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Mark, Tyko, Rick, Suzanne, Rósa, Sho, Amaia and many others (enjoyed

talking with you all). Football : Peter, Guilherme, Francisco, Joost, Alastair,

Florian, Paul, Harald, Marisa, Giovanni, Matthias, Varun, Alessandro and

many others. Thank you guys, it was fun to play football with all of you.

Family and friends

My successes in school are due to the love and encouragement of my family

and friends. My family : Nigisti Abraha, Ghebremedhin Belay, Gebrekidan

Gebre, Kiduse Gebreyohannes, my grandparents and many cousins, uncles

and aunts. My friends: Nesredin, Asfaw, Mizan, and many other MITians

and Kellaminoers.

Saskia van Putten

On a personal side, I would like to thank my lovely girlfriend, Saskia. We have

shared the joys and pains of doing a PhD. I thank her for proofreading my

thesis and for translating the summary into Dutch. Thanks to her, I found the

motivation to take a Dutch course (Ja, ik kan een beetje Nederlands spreken!).

I would also like to thank her family for the warm welcome and good times.



Chapter 1. Introduction 1

Chapter 1

Introduction

Content

This chapter presents context to the work presented in the thesis. It highlights

the challenges of annotating videos manually and indicates how a machine

with a capacity to learn can help. The chapter also presents summaries of

the contributions made in the areas of speaker diarization, signer diarization,

sign language identification and gesture stroke detection.
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Big data, motivation, problem statement, gestures, research approach, ma-

chine learning, summary of contributions, structure of the thesis
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1.1 Motivation

Video data is growing bigger and bigger. What should we do to make sense of it?

With advances in device technology, it has become much easier for virtually

anyone to record, collect and store data. This ease has resulted in data volumes of

a scale never seen before, hence called big data. This big data offers new opportu-

nities, because we can raise new questions that we would not have raised otherwise.

However, these new questions cannot be answered without parallel advances in tech-

nologies that are capable of analyzing non-structured data such as audio and video

recordings. The goal of this thesis is to advance technologies used in audio-video

content analysis.

The machines we have today are fast but not intelligent yet; they cannot yet

understand audio-video content. For this reason, currently, the common practice

is that human expertise is required in understanding and annotating the content

of audio-video for purposes of, for example, empirical research in the humanities

and social sciences. But the use of human expertise in understanding audio-video

content has its own problems.

The problems are that a) it is expensive – human time is more expensive than

machine time; b) it is a very slow process – unlikely to ever match the increasing

scale of big data. We will illustrate the problems with a concrete question: which

speakers of language gesture the most? To answer this question, the current common

practice is to perform three tasks. First, gesture the most is defined as precisely as

possible – is gesture the most with respect to gesture size or the number of gestures

or both? Second, video recordings of gestures of speakers are made or collected

for as many languages as possible. Third, the video recordings are annotated for

gesture units; humans go through the video recordings frame by frame and mark

carefully the start and end of gesture units for each speaker (and repeat the process

for all speakers and languages). After all videos are annotated, a script is written to

count and compare the number (or size) of gestures across groups of interest (e.g.

languages, professions, cultures).

The above workflow with humans in the cycle is time-consuming. A one-hour

video with 25 frames per second may take as long as 25 hours with the assumption

that it takes a total of one second to watch, analyze and decide whether a given

frame is part of a gesture unit. Marking the start and end of gesture units is not the

hardest type of annotation; annotation can be much more complex and the more

complex it is, the more time it takes to identify and annotate it.

To summarize, manual annotation takes orders of magnitude longer than the

video length. For this reason, empirical research that relies on analysis of audio-

video content has been limited in two ways. First, in a given time, only a small

fraction of the audio-video data could be annotated and made available for research.

Second, the creative mind of the researcher has been divided between doing research

and doing manual annotation (or waiting for it to be completed by others).
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Given the limitations of manual annotation, can we develop technologies to

perform automatic video annotations for some applications?

This thesis answers yes by presenting innovative solutions to four gesture-related

annotation problems: 1) speaker diarization – the problem of determining who

spoke when, 2) signer diarization – the problem of determining who signed when,

3) sign language identification – the problem of determining the identity of a sign

language, 4) gesture stroke detection – the problem of segmenting gestures into

meaningful units. These four problems are studied in the realm of the AVATecH

project1, a joint effort of two Fraunhofer and two Max Planck Institutes. The

objective of the project is to investigate and develop technologies for semi-automatic

annotation of audio and video recordings.

1.2 Problem statement

How can a machine solve gesture-related problems?

Gestures are body, hand and facial movements, which humans use to communi-

cate. Enabling machines to recognize them has applications in video analytics and

human-computer interaction. This thesis studies gesture recognition with the ob-

jective of solving four important problems: speaker diarization, signer diarization,

sign language identification and gesture stroke detection. The fundamental chal-

lenges of gesture recognition arise from two sources: 1) where humans see gestures,

a machine sees only time-varying pixels, and 2) the time-varying gesture pixels oc-

cur in diverse environments. The two challenges give rise to the following research

question.

Research question 1:

How can a machine recognize gestures in diverse environments?

Whatever the answer to this research question, it has a high chance of success

if it involves a machine that can learn from examples. A machine that can learn

from data can deal with diverse environments better than a machine that is prepro-

grammed (if preprogramming is possible at all). For this reason, this thesis takes

machine learning as the key to the problems studied. In machine learning, a learn-

ing algorithm has to be trained with as many examples as available. The fewer

examples needed, the better. But with fewer training examples, machine learning

has a severe generalization problem. The more examples available, the better the

generalization. But producing more examples, which is usually done by humans, is

expensive and non-scalable. The fact that we want good generalization with small

examples leads us to raise the following research question.

Research question 2:

How can a machine effectively use data to learn to recognize gestures?

1https://tla.mpi.nl/projects_info/avatech/

https://tla.mpi.nl/projects_info/avatech/
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The answer to the second question has to balance two goals: achieve high recog-

nition accuracy and use as few training examples as possible. This can be done by

learning to adapt to new situations using small adaptation data.

1.3 Research approach

We study the four problems mentioned in the previous subsection (speaker diariza-

tion, signer diarization, sign language identification and gesture stroke detection)

using a common research method that we detail as follows:

1. Divide and conquer: break each problem into many smaller subproblems

2. Attack subproblems: propose a solution to the subproblems

3. Evaluate solutions: evaluate solutions quantitatively and qualitatively

1.3.1 Divide and conquer

To solve each of the problems presented in this thesis, we take a divide and conquer

approach. We divide the problems into several subproblems such that each sub-

problem can be solved independently (i.e. with very little coupling with the rest of

the subproblems). To illustrate this, the following are the subproblems we came up

with for speaker diarization:

1. How many people are there in the video?

2. How can we know where the people are in the video?

3. How can we determine if each person is gesturing at any given time?

4. How can we know which spoken utterance belongs to which person?

At first sight, these subproblems seem irrelevant to solving speaker diarization

(after all, speaker diarization is about speech). But when we examine the hypothesis

that the gesturer is the speaker, then we see that it is exactly those subproblems

that we need to solve.

1.3.2 Attack subproblems

We attack the video processing subproblems using two strategies: 1) we assume that

one or more of the subproblems have been solved or will be solved by someone else,

2) we design and develop a complete machine learning (ML) system that solves the

subproblems not solved by the first strategy. For example, in speaker diarization

using gesture, the subproblems of determining the number of speakers and where

they are in the video are assumed to be determined or easily initialized by humans

(e.g. human computation [Von Ahn, 2009]). But the subproblems of determining
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whether a person is gesturing and whether a particular spoken utterance belongs

to that person are considered novel and are solved by the second strategy.

The heart of the second strategy is machine learning. In attacking problems

using machine learning, three issues are important: data, features and learning

algorithms. We outline our views of these issues as follows.

Data

Our input data is mainly video, but we also consider audio whenever it is

relevant. A video is a time sequence of digital images, each of which is a

sequence of quantized intensity values (pixels) taken at discrete points in 2D

space. A complete understanding of the classes of objects in the video requires

the analysis of the pixels of each frame, both by itself and in relation to the

pixels in the neighboring frames. To go from pixels to semantics (i.e. to some

high-level information), two types of challenges must be overcome: within-

class variations and between-class similarities.

Within-class variations: Instances of the same class give rise to different

pixel values. The variation could be natural or artificial. Natural vari-

ation refers to the variation of properties of objects of the same class.

For example, many types of dogs exist even though they all belong to

the same class of dogs. Artificial variation refers to the variation that

result from recording conditions: view-point variation (the angle of view

affects the appearance of the object), illumination changes (light inten-

sity affects how objects appear), occlusions (partial parts of objects are

hidden from view), scale (a video recorded from a close range is different

from that recorded from a far range), background clutter (the object of

interest could be found on a clutter as opposed to a clear background).

Between-class similarities: Instances of different classes share similar fea-

tures. The similarity could be natural or artificial. Natural similarity

refers to the similarity of properties of objects of different classes. For

example, instances of a dog have common features with instances of a

cat. Artificial similarity refers to the similarity that results from record-

ing conditions. For example, illumination (e.g. dark) may make objects

appear very similar even though the objects have different natural ap-

pearances.

The within-class variations and the between-class similarities also apply to

classes of movements. For example, a gesture for “goodbye” and a gesture

for “stop” have their own within-class variations both within individuals and

across individuals but they also have common features (e.g. both gestures

involve the raising of the hand palm out in front of the person).

To summarize, instances of the same class give rise to different pixel values

and instances of different classes give rise to the same or similar pixel values.
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Given that summary, how can a machine learn to distinguish instances of

different classes?

First, we need to have many instances of data that cover the range of variations

within each class. Second, we need to go beyond pixels and extract invariant

features. What are features?

Features

Features are measurable properties of objects that are used for classification.

The more informative the features, the better the classification accuracy.

Which features are informative in our problems? We use different features

depending on the problem. For gesture detection and gesture stroke segmen-

tation, we use features extracted from interest-point and skin-color detectors.

For speaker diarization, we use both video features (Motion History Images)

and speech features (MFCC). For sign language identification, we use a) hand-

crafted features based on skin-color detection and b) features learned through

unsupervised techniques.

Unsupervised feature learning techniques are machine learning techniques that

learn a transformation function that converts raw inputs (e.g. pixels) to fea-

tures that can be used in a supervised learning task [Coates et al., 2011; Lee

et al., 2009]. Out of several feature learning algorithms available (e.g. au-

toencoders, clustering, dictionary learning, restricted Boltzmann machines),

we implemented clustering (K-means) and sparse autoencoder algorithms.

Learning algorithms

The four problems addressed in the thesis require the prediction of a class la-

bel for a) each frame in an unsegmented video sequence (speaker diarization,

signer diarization, gesture stroke detection) or b) all frames in the video (sign

language identification). The former can be seen as a sequence labeling prob-

lem (classification at every time instant t) and the latter as a classification

problem that treats the whole video as one entity with a single class label.

A number of machine learning algorithms and models exist to solve both types

of problems. We list the ones considered and/or used in the thesis for either

classification or feature learning: logistic regression, SVMs, random forest,

K-means, Gaussian Mixture models, Hidden Markov models, conditional ran-

dom fields, probabilistic Bayesian models and neural networks (deep learning).

We also design our own deterministic algorithms based on heuristics, when

applicable.

1.3.3 Evaluate solutions

We evaluate the performance of our solutions both quantitatively and qualitatively.

Our quantitative evaluations follow different strategies depending on the class

label distribution and the type of problem. For speaker diarization, we report re-
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sults in diarization error rate, which is a standard metric in the speaker diarization

research community. For classification problems (sign language identification and

gesture stroke detection), we report results in terms of different metrics: accuracy,

precision, recall and Area Under the Curve (AUC) of Receiver Operating Charac-

teristic (ROC).

Our qualitative evaluations concern one or more of the following: a) time and

space complexity b) error analysis c) visualization of the most informative features.

For example, for speaker diarization using gesture and speech, we emphasize how

our solution offers advantages of efficiency over diarization techniques that are based

on hierarchical agglomerative clustering. For sign language identification, we visu-

alize the learned features and show how they are activated for each sign language.

Visualization can help us to understand the learned features better.

1.4 Summary of contributions

This thesis has made contributions to four topics: speaker diarization, signer di-

arization, sign language identification and gesture stroke detection. We present the

contributions in the order of their appearance in the thesis.

Chapter 2: Speaker diarization using gesture

[Gebre et al., 2013b]

Extensive literature exists on speaker diarization, the task of determining who

spoke when. This study contributes to the literature by justifying and using

gesture for speaker diarization. The use of gesture for speaker diarization is

motivated by the observation that whenever people speak, they also gesture.

This observation is the basis of the hypothesis: the gesturer is the speaker. To

justify the hypothesis, this study presents evidence from the gesture literature.

After the justification, the study moves on to the design and development of

novel vision-based speaker diarization algorithms. Two algorithms are pro-

posed: one based on corner detection/tracking and the other based on motion

history images. The latter algorithm is presented in chapter 4.

Chapter 3: Signer diarization using gesture

[Gebre et al., 2013a]

Signer diarization, the task of determining who signed when, has similar mo-

tivations and applications as speaker diarization except for the difference in

modality. While there is significant literature on speaker diarization, very

little exists on signer diarization. This study contributes to the sign language

processing literature by identifying signer diarization as an important problem

and proposing a solution to it. Given the similarity between sign language

and gesturing, the proposed solution is similar to the solution we proposed for

speaker diarization using gesture.
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Chapter 4: Online diarization using Motion History Images

[Gebre et al., 2014c]

A Motion History Image (MHI) is an efficient representation of where and how

motion occurred in a single static image. This study demonstrates the use of

MHI as a likelihood measure in a probabilistic framework of detecting gestural

activity. The study claims with experimental evidence that the efficiency of

MHIs makes them usable in online speaker and signer diarization tasks as

motion is an integral part of uttering activity.

Chapter 5: Speaker diarization using gesture and speech

[Gebre et al., 2014b]

Speech and gesture can be combined to solve speaker diarization. This study

contributes to the speaker diarization literature by approaching speaker di-

arization as a speaker identification problem after learning speaker models

from speech samples co-occurring with gestures (the occurrence of gestures

indicates the presence of speech and the location of the gestures indicates the

identity of the speaker). This novel approach offers many advantages over

other systems: better accuracy, faster computation and more flexibility (con-

trolled trade-off between computation and accuracy). DER score improve-

ments of up to 19% have been achieved over the state-of-the-art technique

(the AMI system).

Chapter 6: Automatic sign language identification

[Gebre et al., 2013c]

Extensive literature exists on language identification, but only for written and

spoken languages. This work contributes to the literature by identifying sign

language identification as an important language identification problem and

proposing a solution to it. The solution is based on the hypothesis that sign

languages have varying distributions of phonemes (hand shapes, locations and

movements). Questions of how to encode and extract hand shapes, locations

and movements from video are presented along with classification results on

two sign languages, involving video clips of 19 different signers.

Chapter 7: Unsupervised learning for sign language identification

[Gebre et al., 2014a]

What features are different between sign languages? This study contributes

to the literature by presenting a sign language identification method based

on features learned through unsupervised techniques. It shows how K-means

and sparse autoencoder can be used to learn feature maps from videos of sign

languages. Through convolution and pooling, it also shows the use of these

feature maps for classifier feature extraction. Finally, the study shows the

impact on accuracy of varying the number of feature maps with classification
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experiments on 6 sign languages involving 30 different signers. High accuracy

scores are achieved (up to 84%).

Chapter 8: Gesture stroke detection

[Gebre et al., 2012]

Gesture stroke detection is one of the main preprocessing tasks in gesture stud-

ies. The task can be likened to speech segmentation or word tokenization. This

study contributes to the literature by proposing an adaptive user-controlled

solution to gesture stroke detection. The study shows how visual features can

be extracted from videos based on interaction with the user (for example, to

detect skin colors). The study also considers the role of speech features in ges-

ture stroke detection. Classification results are presented with visual features

alone, speech features alone and both visual and speech features.

Summarizing, our main contribution to speaker diarization concerns a novel al-

gorithm for solving an old problem, using a multimodal approach combining gesture

and speech. Contributions to the other domains include the formulation, applica-

tion, extension and implementation of state-of-the-art machine learning techniques,

leading to improved adaptive algorithms, among others for sign language identifi-

cation.

1.5 Structure of this thesis

This thesis is a thesis by publication. It consists of one introduction chapter, seven

major chapters, and one conclusion chapter. The major chapters are written to

reflect the seven papers that have been published as conference proceedings.
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Chapter 2

Speaker diarization:

the gesturer is the speaker

Content

This chapter presents a solution to the speaker diarization problem based on

a novel hypothesis. The hypothesis is that the gesturer is the speaker and

that identifying the gesturer can be taken as identifying the active speaker.

After presenting evidence to support the hypothesis, the chapter presents a

vision-only diarization algorithm with experimental evaluations on 8.9 hours

of the AMI meeting video data.

Based on

B. G. Gebre, P. Wittenburg and T. Heskes (2013). “The gesturer is the

speaker”. In Proceedings of the 2013 IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), pages 3751-3755, IEEE.

Keywords

Speaker diarization, gesture, AMI dataset, diarization error rate, optical flow
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2.1 Introduction

Speaker diarization is the task of determining who spoke when from an audio or

video recording. It has applications in document structuring of meetings, news

broadcasts, debates, movies and other recordings. Most of its applications come in

the form of speaker indexing (used for video navigation and retrieval), speaker model

adaptation (used for enhancing speaker recognition) and speaker attributed speech-

to-text transcription (used for speech translation and message summarization).

The focus of application for speaker diarization has been shifting over the years.

In the past, the focus was on telephone conversations and broadcast news [Rosen-

berg et al., 2002; Tranter and Reynolds, 2004]. Currently, the focus is on conference

meetings [Fiscus et al., 2008; Anguera et al., 2012]. The shift in focus (from tele-

phone conversations to conference meetings) influenced the shift in the signals used

in the speaker diarization algorithms: from using audio only [Tranter and Reynolds,

2006] towards using both audio and visual signals [Anguera et al., 2012]. Our work

is part of this shift and demonstrates how video signals alone can be used for speaker

diarization.

The full attention given to video signals in solving speaker diarization is based

on a novel hypothesis: the gesturer is the speaker. Our hypothesis arose from the

observation that although a speaker may not be gesturing for the whole duration

of speech, a gesturer is mostly speaking. Section 2.2 grounds the hypothesis in

gesture–speech synchrony studies. Convinced by the evidence for gesture–speech

synchrony, we claim who gestured when can be used to answer who spoke when.

This claim leads to questions: how do we detect gestures? and how do we know

which person produced them? In section 2.3, we give answers to these questions

and present our proposed diarization algorithm. Our algorithm performs speaker

diarization by first detecting optical flows and classifying them based on the location

of the speakers in the video. How reliable is this algorithm?

Section 2.4 presents the AMI meeting data and the diarization error rate (DER)

metric that we used to validate our algorithm. We used thirteen videos with each

having at most four speakers. Section 2.5 discusses achieved results and compares

qualitatively our diarization method with previous methods. Section 2.6 summa-

rizes our study and makes suggestions for future work. Section 2.7 summarizes our

study and makes suggestions for future work. Finally, section 2.7 presents related

work to put context to our approach.

2.2 Gesture-speech relationship

People of any cultural and linguistic background gesture when they speak [Fey-

ereisen and de Lannoy, 1991]. Speakers produce gestures to highlight concepts of

length, size, shape, direction, distance and other concepts expressed in their speech.

Listeners comprehend by integrating information from speech with information from
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gestures (of lips, eyes, hands, etc.) [McNeill, 1992a; Özyürek et al., 2007]. What

exactly is the relationship between gesture and speech?

Complete agreement does not exist on the exact interpretation of the relationship

between gesture and speech. One hypothesis holds that gesture and speech are

separate communication systems [Butterworth and Beattie, 1978; Butterworth and

Hadar, 1989; Feyereisen and de Lannoy, 1991]. Another hypothesis holds that

gesture and speech together form an integrated communication system for the single

purpose of linguistic expression; it holds that gesture is linked to the structure,

meaning, and timing of spoken language [Kendon, 1980; McNeill, 1985].

Despite differences in the interpretation of the degree of relationship between

gesture and speech, both hypotheses agree on the existence of high correlation in

the timing of speech and gesture executions (i.e. gesture and speech execution

occur within milliseconds of one another) [Levelt et al., 1985; Morrel-Samuels and

Krauss, 1992]. The following are selected arguments that show the tight relationship

between gesture and speech (for more and detailed arguments, see McNeill [1985]):

• Gestures occur mainly during speech

• Delayed Auditory Feedback (DAF) does not interrupt speech-gesture syn-

chrony

• The congenitally blind also gesture

• Fluency affects gesturing

2.2.1 Gestures occur mainly during speech

Studies of people involved in conversations show that speakers gesture and listeners

rarely gesture [McNeill, 1985; Campbell and Suzuki, 2006]. In approximately 100

hours of recording, thousands of gestures were observed for the speaker but only one

for the listener [McNeill, 1985]. In a sample of narrations, about 90% of all gestures

occurred during active speech [McNeill, 1985]. In a meeting of eight speakers, the

occurrence of upper body movement with speech accounted for more than 80% of

the total speaking time [Campbell and Suzuki, 2006].

