exp

(
µ

kBT

)
, exp

(
−π (z−z′)2

λ2
dB

)]
g3/2

[
exp

(
µ

kBT

)
, 1
] , (7.1)

where the generalized Bose function is de�ned as gα(x, y) =
∑∞

m=1 x
my1/mm−α. The

chemical potential is denoted by µ and λdB is the thermal de Broglie wavelength. A
mean-�eld treatment of the interactions gives a similar result, but with µ replaced by
µ(r) = µ− 2U0nT (r), where nT (r) is the local density of the thermal atoms [56].

In the limit of µ/(kBT ) � 1, i.e. for a thermal cloud far above Tc, we can replace the
sum by its lowest-order term:

g(1)(z, z′) ≈ exp

(
−π (z − z′)2

λ2dB

)
. (7.2)

This is the well known result for the �rst-order correlation function of a thermal Bose
gas: It has the form of a Gaussian with the width given by the thermal de Broglie
wavelength. As can be seen from eqn. (7.1), a very di�erent behavior is to be expected
for temperatures close to the critical temperature Tc [for the dependence of µ on T see
eqn. (4.9)].

The experimental starting point is a BEC heated very slowly with a rate of only
about 4 nK/s. With such a low heating rate and a temperature resolution of about
0.002Tc we are able to access the critical regime. Applying the method discussed
in detail in chapter 4 allows us to measure the coherence of the trapped Bose gas
as a function of temperature and position, but now in a nearly stationary situation.
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Figure 7.1: Correlation function for a trapped thermal Bose gas at di�erent tem-

peratures above Tc. The points are the measured visibility of an interference pattern,

while the solid lines are �ts of a theory describing a non-interacting trapped Bose gas

(see text). In contrast to a thermal gas far above Tc, the data can clearly not be

described by a Gaussian with its width given by the thermal de Broglie wavelength

(red dashed line).

Preliminary results of such a measurement are presented in Fig. 7.1. We have sampled
the �rst-order correlation function for four di�erent temperatures between 1.4 and 1.001
Tc. The particle number and therefore Tc = 126 nK is approximately the same for all
curves. The solid lines are �ts of eqn. (7.1) to the data with µ and T as free parameters.
The dashed red line is the result according to eqn. (7.2) with the thermal de Broglie
wavelength λdB = 0.41 µm calculated at Tc. Obviously, the decay of the correlation
function is not Gaussian any more very close to the critical temperature. Rather, the
region of large coherence is extended beyond λdB and the tail of the correlation function
decays signi�cantly slower. To our knowledge, this measurement is the �rst observation
of the non-Gaussian behavior of the correlation function in close proximity to the phase
transition.

In the critical regime very close to Tc , the mean-�eld theory outlined above is not
applicable any more. For t = (T − Tc)/Tc → 0 and r > λdB, the correlation function in
�Ornstein-Zernike form� is given by [6]

g(1)(r) = r−p exp (−r/ξ) . (7.3)
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The correlation length ξ diverges close to the critical temperature as

ξ ∝ |T − Tc
Tc

|−ν = |t|−ν , (7.4)

with the critical exponent ν describing the form of the divergence. The correlation
function decays as a power-law at t = 0, with the exponent given by p = d−2+η. Here
d is the dimensionality of space. The critical exponent η is zero according to mean-�eld
theory and a Gaussian model and its potential deviation from this value is too small
to be measured with our setup. However, it is possible to infer the critical exponent ν
from the behavior of the correlation function ξ determined in the apparatus presented
here. This is especially interesting since the critical exponent ν of the correlation length
in a trapped, interacting system has neither been measured directly nor do theoretical
predictions exist.

The theory for the non-interacting trapped case presented above gives ν = 1/2, but
measurements of the critical exponent α of the speci�c heat in liquid Helium as well
as renormalization group theory calculations suggest ν = 0.67 for a homogeneous, in-
teracting system. The same critical exponents apply to very di�erent physical systems
whose critical temperatures may di�er by orders of magnitude. This universality dis-
tinguishes the critical exponents and makes our results interesting not only to the cold
atoms community but to many di�erent �elds in physics. In liquid helium, the analysis
of the critical exponents is considered the strongest evidence for BEC [55]. With the
apparatus presented here, we could very recently determine the critical exponent of a
trapped, dilute atomic Bose gas to be ν = 0.67± 0.13 [154].

Transport of the BEC into the cavity

In the experiments presented so far, the cavity has been used as a single atom detector
for atoms from an atomic beam. This has facilitated research on Bose-Einstein con-
densates with unprecedented resolution, allowing for previously impossible experiments.
However, single atom detection is by far not the only possible application for an ultra-
high �nesse cavity in the strong coupling regime. Therefore we decided to extend the
experimental setup with a mechanism to transport the BEC into the cavity. There, the
BEC can be held in various trap geometries, allowing for the exploration of the rich
physics provided by the ultrastrong coupling between the atomic matter wave and the
quantized light �eld of the cavity mode.