2.2.2 DAF does not interrupt speech-gesture synchrony

Delayed Auditory Feedback (DAF) is the process of hearing one’s own speech played

over earphones after a short delay (typically, 0.25 seconds). DAF disturbs the

flow of speech; it slows it down and subjects it to drawling and metatheses (the

transposition of sounds in a word). If speech and gesture were independent, DAF

should not affect gesture execution. But because they are not, gesture and speech

remain in synchrony despite the interruptions caused by DAF [McNeill, 2005].
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2.2.3 The congenitally blind also gesture

The congenitally blind, people who are blind from birth and so have never seen

gestures, gesture as frequently as sighted people do [Iverson and Goldin-Meadow,

1997; Iverson et al., 2000]. In Iverson and Goldin-Meadow [1997], four children who

are blind from birth were tested in 3 discourse situations (narrative, reasoning, and

spatial directions) and compared with groups of sighted and blindfolded sighted

children. Their findings indicate that blind children produced gestures and the

gestures they produced resembled those of sighted children in both form and content.

2.2.4 Fluency affects gesturing

The relationship between speech fluency and gesture is direct. The number of

gestures increases as speech fluency increases and it decreases as speech fluency

decreases. For example, stuttering – a speech disorder, characterised by syllable and

sound repetitions and prolongations – is rarely accompanied by gesture. During the

moment of stuttering, gesturing falls to rest and within milliseconds of resumption

of speech fluency, gesturing rises again [Mayherry and Jaques, 2000].

In summary, the aforementioned studies show that speech and gesture are tightly

linked, at least in the timing of their executions. This means that the presence of

gesture is evidence for the presence of speech. But, how do we recognize gesture

from videos and how can we use it to perform speaker diarization? The following

section answers these questions.

2.3 Our diarization algorithm

To perform speaker diarization using gesture, three modules need to be designed to

determine:

• the number of speakers

• the identity (or signature) of each speaker and

• whether or not each speaker gestured

Each module can be simple or complex depending on the content of the video

and recording conditions. For example, if the video content has people appearing

and disappearing unpredictably, then a complex model is needed to track speaker

numbers and identities. However, because model complexity is neutral to the con-

cept of the gesturer is the speaker, this work proposes a simple algorithm that detects

and tracks gestures of people in conference meeting videos. Conference meetings

usually have fixed number of participants and the participants usually stay in fixed

locations. This enables us to fix the number of speakers from the first few video

frames either manually or automatically [Dalal and Triggs, 2005]. The fixed loca-

tions (territories) of the speakers will serve as their signatures.
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Given the (tracked) locations of the speakers, the remaining tasks are to define

what a gesture is and to determine its occurrence from frame to frame for each

speaker/location. Comparison of any frame with its previous immediate frame

shows that there are movements. Any of these movements could either be part of

a gesture or be noise. To determine which movements are gestures, we propose a

deterministic algorithm using heuristics.

The deterministic algorithm defines gesture to be any movement that lasts longer

than a fixed number of frames. Brief and isolated head or hand movements are

excluded. The motivation for the exclusion is to remove noise and to avoid confusion

between real gestures and the movements that people make for non-communicative

reasons (for example, during change of position or orientation).

Our deterministic diarization algorithm is presented in 2.1. The algorithm takes

in a video of speakers and returns time segments for which there is at least one per-

son speaking. Initialization of the algorithm includes fixing the number of speakers

and their locations at the beginning of the video. From line 3 through 9, the algo-

rithm detects motions. Detecting motion is performed by corner tracking. Corners

are unique pixels that can easily be computed and tracked [Tomasi and Shi, 1994].

Given the corner features, tracking is done with the pyramidal implementation of

the Lucas-Kanade algorithms [Bouguet, 1999; Bradski, 2000]. The Lucas Kanade al-

gorithm finds the displacement that minimizes the difference of given interest points

from two frames in a sequence. It works based on three assumptions: a) brightness

constancy - a point in a given image does not change in appearance as it moves

from frame to frame, b) temporal persistence - the motion of a surface patch changes

slowly in time, and c) spatial coherence - neighboring points in an image belong to

the same surface, have similar motion, and project to nearby points on the image

plane. These assumptions do not always hold but they are good approximations

for, in our case, motion detection.

The tracking of the corners is done within a window of a specified size. A trade-

off exists between the choice of the window size and the size of motion detected

(aperture problem). A small window cannot capture large motions. A large win-

dow violates the spatial coherence assumption. The trade-off is solved by applying

the Lucas-Kanade algorithm over a pyramid of images. A pyramid of images is a

collection of down-sampled images [Adelson et al., 1984] and, in our case, we use it

to detect large motions.

For continuous tracking, the corners need to be present in all frames. But this

is rarely the case given that human body motions are non-rigid. This means that

the number of corners and their locations are not stable; corners may disappear.

The solution is to re-detect corners when tracking fails.

Tracking corners until failure gives motion segments. These motion segments

are at the level of corners but what we want are motion segments at the level of

hands and face. The motion segments’ orientations are binned into three histograms

corresponding to motions of the left hand, the right hand and the head.
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Algorithm 2.1 Perform speaker diarization using gesture

Require: video of people communicating

Ensure: speaker IDs and their times of speech

1: Initialize the number of speakers

2: Initialize the location of the speakers

3: while next frame is available do

4: for each speaker do

5: //Determine if gesturing activity is observed

6: Detect and track corners using Lucas-Kanade algorithm

7: Keep only those that move > x pixels in significant directions

8: end for

9: end while

10: Join motions that come from the same locations (smoothing)

11: Remove motions with duration < y frames

12: Join motions that come from the same locations(re-smoothing)

13: Classify motions based on their location

Because tracking sometimes fails, the tracks for each speaker will have disconti-

nuities. Line 10 avoids these discontinuities by joining tracks that are not very apart

from each other. After smoothing, very short and isolated tracks are removed in line

11. But because this removal introduces discontinuities, re-smoothing is reapplied

in line 12. Finally, the resulting segments (or tracks) are the speaking times, which

line 13 assigns to speakers based on their locations.

2.4 Experiments

2.4.1 Dataset

The dataset for our experiments comes from the Augmented Multi-Party Interaction

(AMI) Corpus [Carletta et al., 2006]. The AMI Meeting Corpus is a multi-modal

dataset consisting of 100 hours of meeting recordings. For our experiments, we

used a subset of the IDIAP meetings (IN10XX and IS1009x) totalling 8.9 video

hours. The selected recordings have four participants engaged in a meeting. Each

recording has a separate video for a centre, left and right view of the participants

and a separate high resolution video for each participant’s face. From these different

recordings of the same meeting, we selected the left and right camera recordings,

each of which has two speakers with visible hands. An example snapshot of a

selected video (IN1016 AMI meeting) is given in figure 2.1. The left and right

camera views of the meeting are concatenated.

Speaker diarization can be challenging, depending on the number of speaker

and the amount of interaction. Table 2.1 gives details of the interaction of the

participants in the selected videos. The details concern the length of videos (in
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minutes), speech-time percentage (speech-time over video length), speech overlap

percentage (overlapped speech time over video length), and speaker turn switches

(average number of speaker turn switches per minute).

Figure 2.1: The figure represents the expected input to our algorithm. It is an example

snapshot of AMI-IN1016 video data. Our algorithm will predict that the person on the

right is speaking because, while other participants are motionless, he is gesturing.

Table 2.1: Features of experiment videos: speech-time percentage (speech-time over video

length), speech overlap percentage (overlapped speech time over video length), and speaker

turn switches (average number of speaker turn switches per minute).

Name

Video Speech Speech Turn

length time overlap switches

(min) (%) (%) (per min)

IN1005 46 94.90 9.53 7.35

IN1016 59 96.95 18.27 12.30

IS1009b 34 87.88 8.97 6.48

IN1012 51 96.89 28.44 12.82

IN1002* 41 93.15 14.31 10.03

IN1007* 40 96.46 22.57 9.43

IS1009c 30 84.16 4.23 4.85

IN1013 51 96.04 26.64 12.88

IN1009 20 89.67 12.61 4.57

IN1014* 61 90.49 12.21 10.00

IN1008* 56 90.81 9.27 12.40

IS1009d* 32 80.83 8.58 8.45

IS1009a* 13 75.15 10.27 3.25
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2.4.2 Evaluation metrics

Diarization Error Rate (DER) is widely used to evaluate speaker diarization sys-

tems. Despite its noisiness and sensitivity [Mirghafori and Wooters, 2006], DER is

used by NIST1 to compare different diarization systems. It consists of three types of

errors: false alarms (i.e. the system predicted speech that is not in the reference),

missed speech (the system failed to predict speech that is in the reference) and

speaker error (speech that is attributed to the wrong speaker). Equation 2.1 shows

that DER is measured as the fraction of time that is not attributed correctly to a

speaker or to non-speech and figure 2.2 illustrates the same information graphically.

DER =

∑
s∈S dur(s)

(
max

(
Nr(s), Nh(s)

)
−Nc(s)

)
∑
s∈S dur(s)Nr(s)

, (2.1)

where

dur(s) = the duration of segment s,

Nr(s) = the # of reference speakers speaking in segment s,

Nh(s) = the # of system speakers speaking in segment s,

Nc(s) = the # of reference speakers speaking in segment s for whom their matching

(mapped) system speakers are also speaking in segment s. A segment s is the time

range where no reference or system speaker starts or stops speaking.
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Figure 2.2: Illustration of elements of diarization error rate (DER): DER is the sum of the

boxes in the error section. Whenever there is overlapped speech and the system does not

predict it, it counts as missed speech and speaker error.

1http://www.itl.nist.gov/iad/mig//tests/rt/2006-spring/index.html
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2.5 Results and discussion

The output of our diarization system is evaluated for correctness against manually

annotated data in terms of Diarization Error Rate (DER). In speaker diarization

calculations using DER, the reference segments are only those with speech (see

equation 2.1). In our evaluations, the reference segments are those with gestures.

Recall that our diarization algorithm discards movements that are isolated and

short. Figure 2.3 shows the impact on performance of this discarding for four

videos (achieving the lowest DERs). As movements of short durations (from 0

to 65 frames) are discarded, DER decreases thereby increasing performance. To

give a single DER estimate for each video, we considered movements of duration

that lasted longer than 2.5 seconds (note that for ICSI-based speaker diarization

systems, every speaker is assumed to be speaking for at least 2.5 seconds [Friedland

et al., 2012]). Based on the 2.5 seconds cut-off (63 frames) of movement duration,

our DER scores for all tested videos are presented in table 2.2. The table also

presents percentages for gesture-time, gesture-overlap and the number of gesturer

turn switches per minute.
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Figure 2.3: Discarding movements of short durations (< 65 frames) decreases DER whereas

discarding movements of long durations (> 65 frames) increases DER. Frame rate is 25.
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Table 2.2: Diarization Error Rates (DER) for 13 videos characterized by: the gesture-time

percentage (gesture-time over video length), the gesture overlap percentage (overlapped

gesture time over video length), and the number of gesturer turn switches (average number

of gesturer turn switches per minute).

Name

Gesture Gesture Turn

time overlap switches DER

(%) (%) (per min) (%)

IN1005 62.54 0.03 1.07 14.52

IN1016 72.45 0.00 1.58 21.62

IS1009b 72.23 0.00 0.78 26.80

IN1012 64.00 0.00 1.67 35.30

IN1002* 63.65 0.00 0.95 37.03

IN1007* 67.06 0.04 1.37 40.41

IS1009c 66.40 0.00 0.70 45.22

IN1013 69.47 0.01 1.42 53.73

IN1009 59.50 0.00 0.67 54.92

IN1014* 71.60 0.00 1.15 58.16

IN1008* 57.80 0.00 1.88 62.47

IS1009d* 68.82 0.00 0.58 63.05

IS1009a* 60.84 0.00 0.28 63.98

How do our results compare with previous results? Direct quantitative compar-

ison would be incorrect given the differences in experimental set-up, set of videos

used and the sensitivity of the DER [Mirghafori and Wooters, 2006]. But, for rough

comparison, we mention previous NIST evaluation results. The official NIST Rich

Transcription 2009 evaluation results for various conditions are presented in Fried-

land et al. [2012]. For batch audio, the DER ranges between 17.24% and 31.30%.

For online audio, the DER is 39.27% and 44.61%. For audiovisual, it is 32.56%.

We can make qualitative comparison of our diarization method with previous

diarization methods. Our diarization method has the advantage of being simpler

and of using only video features (making it suitable for noisy environments). Pre-

vious speaker diarization systems are based on the ICSI speaker diarization system

[Wooters and Huijbregts, 2008] and involve a number of subcomponents [Friedland

et al., 2012; Huijbregts et al., 2012] for tasks such as filtering (Wiener), modeling

(GMMs and HMMs), parameter estimation (Expectation-Maximization), decod-

ing (HMM-Viterbi), clustering (agglomerative hierarchical clustering (AHC) with

Bayesian information criterion (BIC)) and feature extraction (such as MFCC).

Our diarization method does not use any of these subcomponents but uses al-

gorithms for corner detection [Tomasi and Shi, 1994] and tracking [Bouguet, 2001]

under the assumption that upper bodies of stationary or tracked speakers are visible
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in the video. It is this assumption which limits the application of our diarization

method. Where an active speaker becomes invisible in the videos (which is the case

for video names marked with * in table 2.2), the diarization error becomes higher.

Furthermore, in videos where the gestures of a person are picked up by both cam-

eras, which is the case for most videos (because of the camera arrangements), the

diarization error becomes higher. This can be seen in figure 2.1, where the head of

the left-most person also appears in the bottom-right corner.

There are two criticisms of using gesture for speaker diarization. One is of

the form: speakers do not always gesture. This is true but gesture is frequent

enough that, in some cases, methods can be designed to overcome its absence (e.g.

smoothing). In our videos, the diarization algorithm has found that roughly 75%

of speech is accompanied by gesture. The other criticism is of the form: what is a

gesture? This is hard to answer without reference to semantics. In our case, we

assumed any movement to be part of a gesture and it seems that this is a reasonable

assumption for people in conference meetings. For more complex scenarios, there

is a need to differentiate gestural activity from other activities.

2.6 Conclusions and future work

This chapter presented a novel solution to the speaker diarization problem based on

the hypothesis that the gesturer is the speaker and that gestural activity can be used

to determine the active speaker. After giving evidence to support the hypothesis, the

chapter presented an algorithm for gestural activity detection based on localization

and tracking of corners. The algorithm works based on the assumption that the

background of the speakers is static and that the speakers do not switch places.

This assumption is reasonable for conference meetings. Further improvements of

the algorithm for understanding gestures under more general recording conditions

are left for future work. Future work should examine a probabilistic implementation

of the diarization algorithm and include other cues including audio, lip movements

and visual focus of attention of speakers (listeners tend to look at the active speaker).

2.7 Related work

The work presented here focuses on justifying and using gesture for speaker diariza-

tion. To the best of our knowledge, this has not been done before and is therefore

a contribution. This work is similar to but more general than the work by Cristani

et al. [2011], which considers using gesturing as a means to perform Voice Activity

Detection (VAD). Their main rationale is different from ours. They see audio as

the most natural and reliable channel for VAD. They use gesture when audio is un-

available (e.g. in surveillance conditions). By contrast, this work emphasizes that

gesture is synchronous with speech, and wherever applicable, gesturer diarization

can reliably be taken as speaker diarization.
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The work presented here also includes the presentation of a new vision-based

speaker diarization algorithm that is different from the standard ICSI speaker di-

arization system [Ajmera and Wooters, 2003; Wooters et al., 2004; Wooters and

Huijbregts, 2008]. The ICSI system is the most dominant diarization system with

state-of-the-art results in several NIST RT evaluations2. The system is based on

an agglomerative clustering technique. In the context of speaker diarization, this

technique has three main stages: preprocessing, segmentation and clustering ( see

figure 2.4. The preprocessing is done once but the segmentation and clustering are

done iteratively until ‘optimal’ number of clusters is obtained. The optimal num-

ber of clusters is meant to represent the actual number of speakers present in the

recording.

audio SAD

cluster

initialization

Train

Segment
Combine

two clusters

Merge

clusters?

stop

(MFCC)

(speech only)

no

yes

Figure 2.4: Overview of the ICSI speaker diarization system

2http://www.itl.nist.gov/iad/mig/tests/rt/
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2.7.1 Preprocessing

The purpose of the preprocessing stage is to prepare the speech data. The prepara-

tion involves filtering (to reduce noise), speech activity detection (to remove silence

parts and non-speech sounds) and feature extraction (to turn speech data into acous-

tic features such as MFCC, PLP, etc.). At this stage, cluster initialization is also

performed – the initial number of clusters is fixed and speech segments are grouped

together in the clusters. Systematic approaches to initialization can improve perfor-

mance and system adaptability [Anguera et al., 2006; Imseng and Friedland, 2009,

2010; Ben-Harush et al., 2012]. The initialization process gives acoustic models in

the form of GMMs for each cluster. These GMM models are then used to seed the

segmentation process.

2.7.2 Segmentation and clustering

Speaker segmentation is the process of assigning speaker IDs to speech segments. It

aims at splitting the speech stream into speaker homogeneous segments or equiva-

lently into speaker turn changes. With the current estimates of the GMM models,

Viterbi decoding segments the speech stream. The new segmentation is then used

in the clustering stage.

Clustering, aka merging, is the process of identifying and grouping together

same-speaker segments from anywhere in the speech stream. This process selects

the closest pair of clusters (GMM models) and merges them (a new GMM model).

The decision to merge two clusters is made on the basis of BIC scores. The BIC

scores of all possible pairs of clusters are compared and the pair that results into

the highest BIC score is combined into a new GMM. The segmenting and clustering

stages then repeat until there are no remaining pairs that when merged lead to an

improved BIC score.

The segmentation and clustering stages do not have tunable parameters but the

preprocessing stage has quite a few: the type of speech activity detector (supervised

or unsupervised, usually supervised), the initial number of clusters (K, usually

chosen to be 16 or 40), the initial number of Gaussian components for the clusters

(M , usually chosen to be 5), the type of initialization used to create the clusters

(usually, k-means or uniform partitioning), and the set of acoustic features used to

represent the signal (usually 19 MFCC features).

Other acoustic features including Linear frequency cepstral coefficients (LFCC),

Perceptual Linear Predictive (PLP) and Linear Predictive Coding (LPC) are also

used [Anguera, 2007]. And since recently, visual features are receiving more atten-

tion; they are being widely used in combination with audio features [Vajaria et al.,

2008; Friedland et al., 2009; Hung and Ba, 2010; Garau and Bourlard, 2010; Noulas

et al., 2012]. But despite the recognition of their importance, visual features are

usually given second level importance. They are rarely used alone for speaker di-

arization even though tight relationship is known to exist between speech and body

gestures.
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In summary, our work builds on and extends the speaker diarization literature

on two fronts: a) emphasis on the use of gesture for speaker diarization, and b) a new

vision-only diarization method that performs reasonably well with the advantage of

being simpler. Both fronts offer opportunities for research in new directions as we

will see in chapters 4 and 5.
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Chapter 3

Signer diarization:

the gesturer is the signer

Content

This chapter presents a vision-based method for signer diarization – the task of

automatically determining who signed when in a video. This task has similar

motivations and applications as speaker diarization but has received little

attention in the literature. The chapter motivates the problem and proposes

a method for solving it. The method is based on the hypothesis that signers

make more movements than their addressees. Experiments on four videos (a

total of 1.4 hours and each consisting of two signers) shows the applicability

of the method. The best diarization error rate obtained is 0.16.

Based on

B. G. Gebre, P. Wittenburg and T. Heskes (2013). “Automatic signer di-

arization - the mover is the signer approach”. In Proceedings of the 2013

IEEE Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW), pages 283-287, IEEE.

Keywords

Sign language, diarization, gesture, phonemes, unique features, DER
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3.1 Introduction

Speaker diarization, as presented in the previous chapter, is the task of determining

who spoke when in an audio and/or video recording. It is a dedicated domain of re-

search in the multimedia signal processing community, receiving many publications

every year [Tranter and Reynolds, 2006; Anguera et al., 2012]. Most applications

and technologies of diarization are driven by spoken languages. But spoken lan-

guage is only one of the modalities of human communication. Written and signed

languages are the other common modalities. In this study, we consider the visual-

gestural modality and provide a baseline algorithm for determining who signed when

from a video recording of multiple signers engaged in a dialogue.

We call the task of determining who signed when a signer diarization problem.

This task is similar to the problem of speaker diarization. In the previous chapter,

we proposed a speaker diarization algorithm based on gestures. In this chapter, we

propose to use the same algorithm to solve signer diarization as signed languages

inherently involve gestures. Our hypothesis in the previous chapter is that the

gesturer is the speaker. In this chapter, we update that hypothesis to: the gesturer

is the signer as we are dealing with signed languages.

Compared to the previous chapter, the contribution in this chapter is the identi-

fication of signer diarization as an important problem and showing that the speaker

diarization algorithm that we proposed in the previous chapter is also applicable to

signer diarization. In section 3.2, we provide motivations and applications of signer

diarization. In section 3.4, we present the signer diarization algorithm. The algo-

rithm uses no more knowledge than signers’ movements. In subsequent sections, we

discuss the achieved results and give suggestions for future work.

3.2 Motivation

Determining the number of signers and who signed when from a video recording

of unknown content and unknown signers has a number of applications in different

domains that involve sign languages. These include broadcast news, debates, shows,

meetings and interviews. The general applications come in the following forms.

Pre-processing module

Signer diarization output can be used as input for single signer-based sign

language processing algorithms such as signer tracking, signer identification

and signer verification algorithms. It can also be used to adapt automatic sign

language recognition towards a given signer. Currently, signer-dependent sign

language recognition systems outperform signer-independent systems [Bauer

et al., 2000; Zhang et al., 2004; Zieren and Kraiss, 2005; Cooper et al., 2012b;

Akram et al., 2012]. In this context, automatic signer diarization systems can

be used as input to signer adaptation methods.
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Signer indexing and rich transcription

Indexing video and the linguistic transcripts by signers makes information

search and processing more efficient for both humans and machines. Typical

uses of such output might be for message summarization, machine transla-

tion and linguistic and behavioral analysis (for example, scientific turn-taking

studies [Stivers et al., 2009; Coates and Sutton-Spence, 2001]).

The need for some of the applications mentioned above might not be urgent given

that sign language recognition is at research stage [Cooper et al., 2012b], but in

scientific turn-taking studies [Stivers et al., 2009], humans already perform manual

signer diarization. And, like all manual annotations, this process has limitations -

it is slow, costly and does not scale with the increasing amount of data. Therefore,

there is a need to develop methods for automatic signer diarization.

3.3 Signer diarization complexity

Given a video of signers recorded using a single camera, automatically determining

who signed when is challenging. The challenge arises from signers themselves and

the environment (recording conditions).

Signers

To begin with, the number of signers is unknown and this number may change

in time as a participant leaves or joins the conversation. The locations and

orientations of signers may change and these changes could take place while

signing. Signers may take short signing turns and often sign at the same time

(overlap in time). The signing spaces of signers may also be shared (overlap

in space).

Environment

The environment includes background and camera noises. The background

video may include dynamic objects – increasing the ambiguity of signing ac-

tivity. The properties and configurations of the camera induce variations of

scale, translation, rotation, view, occlusion, etc. These variations coupled

with lighting conditions may introduce noises. These are common challenges

in many other computer vision problems.

3.4 Our signer diarization algorithm

Sign language is a gestural-visual language. A signer produces a sequence of signs

and an interlocutor sees and interprets the sequence. Like spoken languages, sign

languages can be described at different levels of analysis such as phonology, mor-

phology, syntax and semantics [Valli and Lucas, 2001]. The phonemes, which are



Chapter 3. Signer diarization: the gesturer is the signer 31

the basic units of sign languages, are made from a set of hand shapes, locations and

movements [Stokoe, 2005]. These subunits make up the manual signs of a given

sign language. The whole message of an utterance is contained not only in manual

signs but also in non-manual signs (facial expressions, head/shoulder motion and

body posture) [Liddell, 1978].

In theory, an automatic signer diarization system can exploit some or all of

the basic units from both manual and non-manual signs to perform signer diariza-

tion. In practice, however, some sub-units are easier to extract and exploit by the

machine. This paper proposes a diarization method based on body movements.

The hypothesis is that the active signer makes more movements than the other

interlocutors.

3.4.1 Algorithm

Our automatic signer diarization algorithm consists of modules that determine:

a) the number of signers, b) their identities (or signatures), and c) whether or not

they signed. The modules can be simple or complex depending on the content of

the video and/or recording conditions. The most general signer diarization system

assumes nothing of the number of signers, their signatures and the video recording

conditions. Developing such a method, besides being more complex, will be ineffi-

cient and is likely to even be less accurate than a system developed and tailored for

a specific instance of video recording conditions.

In our diarization system, we make a number of simplifying assumptions about

the video recording conditions and provide a mechanism for user involvement using

annotation tools like ELAN [Sloetjes and Wittenburg, 2008]. The user of the system

makes some simple decisions to initialize the system. The user determines the

number of signers from the first frame of the video by creating bounded boxes for

each signer. These bounded boxes limit the boundaries of the signing spaces for each

signer. The diarization system assumes the signers maintain their location (this is

a reasonable assumption for videos of interviews and conference meetings) or are

tracked [Darrell et al., 2000]. Given the locations of signers and assured of their

stability, the remaining task is to define and determine signing activity detection

for each signer/location from frame to frame.

What constitutes signing activity? Based on any consecutive frame pairs, each

bounded box (i.e. a signer) may have some movement (arising either from signing

activity or noise). Movements that last longer than a fixed number of frames are

considered to constitute a signing activity. In other words, isolated and brief head

or hand movements are excluded. The motivation for the exclusion of isolated and

brief movements is to remove noise and to avoid confusion between real signs and

other movements like moving the body to change orientation.
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3.4.2 Implementation

What is a hand/face and what is a movement from an implementation perspective?

We use corners to detect and track body movements. Corners have the property

that they are distinct from their surrounding points, making them good features

for tracking [Tomasi and Shi, 1994]. For a given point in a homogeneous image,

it is not possible to identify whether or not it has moved in the subsequent frame.

Similarly, for a given point along an edge, it is not possible to identify whether or

not it has moved along that edge. However, the motion of a corner can conveniently

be computed and identified [Tomasi and Shi, 1994].

For a given application, not all corners in a video are equally important. For

sign activity detection, the interesting corners are the ones resulting from body

movements, mainly from head and hand movements. In order to filter out the

corners irrelevant to body movements, we ignore corners that do not move more than

a given threshold. For tracking the movement of corners, we apply the pyramidal

implementation of the Lucas-Kanade algorithm [Bouguet, 2001; Bradski, 2000].

The following is a pseudo-code for determining the active signer. For detailed

description of the algorithm, see the explanation in the previous chapter (2.3).

Algorithm 3.1 Perform signer diarization using movement

Require: video of people communicating

Ensure: signer IDs and their times of signing

1: Initialize the number of signers

2: Initialize the location of the signers

3: while next frame is available do

4: for each signer do

5: //Determine if signing activity is observed

6: Detect and track corners using Lucas-Kanade algorithm

7: Keep only those that move > x pixels in significant directions

8: end for

9: end while

10: Join motions that come from the same locations (smoothing)

11: Remove motions with duration < Y frames

12: Join motions that come from the same locations (re-smoothing)

13: Classify motions based on their location

3.5 Experiments

3.5.1 Datasets

We ran our signer diarization algorithm on four videos taken from the Language

Archive at the Max Planck Institute for Psycholinguistics. Each video has two

signers of Kata Kolok [de Vos, 2012] for the whole length of the video but sometimes
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a child or a passerby appears in the video. Table 3.1 shows the details of the

interaction of the signers in the videos. The details are extracted from manually

annotated data.

Table 3.1: Experiment dataset details: four videos each with two signers signing in Kata

Kolok [de Vos, 2012]

Video Length STP STM DSS SO

KN5 ≈17 82.89 16.30 62.56 9.61

PiKe ≈18 70.04 15.40 57.62 11.52

ReKe ≈24 81.82 19.10 58.13 9.22

SuJu ≈24 78.13 15.24 66.39 9.68

Length = Video length in minutes

STP = Signing Time Percentage

STM = # of Signing Turns per Minute

DSS = Dominant Signer Share of sign time

SO = % of Signers Overlap (over sign time)

3.5.2 Evaluation metrics

We propose to use Diarization Error Rate (DER) to evaluate signer diarization

algorithms. This evaluation metric, which we presented in the previous chapter,

is widely used to evaluate speaker diarization systems despite the observation that

it can be noisy and sensitive [Mirghafori and Wooters, 2006]. Equation 3.1 is the

same formula that we use in the previous chapter to compute DER. In this chapter,

we use the same formula but redefine it to give it a new meaning to reflect the fact

that we are dealing with signed languages. Accordingly, it is defined as the fraction

of signer time that is incorrectly attributed to a signer as shown in equation 3.1.

DER =

∑
s∈S dur(s)

(
max

(
Nr(s), Nh(s)

)
−Nc(s)

)
∑
s∈S dur(s)Nr(s)

, (3.1)

where

dur(s) = the duration of segment s,

Nr(s) = the # of reference signers signing in segment s,

Nh(s) = the # of system signers signing in segment s,

Nc(s) = the # of reference signers signing in segment s for whom their matching

(mapped) system signers are also signing in segment s. Note that a segment s is the

time range where no reference signer or system signer starts signing or stops signing.

Qualitatively speaking, diarization error rate consists of three types of errors: false

alarm signer time fraction (i.e. the system predicted signing time that is not in
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the reference), missed signer time fraction (the system failed to predict signing time

that is in the reference) and signer error time fraction (signer time that is attributed

to the wrong signer).

3.6 Results and discussion

The output of our diarization system is evaluated for correctness against manually

annotated data using Diarization Error Rate (DER). The reference frames are those

frames that have been annotated (70-80% of the video length as shown in table 3.1).

Table 3.2 presents the diarization error rate scores for each video. The best DER

scores are obtained for SuJu, KN5 and ReKe videos. The worst DER is obtained

for PiKe video. The explanation for the latter result has to do with false alarm

errors (movements that are detected by the algorithm but that are not annotated

as signs in the manually annotated data). Examining the video shows the sources

of the false alarms. One source is the movement of a child that comes to her mother

for part of the video. The other source is the appearance of signing activity of one

signer in the signing space of the other signer.

Table 3.2: Signer diarization evaluation: diarization error rate scores.

Video Y MS FA SE DER

KN5 13 0.12 0.07 0.05 0.24

PiKe 8 0.11 0.14 0.04 0.29

ReKe 18 0.14 0.05 0.05 0.25

SuJu 10 0.08 0.05 0.03 0.16

Y = Minimum signing duration (frames)

MS = fraction of Missed Sign Time

FA = fraction of False Alarm

SE = fraction of Wrong Signer Prediction

DER = MS + FA + SE

From the experiment data statistics and the DER scores, we can make the

following observation: the diarization error rate is lower when one signer dominates

more and when there is less overlap. For example, the best DER score of 0.16

is achieved for video SuJu, which has the most dominant signer and low signing

overlap percentages (66.39% and 9.68%, respectively) and the worst DER score is

achieved for PiKe, which has the highest signing overlap percentage (11.52%).

An important parameter of the signer diarization algorithm is the number of

frames to remove – parameter Y shown in line 11 of the diarization algorithm (3.1).

This parameter controls the minimum duration of body movements to consider as

signing activity. It is measured in frames and any motion less than Y is considered

noise and discarded. Figure 3.1 shows the impact of varying this parameter on
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Figure 3.1: Performance variation as body movements of short duration are discarded.

diarization error rates for the four videos. The larger the Y value, the higher the

missed signs and the lower false alarms (and vice versa). In other words, the Y

value controls the trade-off between false alarms and missed signs. The best Y

values that result in the lowest diarization errors are indicated in table 3.2.

Apart from the duration of the movements, our diarization algorithm does

not interpret the movements. This makes it applicable independent of sign lan-

guages/signers but it also makes it vulnerable to false alarms. But, as our results

indicate, movement is one of the most informative indicators of signing activity or

uttering activity in general. Movements that speakers make, called gestures, are

also used to identify speakers as we showed in the previous chapter.

In standard speaker diarization algorithms, which are based on iterative seg-

mentation and clustering [Wooters and Huijbregts, 2008; Huijbregts et al., 2012],

each speaker is modeled by a Gaussian Mixture model (GMM). In our model, each

signer is represented by a location. If the location is shared, which is not unlikely,

a more powerful model of disambiguating the sources of signing activity is needed.
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3.7 Conclusions and future work

This chapter introduced and motivated the signer diarization problem by drawing

similarities with the speaker diarization problem. The chapter proposed a signer

diarization algorithm based on the hypothesis that signers make more body move-

ments than their interlocutors. The algorithm is implemented using corner detection

and tracking algorithms. With a best score of 0.16 DER, our experimental results

show the applicability of the algorithm in semi-automatic video annotations. From

the results, we can formulate two conclusions. First, body motion is an inexpensive

source of information for signer diarization - making it applicable regardless of sign

languages and signers. Second, not all body motion is signing activity - making it

less effective in noisy environments.

Future study should examine other sources of information than just body mo-

tion. Other sources include body posture, head orientations (interlocutors look at

the active signer) and audio (signers sometimes make sound while signing). These

different sources of information can then be fused in a probabilistic framework to

perform signer diarization. In the next chapter, we present a probabilistic diariza-

tion algorithm based on a Motion History Image and show its application for online

signer and speaker diarization. Note that our study in the previous two chapters

focused on off-line speaker/signer diarization.
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Chapter 4

Motion History Images for online

diarization

Content

The previous two chapters presented a solution to the problems of offline

speaker and signer diarization. This chapter presents a solution to the prob-

lem of online speaker and signer diarization. The solution is based on the

idea that gestural activity is highly correlated with uttering activity; the cor-

relation is necessarily true for sign languages and mostly true for spoken lan-

guages. The novel part of our solution is the use of motion history images

(MHI) as a likelihood measure for probabilistically detecting gesturing activi-

ties and, because of its efficiency, using it to perform online speaker and signer

diarization.

Based on

B. G. Gebre, P. Wittenburg, T. Heskes and S. Drude (2014). “Motion his-

tory images for online speaker/signer diarization”. In Proceedings of the 2014

IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP), pages 1537-1541, IEEE.

Keywords

Motion History Images, Motion Energy Images, gesture, AMI dataset
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4.1 Introduction

Conversation can take place in written, spoken and signed languages. In any of

these modalities, determining who said when is a challenging problem. In written

works (e.g. fiction), tracking the number of characters and their utterances is hard

because of, for example, anaphora resolution [Mitkov, 2002]. In spoken languages,

determining who spoke when has also proven hard despite the research dedicated to

it [Anguera et al., 2012]. In signed languages, even though there is little research

into it, our study presented in chapter 3 shows that it is also a hard problem because

of non-communicative body movements.

In this chapter, we propose a solution to the problems of both speaker and

signer diarization in online settings. Our work in chapters 2 and 3 focused on offline

diarization, where the whole data is assumed to be available before diarization. In

this chapter, we consider the problem where diarization has to be performed as soon

as a segment of data arrives. We are interested in online diarization because it has

applications in human-to-human or human-to-computer interactions (e.g. dialogue

systems). For example, in video conferences, we would like to focus automatically

on the active speaker. In human-robot interaction, we would like the robot to turn

its head to look at the person speaking. Online diarization systems can also be used

where offline diarization systems are used. For example, in information retrieval,

we would like to index and search information by speakers/signers.

The aforementioned applications and others have led to extensive research into

speaker diarization, resulting into many types of solutions and tools [Anguera et al.,

2012]. Most of these solutions focus on offline tasks [Tranter and Reynolds, 2006;

Anguera et al., 2012; Meignier and Merlin, 2010; Vijayasenan and Valente, 2012;

Rouvier et al., 2013]. A few of them focus on online tasks [Noulas and Krose, 2007;

Markov and Nakamura, 2007; Friedland and Vinyals, 2008; Vaquero et al., 2010].

Compared to previous work, the novel part of our solution is the application of

Motion History Images [Davis and Bobick, 1997] in solving both speaker and signer

diarization problems.

Our use of Motion History Images is presented in the context of online diariza-

tion tasks although it can also be used for offline diarization tasks. Motion History

Image (MHI) is an efficient way of representing arbitrary movements (coming from

many frames) in a single static image. This type of representation has been used

for various action recognition tasks [Davis and Bobick, 1997; Bradski and Davis,

2002; Ahad, 2013]. The strength of MHI is its descriptiveness and real-time repre-

sentation. It is descriptive because it can tell us where and how motions occurred.

It is real-time because its computational cost is minimal. The rest of the chapter

gives more details about MHI and its application in speaker/signer diarization.
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4.2 Gesture representation

When people speak, they mostly gesture. When people use sign language, they

inherently make movements. In either case, our goal in a diarization system is to

determine where motion occurs and to decide if it indicates an uttering activity.

Our work assumes that there is only body motion in the video. Motions that result

from the camera or distracting objects are assumed to have been separated in a

preprocessing step. For conference or meeting data, there is no need for a prepro-

cessing step; we can safely assume that motions come mainly from humans engaged

in a conversation. In such cases, how can we detect the foreground motion? We can

either apply background subtraction or frame differencing. In our experiments, we

applied frame differencing because we obtained results that are qualitatively similar

to those coming from a less efficient background subtraction algorithm that uses a

Gaussian Mixture Model [KaewTraKulPong and Bowden, 2002].

After finding the foreground (moving) objects, how do we efficiently and con-

veniently represent motion in a way that indicates a) where it occurred (space)

b) when it occurred (time). We use Motion History Image (MHI) [Davis and Bo-

bick, 1997]. A MHI is a single stacked image that encodes motion that occurred

between every frame pair for the last τ number of frames. The type of information

encoded in the MHI can be binary and, in such a case, it is called Motion Energy

Image (MEI). The MEI indicates where the motion has occurred in any of the τ

frames. We use this MEI to tell us which person is speaking or signing. MEI does

not tell us how the motion occurred. For this information, we need to use the

Motion History Image (MHI), which is an image whose intensities are a function

of recency of motion. The more recent a motion is, the higher its intensity. More

formal definitions of MEI and MHI are given in the following subsections.

4.2.1 Motion Energy Image

To represent where motion occurred, we form a Motion Energy Image and it is

constructed as follows. Let I(x, y, t) be an image sequence, and let D(x, y, t) be

a binary image sequence indicating regions of motion (for example, generated by

frame differencing). Then the binary MEI E(x, y, t) is defined as follows:

Eδ(x, y, t) =

δ−1⋃
i=0

D(x, y, t− i), (4.1)

where δ is the temporal extent of motion (for example, a fixed number of frames).

In words, Eδ(x, y, t) is a single image that is the union of several binary images.

The number of binary images depends on the parameter δ. Figure 4.1 (c) shows an

image example of a MEI for a speaker who is also gesturing with δ set to 1 second.
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(a) Frames

(b) MHI

(c) MEI

Figure 4.1: Examples of visualizations of MHI and MEI images. (a) Selected frames of

a video taken from AMI meeting data. (b) The MHI of 25 frames - recent motions are

brighter. (c) The MEI of 25 frames - white regions correspond to motion that occurred in

any pixel in any one of the last 25 frames.

4.2.2 Motion History Image

To represent how motion occurred, we form a Motion History Image (MHI) as

follows:

Hτ (x, y, t) =

{
τ if D(x, y, t) = 1

0 else if Hτ (x, y, t) < (τ − δ)
(4.2)

where τ is the current time-stamp and δ is the maximum time duration constant (τ

and δ are converted to frame numbers based on frame rate). In words, Hτ (x, y, t) is

an image where current motions are updated to the current timestamp (basically,

high values) whereas motions that occurred a little earlier keep their old timestamps

(which are smaller than the current timestamp). Motions that are older than δ time

are set to zero. Figure 4.1 (b) shows an example of MHIs at four different time

instants for a speaker who is gesturing. Note that by thresholding a MHI above

zero, a MEI image can be generated.
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4.3 The online diarization system

In an online diarization system, we want to determine who at any time is speak-

ing/signing given that we have video observations from 0 to t. Let each person’s

state be represented by xit (binary values of speaking or not speaking) and let zi0:t

be measurements (of the video frames) for each person i, the objective is then to

calculate the probability of xit at time t given the observations zi0:t up to time t:

p(xit|zi0:t) =
p(zit|xit)p(xit|zi0:t−1)

p(zit|zi0:t−1)
, (4.3)

where p(zit|zi0:t−1) is a normalization constant. In equation 4.3, there are two impor-

tant probability distributions: one is p(xit|zi0:t−1), we refer to it as the conversation

dynamics model and the other is p(zit|xit) and we refer to it as the gesture model.

4.3.1 Conversation dynamics

Conversation imposes its own dynamics on speakers. A given speaker is more likely

to continue to speak in the next frame than stop or be interrupted by others. We

encode this type of dynamics as follows:

p(xit|zi0:t−1) =
∑
xt−1

p(xit|xit−1)p(xit−1|zi0:t−1) (4.4)

where p(xit−1|zi0:t−1) is the posterior from the previous time and p(xit|xit−1) is the

conversation dynamics. The dynamics can be learned from training data but, for

simplicity, we assume that a speaker is 90% more likely to continue speaking than

not. Similarly, a silent person is more likely to continue to be silent. We encode

these assumptions in a fixed transition matrix as follows:

p(xit|xit−1) =

(
0.9 0.1

0.1 0.9

)
(4.5)

4.3.2 Gesture model

For both speaker and signer diarization systems, we assume that MEI is a strong

indicator of an utterance. The higher the energy (the sum of MEI individual values),

the higher the probability of an utterance. We model this type of relationship using

a gamma distribution with shape parameter k and scale parameter θ.

p(zit|xit;k,θ) =
(zit)

kx−1 exp(− zit
θx

)

θkxx Γ(kx)
for zit,k,θ > 0 (4.6)

where x = xit, z
i
t is the number of motion pixels in a MEI for speaker/signer i and xit

is a binary random variable whose values represent uttering and non-uttering status

of each person. Each state of xit has its own gamma distribution whose parameter
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values are learned from data that has been manually annotated for speaking and

non-speaking (similarly, for signing and non-signing). The models for gesture and

the conversation dynamics are illustrated in figure 4.2.

spk10.9

spk0

0.1

0.1 0.9

spk2

0.1

0.1

0.9

ges

ges ges

Figure 4.2: A state transition diagram for two speakers (spk1 and spk2) and one dummy

speaker (spk0), which represents silence or non-speech. Each speaker is checked for ges-

turing using the same gesture models (ges and ges). The speaker that has the highest

probability of speaking given observed gestures and the conversation dynamics is predicted

to be the active speaker.

4.4 Experiments

4.4.1 Datasets

Spoken language data

Our spoken language experiment data comes from a publicly available corpus

called the AMI corpus [Carletta et al., 2006]. The AMI corpus consists of

annotated audio-visual data of a number of participants engaged in a meeting.

We selected seven meetings (IN10XX and IS1009), which together run for a

total of (≈ 4.9) hours. These meetings have four participants and are a subset

of the meetings we used in chapter 2. The video recordings we used in chapter

2 were made by two cameras (left and right cameras). In this chapter, we use

the video recordings that were made by four cameras, each recording the

upper body of one participant. These individual recordings are mostly good

but sometimes the hands of a participant are off-screen.
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Sign language data

Our signed language experiment data consists of four video recordings (≈ 1.4

hours) of Kata Kolok, a sign language used in northern Bali [de Vos, 2012].

Each video has two participants conversing in sign language and is recorded

from a single fixed camera. In these videos, there is no boundary between

the signers. In fact, sometimes, the signing space is shared by both signers -

making the task of diarization more difficult. Note that these videos are the

same videos used in chapter 3 and for more details about the videos, see 3.5.1.