Two vertical, counterpropagating laser beams are focused through the cavity forming
an optical dipole trap. They are frequency stabilized to a 133Cs transition at λt =

852.35 nm, red-detuned from the 87Rb D1 and D2 lines. With an elliptical focus of
(25×50) µm2 inside the cavity and a maximum power of 80mW per beam the resulting
standing wave potential is deep enough to support the atoms against gravity, even at
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(a) (b)

Figure 7.2: Absorption images of a BEC held in a one-dimensional, horizontal optical

lattice (gravity points downwards). (a) The trapped BEC (top spot) is held in a weak

standing wave. The other atom pulses are due to quantum interference between the

vertical array of BECs trapped in the antinodes of the standing wave (not resolved).(b)

Transport of the atoms. The distance between the atom cloud in successive images is

500µm.

the position of the magnetic trap 36mm above the cavity. The exact frequency of both
beams is set independently using two acousto-optical modulators controlled by two
homebuild direct digital synthesis (DDS) generators [270]. By introducing a frequency
di�erence δ between the two beams, the standing wave pattern can be shifted in a
controlled way. Each potential well moves at a velocity v = δλt/2.

In an initial experiment, the BEC was loaded into a weak stationary lattice. We
observed a train of atom pulses originating from it as shown in Fig. 7.2(a). Due to
Bloch oscillations [271, 272], a fraction of the atoms undergoes Landau-Zener tunnel-
ing to the continuum band [76]. As expected, the frequency of the Bloch oscillations
ωJ = mgλt/(2~) is independent of the lattice depth. m is the atomic mass and g the
acceleration due to gravity. Figure 7.2(b) shows the transport of the atoms trapped in
several antinodes of the standing wave. This vertical array of small traps is not resolved
due to the limited imaging resolution of about 10µm. In the leftmost image, the po-
sition of the atoms is the same as in the QUIC trap. The length of the transport is
increased by 500µm from one image to the next. Due to limited optical access, only
the �rst 5mm of the transport are covered.

Inside the cavity, the atoms can be trapped either in the transport lattice, the standing
wave of the cavity stabilization light at 830 nm or an additional dipole trap at 852 nm
on the third orthogonal axis. We �nd that all three traps independently are su�cient
to hold the transported cloud against gravity. A combination of the horizontal dipole
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trap perpendicular to the cavity axis plus one of the two counterpropagating transport
beams however provide the best con�nement of the atoms to ensure good overlap with
the cavity mode. The transport of single atoms [125] should also be feasible, but we favor
to transport the whole cloud and to reduce the atom number subsequently by forced
evaporation if required. The largest condensates inside the cavity can be achieved by
transporting an only partly condensed cloud. Subsequent recondensation of the atoms
by evaporative cooling can compensate heating during the transport and we obtain
nearly pure condensates of more than 105 atoms at the position of the cavity mode.

In the future, the combination of the trapped atoms with the cavity detector could
allow for the preparation of atomic Fock states by exploiting the dependence of the
coupling constant on the number of atoms. Once the discrimination between one, two
and no atom inside the cavity is implemented, which is de�nitely feasible, measurement
induced entanglement of two atoms could be realized [273]. A particularly attractive
proposal is the cooling of a single atom by immersion in a BEC [274]. The single atom
would have to be in a state strongly coupled to the cavity, e.g. in the |F = 2〉 hyper�ne
state with the cavity set to the |F = 2〉 → |F = 3〉 transition. The BEC formed by
the remaining atoms would be in a more weakly coupling state, for example |F = 1〉.
This technique has the potential of preserving the internal state of the single atom,
which in turn would constitute an excellent qubit. Using heterodyne detection, the
phase shift of the detection light imposed by the atoms can be detected. Especially
in the case of large detuning between detection light and atom, one can hope to non-
destructively read out the internal state of an atom. A scheme for the deterministic
production of photon Fock states has also been proposed [275]. Adiabatic dark state
passage for N atoms will generate N photons in the cavity mode. Our system o�ers the
optical access necessary for a 3D optical lattice inside the cavity. Therefore the creation
of a Mott-insulating state [276] inside the cavity seems feasible. It would serve as an
excellent starting point for quantum state engineering [277, 278] and the implementation
of quantum gates [279]. Five coils placed around the cavity can create magnetic �eld
con�gurations with the potential of position dependent single atom addressability using
tomography techniques and read out using the cavity. This is an extremely promising
setup for studying strongly correlated systems with single site resolution.
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A Appendix

A.1 Physical constants and 87Rb data

� Unless otherwise stated all physical constants used in this thesis can be found at
http://physics.nist.gov/constants and are published in:
P. J. Mohr and B. N. Taylor. `CODATA recommended values of the fundamental
physical constants: 2002'. Rev. Mod. Phys. 77(1), 1�107 (2005).

� All data about physical properties of 87Rb, especially the optical properties of the
D2 line (52S1/2 → 52P3/2 transition), have been taken from:
D. A. Steck. `Rubidium 87 D Line Data'. http://steck.us/alkalidata/ (2003).
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