Where is each signer in the video? We answered this question by clustering

MEI motion pixels into a prefixed K centers, set equal to the number of

signers. We implemented a sequential k-means that updates the centers of

clusters (signing space) in an online fashion as follows:

Ci
t = Ci

t +
1

ni0:t

(P j
t −C

i
t) (4.7)

∀j with Ci
t closest to P jt . Ci

t is the x-y center point for signer i at time t

and ni0:t is the total count of x-y points for signer i for times 0 : t. P t refers

to a location with non-zero value of MEI at time t and P jt stands for a point

closest to Cit .

4.4.2 Evaluation metrics

We use Diarization Error Rate (DER) to evaluate our online diarization systems.

This is the same evaluation metric that we presented and described in chapters 2

and 3. It consists of three types of errors: false alarm, missed speaker/signer time

and speaker/signer error (see 2.4.2 and 3.5.2).

4.5 Results and discussion

4.5.1 Speaker diarization

The output of our speaker diarization system is given by probability values - one

for each person per frame. We say that a person is speaking when the probability

value for that person is the largest. The assumption is that at any time frame,

only one person is speaking (unless more than one person has the same largest

probability). Figure 4.3 shows a snapshot example of the output of the diarization

system after running it on IN1016-AMI meeting data. In this figure, we can clearly

see that the person that is gesturing is the speaker and the MHI clearly reflects this

observation. But is that always the case? Table 4.1 shows that a person could be

moving without speaking or that they could be speaking without gesturing. For

this reason, the DER score is high for a baseline diarization algorithm that predicts

the presence of speech whenever it detects motion.
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Table 4.1: The proportion of time there is (no) motion when there is speech or no speech.

Speech? Motion? Overlap

Yes Yes 0.98

No 0.02

No Yes 0.77

No 0.23

Baseline diarization error rate (DER) = 196.75

Motion for each speaker is defined as sum(MEI) > 0

(a) Frames

(b) MHI

Figure 4.3: Output of the online diarizer on IN1016 meeting video. (a) Frames of speakers

- the predicted active speaker is marked. The vertical bar shows the relative confidence in

the prediction of who is speaking? (b) The MHI of the active speaker.

Table 4.2 gives performance scores of the diarization system after running it

on seven videos. Performance scores range from 31.90% to 59.90% DER. Previous

state-of-the-art scores for online diarization using audio range between 39.27% DER

(for multiple microphones) and 44.61% DER (for a single microphone) [Friedland

et al., 2012]. Our scores, which use only gestures, are close to these previous scores.

Note that in table 4.2, the scores for false alarms (FA) are close to 0. This

resulted a) from forcing our system to assume that only one person is speaking at

any time and b) from evaluating the performance on speech-only segments. The

non-zero FA scores in the table resulted from speakers sharing the same largest

probability.
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Table 4.2: Online speaker diarization results

Video Miss FA Spkr DER DER \{FA}

IN1005 2.90 0.00 38.40 41.24 41.30

IN1009 5.50 0.00 54.40 59.90 59.90

IN1012 11.00 0.00 40.30 51.34 51.30

IN1013 12.80 0.00 36.40 49.23 49.20

IN1016 6.70 0.50 33.50 40.66 40.20

IS1009b 2.60 0.50 29.30 32.46 31.90

IS1009c 1.80 0.00 45.30 47.14 47.10

ALL 6.80 0.20 38.80 45.72 45.60

MS = Missed Speech

FA = False Alarm

Spkr = Speaker error

DER = MS + FA + Spkr

DER\{FA} = DER without FA

4.5.2 Signer diarization

Like the speaker diarization output, the output of the signer diarization system

is also given by probability values. We say that a person is signing when the

probability value for that signer is the largest. The performance scores for signer

diarization are given in table 4.3. These error scores are better than those reported

in chapter 3, where we used corner detection and tracking (see 3.6).

Table 4.3: Online signer diarization results

Video Miss FA Sgnr DER DER\{FA}

KN5 5.80 0.00 9.90 15.67 15.70

PiKe 7.80 0.00 14.80 22.63 22.60

ReKe 6.90 0.00 13.00 19.93 19.90

SuJu 7.10 0.00 15.00 22.18 22.10

ALL 6.90 0.00 13.30 20.17 20.20

One main difference between signer diarization and speaker diarization is that

whenever there is signing, there is definitely motion. This fact is confirmed by table

4.4, which also shows that there can be significant motion in the absence of signing.

Non-signing motion makes signer diarization a non-trivial problem. If we say there

is signing whenever there is motion, then we get a baseline DER score of 121.66. If

we apply our online diarization algorithm, then the DER score reduces to 20.20.
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Table 4.4: The proportion of time there is (no) motion when there is sign or no sign.

Sign? Motion? Overlap

Yes Yes 1.00

No 0.00

No Yes 0.94

No 0.06

Baseline diarization error rate (DER) = 121.66

Motion for each signer is defined as sum(MEI) > 0

4.6 Conclusions and future work

This chapter proposed and showed the use of motion history images (MHI) as a

representation of gestural activity in an online speaker or signer diarization system.

MHIs can efficiently represent where, how and how long motion occurred. The chap-

ter claimed that these properties make MHIs applicable in online speaker and signer

diarization systems, where motion is an integral part of uttering activity. Experi-

ments on speaker and signer diarization problems using real data indicate that our

solution is applicable in real-world applications (for example, video conferences).

Future work on diarization can extend our work in two ways. One way is by

adding in extra information (for example, speech in the case of speaker diarization,

or gaze in the case of signer diarization, where interlocutor(s) must be looking at

the signer to be part of the conversation). The second way is to modify our model of

conversation dynamics. In our conversation model, each person has an independent

model of speaking/signing. But one can enrich the model by adding in parameters

to model the relationship of listening and speaking. Such a model can, for example,

encode the idea that a speaker is less likely to continue speaking if another just

started speaking.

4.7 Relation to prior work

The work presented here has focused on using MHI for both speaker and signer

diarization. To the best of our knowledge, this is our contribution. This work is

similar to our work presented in chapter 2, where we first justified and used gestures

for speaker diarization. Our work presented in chapter 2 performs speaker diariza-

tion by tracking corners, filtering out motionless corners and classifying them based

on the location of the speakers. The core of that system depends on corner detec-

tion and Lucas-Kanade tracking. These operations are computationally expensive

[Tomasi and Shi, 1994; Bouguet, 2001]. By contrast, our current diarization system

presented in this chapter is much less computationally intensive because of the use
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of Motion History Image (MHI) [Davis and Bobick, 1997; Bradski and Davis, 2002;

Ahad, 2013].

In terms of the modeling framework, our work is similar to Noulas and Krose

[2007], who used a probabilistic framework that utilizes multi-modal information to

perform online speaker diarization. The difference is that they use SIFT descriptors

[Lowe, 2004] to model the visual aspect of the multimodal information, while we use

MHI, a much more efficient technique. Other video features like compressed MPEG-

4 features have also been used in the multimodal speaker diarization literature

[Vallet et al., 2013; Seichepine et al., 2013; Anguera et al., 2012; Friedland et al.,

2009]. We contribute to this literature by drawing attention to the advantages of

using motion history images [Davis and Bobick, 1997; Bradski and Davis, 2002;

Ahad, 2013] in speaker and signer diarization.

In summary, our work builds on and extends the literature in two ways: a) em-

phasis on the use of MHI for speaker and signer diarization b) an online diariza-

tion system that works on visual data. The c++ code is publicly available on

https://bitbucket.org/binyam/online-diarizer/src.

https://bitbucket.org/binyam/online-diarizer/src
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Chapter 5

Speaker diarization using gesture

and speech

Content

This chapter demonstrates the use of gesture and speaker parametric models

in solving speaker diarization. The novelty of our solution is that speaker di-

arization is formulated as a speaker recognition problem after learning speaker

models from speech samples co-occurring with gestures. This approach offers

many advantages: better performance, faster computation and more flexi-

bility. Tests on 4.24 hours of the AMI meeting data show that, compared

to the AMI system, our solution makes DER score improvements of 19% on

speech-only segments and 4% on all segments including silence.

Based on

Gebre, B. G., Wittenburg, P., Drude, S., Huijbregts, M., and Heskes, T.

Speaker diarization using gesture and speech. In Proceedings of Interspeech

2014: 15th Annual Conference of the International Speech Communication

Association.

Keywords

Speaker recognition, adaptation, UBM, MHI, MEI, gamma distribution
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5.1 Introduction

The standard problem formulation of speaker diarization is as follows: given an

audio or audio-video recording, the task is to determine the number of speakers

and the segments of speech corresponding to each speaker. In this formulation,

the state-of-the-art technique used to solve the problem is based on the ICSI sys-

tem [Ajmera et al., 2002; Friedland et al., 2009; Anguera et al., 2012; Tranter and

Reynolds, 2006; Meignier and Merlin, 2010; Vijayasenan and Valente, 2012; Wooters

and Huijbregts, 2008; Friedland et al., 2012; Huijbregts et al., 2012; Rouvier et al.,

2013]. The ICSI system performs three main tasks: speech/non-speech detection,

speaker segmentation and clustering. The latter two tasks are performed iteratively

using an agglomerative clustering technique based on HMMs, GMMs and BIC.

The assumption in the ICSI-based systems is that the number of speakers and

speaker models remain unknown (uncertain) all along the length of signals. How-

ever, this assumption may not hold for particular scenarios where such information

is known a priori, which is the case in our experiments, or can be reliably estimated

at initial stages. In videos of meetings, the number of speakers can be determined

from a few video frames using standard face detection algorithms [Viola and Jones,

2004]. Furthermore, speaker models, as this chapter will demonstrate, can also be

estimated for each person based on speech samples co-occurring with gestures.

In chapters 2 and 4, we performed speaker diarization on meeting videos based

on the hypothesis that the person who is gesturing is also the speaker. In theory,

this could work well because there is a tight relationship between speech and gesture

[McNeill, 1985], but, in practice, the hypothesis has limitations: speakers can speak

without gesturing and gesture recognition, by itself, is a challenging problem (e.g.

people may appear to be gesturing when they move for non-communicative reasons).

The goal of this chapter is to solve these limitations by using the best of both

worlds. Predictions based on gestures are used to develop speaker models with the

first pass on the data. With subsequent passes of the data, the learned speaker

models are iteratively used to classify the frames of speech and adapt speaker mod-

els. With three iterations of classification and adaptation, we achieve a DER score

that is better than the baseline (the AMI system).

5.2 Speech-gesture representation

Given that the signals from speech and gesture are different (e.g. audio is 1-

dimensional and video is 2-dimensional), how can we represent them such that

they can be used for efficient computation and integration? For audio, we use

MFCCs and for gestures, we use Motion History Images (MHI) that we proposed

and presented in chapter 4.
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5.2.1 Speech representation

Speech is a time-varying signal and as such is not suitable for speaker recognition.

We, therefore, convert the speech signal to MFCCs (Mel Frequency Cepstral Coeffi-

cients) [Davis and Mermelstein, 1980]. MFCCs are widely used features in speaker

and speech recognition. We extract MFCC features as follows (the numbers corre-

spond to the parameter values we selected). Our speech signal, which is sampled

at 16 kHz, is divided into a number of overlapping frames, each 20 ms long (320

samples) with an overlap of 10 ms (160 samples). After multiplying each frame with

a Hamming window, each frame is FFT-transformed (Fast Fourier Transform). The

resulting power spectrum is then warped according to Mel-scale using 26 overlap-

ping triangular filters producing filterbank outputs. The amplitudes of the DCT

(Discrete Cosine Transform) of the logarithms of the filterbank outputs make the

MFCC features. In our experiments, we take the first 20 MFCC coefficients (in-

cluding the energy coefficient C0) plus their first and second order derivatives for a

total of 60-dimensional MFCC feature vector per speech frame. The HTK toolkit

is used to compute the coefficients [Young et al., 2006, 1997].

5.2.2 Gesture representation

To represent gestures, we use Motion History Images (MHI) that we presented in

chapter 4, which we repeat in this chapter for the sake of clarity and completeness.

MHI is a single stacked image that encodes motion that occurred between every

frame pair for the last δ number of frames (where δ is a number we can fix ourselves).

The type of information encoded in the MHI can be binary and, in which case, it

is called Motion Energy Image (MEI); or it can be scalar, in which case, it is called

Motion History Image.

Motion Energy Image

To represent where motion occurred, we form a Motion Energy Image. This is

constructed as follows. Let I(x, y, t) be an image sequence, and let D(x, y, t) be a

binary image sequence indicating regions of motion (we perform frame differencing).

Then the binary MEI E(x, y, t) is defined as follows:

Eδ(x, y, t) =

δ−1⋃
i=0

D(x, y, t− i), (5.1)

where δ is the temporal extent of motion (for example, a fixed number of frames).

Figure 4.1(c) shows an image example of an MEI for a speaker who is also gesturing.

Motion History Image

To represent how motion occurred, we form a Motion History Image (MHI) as

follows:
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Hτ (x, y, t) =

{
τ if D(x, y, t) = 1

0 else if Hτ (x, y, t) < (τ − δ),
(5.2)

where τ is the current time-stamp and δ is the maximum time duration constant (τ

and δ are converted to frame numbers based on frame rate). Figure 4.1 (b) shows

an example of an MHI for a speaker who is also gesturing. Note that an MEI image

can be generated by thresholding an MHI above zero.

5.3 Our diarization system

At a high-level, our diarization system performs the following steps:

1. Train a Universal Background Model (UBM) on all audio data of the given

recording.

2. Based on the location of gestures in the video, determine which speech sample

belongs to which person (i.e. perform speaker diarization using gestures).

3. Adapt the UBM to create speaker models based on current predictions.

4. Use the current speaker models to identify to which speaker the next speech

sample belongs (i.e. perform speaker diarization based on speaker models).

5. Repeat steps 3 and 4 N times, each time using the latest diarization predic-

tions and speaker models. In our experiments, N = 3.

5.3.1 Diarization using gestures

Given a video and the number of speakers, we wish to infer, based on gestures,

which person is speaking at time t. The inference is made using probabilistic models

presented in chapter 4, which repeat here with changes in variable names to make

distinction between audio and video features. Let each person’s state (speaking

or non-speaking) be represented by zit and let vi0:t be video measurements (i.e.

gestures) for person i, the objective is then to calculate the probability of zit given

vi0:t:

p(zit|vi0:t) =
p(vit|zit)p(zit|vi0:t−1)

p(vit|vi0:t−1)
, (5.3)

where p(vit|vi0:t−1) is a normalization constant, p(zit|vi0:t−1) is referred to as a conver-

sation dynamics model and p(vit|zit) is referred to as the gesture model. The person

with the highest probability, p(zit|vi0:t), is the gesturer and hence, the speaker. The

gesture and conversation dynamics models are described below.
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Gesture model

We use gamma distributions to model gestural and non-gestural activities.

The assumption is that MEI is a strong indicator of gestural activity. The

higher the energy (the sum of MEI values), the higher the probability of

gestural activity. A gamma distribution has a shape parameter k and scale

parameter θ:

p(vit|zit;k,θ) =
(vit)

kz−1 exp(− vit
θz

)

θkzz Γ(kz)
for vit, kz, θz > 0, (5.4)

where z = zit, v
i
t is the count of motion pixels in a MEI of speaker i and zit ∈

{0, 1} represents the probability of gestures for speaking and non-speaking

person. The gamma distributions for speaking and non-speaking are the same

for all speakers and their parameter values are learned from annotated devel-

opment data.

Conversation dynamics

In a conversation, the act of speaking has its own dynamics. The current

speaker is more likely to have been speaking for a longer time than just the

current frame. We encode this type of dynamics as follows:

p(zit|vi0:t−1) =
∑
zt−1

p(zit|zit−1)p(zit−1|vi0:t−1), (5.5)

where p(zit−1|vi0:t−1) is the posterior from the previous time and p(zit|zit−1) is

the conversation dynamics. For simplicity, we set the conversation dynamics

to a fixed matrix based on heuristics: a speaker is 90% more likely to remain

in the same state (speaking or non-speaking) as shown below:

p(zit|zit−1) =

(
0.9 0.1

0.1 0.9

)
. (5.6)

5.3.2 Diarization using speaker models

The diarization based on gestures comes at the rate of video frame rate (40 ms).

The MFCC features we get from audio come at the rate of 10ms. To make the

two streams compatible, we take four MFCC feature vectors and replace them with

their average vector. Given the average MFCC feature vectors, we determine which

person is speaking at time t using maximum likelihood:

î(t) = arg max
i

t+∆∑
t′=t−∆

log p(at′ |λi), (5.7)
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where delta, ∆, is a window of frames included for making predictions at time t and

λi =
{
wi,µi,Σ

}
is a speaker model for speaker i. In our experiments, ∆ is set to

50 (2 seconds). The speaker models are derived from a UBM as described below.

Universal Background Model

A Universal Background Model (UBM) is a Gaussian Mixture Model (GMM)

model. A GMM model is a weighted sum of M component densities:

p(at|{wj ,µj ,Σj}Mj=1) =

M∑
j=1

wjN (at,µj ,Σj), (5.8)

where wj are the mixture weights satisfying
∑M
j=1 wj = 1 and N (at,µj ,Σj)

are the individual component densities. Each density component j a D-variate

Gaussian of the form:

N (at,µj ,Σj) =
exp

{
−0.5(at − µj)T (Σj)

−1(at − µj)
}

(2π)D/2|Σj |1/2
, (5.9)

where µj is the mean vector and Σj is the covariance matrix.

In our system, the UBM is trained on audio features (MFCC features) from

all speakers of a recording (including the silences). The UBM serves two pur-

poses: first, it is used to derive speaker-dependent GMM models. Second, it

is used to serve as a background or negative speaker model, against which

each particular speaker model is compared to determine if they are speaking.

Our UBM model consists of 64 60-variate Gaussian components. The covari-

ance type is diagonal. The minimum variance value of the covariance matrix

is limited to 0.01 to avoid spurious singularities [Reynolds and Rose, 1995].

Parameters of the UBM are estimated using EM algorithm [Dempster et al.,

1977; Pedregosa et al., 2011].

Adaptation of Speaker Models

The UBM, represented by λ = {w,µ,Σ}ubm , is trained on all audio samples

of a given recording. To make it model a particular speaker i, we need speech

samples from speaker i and an adaptation technique. Initially, speech samples

are collected for each speaker based on the occurrence of their gestures but

later speech samples are collected based on speaker models. In either case,

the adaptation technique is the same; we use a type of Bayesian parameter

adaptation [Gauvain and Lee, 1994; Reynolds et al., 2000]. Given λ and

training speech samples for speaker i, Ai = {ai1,ai2, . . . ,aiT }, we compute the

responsibilities of each mixture component mi in the UBM as follows:

p(mi|at,λ) =
wmN (ait,µm,Σm)∑M
j=1 wjN (ait,µj ,Σj)

(5.10)
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p(mi|at,λ) and at are then used to compute sufficient statistics for the weight

and mean of speaker i as follows1:

nim =

T∑
t=1

p(mi|at,λ). (5.11)

Eim(a) =
1

nim

T∑
t=1

p(mi|at,λ)ait. (5.12)

Using Eim(a) and nim, we can now adapt the UBM sufficient statistics for

mixture m for speaker i as follows:

ŵim = [αimn
i
m/T + (1− αim)wm]γi. (5.13)

µ̂im = αimE
i
m(a) + (1− αim)µm. (5.14)

γi is a normalisation factor to ensure that the adapted mixture weights, ŵim,

sum to unity:

γi =
1∑M

j=1 ŵ
i
j

. (5.15)

αim is an adaptation coefficient used to control the balance between old and

new estimates for the weights and means. For each mixture mi, a data-

dependent adaptation coefficient is fixed as:

αim =
nim

nim + r
, (5.16)

where r is a relevance parameter and is set to 16. For more details on these

parameters, see Reynolds et al. [2000].

5.4 Experiments

5.4.1 Datasets

We validate our proposed solution on test data of seven video recordings (≈ 4.24

hours), taken from a publicly available corpus called the AMI corpus [Carletta

et al., 2006]. The AMI corpus consists of annotated audio-visual data of a number

of participants engaged in a meeting. The selected videos (IB4XXX) have four

participants. The upper body of each participant is recorded using a separate

1The covariance parameter is kept the same for all speakers; adapting it with new data decreased

performance.
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camera and we put them together before diarization. For audio, we use the mixed-

headset single wave file per video. Our development data consists of 4.9 hours of

videos coming from IN10XX and IS1009x. The development data are used to learn

parameter values when necessary.

5.4.2 Evaluation metrics

We report our scores using Diarization Error Rate (DER) (see 2.4.2). DER consists

of false alarm, missed speech and speaker errors [Anguera, 2007]. DER is known to

be noisy and sensitive [Mirghafori and Wooters, 2006] but it is still widely used in

many evaluations [Wooters and Huijbregts, 2008; Anguera et al., 2012]. A perfect

diarization system scores 0% DER, but a very bad system (e.g. a system that

predicts every speaker is speaking all the time) can go over 100%.

5.5 Results and discussion

Figure 5.1 illustrates how training speech samples are collected for adapting speaker

models based on predictions using gestures. The figure clearly shows that the person

that is gesturing is the speaker and the MHI visualization clearly reflects it. As table

5.1 shows, this is not always true (i.e. a person could be moving without speaking

or that they could be speaking without gesturing). Hence, the need to pass through

the data iteratively (adapting speaker models and making predictions).

(a) Frames

(b) Speech

(c) MHI

Figure 5.1: A snapshot of IN1016-AMI meeting data: (a) Video frames with four individ-

uals engaged in a conversation (the bar indicates probability of speaking calculated using

gestures). (b) The speech waveform of the speaker. (c) The MHI of the gesturing person,

which is indirectly used to adapt a speaker model for that person. The adapted speaker

model is then used to identify the speaker on subsequent passes of the speech data.
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Table 5.1: The proportion of time there is (no) motion when there is speech or no speech.

Speech? Motion? Overlap

Yes Yes 0.96

No 0.04

No Yes 0.82

No 0.18

Baseline diarization error rate (DER) = 72.09

Motion for each speaker is defined as sum(MEI) > 0

After the first diarization using gestures, we adapt the UBM to create speaker

models. Based on equation 5.7, we then use the adapted speaker models to score

each audio feature vector – a person is said to be speaking at frame t when the

likelihood for that person is the largest in a window spanning ± 50 frames (4

seconds). Note that the assumption is that only one person is speaking at any

frame. The alternative to this assumption is to set a threshold for likelihood, which

may be necessary to handle overlapped speech. The scoring is repeated 3 times:

new diarization results are used to adapt speaker models and new adapted speaker

models are used to make new diarization. Based on this procedure, DER scores are

given in tables 5.2 and 5.3. The best scores of our system come after 3 iterations and

are better than the baseline scores (18.79% vs 23.28% and 29.87% vs 31.18%). The

baseline system is the AMI system [Van Leeuwen and Huijbregts, 2006; Huijbregts,

2008], which is based on an agglomerative clustering and segmentation technique.

Table 5.2: Speaker diarization scores evaluated on speech-only segments. Each column in

the Speaker models section is a diarization score based on speaker models that are adapted

using diarization results from the previous column.

Diarization Error Rates (%)

Speaker models

Name Baseline Gesture 1st 2nd 3rd

IB4001 19.76 53.81 33.51 27.06 23.76

IB4002 54.40 58.42 52.03 48.12 40.86

IB4003 12.20 44.53 16.13 10.48 10.35

IB4004 39.05 49.68 32.33 27.14 24.79

IB4005 13.56 37.69 17.89 18.70 19.63

IB4010 18.15 50.52 19.34 13.29 12.92

IB4011 14.59 45.76 11.53 10.64 10.37

ALL 23.28 48.04 24.14 20.20 18.79
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Table 5.3: Speaker diarization scores evaluated on all segments including silences. Evalu-

ating our system on silence segments increases DER as a result of increase in false alarms.

Diarization Error Rates (%)

Speaker models

Name Baseline Gesture 1st 2nd 3rd

IB4001 38.26 82.50 61.27 54.78 51.48

IB4002 100.20 104.76 97.62 93.71 86.39

IB4003 13.20 48.89 18.13 12.47 12.34

IB4004 41.15 59.44 37.16 31.94 29.61

IB4005 16.16 47.66 23.80 24.61 25.55

IB4010 20.75 56.18 25.42 19.37 19.00

IB4011 17.59 52.57 18.27 17.38 17.09

ALL 31.18 60.99 35.23 31.28 29.87

5.6 Conclusions and future work

This study proposed a solution to the speaker diarization problem based on the

exploitation of the best of two worlds: gestures and speech. The use of gestures

enables the formulation of the diarization problem in a novel way. A UBM is

first trained on all audio feature vectors of a given recording. The UBM is then

adapted to different speakers based on the speech samples co-occurring with their

gestures. Finally, the adapted speaker models are used to perform diarization (then

adaptation, then diarization, then adaptation, and so on). This new approach has

better performance and is faster (avoids agglomerative clustering) and offers better

flexibility (better trade-off between accuracy and computational complexity).

Future work can extend our work in two directions. First, enriching the gesture

model: our current gesture model is quite efficient but may fail to distinguish true

gestures from other movements. Second, making an online version of our system:

our current system makes multiple passes through the data but this may not be

necessary: speaker models do not need much more than 90 seconds of training

samples [Reynolds and Rose, 1995] and the UBM, which, in our current system, is

trained on the whole audio recording, could be trained on a general population and

be adapted online as more gesture and speech samples arrive.
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Chapter 6

Automatic sign language

identification

Content

This chapter introduces sign language identification as an important pattern

recognition problem and presents a solution to it. The solution is based on

the hypothesis that sign languages have varying distributions of phonemes

(hand shapes, locations and movements). The chapter presents techniques

of phoneme extraction from video data with experimental evaluations on two

sign languages involving video clips of 19 signers. Achieved average F1 scores

range from 78-95%, indicating that sign languages can be identified with high

accuracy using only low-level visual features.

Based on

B. G. Gebre, P. W. Wittenburg and T. Heskes (2013). “Automatic sign lan-

guage identification”. In Proceedings of the 2013 IEEE International Confer-

ence on Image Processing (ICIP), pages 2626-2630, IEEE.

Keywords

Sign language, invariant moments, hand shapes, locations, movements
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6.1 Introduction

The task of automatic language identification is to quickly and accurately identify

a language given any utterance in the language. The correct identification of a

language enables efficient deployment of tools and resources in applications that

include machine translation, information retrieval and routers of incoming calls to

a human switch-board operator fluent in the identified language. All these applica-

tions require language identification systems that work with near perfect accuracy.

Language identification is a widely researched area in written and spoken modal-

ities [Dunning, 1994; Muthusamy et al., 1994a; Zissman, 1996; Torres-Carrasquillo

et al., 2002; Singer et al., 2012]. The literature shows varying degrees of success

depending on the modality. Languages in their written forms can be identified to

about 99% accuracy using Markov models [Dunning, 1994]. Languages in their spo-

ken forms can be identified to an accuracy that ranges from 79-98% using different

models (GMM, PRLM, parallel PRLM) [Zissman, 1996; Singer et al., 2003]. What

is the accuracy for automatic sign language identification?

Even though extensive literature exists on sign language recognition [Starner

and Pentland, 1997; Starner et al., 1998; Gavrila, 1999; Cooper et al., 2012a], to

the best of our knowledge, no published work existed on automatic sign language

identification prior to this work. In this chapter, we propose a system for sign

language identification and run experimental tests on two sign languages (British

and Greek). The best performance obtained, measured in terms of average F1-score,

is 95%. This score is much higher than 50%, the score that we would expect from a

random binary classifier. Interestingly, this performance is achieved using low-level

visual features. The rest of the chapter gives more details.

6.2 Sign language phonemes

A signer of a given sign language produces a sequence of signs. According to Stokoe

[2005], each sign consists of phonemes called hand shapes, locations and movements.

The phonemes are made using one hand or both hands. In either case, each ac-

tive hand assumes a particular hand shape, a particular orientation in a particular

location (on or around the body) and with a possible particular movement.

The aforementioned phonemes that come from hands make up the manual signs

of a given sign language. But the whole message of a sign language utterance is

contained not only in manual signs but also in non-manual signs. Non-manual signs

include facial expressions, head/shoulder motion and body posture. Note that this

work does not attempt to use non-manual signs for language identification.

There are two systems that attempt to formally describe the phonemes of sign

languages: the Stokoe system and the Hold-Movement system. The Stokoe system

is proposed by Stokoe and the central idea in this model is that signs can be broken

down into phonemes corresponding to location, hand shape, and movement (put

in that order) [Stokoe, 2005]. An alternative to Stokoe’s model is the Move-Hold
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model [Liddell and Johnson, 1989]. The Move-Hold (M-H) system emphasizes the

sequence aspect of segments of signs. Each segment is described by a set of features

of hand shape, orientation, location and movement. A hold is defined as a period of

time during which hand shape, orientation, location, movement, and nonmanuals

are held constant. A movement is defined as a transition between holds during

which at least one of the four parameters changes.

Which description system do we use for sign language identification? Our work

uses the idea than signs can be broken into phonemes, an idea that is common to

both the Stokoe and M-H systems; we extract video features to represent locations,

hand shapes and movements. But, because we extract the features from a sequence

of at most two frames, we think that we are using the Move-Hold (M-H) system.

6.3 Our sign language identification method

An ideal sign language identification (SLID) system should be independent of con-

tent, context, and vocabulary and should be robust with regard to signer identity

and noise and distortions introduced by cameras. Some of the desirable features of

an ideal SLID system are:

1. should be robust with respect to intra- and inter-signer variability.

2. should be insensitive to camera-induced variations (scale, translation, rota-

tion, view, occlusion, etc).

3. increasing the number of target sign languages should not degrade perfor-

mance (there are at least 300 sign languages1).

4. decreasing the duration of the test utterance should not degrade system per-

formance.

Our proposed SLID system has four subcomponents and each subcomponent

attempts to address points 1, partly 2 (scale and translation), 3 and 4. The system

subcomponents are: a) skin detection b) feature extraction c) modeling d) identifi-

cation. We describe each subcomponent in the following subsections.

6.3.1 Skin detection

We use skin color to detect hands/face [Vezhnevets et al., 2003; Phung et al., 2005].

Skin color has practically useful features. It is invariant to scale and orientation

and it is also easy to compute. But it also has two problems: 1) perfect skin color

ranges for one video do not necessarily apply to another 2) some objects in the

video have the same color as the hands/face. To solve the first problem, we did

explicit manual selection of the skin color RGB ranges in a way that is comparable

to Kovac et al. [2003]; other skin detection approaches (i.e. based on parametric

1http://en.wikipedia.org/wiki/List_of_sign_languages

http://en.wikipedia.org/wiki/List_of_sign_languages
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and non-parametric distributions) did not perform any better on our dataset. To

solve the second problem, we applied dilation operations and constraint rules to

remove objects that are identified as face or hands but do not have the right sizes.

6.3.2 Feature extraction

Given that the phonemes of sign language are formed from a set of hand shapes

(N), in a set of locations (L) and with movement types (M), we encode shapes

using Hu-moments, locations using discrete grids (binary patterns) and movements

as XORs of two consecutive location grids (binary patterns).

Hand-shapes/Orientations

To encode hand shapes and orientations of the hands, we use the Hu set of

seven invariant moments (H1 − H7) [Hu, 1962], calculated from the gesture

space of the signer. The gesture space is the region bounded by the external

lines of the grids shown in figure 6.1. The seven Hu moments capture shapes

and arrangements of the foreground objects (in this case, skin blobs). Formed

by combining normalized central moments, these moments offer invariance to

scale, translation, rotation and skew [Hu, 1962]. They are among the most

widely used features in sign language recognition [Cooper et al., 2012a]. Note

that an image moment is a weighted average (moment) of the image pixels’

intensities.

Locations/Hand-arragements

To encode hand locations of the signer, we use grids of 10×10 with the center

of the face used as a reference. To find the center of the face, we used the

Viola Jones face detector [Viola and Jones, 2001]. The position and scale of

the detected face is used to calculate the position and scale of the grid. The

center of the grid is fixed at the third row and in the middle column (See

figure 6.1). Each cell in the grid is a quarter of the height of the detected face

[Cooper et al., 2012a]. A cell is assigned 1 if more than 50 percent of the area

is covered by skin, otherwise, it will be assigned 0. These cells are changed

into a single row vector of size 100 by concatenating the various rows – one

after the other.

Movements

To encode the types of body movements, we compare the locations of hands

and face in the current frame with respect to the previous frame. The motion

is then captured by XORing (the absolute of pairwise element subtraction of)

two frame location vectors. The location vectors are obtained from the cell

grids as described above.
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Figure 6.1: Each cell in the grid is a square whose side is a quarter of the height of the

face. The size of the face is determined by the Viola Jones algorithm [Viola and Jones,

2001] using the data and implementation from the OpenCV library [Bradski and Kaehler,

2008].

6.3.3 Learning using random forest

We use a random forest algorithm for sign language classification [Breiman, 2001;

Pedregosa et al., 2011]. A random forest algorithm generates many decision tree

classifiers and aggregates their results [Breiman, 2001]. Its attractive features in-

clude high performance [Caruana and Niculescu-Mizil, 2006], greater flexibility (no

need for feature normalization and feature selection) and high stability (small pa-

rameter changes do not affect performance). Algorithm 6.1 shows how random

forest works for classification. The algorithm is first trained on labeled data as

shown in algorithm 6.1 and then predictions of new data are made by aggregating

the predictions of the Ntrees.

Algorithm 6.1 Random forest training

Require: {x, y} pairs of data

Ensure: Ntrees predictors (Random forest)

1: Let Ntrees be the number of trees to build

2: for each of Ntrees iterations do

3: Select a new bootstrap sample from training set

//Grow an un-pruned tree on this bootstrap

4: for each node do

5: randomly sample m of the feature variables

6: choose the best split from among those variables using gini impurity mea-

sure

7: end for

8: end for
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The random sampling of features at every node in a tree prevents random forests

from overfitting and makes them perform very well compared to many other clas-

sifiers [Breiman, 2001]. In our experiments, we fixed Ntrees to 10 and m to 14 (14

≈
√

207, the size of our feature vector).

6.3.4 Identification

During identification, an unknown sign language utterance of frame length T is first

converted to frame vectors of length T , with each frame vector xt having features

of 207-dimension. These feature vectors are then scored against each language.

With the assumption that the observations (feature vectors xi) are statistically

independent of each other, the scoring function is a log-likelihood function and is

defined as:

L(x/l) =

T∑
t=1

log p(xt/l), (6.1)

where T is the number of frames and p(xt/l) is a probability of xt for a given

language l. The predicted class probabilities of a given feature vector is computed

as the mean predicted class probabilities of the trees in the forest [Pedregosa et al.,

2011]. The language l̂ of the unknown utterance is chosen as follows:

l̂ = arg max
l

(

T∑
t=1

log p(xt/l) + log p(l)), (6.2)

where p(l) is the prior probability of choosing either sign language, which we fixed

to 0.5 (making it irrelevant in our experiments).

6.4 Experiment

We test our sign language modeling and identification system on data that is pub-

licly accessible from the Dicta-Sign Corpus [Efthimiou et al., 2009]. The corpus has

recordings for four sign languages with at least 14 signers per language and a session

duration of approximately 2 hours using the same elicitation materials across lan-

guages. From this collection, we selected 9 signers of British sign language and 10

signers of Greek sign language2. The signers have been selected with the criterion

that their skin color is clearly distinct from both the background and their clothes.

Table 6.1 gives more details of the experiment data.

2Only British and Greek sign languages corpora were publicly available for download from the

Dicta-Sign Corpus (http://www.dictasign.eu).
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Table 6.1: Sign language identification: experiment data

Sign Language British Greek Total

Total length (in hours) 8.9 7.17 16.07

Number of signers 9 10 19

Number of clips 186 209 395

Average clip size (in minutes) 2.86 2.06 2.46

6.5 Results and discussion

We evaluate the performance of our identification system in terms of precision,

recall and F1-score. We also evaluate the impact on performance of varying a) the

number of training clips, and b) the length (in seconds) of the test clips. Table

6.2 indicates that high accuracy scores can be obtained by training on one half of

the data and testing on the other half. Figure 6.2 shows performance variations

as a function of training data size and the length of the test clip; it indicates that

10 seconds of test clip is good enough to achieve about an F1 score of 90% . Ten

seconds of utterance correspond to about 25 signs [Klima and Bellugi, 1979].

Table 6.2: Sign language identification results: utterances in the training and the test data

are different but they are not signer independent.

Number of training clips = 197 (random 50% of clips)

Number of test clips = 198 (the remaining 50%) of clips

Clip size = 60 seconds

Precision Recall F1-score Support

BSL 0.94 0.96 0.95 94

GSL 0.96 0.94 0.95 104

Average/total 0.95 0.95 0.95 198

As clips of the same signers occur in both training and test data, can we be sure

that we are not identifying people instead of sign languages? In order to answer

this, we trained our system on clips of a group of 11 randomly selected signers and

tested on clips of the remaining 8 signers. Even though the score is now less (it

decreases from 95% to 78%), we can still see that our system is doing more than

signer identity classification (see table 6.3 for signer independent scores).

Are we really identifying sign languages and not some other random pattern? In

order to answer this question, we assigned random labels to each clip and trained

our system on random 50% of the clips and tested on the remaining 50%. Perfor-

mance on different runs produced F1 scores that averaged to about 50% – indicating
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Figure 6.2: (a) The impact of varying the fraction of training data (shown on x-axis) on

the average F1 score (shown on y-axis). (b) The impact of varying the test utterance

length (shown on the x-axis in seconds) on the average F1 score (shown on the y-axis).

Table 6.3: Signer independent classification results

Number of training clips = 248 (11 signers)

Number of test clips = 147 (from 8 unseen signers)

Clip size = 60 seconds

Precision Recall F1-score Support

BSL 0.77 0.72 0.74 64

GSL 0.79 0.83 0.81 83

Average/total 0.78 0.78 0.78 147
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that our system is not picking upon any random pattern. What about systematic

patterns like the characteristics of the video or people that are unique to each lan-

guage? The video characteristics of the two sign language corpora are similar as

they were deliberately designed to be parallel for research purposes. However, the

bodily characteristics of the signers of each language could be different.

How can we distinguish bodily characteristics from sign languages? To answer

this correctly, further research needs to be done with sign language clips produced

by multilingual signers (the same signers producing utterances in two or more sign

languages). For now, we can get insight by examining the most important features

discovered by the random forest classifier3.

Figure 6.3: The importance of the ten most informative features out of 207 features (7

for shapes, 100 for locations and another 100 for movements, indexed in that order). The

error bars are standard deviations of the feature importances for the ten trees.

Figure 6.3 shows the relative importance of the ten most important features

indexed by their position in the feature vector. The figure indicates that feature

indices 22 and 21 are the most important. Interestingly, these refer to locations

above the head slightly to the left. Most of the shape features (the Hu-moments,

indexed by numbers 0 through 6) are also among the most important. No movement

feature ended up among the top ten.

3The relative rank (i.e. depth) of a feature used as a decision node in a tree is used to evaluate its

relative importance. A feature used at the top of a tree contributes to the final prediction decision

of a larger fraction of the input samples. The expected fraction of the samples it contributes to is

used as an estimate of the relative importance of the features.
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6.6 Conclusions and future work

The work in this chapter makes a contribution to the existing literature on automatic

language identification by a) drawing attention to sign languages, and b) proposing

a method for identifying them. The proposed sign language identification system

has the attractive features of simplicity (it uses low-level visual features without any

reference to phonetic transcription) and high performance (it uses a random forest

algorithm). The system performs with an accuracy ranging from 78-95% (F1-score).

From this performance, we can draw one important conclusion: sign languages, like

written and spoken languages, can be identified using low level features.

Future work should extend this work to identify several sign languages. Other

possible sign language identification methods should also be explored (language

identification methods that perform best in written and spoken languages are phono-

tactic – Ngram language models). Future work should also examine automatic

phoneme extraction and clustering algorithms with the view to developing sign lan-

guage typology (families of sign languages). In the next chapter, we address sign

identification using unsupervised feature learning techniques and conduct experi-

ment on 6 sign languages.
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Chapter 7

Unsupervised feature learning for

sign language identification

Content

This chapter presents a method for identifying sign languages solely from short

video samples. The method uses K-means and sparse autoencoder to learn

2D and 3D feature maps from unlabelled video data. Using these feature

maps and by the process of convolution and pooling, classifier features are ex-

tracted and trained to discriminate between six sign languages. Experimental

evaluation, involving 30 signers, shows an average best accuracy of 84%.

Based on

B. G. Gebre, O. Crasborn, P. Wittenburg, S. Drude and T. Heskes (2014).

“Unsupervised feature learning for visual sign language identification”. In

Proceedings of the 52nd Annual Meeting of the Association for Computational

Linguistics, pages 370-376. Association for Computational Linguistics.

Keywords

Unsupervised features, k-means, sparse autoencoder, convolution, pooling
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7.1 Introduction

As presented in the previous chapter, the task of automatic language identification

is to quickly identify a language given any utterance in the language. Performing

this task accurately is key in applications involving multiple languages such as

machine translation and cross-lingual information retrieval. In machine translation,

we would like to know the source language before we load the resources and tools

involved in the translation. In information retrieval, we would like to index and

search information within or across languages.

Previous research on language identification is heavily biased towards written

and spoken languages [Dunning, 1994; Zissman, 1996; Li et al., 2007; Singer et al.,

2012; Jiang et al., 2014]. Written languages can be identified to about 99% accuracy

using Markov models [Dunning, 1994]. This accuracy is so high that current research

has shifted to related more challenging problems: language variety identification

[Zampieri and Gebre, 2012], native language identification [Tetreault et al., 2013]

and identification at the extremes of scales: many more languages, smaller training

data and shorter document lengths [Baldwin and Lui, 2010].

Spoken languages can be identified to accuracies that range from 79-98% using

different models (GMM, PRLM, parallel PRLM) [Zissman, 1996; Singer et al., 2003].

The methods used in spoken language identification have also been extended to a

related class of problems: native accent identification [Chen et al., 2001; Choueiter

et al., 2008; Wu et al., 2010] and foreign accent identification [Teixeira et al., 1996].

While some work exists on sign language recognition [Starner and Pentland,

1997; Starner et al., 1998; Gavrila, 1999; Cooper et al., 2012a], very little research

exists on sign language identification. In chapter 6, we showed that sign language

identification can be done using linguistically motivated features (i.e. features en-

coding hand shape, location and movement). We reported accuracies of 78% and

95% on signer independent and signer dependent identification of two sign lan-

guages (British and Greek). In the current chapter, we extend this research in the

following two ways. First, we present a method to identify sign languages using fea-

tures learned by unsupervised techniques [Hinton and Salakhutdinov, 2006; Coates

et al., 2011]. Second, we evaluate the method on six sign languages under different

conditions involving 30 signers (5 different signers per language).

In this chapter, we make two main contributions. First, we show that unsu-

pervised feature learning techniques, currently popular in many pattern recognition

problems, also work for visual sign languages. More specifically, we show how

K-means and sparse autoencoder can be used to learn features for sign language

identification. Second, we demonstrate the impact on performance of varying the

number of features (aka feature maps or filter sizes), the patch dimensions (from

2D to 3D) and the number of frames (video length).
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7.2 The challenges in sign language identification

The challenges in sign language identification arise from three sources: 1) iconicity

in sign languages 2) differences between signers 3) diverse environments.

7.2.1 Iconicity in sign languages

The relationship between forms and meanings in language is not totally arbitrary

[Perniss et al., 2010]. Both signed and spoken languages manifest iconicity, that is

forms of words or signs are motivated by the meaning of the word or sign. While

sign languages show a lot of iconicity in the lexicon [Taub, 2001], this has not led

to a universal sign language. The same concept can be iconically realised by the

manual articulators in a way that conforms to the phonological regularities of the

languages, but still lead to very different sign forms.

Iconicity is also used in the morphosyntax and discourse structure of all sign

languages and there we see many similarities between sign languages. Both real-

world and imaginary objects and locations are visualised in the space in front of the

signer, and can have an impact on the articulation of signs in various ways. Also,

the use of constructed action appears to be used in many sign languages in similar

ways. The same holds for the rich use of non-manual articulators in sentences and

the limited role of facial expressions in the lexicon: these too make sign languages

across the world very similar in appearance, even though the meaning of specific

articulations may differ [Crasborn, 2006].

7.2.2 Differences between signers

Just as speakers have different voices unique to each individual, signers also have

different signing styles that are likely unique to each individual. Signers’ uniqueness

results from how they articulate the shapes and movements that are specified by

the linguistic structure of the language. The variability between signers either in

terms of physical properties (hand sizes, skin color, etc) or in terms of articulation

(movements) is such that it does not affect the understanding of the sign language

by humans, but that it may be difficult for machines to generalize over multiple

individuals. At present we do not know whether the differences between signers

using the same language are of a similar or different nature than the differences

between different languages. At the level of phonology, there are few differences

between sign languages, but the differences in the phonetic realization of words

(their articulation) may be much larger.

7.2.3 Diverse environments

The visual activity of signing comes in the context of a specific environment. This

environment can include the visual background and camera noises. The background

objects of the video may also include dynamic objects – increasing the ambiguity of
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signing activity. The properties and configurations of the camera induce variations

of scale, translation, rotation, view, occlusion, etc. These variations, coupled with

lighting conditions, may introduce noise. These challenges are by no means specific

to sign interaction, and are found in many other computer vision tasks.

7.3 Feature and classifier learning

Our system performs two important tasks. First, it learns a feature representation

from patches of unlabelled raw video data using sparse autoencoders and K-means

unsupervised learning techniques [Hinton and Salakhutdinov, 2006; Coates et al.,

2011]. Second, it looks for activations of the learned representation (by convolu-

tion) and uses these activations to learn a classifier to discriminate between sign

languages.

7.3.1 Unsupervised feature learning

Given samples of sign language videos (unknown sign language with one signer per

video), our system performs the following steps to learn a feature representation

(note that these video samples are separate from the video samples that are later

used for classifier learning or testing):

1. Extract patches

Extract small videos (hereafter called patches) randomly from anywhere in

the video samples. We fix the size of the patches such that they all have r

rows, c columns and f frames and we extract patches m times. This gives us

X = {x(1), x(1), . . . , x(m)}, where x(i) ∈ RN and N = r ∗ c ∗ f (the size of

a patch). For our experiments, we extract 100,000 patches of size 15 ∗ 15 ∗ 1

(2D) and 15 ∗ 15 ∗ 2 (3D).

2. Normalize and whiten the patches

There is evidence that normalization and whitening [Hyvärinen and Oja, 2000]

improve performance in unsupervised feature learning [Coates et al., 2011].

We therefore normalize every patch x(i) by subtracting the mean and dividing

by the standard deviation of its elements. We added a small value to the

variance before division to avoid division by zero (for example, 10 when the

values are pixel intensities [Coates et al., 2011]). Note that, for visual data,

normalization corresponds to local brightness and contrast normalization.

After normalizing, we perform ZCA whitening on the patches. This is done by

rescaling each feature by 1/
√
λi + ε, where λi are eigenvalues and ε is a small

amount of regularization (in our study, set to 0.1). The purpose of whitening

is to make sure that the features in the training data a) are less correlated

with each other, and b) have the same variance. This is important because
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the raw input of videos is redundant (i.e. adjacent pixel values are highly

correlated).

3. Learn a feature-mapping

Our unsupervised algorithm takes in the normalized and whitened dataset

X = {x(1), x(1), . . . , x(m)} and maps each input vector x(i) to a new feature

vector of K features (f : RN → RK). We use two unsupervised learning

algorithms: K-means, and sparse autoencoders.

(a) K-means clustering: we train K-means to learn K c(k) centroids that

minimize the distance between data points and their nearest centroids

[Coates and Ng, 2012]. Given the learned centroids c(k), we measure the

distance of each data point (patch) to the centroids. Naturally, the data

points are at different distances to each centroid. We keep the distances

that are below the average of the distances and we set the others to zero:

fk(x) = max{0, µ(z)− zk} (7.1)

where zk = ||x− c(k)||2 and µ(z) is the mean of the elements of z.

(b) Sparse autoencoder: we train a single layer autoencoder with K hid-

den nodes using backpropagation to minimize the squared reconstruction

error. Figure 7.1 shows a single layer sparse autoencoder, representative

of the autoencoder implemented in our study. To make the sparse au-

toencoder learn a more interesting function than a trivial identity func-

tion, we impose a constraint on the structure at the hidden layer. We

do this by either limiting the number of hidden nodes to a number (K)

that is less than the input size or by imposing sparsity constraint on the

activation of each hidden node. For the latter case, we set the average

activation of each hidden node ρ̂j to some constant ρ (in our case, ρ is set

to 0.01). To satisfy the constraint, we add a penalty term to our autoen-

coder objective function. The penalty parameter uses Kullback-Leibler

(KL) divergence and penalizes ρ̂j deviating significantly from ρ.

At the hidden layer, the features are mapped using a rectified linear

(ReL) function [Maas et al., 2013] as follows:

f(x) = g(Wx+ b) (7.2)

where g(z) = max(z, 0). Note that ReL nodes have advantages over

sigmoid or tanh functions; they create sparse representations and are

suitable for naturally sparse data [Glorot et al., 2011].

From K-means, we get K RN centroids and from the sparse autoencoder, we get

W ∈ RKxN and b ∈ RK filters. We call both the centroids and filters as the learned

features (or feature maps).
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Figure 7.1: Sparse autoencoder: a single layer sparse autoencoder is a neural network

with three layers, where the output is set the same as the input. By making the number

of hidden nodes smaller than the number of input nodes or by imposing a sparsity con-

straint on the activation of each hidden node (overcomplete sparse representations), sparse

autoencoder is able to discover structure in the input.

7.3.2 Classifier learning

Given the learned features, the feature mapping functions and a set of labeled

training videos, we extract features as follows:

1. Convolutional extraction

Extract features from equally spaced sub-patches covering the video sample.

This is done by sliding a window that moves by 1 pixel row-wise and column-

wise for the 2D case. For the 3D case, it is a sliding box that moves by 1

pixel row-wise, column-wise and time-wise. Convolution takes a long time –

O(Kmn2t), where K refers to the number of feature maps, m the number of

videos, n2 the resolution of videos and t the video length. Note that we have

not included the size of the feature maps in the computational complexity.

2. Pooling

Pool features together over four non-overlapping regions of the input video

to reduce the number of features. We perform max pooling for K-means and

mean pooling for the sparse autoencoder over 2D regions (per frame) and over

3D regions (per all sequence of frames).
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3. Learning

Learn a linear classifier to predict the labels given the feature vectors. This

is a standard supervised learning setup. We use a logistic regression classifier

and support vector machines [Pedregosa et al., 2011].

The extraction of classifier features through convolution and pooling is illus-

trated in figure 7.2.

Figure 7.2: Illustration of feature extraction based on convolution and pooling using 7

filters: each 3D block in the convolution features is the result of convolution between a

filter (feature map) and the video. Each block in the convolved features then goes through

the process of pooling, where values in 8 non-overlapping regions are pooled over.

7.4 Experiments

7.4.1 Datasets

Our experimental data consist of videos of 30 signers equally divided between six

sign languages: British (BSL), Danish (DSL), French Belgian (FBSL), Flemish

(FSL), Greek (GSL), and Dutch (NGT). The data for the unsupervised feature

learning comes from half of the BSL and GSL videos in the Dicta-Sign corpus1 (16

signers). Part of the other half, involving 5 signers, is used along with the other

sign language videos for learning and testing classifiers. Videos of the other sign

languages came from different sources.

For the unsupervised feature learning, two types of patches are created: 2D

(15 ∗ 15) and 3D (15 ∗ 15 ∗ 2). Each type consists of 100,000 randomly selected

patches and involves 16 different signers. For the supervised learning, 200 videos

1http://www.dictasign.eu/

http://www.dictasign.eu/


Chapter 7. Feature learning for sign language identification 81

(consisting of 1 through 4 frames taken at a step of 2) are randomly sampled per

sign language per signer (for a total of 6,000 samples).

7.4.2 Data preprocessing

The data preprocessing stage has two goals.

First, to remove any non-signing signals that remain constant within videos of a

single sign language but that are different across sign languages. For example, if the

background of the videos is different across sign languages, then classifying the sign

languages could be done with perfection by using signals from the background. To

avoid this problem, we removed the background by using background subtraction

techniques and manually selected thresholds. The background is formed from a

small patch from the top left corner of the first frame of the video and rescaled to

the resolution of the video. Treating the top-left corner patch as background works

because the videos have a more or less uniform background.

The second reason for data preprocessing is to make the input size smaller and

uniform. The videos are colored and their resolutions vary from 320∗180 to 720∗576.

We converted the videos to grayscale and resized their heights to 144 and cropped

out the central 144 ∗ 144 patches.

7.4.3 Evaluation

We evaluate our system in terms of average accuracies. We train and test our system

in leave-one-signer-out cross-validation, where videos from four signers are used for

training and videos of the remaining signer are used for testing. We repeat this as

many times as the number of signers. Classification algorithms are used with their

default settings and the classification strategy is one-vs.-rest.

7.5 Results and discussion

Average classification accuracies using different classifiers, video lengths, and K

features are presented in table 7.1 for 2D feature maps and table 7.2 for 3D feature

maps. Our best average accuracy (84.03%) is obtained using 500 K-means features

which are extracted over four frames (taken at a step of 2). This accuracy obtained

for six languages is much higher than the 78% accuracy obtained for two sign

languages presented in chapter 6. In chapter 6, we used linguistically motivated

features (hand shapes, movements and locations) that are extracted over video

lengths of at least 10 seconds. The current system uses learned features that are

extracted over much smaller video lengths (about half a second). Note that the

disadvantage of the current system is its high computational complexity; it took us

days to extract features.

Tables 7.1 and 7.2 indicate that K-means performs better with 2D filters and

that sparse autoencoder performs better with 3D filters. With smaller filter sizes,
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(a) K-means features (b) Sparse autoencoder features

Figure 7.3: 100 features (filters or feature maps) learned from 100,000 patches of size

15 ∗ 15. K-means learned relatively more curving edges than the sparse auto encoder.

Table 7.1: 2D filters (15 ∗ 15): Leave-one-signer-out cross-validation average accuracies.

K-means Sparse Autoencoder

K LR-L1 LR-L2 SVM LR-L1 LR-L2 SVM

# of frames = 1

100 69.23 70.60 67.42 73.85 74.53 71.8

300 76.08 77.37 74.80 72.27 70.67 68.90

500 83.03 79.88 77.92 67.50 69.38 66.20

# of frames = 2

100 71.15 72.07 67.42 72.78 74.62 72.08

300 77.33 78.27 76.60 71.85 71.07 68.27

500 83.58 79.50 79.90 67.73 70.15 66.45

# of frames = 3

100 71.42 73.10 67.82 65.70 67.52 63.68

300 78.40 78.57 76.50 72.53 71.68 68.18

500 83.48 80.05 80.57 67.85 70.85 66.77

# of frames = 4

100 71.88 73.05 68.70 64.93 67.48 63.80

300 79.32 78.65 76.42 72.27 72.18 68.35

500 84.03 80.38 80.50 68.25 71.57 67.27

K = Number of features (# of centroids or hidden nodes)

LR-L? = Logistic Regression with L1 or L2 penalty

SVM = SVM with linear kernel

sparse autoencoder performs better than K-means. Note that features from 2D

filters are pooled over each frame and concatenated, whereas features from 3D
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Table 7.2: 3D filters (15∗15∗2): Leave-one-signer-out cross-validation average accuracies.

K-means Sparse Autoencoder

K LR-L1 LR-L2 SVM LR-L1 LR-L2 SVM

# of frames = 2

100 70.63 69.62 68.87 67.40 66.53 65.73

300 73.73 74.05 73.03 72.83 73.48 70.52

500 75.30 76.53 75.40 72.28 74.65 68.72

# of frames = 3

100 72.48 73.30 70.33 68.68 67.40 68.33

300 74.78 74.95 74.77 74.20 74.72 70.85

500 77.27 77.50 76.17 72.40 75.45 69.42

# of frames = 4

100 74.85 73.97 69.23 68.68 67.80 68.80

300 76.23 76.58 74.08 74.43 75.20 70.65

500 79.08 78.63 76.63 73.50 76.23 70.53

Table 7.3: Confusion matrix – confusions averaged over all settings for K-means and sparse

autoencoder with 2D and 3D filters (for all # of frames, all filter sizes and all classifiers).

BSL DSL FBSL FSL GSL NGT

BSL 56.11 2.98 1.79 3.38 24.11 11.63

DSL 2.87 92.37 0.95 0.46 3.16 0.18

FBSL 1.48 1.96 79.04 4.69 6.62 6.21

FSL 6.96 2.96 2.06 60.81 18.15 9.07

GSL 5.50 2.55 1.67 2.57 86.05 1.65

NGT 9.08 1.33 3.98 18.76 4.41 62.44

filters are pooled over all frames. For K-means, max pooling is performed. For

sparse autoencoder, mean pooling is performed, as it performed poorly with max

pooling.

Which filters are active for which sign language? We illustrate this with the

smallest number of filters that we have (i.e. 100). Figure 7.3 shows the 100 features

learned by K-means and sparse autoencoder. How are these filters activated for each

sign language? Figure 7.4 shows a visualization of the strength of filter activation

for each sign language. It shows the weight of the coefficients of each filter in the

four non-overlapping pooled regions of the video frame for the six languages.
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Figure 7.4: Visualization of coefficients of Lasso (logistic regression with L1 penalty) for

each sign language with respect to each of the 100 filters of the sparse autoencoder. The

100 filters are shown in figure 7.3 (b). Each grid cell represents a frame and each filter is

activated in 4 non-overlapping pooling regions.

(a) K-means features (at time t) (b) K-means features (at time t− 1)

Figure 7.5: K-means 3D features

Classification confusions are shown in table 7.3. We can see that the best average

accuracy is obtained for Danish sign language (92.37%) and the worst for British

sign language (56.11%). Most sign languages are confused with Greek sign language.

What do the learned features represent? This is hard to answer without knowl-

edge of the sign languages. There is, however, one feature type that we can easily

see from 3D filters and this is movement. The change in shape of a filter from

one form to another and the appearance or disappearance of a filter tells us that

a change or movement has taken place. In figure 7.5, we can see that while most

corresponding cells from figures 7.5 (a) and 7.5 (b) are nearly the same, others are

different. For example, the filter at the 9th row and 9th column is a filter for motion

(the filter turns from black to white).
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7.6 Conclusions and future work

This chapter presented a system for determining the identity of sign languages from

raw videos. The system uses unsupervised feature learning techniques to capture

features which are then used to learn a classifier. In a leave-one-signer-out cross-

validation involving 30 signers and 6 sign languages, the method achieves about

84% average accuracy. This score is better than the 78% accuracy presented in

the previous chapter (chapter 6), which used handcrafted features. Given that sign

languages are under-resourced, unsupervised feature learning techniques are useful

tools for sign language identification.

Future work can extend this work by: a) increasing the number of sign languages

and signers to check the stability of the learned feature activations and to relate

these to iconicity and signer differences, and b) comparing our shallow method with

deep learning techniques. In our experiments, we used a single hidden layer of

features, but it is worth looking into deeper layers to gain more insight into the

hierarchical composition of features in sign languages.

Other questions for future work are: how good are human beings at identifying

sign languages? How much of the problem in sign language identification is related

to issues arising from computer vision? How accurate is sign language identification

based on glosses (transcription)? This will tell us how much of the challenge is

related to the computer vision and how much of it is linguistic. Can a machine

be used to evaluate the quality of sign language interpreters by comparing them

to a native language model? The latter question is particularly important given

what happened at Nelson Mandela’s memorial service2. In this memorial, the sign

language interpreter seemed to be using correct signs but the signs together did

not make sense. This raises the question: how do we verify whether a given sign

language utterance is meaningful even when it is composed of meaningful signs

arranged in a non-meaningful way?

2http://www.youtube.com/watch?v=X-DxGoIVUWo

http://www.youtube.com/watch?v=X-DxGoIVUWo
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Chapter 8

Gesture stroke detection

Content

This chapter presents a method for automatic gesture stroke detection, the

problem of segmenting and identifying meaningful gesture units. The method

uses classifiers trained on visual features extracted from videos based on feed-

back and interaction with the user. The chapter also studies the role of speech

features as extra features in gesture stroke detection. Our results show that

a) the best scores are achieved using visual cues, b) acoustic cues do not con-

tribute to performance more than visual cues alone, and c) acoustic cues alone

can, to some degree, predict where strokes occur.

Based on

B. G. Gebre, P. Wittenburg and P. Lenkiewicz (2012). “Towards automatic

gesture stroke detection”. In Proceedings of the Eight International Confer-

ence on Language Resources and Evaluation (LREC12), pages 231-235, Eu-

ropean Language Resources Association (ELRA).

Keywords

Gesture stroke, videos, speech, preparation, hold, retraction, gesture phases
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8.1 Introduction

The task of segmenting and annotating an observation sequence arises in many

disciplines including gesture studies. One main preprocessing task in gesture studies

is the annotation of gesture strokes. This task involves identifying and marking

out the meaningful parts of body movements from video recordings. It can be

likened to text tokenization, which is the process of breaking a stream of text into

characters, words, phrases, or other meaningful elements called tokens [Fagan et al.,

1991; Carrier et al., 2011]. It can also be likened to speech segmentation, which is

the process of identifying the boundaries between words or phonemes in spoken

languages [Waibel et al., 1989; Graves et al., 2013].

Currently, gesture stroke detection is carried out by manually going through

video frames and marking out the start and end times of each stroke. This manual

process is labor-intensive, time-consuming and non-scalable. Therefore, there is a

growing need to solve the problem using more automatic approaches.

From a machine-learning point of view, gesture stroke detection is a classification

or sequence labeling problem. Each frame from the video stream (or a vector of

visual features extracted from it) is an observation and the whole video stream or

a section of it is an observation sequence. The task is then to label each frame as

1 or 0, indicating whether it is a part of a stroke or not.

This study is different from other gesture recognition studies. Many other ges-

ture recognition studies focus on classifying a set of a priori known gestures [Wu and

Huang, 1999; Mitra and Acharya, 2007; Bevilacqua et al., 2010]. In our study, we

focus on the high level task of classifying gesture phases (distinguishing the relevant

from the non-relevant movements) without attempting to identify the meaning of

the gestures. Other approaches do not make such an explicit distinction (i.e. a dis-

tinction between the meaning of gestures and whether the gestures are meaningful

to begin with).

This study is also different from other gesture recognition studies because we

consider the role of speech in gesture stroke detection. Considering speech in gesture

stroke detection is very important given that in natural settings, gestures rarely

occur in isolation (i.e. when people speak, they usually gesture [Kendon, 1980;

Kita, 2014]). In this spirit, we raise two questions: a) does including acoustic

cues to visual cues significantly improve gesture stroke detection, b) can acoustic

cues alone be used to detect where strokes occur? To answer these questions, we

run experiments using manually annotated data and different supervised machine

learning algorithms. Our results show that a) acoustic cues do not contribute to

performance more than visual cues alone, and b) acoustic cues alone can, to some

degree, predict where strokes occur. The rest of the chapter gives more details.
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8.2 Gesture stroke

The gesture stroke is the most important message-carrying phase of the series of

body movements that make people while speaking. The body movements usually

include hand and face movements. The relevant questions for automatic gesture

stroke detection are: a) what is a gesture? b) where does a gesture start and end?

c) what are the phases in a gesture? d) which one is the stroke?

The literature of gesture studies does not give completely consistent answers to

the above questions [Kendon, 1980, 1972; Kita et al., 1998; Bressem and Ladewig,

2011]. However, the most prominent view is that a gesture unit consists of one or

more gesture phrases and each gesture phrase consists of different phases [Kendon,

1980]. The gesture unit is defined as the period of time between successive rests of

the hands; it begins the moment the hands begin to move from rest position and

ends when they have reached a rest position again.

Gesture Unit

Gesture Phrase

Preparation

Pre-stroke Hold

Stroke

Post-stroke Hold

Retraction

Figure 8.1: Gesture Phases

[Kendon, 1980, 1972]

Figure 8.1 shows the different phases in a gesture unit. A gesture unit consists

of one or more gesture phrases and each gesture phrase consists of phases that are

called preparation, pre-stroke hold, stroke, post-stroke hold and retraction. Except

for strokes, which are obligatory, the rest of the phases in a gesture phrase are

optional. McNeill [1992b] defines the five gesture phases as follows:

Preparation

The preparation is the movement of the hands away from their rest position

to a position in gesture space where the stroke begins. Gesture space is the

space in front of the speaker (see figure 8.2).

Pre-stroke hold

The pre-stroke hold is the position and hand posture reached at the end of the

preparation, usually held briefly until the stroke begins. This phase is more

likely to co-occur with discourse connectors; it is a period in which the gesture

waits for speech to establish cohesion so that the stroke co-occurs with the

co-expressive portion of speech [Kita, 1990].
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Stroke

The stroke is the peak of effort in the gesture. It is in this phase that the

meaning of the gesture is co-expressed with speech. It is typically performed

in the central gesture space bounded roughly by the waist, shoulders, and

arms (see figure 8.2).

Post-stroke hold

The post-stroke hold is the final position and posture of the hand reached at

the end of the stroke, usually held briefly until the retraction begins. Its func-

tion is to temporally extend a single movement stroke so that the stroke and

the post stroke hold together will synchronize with the co-expressive portion

of speech [Kita, 1990].

Retraction

The retraction is the return movement of the hands to a rest position at the

end of post-stroke hold or stroke phase.

Figure 8.2: Typical gesture space of an adult speaker.

[McNeill, 1992b]

For the purpose of this study, any hand/face movement is classified into two

classes: strokes and non-strokes. The non-stroke gesture phases include the prepa-

ration, hold, retraction and any other body movements excluding the strokes.
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8.3 Our stroke detection method

Our approach to detecting gesture strokes involves three steps: a) detect the face

and hands of the individual in the video b) extract visual features (shapes, move-

ments, locations of hands/face) and audio features (MFCC, LPC, energy) c) learn

a binary classifier to distinguish between strokes and non-strokes.

8.3.1 Face and hand detection

We use skin color to detect the hands and face [Vezhnevets et al., 2003; Phung

et al., 2005]. Using skin color to detect hands/face has advantages and challenges.

The advantages are that it is invariant to scale and orientation and it is easy to

compute. The challenges are that a) perfect skin color ranges for one individual do

not necessarily apply to another (diversity of skin colors) and b) distracting objects

in the video may have the same color as the hands/face (ambiguity).

To overcome the first challenge, we did explicit manual selection of skin color

HSV ranges for each individual video. This is done by selecting a representative

skin color region from the first frame of the video and selecting the HSV ranges

between which the skin color lies. To support the process of finding the right skin

color ranges, visual feedback and sliders are provided that can be adjusted until

skin color regions are clearly separated from background.

The alternative to manual skin color range selection is developing parametric or

non-parametric distributions of skin color and non-skin color using training data.

But this turned out to be less effective. Building a skin color model offline for all

human skin colors is not only more complex (e.g. hard to find representative data)

but also less accurate when applied on any particular individual video. However,

models built online for a given video initialized by input from user achieve qualita-

tively higher performance at no more cost than the initialization and adjustment of

skin color ranges.

To overcome the ambiguity problem of skin color ranges between skin color and

other distracting objects, we applied dilation/erosion operations and constraint rules

to remove objects that have skin color but have unexpected sizes. This approach

does not solve all ambiguity problems. For example, as can be seen from figure 8.3,

the chair that the person is sitting on has virtually the same color as the hands and

face of the person.

8.3.2 Feature extraction

We extract features from both video and audio. The visual features encode posture

of the upper body, locations of hands and face and movements. The audio features

include MFCCs, energy and LPC.

Visual features



Chapter 8. Gesture stroke detection 93

Figure 8.3: Location grid and skin color: each grid cell in the grid is a square whose side

is half of the height of the face. The white regions of the picture show skin color and are

obtained using HSV color ranges. Both the size of the grid and HSV skin color ranges are

interactively selected by the user.

We encode and extract the shapes, locations and movements of skin-colored

regions. To encode the shapes of skin-colored regions in the video, we use the

Hu set of seven invariant moments (H1 −H7) [Hu, 1962], calculated from the

gesture space of the speaker - the region bounded by the external lines of the

grid shown in figure 8.3. The values of the seven Hu moments capture shapes

and arrangements of the foreground objects (in our case, skin color regions)

and are among the most widely used features in human activity recognition

[Davis and Bobick, 1997; Bradski and Davis, 2002]. They offer invariance to

scale, translation, rotation and skew [Hu, 1962].

To encode body locations of the speaker, we use grids of 8 ∗ 8 with the face

used as a reference. The location and size of the face is determined by the

user and is used to calculate the position and scale of the grid as shown in

figure 8.3. Each side of every cell in the grid is half of the height of the face.

A cell is assigned 1 if more than 20 percent of the area is covered by skin,

otherwise, it will be assigned 0. The values in the cells are changed into a

single row vector of size 64 by concatenating one row after another, forming

a location vector.

To encode body movements, the location vector in the current frame is com-

pared with respect to that in the previous frame. By subtracting the previous

location vector from current location vector (pairwise element subtraction),
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we get a motion vector. Note that the location vectors are obtained from the

grid cells as described in the previous paragraph.

Velocity and acceleration of the hands are not directly represented in the

features. But we can assume that movement vectors indirectly encode veloc-

ity. Kita [1990] notes that acceleration (and deceleration) of the hands are

good indicators of strokes, although a downward retraction may have bigger

acceleration.

Audio features

We extract different audio features using a toolkit called yaafe [Mathieu et al.,

2010]. These features are MFCCs and their derivates, LPCs, energy, loudness

and zero crossing rates.

Mel-frequency cepstral coefficients (MFCCs) are commonly used in various

speech-related tasks (speech recognition, speaker recognition, speaker diariza-

tion, etc.) [Davis and Mermelstein, 1980]. We used the 13 Mel-frequency

cepstral coefficients (MFCCs) along with their first order and second order

derivates for a total of 39 features.

Linear Predictive Coding (LPC) coefficients of a speech signal represent each

speech sample as a linear combination of previous samples. These prediction

coefficients characterize the formants of the speech signal [Makhoul, 1975]. In

our experiments, we used three coefficients.

Energy is the root mean square of the sum of the squares of the samples in

a given frame. Loudness [Moore et al., 1997] and zero crossing rates are also

used as features. The loudness of a sound is a perceptual measure of the effect

of the energy content of sound on the ear. The 24 loudness coefficients are

the energy in each Bark band [Zwicker, 1961], normalized by the overall sum

[Moore et al., 1997].

The zero-crossing rate is the rate of sign-changes along a signal, i.e., the rate

at which the signal changes from positive to negative or back.

8.3.3 Classification

We use three different supervised machine learning algorithms: random forest, lo-

gistic regression and support vector machines [Pedregosa et al., 2011].

8.4 Experiments

8.4.1 Datasets

We conducted our experiments on three videos taken from The Language Archive1

at the Max Planck Institute for Psycholinguistics. Each video has a single person

1https://corpus1.mpi.nl/
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speaking and gesturing and has been annotated for gesture strokes. Table 8.1 shows

the details of each video. The details are extracted from manually annotated data.

Table 8.1: Details of experiment dataset

Name Length Strokes Fraction Mean ± STD

ITCS 3.63 61 0.18 0.63 ± 0.24

sub49 5.25 129 0.14 0.34 ± 0.24

sub50 8.08 278 0.25 0.43 ± 0.24

Length = Video length in minutes

Strokes = Total number of gesture strokes

Fraction = Fraction of stroke time over video length

Mean ± STD = Mean and STD of stroke durations (in seconds)

8.4.2 Evaluation

We evaluate the performance of our system in terms of Area Under the Curve (AUC)

of Receiver Operating Characteristic (ROC) graphs [Fawcett, 2006]. Evaluating

classifiers using AUC scores have advantages over other methods like F1-scores.

First, AUC of ROC curves is insensitive to changes in class distribution (if the

proportion of positive to negative instances changes in a test set, the ROC curves

will not change). Second, AUC does not depend on a single cut-off point above

which the target variable is part of the positive class; instead, AUC evaluates at all

cut-off points, giving better insight into how well the classifier is able to separate

two classes. Because the reliability of AUC is brought into question [Lobo et al.,

2008], we also evaluate our system using precision, recall and F1-scores.

The three videos are evaluated separately using video features, audio features

and both audio and video features. Because, the setting is supervised machine learn-

ing and the class label distribution is unbalanced, we perform 10-fold stratified cross

validation (stratified means the folds produced preserve the percentage of samples

for each class). No separate development set was used for parameter tuning. We use

default values of the learning algorithms from the scikit–learn library [Pedregosa

et al., 2011]. The basic unit of evaluation is the video frame and the features are

extracted from the current frame and neighboring frames (four preceding and four

following frames).

8.5 Results and discussion

On 10-fold stratified cross-validation, random forest achieves the best mean AUC

score of 0.96 for ITCS data using video features alone (see figure 8.4); when audio

features are included, the AUC score drops to 0.95. We can observe that random
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forest does not benefit from including audio features (see table 8.2), whereas logistic

regression benefits from having audio features (see table 8.3). For example, for the

ICTS data, we can observe from figure 8.5 that the mean AUC score increases from

0.84 to 0.87 when audio features are added to video features. However, the best

score of logistic regression (0.87) is much less than that of random forest (0.96).

Figure 8.4: Random forest classifier: mean AUC scores on stratified 10-fold cross-validation

for ICTS data using video, audio and both video and audio features.

Figure 8.5: Logistic regression classifier: mean AUC scores on stratified 10-fold cross-

validation for ICTS data using video, audio and both video and audio features.
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Table 8.2: Scores for a random forest classifier (10 trees): precision, recall, F1 and AUC

scores

Data Features P R F1 AUC

ITCS

Video 0.75 0.61 0.67 0.96

Audio 0.65 0.43 0.52 0.83

Video + Audio 0.79 0.51 0.62 0.95

sub49

Video 0.71 0.51 0.60 0.95

Audio 0.60 0.39 0.47 0.81

Video + Audio 0.71 0.44 0.54 0.93

sub50

Video 0.67 0.45 0.54 0.84

Audio 0.60 0.47 0.53 0.81

Video + Audio 0.64 0.52 0.57 0.85

Baseline F1 (random classifier) = 0.28, 0.21, 0.33

Table 8.3: Scores for a logistic regression classifier (L1 penalty): precision, recall, F1 and

AUC scores

Data Features P R F1 AUC

ITCS

Video 0.41 0.69 0.52 0.84

Audio 0.26 0.63 0.37 0.68

Video + Audio 0.42 0.73 0.54 0.87

sub49

Video 0.33 0.72 0.45 0.82

Audio 0.23 0.66 0.35 0.72

Video + Audio 0.33 0.76 0.46 0.85

sub50

Video 0.41 0.61 0.49 0.71

Audio 0.41 0.69 0.52 0.77

Video + Audio 0.44 0.73 0.55 0.82

Baseline F1 (random classifier) = 0.28, 0.21, 0.33

From the scores in tables 8.2 and 8.3, we can also observe that stroke detection

can be performed using acoustic cues alone (much better than chance) but the

resulting scores are much less than scores resulting from using visual cues.
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8.6 Conclusions and future work

The study in this chapter proposed an adaptive gesture stroke detection algorithm

that takes user involvement into consideration. The user is involved in developing

a skin color model applicable to a particular video. The skin color model is used to

detect the face and hands of a person in a video. Based on skin color detection, three

feature types (location, movement and shape features of face/hands) are extracted.

These visual features are then augmented with standard audio features.

Our experimental results show that a) stroke detection using visual cues per-

forms the best (up to 0.67 F1), b) stroke detection using both visual and acoustic

cues does no better than stroke detection using visual cues alone, and c) stroke

detection using acoustic cues alone performs much better than chance. The sec-

ond result puts doubt as to whether speech carries more information about where

strokes occur than is available in the visual cues. The third result suggests that

speech carries information about where strokes occur but not as much as gesture.

Future work should examine the extent to which human subjects can predict

where strokes occur based only on speech, based only on video frames and based

on both speech and frames. This will shed new light on the redundancy and com-

plementarity of speech and video frames in the task of stroke annotation. Future

work should also experiment with applying features learned through unsupervised

learning techniques. This will perhaps increase accuracy of automatic gesture stroke

detection. Note that, in chapter 7, we have shown that unsupervised feature learn-

ing techniques give excellent performance for sign language identification.
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Chapter 9

Conclusions

Content

This chapter concludes the thesis with a summary of the contributions made

in the previous chapters and suggestions for future work. It also answers the

two research questions raised in the introduction chapter.

Keywords

Speaker diarization, signer diarization, sign language identification, gesture

stroke detection, primitive recognizers, adaptive recognizers
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9.1 Introduction

We started this thesis with three high-level observations: a) our capacity to record,

collect and store video data is growing much faster than our capacity to make use

of it, b) our machines cannot fully understand content in videos, and c) our current

process of making videos machine readable (i.e. manual annotation) is non-scalable,

unlikely to ever match the scale of big data. After giving this general context to

the thesis, we focused on four gesture-related problems: speaker diarization, signer

diarization, sign language identification and gesture stroke detection. All of the

four problems are types of gesture recognition, where given a video, we wish to

detect and classify gestures: a) according to who produced them (speaker and

signer diarization), b) according to the sign language of the signer (sign language

identification), c) according to whether the movement is meaningful (gesture stroke

detection). Underlying these problems are two research questions.

Research question 1:

How can a machine recognize gestures in diverse environments?

Answer

We addressed this research question by designing and developing “primitive”

recognizers, leaving out the identification of the environment to human beings

or to another primitive recognizer. Primitive recognizers are those that do one

thing and do it well, but which when combined become more complex pat-

tern recognizers. A good analogy for recognizers are unix commands, which

are mostly simple but when combined, become general and useful tools. For

example, to perform gesture recognition the “unix” way, we need a recognizer

for human detection, a recognizer to segment out individuals and a gesture

recognizer for individuals. In this spirit, we developed four recognizers: an ac-

tive speaker recognizer, an active signer recognizer, a sign language recognizer,

and a gesture stroke recognizer. Note that the philosophy for these recognizers

came from the AVATeCH1 project, which aims at developing many such au-

dio and video recognizers. Our recognizers, though considered primitive, solve

difficult pattern recognition problems. For example, all gestures involve move-

ments but not all movements are gestures. So, how do we know which move-

ments are gestures? Because it is impossible to fully qualitatively describe

the patterns to recognize (in this example, gesture vs. other movements), our

solution approach depends on statistical learning from well-annotated data,

which by itself leads to the following research question.

Research question 2:

How can a machine effectively use data to learn to recognize gestures?

1https://tla.mpi.nl/projects_info/avatech/

https://tla.mpi.nl/projects_info/avatech/
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Answer

We addressed this research question by designing adaptive recognizers. Adap-

tive recognizers are those that are trained off-line but that can also be adapted

to a given set of conditions. The philosophy for the adaptation is that a rec-

ognizer designed to give the best average performance in a variety of scenarios

is usually less accurate for a particular scene than a recognizer tailored to the

characteristics of that scene. In the adaptive spirit, we developed the active

speaker recognizer (it adapts a UBM, trained initially on all audio, to each

speaker based on speech samples co-occurring with their gestures), the sign

language recognizer (it learns features in an unsupervised way but the im-

portance of the discriminative features is adapted to the given task of sign

language identification using a small set of training data), and the gesture

stroke recognizer (skin-color is selected by the user during system initializa-

tion and features are extracted to apply to the given video only).

The two research questions we raised above are related to tasks that are effortless

for humans but difficult for machines. How do humans recognize patterns (e.g.

gestures) in diverse environments? How do they learn from experience? Do they

have many recognizers that are primitive and adaptive? Can we build intelligent

machines by emulating humans? The latter question has been raised and treated

in a book by Jeff Hawkins [Hawkins and Blakeslee, 2007]. The book tries to answer

the following two questions. What are the operating principles of the neocortex?

How can we build intelligent machines based on these principles?

Simply speaking, the first question is answered by saying that “the neocortex

is a memory system, not a computer system”. The neocortex has six working

principles: i) it learns online from streaming data ii) it has a hierarchy of memory

regions (self-similar memory regions) iii) it stores a sequence memory (for inference

and for motor behavior) iv) it has sparse distributed representations (few neurons

are active and most are inactive) v) all regions are sensory and motor (learns a

sensory-motor model of the world) vi) attention (has an ability to attend to various

parts of information in time and space). Jeff Hawkins claims that these six principles

are both necessary and sufficient for biological and machine intelligence. Based on

these principles, he proposed an online machine learning system called Hierarchical

Temporal Memory (HTM)2.

How do our primitive and adaptive recognizers relate to the six working prin-

ciples of the neocortex? The concepts of primitive and adaptive recognizers are

related to working principles i and ii. More specifically, our primitive recognizers

are related to a hierarchy of self-similar memory regions. Depending on their input,

these memory regions are assigned different levels (otherwise, the memory regions

are very similar). If the input to the memory region is raw information from sensors

(through receptive fields), then that memory region is a primitive recognizer. If the

input to the memory region is output from another memory region, then it is a

2http://numenta.org/resources/HTM_CorticalLearningAlgorithms.pdf

http://numenta.org/resources/HTM_CorticalLearningAlgorithms.pdf
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higher level memory region (a more complex recognizer). A complex recognizer in

our case is a combination (cascade) of primitive recognizers.

Our adaptive recognizers are related to the first working principle, which states

that the neocortex is an online learning system that continuously learns from stream-

ing data. Our adaptive recognizers take in latest information (in chunks) to improve

performance and this adaptation is related to the concept of online learning (online

learning is a form of adaptation).

In summary, the primitive and adaptive design approach is a powerful strategy

to deal with complexity. As presented above, it is also grounded in the working

principles of the neocortex, the best example of an intelligent system. This primitive

and adaptive design approach has been the basis of the following contributions.

9.2 Summary: speaker diarization

Contribution highlights

We presented a novel hypothesis that claims that the gesturer is the speaker

and showed the well-foundedness of the hypothesis by presenting evidence

from the literature of speech-gesture synchrony studies. The evidence includes

the observations that gestures occur mainly during speaking, fluency affects

gesturing (more fluency, more gestures), the congenitally blind also gesture

and delayed auditory feedback does not interrupt speech-gesture synchrony.

Capitalizing on the above hypothesis, we designed and developed two speaker

diarization algorithms based on: a) detection and tracking of corner features

(optical flow), and b) motion history images. The latter algorithm, which we

designed to be probabilistic, is more efficient and we showed it to be suitable

for online speaker diarization.

The two diarization algorithms have two assumptions: a) any motion that is

not brief and not isolated is a gesture, and b) speech is always accompanied

by gesture. These assumptions do not always hold (i.e. brief motions can

be gestures, long motions can be non-gestures and people can speak without

gesturing). Despite this, our speaker diarization using only gesture performs

much better than random (as a speaker is more likely to produce gestures

while speaking than while listening). To take into account the cases in which

the assumptions do not hold, we use speech in conjunction with gesture and

solve speaker diarization in a novel way.

We treat speaker diarization as a continuous speaker identification problem

after developing speaker models from speech samples co-occurring with ges-

tures (the presence of gesture indicates the presence of speech and the location

of gesture indicates the identity of the speaker). Accordingly, we proposed a

novel speaker diarization system that works as follows: a UBM is first trained

on all speech samples and the UBM is adapted to each speaker using speech
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samples co-occurring with their gestures. This adaptation gives us speaker

models, which we then use to perform continuous speaker identification.

The continuous speaker identification (i.e. diarization) gives us speech sam-

ples for each speaker, which we then use to create better speaker models by

adapting the UBM once again. This process of adaptation and diarization is

then repeated until we are satisfied with the results or until we see no improve-

ments. With 3 iterations, our tests on 4.24 hours of the AMI meeting data

show that our approach makes DER score improvements of 19% on speech-

only segments and 4% on all segments including silence (the comparison is

with the AMI system, which is a diarization system based on agglomerative

clustering).

In summary, compared to previous multimodal diarization systems, our di-

arization system has better accuracy, is faster (avoids agglomerative clus-

tering) and is more flexible (controllable trade-off between computation and

accuracy, can easily incorporate prior knowledge of the number of speakers,

speaker models, etc).

Future work

Our gesture detection model can be enriched to model and fuse various types

of information, such as visual focus of attention of speakers (listeners tend

to look at the active speaker) and lip movements (this information is not

always available but can be used whenever available). While enriching the

model can be useful, it is also important to note that it comes at the cost

of computation. Note that our gesture detection model, which is based on

Motion History Images, has the advantage of being computationally minimal.

In our conversation dynamics model, individual speaking patterns are modeled

the same way, but we may gain benefit from modeling each speaker’s speaking

patterns separately. We may also gain benefit from modeling the relationships

and interactions between participants involved in a conversation. In the latter

case, research in turn-taking may prove useful [Sacks et al., 1974].

Our idea of using gestures in speaker diarization offers new opportunities to

deal with overlapped speech, which still presents problems to traditional di-

arization approaches. Overlapped speech can be identified based on detection

of gestures that are overlapping in time but that are spatially separate. In our

current model, overlapped speech cannot be detected, because the most likely

speaker approach always forces a choice between speakers. However, this can

be changed by making decisions based on a speaking probability threshold,

assigning speaker status to a person whenever the probability for speaking

exceeds the threshold.

Our research has a direct impact on video conference technologies, where

gestures can be used as cues to determine who is speaking and use that in-

formation to zoom in on the speaker. Using gesture cues, speaker models
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can then be developed for each participant. The speaker models can later

be used for speaker identification, speaker diarization, speaker adaptation,

speech recognition and automatic minute-taking.

9.3 Summary: signer diarization

Contribution highlights

We identified and studied signer diarization as an important problem. Our

work motivated signer diarization by drawing similarities with speaker diariza-

tion, which is a dedicated discipline of research in spoken language processing.

Our solution approach to signer diarization is also similar to our approach

to gesture-based speaker diarization. The difference is that movement is a

necessary part of signing, whereas it is optional in speaking. Our previous

hypothesis that the gesturer is the speaker holds here too by changing it to

the gesturer is the signer. Accordingly, we proposed two signer diarization

algorithms based on: a) detection and tracking of corner features (optical

flow), and b) motion history images. Note that these are the same algorithms

we developed for gesture-based speaker diarization.

The challenge in signer diarization is that not all body movements constitute

signing activity (even though all signs involve movements). Our first algo-

rithm (the algorithm based on optical flow) tries to overcome the challenge

by removing short and isolated movements (at the cost of missed signs). Our

second algorithm (the probabilistic algorithm based on motion history im-

ages) tries to overcome the challenge by using Gamma distributions to model

signing and non-signing activity (the parameter values of the Gamma distri-

butions are trained on manually annotated data). The advantage of the two

algorithms is that they are language-independent as they do not look at the

meaning of the movements.

Future work

More preprocessing: body motion is an inexpensive source of information and

as such can be used as a baseline for signer diarization. But, not all body

motions are signing activity. A signing activity detector (in a manner similar

to a speech activity detector) may need to be applied as preprocessing to

remove non-signing segments. Such a detector can be trained on annotated

data using features extracted from body posture and head orientations.

A richer model: in our proposed model, each person has an independent model

of signing and only one person is assumed to be signing at a time. But one

can enrich the model by adding in extra parameters (e.g. to model the inter-

actions of signers and interlocutors) and extra information (e.g. to model the

fact that interlocutors look at the active signer). In signing communication,

interlocutors need to look at the signer to be part of the conversation. This
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is an important cue to use for signer diarization. To make use of this cue, we

need to develop a gaze detector for each signer and be able to combine the

gaze detections of each signer to determine the signer being gazed at.

9.4 Summary: sign language identification

Contribution highlights

Previous research on language identification focused only on written and spo-

ken languages. In this thesis, we identified and studied sign language iden-

tification as an important and challenging pattern recognition problem. We

discussed several challenges in sign language identification arising from three

sources – differences between signers (individuals have their own unique phys-

ical and signing characteristics), iconicity in sign languages (sign languages

tend to be more iconic, and hence more similar) and diversity in video record-

ing conditions (computer vision issues).

To overcome these challenges and still identify sign languages, we proposed

machine learning solutions using two types of features: a) linguistically mo-

tivated features, and b) features learned through unsupervised techniques.

With the first solution, three types of features (hand shapes, movements and

locations), each motivated by the phonemes of sign language, are extracted.

Using these features, we performed signer-independent classification of two

sign languages (British and Greek sign languages) based on video samples of

at least 10 seconds. We obtained an accuracy of 78%.

The linguistically motivated solution relies on the detection and localization

of the face and hands of the signer and for this purpose, we use skin color.

Because skin color is different across individuals and recording conditions, our

skin detection depended on manual selection of skin color ranges, which we

found to be tedious and non-scalable. We, therefore, opted for sign language

identification using unsupervised feature learning techniques.

With the unsupervised solution, we showed how K-means and sparse autoen-

coder can be used to learn feature maps from videos of sign languages (using

many small patches of 15 ∗ 15 and 15 ∗ 15 ∗ 2 pixels). Through convolution

and pooling, we also showed the use of these feature maps in classifier feature

extraction. Finally, we showed the impact on accuracy of varying the number

of feature maps (using both 2D and 3D feature maps).

The unsupervised solution, despite being more computationally intensive, is

fully automatic (uses raw video pixels alone) and it performs better than the

linguistically motivated solution. In a classification task of six sign languages

involving 30 different signers, it achieved the best average accuracy of 84%

(leave-one-signer-out cross-validation). This score is achieved using 500 K-

means features extracted over video lengths of about 0.5 seconds.
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Future work

Our sign language identification method should be further studied and eval-

uated in a context of: a) many more sign languages, b) many signers, and

c) diverse environment (e.g. various video backgrounds). It is important to

realize that a confounding factor in sign language identification may be that

signers of the same sign language may share physical features. Theoretically,

this problem can be dealt with by using multilingual signers. However, it will

be difficult to find enough signers who are fluent in all the combinations of

sign languages.

Our unsupervised feature learning based on sparse autoencoder used a sin-

gle hidden layer of features (one hidden layer in a neural network), but it is

worth looking into deeper layers to study the hierarchical composition of fea-

tures and to gain insight into differences and similarities between various sign

languages. Such a study can help us to develop sign language typology. This

will show that fully automatic and unsupervised techniques are useful not only

for practical applications but also for scientific study of sign languages (this

is very important because sign languages are under-resourced).

A psycholinguistic experiment should be done to discover the extent to which

humans (with and without knowledge of sign language) can learn to identify

sign languages. In addition to the scientific interest in such an experiment, the

outcome can serve as a benchmark for the evaluation of machine identification

of sign languages. Note that a similar experiment has been done for spoken

language identification [Muthusamy et al., 1994b].

9.5 Summary: gesture stroke detection

Contribution highlights

We proposed an adaptive gesture stroke detection algorithm that takes user

involvement into consideration. The user draws a rounded box around the face

of the person in the first frame of the video and a skin-color model is developed

using the distribution of colors in the box. The skin color model is used to

detect the face and hands in subsequent frames of the video. Classification

features are then extracted in frame regions where the skin color is detected.

These visual features encode location, shape and movement features.

We also examined the role of acoustic cues in gesture stroke detection. We

used various types of speech features (MFCCs, LPCs, energy, loudness and

zero crossing rates). We showed that a) the best scores are achieved using

visual cues, b) stroke detection using both visual and acoustic cues does no

better than stroke detection using visual cues alone, and c) stroke detection

using acoustic cues alone performs much better than chance. The second result

suggests that speech does not carry more information about strokes than is
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available in the visual cues. The third result suggests that speech carries some

information about where strokes occur, but not as much as visual cues.

Future work

Unsupervised feature learning techniques, which we showed to be effective in

learning features for sign language identification, can also be used to learn

features for gesture stroke detection.

The gesture stroke phase is preceded by optional gesture phases (preparation

and pre-stroke hold) and it is followed by optional gesture phases (post-stroke

hold and retraction). In our experiments, we modeled these phases as non-

stroke gesture phases, but modeling them independently may contribute to

the accuracy of stroke detection.

It is important to perform experiments to determine the upper limit of accu-

racy of gesture stroke detection as performed by humans, i.e. the extent to

which human subjects can predict where strokes occur based only on speech,

based only on gesture and based on both speech and gesture. The conclusion

from such an experiment will shed light on the redundancy and complemen-

tarity of speech and gesture in the task of stroke detection.

9.6 Putting it all together

Gesture is an important source of information during communication in spoken and

signed languages. Recognizing it helps us solve many human-related video content

understanding problems. In this thesis, we demonstrated innovative application of

it in the tasks of speaker diarization, signer diarization, sign language identifica-

tion, and gesture-stroke detection. To perform each task, we developed primitive

and adaptive recognizers as part of the AVATecH project3. In the design and devel-

opment of these recognizers, machine learning played a central role. Future work

should continue the development and refinement of many such recognizers in order

to handle the complexity of video content understanding. We imagine a world,

where a toolset of recognizers is easily available for applications requiring video

content understanding.

3https://tla.mpi.nl/projects_info/avatech/

https://tla.mpi.nl/projects_info/avatech/
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Summary

Data collection and analysis are important tasks in many areas of our life. Our

capacity to collect data is growing much faster than our capacity to make sense of

it. This is certainly the case with video data. With advances in device technology, it

has become much easier for virtually anyone to record, collect and store video data.

This ease has resulted in data volumes of a scale too big for any human to analyze

manually. Can machines watch videos for us and tell us what is interesting? The

goal of this thesis is to provide an answer to that question by advancing technologies

applied in enriching certain types of video recordings - videos of people engaged in

language use.

More specifically, the thesis focuses on solving four related problems: speaker

diarization, signer diarization, sign language identification and gesture stroke detec-

tion. These problems are types of gesture recognition, where given a video, the goal

is to detect and classify gestures: a) according to who produced them (speaker and

signer diarization), b) according to the sign language of the signer (sign language

identification), and c) according to whether the movement is meaningful (gesture

stroke detection). Solving these problems has a wide range of applications such

as document and information retrieval, machine translation and automatic minute

taking systems. Given that machines don’t have human-like eyes and brains, how

do we solve these problems?

The thesis solves these problems using machine learning. Machine learning is the

art and science of writing programs that learn to perform tasks based on examples.

For example, how do we model the voice characteristics of speakers? With machine

learning, we collect many speech samples for each speaker and develop mathematical

models of the data, which we then use to make predictions on new data. The choice

of mathematical models to use and the aspects of data (also called features) to

consider are critical in making machine learning work in applications. Also critical

is to determine which aspects of the problem are solvable by machine learning and

whether there is enough training data for learning to take place.

The remainder of this summary describes the four problems studied in this

thesis.
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Speaker diarization

Extensive literature exists on speaker diarization, the task of determining who spoke

when in an audio or video recording. Our contribution is that we proposed the use

of gestures in speaker diarization and developed algorithms to exploit them. We

hypothesized that the gesturer is the speaker and showed the well-foundedness of the

hypothesis by presenting evidence from studies on the synchronization of gesture

and speech (see chapter 2). We then proposed two speaker diarization algorithms

based on: a) detection and tracking of corner features (see chapter 2), and b) motion

history images (see section 4.2). The latter algorithm is more efficient and we

showed it to be suitable for online settings (see chapter 4).

We also proposed another speaker diarization algorithm based on the exploita-

tion of gesture and speech. The use of gesture enables the formulation of the diariza-

tion problem in a novel way. We treat speaker diarization as a speaker recognition

problem after learning speaker models from speech samples co-occurring with ges-

tures. We train a Gaussian Mixture model on all speech samples and create new

models by adapting the model to each speaker using speech samples co-occurring

with their gestures. For better performance, we then repeat speaker adaptation

and diarization. This new approach has better accuracy, is faster (avoids agglom-

erative clustering) and is more flexible (better trade-off between computation and

accuracy) than previous systems (see chapter 5).

Signer diarization

Signer diarization, the task of determining who signed when, has similar motivations

and applications as speaker diarization except for the difference in modality. While

there is significant literature on speaker diarization, very little exists on signer

diarization. This thesis identifies signer diarization as an important problem and

proposes a solution to it. Given the similarities between sign language and gesturing,

our proposed solutions are similar to those presented for speaker diarization, i.e.

based on: a) detection and tracking of corner features, and b) motion history images

(see chapters 3 and 4).

Sign language identification

Language identification is the task of determining the identity of a language given

utterances in the language. It is a basic preprocessing stage in document retrieval

and machine translation systems. While previous work on language identification is

only for written and spoken languages, this thesis proposes language identification

solutions for signed languages. We proposed solutions based on a) linguistically

motivated features (hand shapes, movements, locations), and b) features learned

through unsupervised techniques (K-means and sparse autoencoder).

The first solution is based on the hypothesis that sign languages have varying

distributions of phonemes (hand shapes, locations and movements) and that these
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differences in distribution can be used to identify sign languages. The challenge in

this first solution is that it is non-trivial to detect and extract the phonemes from

videos. Because of this, the second solution is proposed and here, the features are

learned from raw video pixels. The place and degree of these feature activations

are extracted through convolution and are then used to discriminate between sign

languages. The first solution achieved an accuracy of 78% in a classification task

involving two sign languages, whereas the second solution achieved 84% for six sign

languages (see chapters 6 and 7).

Gesture stroke detection

Gesture stroke detection is one of the main preprocessing tasks in gesture studies.

The task can be likened to speech segmentation or word tokenization. Our con-

tribution is that we proposed an adaptive gesture stroke detection algorithm that

takes user involvement into consideration. The user draws a box around the face of

the person in the first frame of the video and a skin color model is developed using

the distribution of colors in the box. The skin color model is used to detect the face

and hands in subsequent frames of the video. Visual features are then extracted.

These features encode hand shapes, movements and locations.

We also examined the role of acoustic cues in gesture stroke detection. We found

that a) stroke detection using both visual and acoustic cues does no better than

stroke detection using visual cues alone, and b) stroke detection using acoustic cues

alone performs much better than chance. The first result suggests that speech does

not carry more information about strokes than is available in the visual cues. The

second result suggests that speech carries information about where strokes occur,

but not as much as visual cues (see chapter 8).

Putting it all together

Gesture is an important source of information during communication in spoken

and signed languages. This thesis demonstrated its application in solving several

human-related video content understanding problems. We developed primitive and

adaptive recognizers as part of the AVATecH project4 (see chapters 1 and 9). In

the design and development of these recognizers, machine learning played a central

role. We recommend that many such recognizers be developed in order to man-

age the complexity of video content understanding. We imagine a world where

a toolset of recognizers is easily available for applications requiring video content

understanding.

4https://tla.mpi.nl/projects_info/avatech/

https://tla.mpi.nl/projects_info/avatech/
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Samenvatting

Het verzamelen en analyseren van data is belangrijk in veel aspecten van ons leven.

Onze capaciteit voor het verzamelen van data groeit veel sneller dan onze capaciteit

voor het begrijpen van deze data. Dit is zeker het geval met video data. Dankzij

technologische vooruitgang is het nu voor iedereen eenvoudig om video-opnames

te maken, verzamelen en bewaren. Hierdoor ontstaan er data-verzamelingen die

te groot zijn om nog door een mens geanalyseerd te kunnen worden. Kunnen

computers video’s voor ons bekijken en ons vertellen wat interessant is? Het doel van

dit proefschrift is om deze vraag gedeeltelijk te beantwoorden door technologieën

te ontwikkelen die toegepast kunnen worden op bepaalde soorten video-opnames:

video’s van mensen die taal gebruiken.

Specifiek bespreekt dit proefschrift vier gerelateerde problemen: speaker diari-

zation (herkennen wie wanneer spreekt), signer diarization (herkennen wie wanneer

gebaart), identificatie van gebarentaal en gesture stroke detection (het detecteren

van het meest betekenisvolle gedeelte van een gebaar). Bij al deze problemen is het

doel is om in een video gebaren te detecteren en classificeren a) aan de hand van

wie ze heeft geproduceerd (speaker diarization en signer diarization) b) aan de hand

van de gebarentaal die wordt gebruikt (het identificeren van gebarentaal) c) aan de

hand van de mate waarin een beweging betekenis heeft (gesture stroke detection).

Oplossingen voor deze problemen hebben verschillende applicaties, zoals document

retrieval, information retrieval, automatische vertaling en automatisch notuleren.

Aangezien computers geen menselijke ogen en hersenen hebben, is de vraag: hoe

lossen we deze problemen op?

Dit proefschrift lost deze problemen op met gebruik van machine learning (au-

tomatisch leren). Machine learning is de kunst en wetenschap van het schrijven

van programma’s die zelf taken leren uitvoeren aan de hand van voorbeelden. Bij-

voorbeeld, hoe kunnen we de eigenschappen van verschillende stemmen modelleren?

Met machine learning verzamelen we een grote hoeveelheid segmenten van de spraak

van elke spreker en ontwikkelen we op basis daarvan wiskundige modellen, die we

vervolgens gebruiken om voorspellingen te maken aan de hand van nieuwe data. De

keuze van het wiskundige model en de beslissing welke eigenschappen van de data

(features) in het model worden meegenomen zijn cruciaal voor het functioneren van

machine learning. Het is ook van groot belang om te bepalen weke onderdelen van

het probleem met behulp van machine learning kunnen worden opgelost en of er
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genoeg data is om van te kunnen leren.

Het vervolg van deze samenvatting beschrijft de vier problemen die in dit proef-

schrift onderzocht worden.

Speaker diarization

Er bestaat een uitgebreide literatuur over speaker diarization, het bepalen wie wan-

neer spreekt in een geluids- of video-opname. Onze bijdrage hieraan is het idee om

gebaren te gebruiken voor speaker diarization. We begonnen met de hypothese de

gebaarder is de spreker en presenteerden bewijs voor deze hypothese, afkomstig van

studies naar de synchronisatie van spraak en gebaren (zie hoofdstuk 2). Vervolgens

stelden we twee algoritmen voor speaker diarization voor, gebaseerd op: a) het

detecteren en tracken van corner features (zie hoofdstuk 2), en b) motion history

images (zie sectie 4.2). Het laatstgenoemde algoritme is efficienter en we hebben

laten zien dat het gebruikt kan worden voor online settings (zie hoofdstuk 4).

We hebben ook een algoritme voor speaker diarization ontwikkeld dat gebruik

maakt van zowel gebaren als spraak. Het gebruik van gebaren maakt het mogelijk

om het diarization-probleem op een nieuwe manier te formuleren. We behandelen

speaker diarization als sprekerherkenning nadat modellen van de sprekers worden

geleerd op basis van spraaksegmenten die samen met gebaren voorkomen. We trai-

nen een Gaussian Mixture model op alle spraaksegmenten en creren nieuwe modellen

door het model aan te passen aan elke spreker, gebruik makend van de segmenten

die samen met gebaren voorkomen. Voor een beter resultaat herhalen we vervolgens

de aanpassing aan de spreker en de diarization. Deze nieuwe aanpak resulteert in

een betere nauwkeurigheid, snelheid (aangezien agglomerative clustering niet nodig

is) en flexibiliteit (een betere balans tussen computatie en nauwkeurigheid) dan die

van eerdere systemen (zie hoofdstuk 5).

Signer diarization

Signer diarization is het bepalen wie wanneer gebaart in gesprekken in gebarentaal.

Het heeft toepassingen vergelijkbaar met die van speaker diarization. Ondanks de

uitgebreide literatuur over speaker diarization is er nog nauwelijks onderzoek ge-

daan naar signer diarization. Dit proefschrift beschrijft signer diarization als een

belangrijk probleem en stelt een oplossing voor. Aangezien gebarentaal overeen-

komsten vertoont met gebaren tijdens spraak, zijn onze oplossingen vergelijkbaar

met die voor speaker diarization. De oplossingen zijn gebaseerd op: a) het detecte-

ren en tracken van corner features, en b) motion history images (zie hoofdstuk 3 en

4).

Identificatie van gebarentaal

Taalidentificatie is het bepalen van de identiteit van een taal aan de hand van ui-

tingen in die taal. Dit is een taak die als eerste stap gebruikt wordt in systemen
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voor document retrieval en automatische vertaling. Eerder onderzoek naar taal-

identificatie behandelde alleen geschreven en gesproken talen. In dit proefschrift

hebben we taalidentificatie voor gebarentalen besproken. We stelden oplossingen

voor gebaseerd op a) taalkundig gemotiveerde features (handvorm, beweging, loca-

tie), en b) features die worden geleerd via unsupervised learning (K-means en sparse

autoencoder)

De eerste oplossing is gebaseerd op de hypothese dat gebarentalen verschillende

distributies hebben van fonemen (handvormen, beweging en locaties) en dat deze

verschillen in distributie gebruikt kunnen worden om gebarentalen te identifice-

ren. Het is echter niet eenvoudig om deze fonemen te detecteren in video-opnames.

Daarom stelden we de tweede oplossing voor, waarbij de features direct geleerd

worden op basis van video pixels. De locatie en mate van de activeringen van

deze features worden geëxtraheerd met gebuik van convolutie en worden vervolgens

gebruikt om onderscheid te maken tussen gebarentalen.

De eerste oplossing resulteerde in een nauwkeurigheid van 78% bij het classifi-

ceren van twee gebarentalen, terwijl de tweede oplossing een nauwkeurigheid van

84% had voor zes gebarentalen (zie hoofdstuk 6 en 7).

Gesture stroke detection

Gesture stroke detection (het detecteren van het betekenisvolle gedeelte van geba-

ren) is een van de voornaamste stappen in de voorbewerking van data voor onder-

zoek naar gebaren. De taak is vergelijkbaar met spraaksegmentatie en tokenisatie.

Onze bijdrage is een adaptief gesture stroke detection algoritme waarbij input van de

gebruiker wordt gevraagd. In het eerste frame van de video plaatst de gebruiker een

kader rondom het gezicht van de persoon waarvan de gebaren gedetecteerd moeten

worden. Gebaseerd op de distributie van kleuren binnen dit kader wordt een huids-

kleurmodel ontwikkeld. Dit huidskleurmodel wordt gebruikt om het gezicht en de

handen te herkennen in de overige frames van de video. Vervolgens worden visuele

features geëxtraheerd. Deze features betreffen handvorm, beweging en locatie.

We hebben ook de rol van akoestische informatie in gesture stroke detection

onderzocht. We vonden dat a) detectie met behulp van visuele en akoestische in-

formatie niet beter functioneert dan met alleen visuele informatie, en b) detectie

met alleen akoestische informatie beter functioneert dan kans Het eerste resultaat

suggereert dat spraak niet meer informatie bevat over gebaren dan beelden. Het

tweede resultaat suggereert dat spraak informatie bevat over waar gebaren voorko-

men, maar niet zoveel als beelden (zie hoofdstuk 8).

Conclusie

Gebaren bevatten belangrijke informatie tijdens communicatie in zowel gesproken

taal als gebarentaal. Dit proefschrift heeft laten zien dat het herkennen van gebaren

toegepast kan worden bij het oplossen van verschillende problemen die te maken

hebben met het automatisch verwerken van videobeelden. We hebben primitieve
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en adaptieve recognizers ontwikkeld als onderdeel van het AVATecH project 5 (zie

hoofdstuk 1 en 9). Bij het ontwerpen en ontwikkelen van deze recognizers heeft

machine learning een belangrijke rol gespeeld. We bevelen het ontwikkelen van meer

van zulke recognizers aan, om de complexiteit en hoeveelheid van videodata aan te

kunnen. We stellen ons een wereld voor waarin een aanbod van zulke recognizers

beschikbaar is voor alle applicaties waarbij videobeelden verwerkt worden.

5https://tla.mpi.nl/projects_info/avatech/

https://tla.mpi.nl/projects_info/avatech/
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