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Improving the Price of Anarchy for Selfish Routing via
Coordination Mechanisms

George Christodoulou∗ Kurt Mehlhorn† Evangelia Pyrga‡

Abstract

We reconsider the well-studied Selfish Routing game with affine latency functions. The Price of
Anarchy for this class of games takes maximum value 4/3; thismaximum is attained already for a
simple network of two parallel links, known as Pigou’s network. We improve upon the value 4/3 by
means of Coordination Mechanisms.

We increase the latency functions of the edges in the network, i.e., if ℓe(x) is the latency function
of an edgee, we replace it bŷℓe(x) with ℓe(x) ≤ ℓ̂e(x) for all x. Then an adversary fixes a demand
rate as input. Theengineered Price of Anarchyof the mechanism is defined as the worst-case ratio
of the Nash social cost in the modified network over the optimal social cost in the original network.
Formally, if ĈN(r) denotes the cost of the worst Nash flow in the modified network for rater and
Copt(r) denotes the cost of the optimal flow in the original network for the same rate then

ePoA= max
r≥0

ĈN(r)
Copt(r)

.

We first exhibit a simple coordination mechanism that achieves for any network of parallel links
an engineered Price of Anarchy strictly less than 4/3. For the case of two parallel links our ba-
sic mechanism gives 5/4 = 1.25. Then, for the case of two parallel links, we describe anoptimal
mechanism; its engineered Price of Anarchy lies between 1.191 and 1.192.

1 Introduction

We reconsider the well-studied Selfish Routing game with affine cost functions and ask whether increas-
ing the cost functions can reduce the cost of a Nash flow. In other words, the increased cost functions
should induce a user behavior that reduces cost despite the fact that the cost is now determined by in-
creased cost functions. We answer the question positively in the following sense. The Price of Anarchy,
defined as the maximum ratio of Nash cost to optimal cost, is 4/3 for this class of games. We show
that increasing costs can reduce the price of anarchy to a value strictly below 4/3 at least for the case of
networks of parallel links. For a network of two parallel links, we reduce the price of anarchy to a value
between 1.191 and 1.192 and prove that this is optimal. In order to state our results precisely, we need
some definitions.

We consider single-commodity congestion games on networks, defined by a directed graphG =
(V,E), designated nodess, t ∈V, and a setℓ= (ℓe)e∈E of non-decreasing, non-negative functions;ℓe is
the latency function of edgee∈ E. Let P be the set of all paths froms to t, and let f (r) be a feasible
s, t-flow routing r units of flow. For anyp∈ P, let fp(r) denote the amount of flow thatf (r) routes via
path p. For ease of notation, whenr is fixed and clear from context, we will write simplyf, fp instead
of f (r), fp(r). By definition,∑p∈P fp = r. Similarly, for any edgee∈ E, let fe be the amount of flow
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ℓ1(x) = x

ℓ2(x) = 1

f ∗1 (r) = min{1/2, r}

f ∗2 (r) = max{0, r −1/2}

f N
1 (r) = min{1, r}

f N
2 (r) = max{0, r −1}

(a) (b) (c)

PoA(r)

r1
2

1

4/3

1

ℓ̂2(x) = 1

ℓ̂1(x) =

{
x for x≤ 1/2

∞ for x> 1/2
(d) (e)

Figure 1: Pigou’s network: We show the original network in (a), the optimal flow in (b) and the Nash
flow in (c) as a function of the rater, respectively. The Price of Anarchy as a function of the rateis
shown in (d);PoA(r) is 1 for r ≤ 1/2, then starts to grow until it reaches its maximum of 4/3 at r = 1,
and then decreases again and approaches 1 asr goes to infinity. Finally, in (e) we show the modified
latency functions. We obtainePoA(r) = 1 for all r in the case of Pigou’s network.

going throughe. We define the latency ofp under flow f asℓp( f ) = ∑e∈pℓe( fe) and the cost of flow
f asC( f ) = ∑e∈E fe · ℓe( fe) and useCopt(r) to denote the minimum cost of any flow of rater. We will
refer to such a minimum cost flow as anoptimalflow (Opt). A feasible flowf that routesr units of flow
from s to t is atNash (or Wardrop [29]) Equilibrium1 if for p1, p2 ∈ P with fp1 > 0, ℓp1( f ) ≤ ℓp2( f ).
We useCN(r) to denote the maximum cost of a Nash flow for rater. ThePrice of Anarchy (PoA)[23]
(for demandr) is defined as

PoA(r) =
CN(r)
Copt(r)

and PoA= max
r>0

PoA(r).

PoA is bounded by 4/3 in the case of affine latency functionsℓe(x) = aex+be with ae ≥ 0 andbe ≥ 0;
see [28, 13]. The worst-case is already assumed for a simple network of two parallel links, known as
Pigou’s network; see Figure 1.

A Coordination Mechanism2 replaces the cost functions(ℓe)e∈E by functions3 ℓ̂= (ℓ̂e)e∈E such that
ℓ̂e(x) ≥ ℓe(x) for all x≥ 0. LetĈ( f ) be the cost of flowf when for each edgee∈ E, ℓ̂e is used instead
of ℓe and letĈN(r) be the maximum cost of a Nash flow of rater for the modified latency functions. We
define theengineered Price of Anarchy(for demandr) as

ePoA(r) =
ĈN(r)
Copt(r)

and ePoA= max
r>0

ePoA(r).

1This assumes continuity and monotonicity of the latency functions. For non-continuous functions, see the discussion later
in this section.

2Technically, we considersymmetriccoordination mechanisms in this work, as defined in [9] i.e.,the latency modifications
affect the users in a symmetric fashion.

3One can interpret the differenceℓ̂e− ℓe as a flow-dependent toll imposed on the edgee.
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We stress that the optimal cost refers to the original latency functionsℓ.

Non-continuous Latency Functions: In the previous definition, as it will become clear in Section2,
it is important to allow non-continuous modified latencies.However, when we move from continuous
to non-continuous latency functions, Wardrop equilibria do not always exist. Non-continuous functions
have been studied by transport economists to model the effects of step-function congestion tolls and
traffic lights. Several notions of equilibrium that handle discontinuities have been proposed in the liter-
ature4. The ones that are closer in spirit to Nash equilibria, are those proposed by Dafermos5 [15] and
Berstein and Smith [4]. According to the Dafermos’ [15] definition of user optimization, a flow is in
equilibrium if nosufficiently smallfraction of the users on any path, can decrease the latency they experi-
ence by switching to another path6. Berstein and Smith [4] introduced the concept ofUser Equilibrium,
weakening further the Dafermos equilibrium, taking the fraction of the users to the limit approaching 0.
The main idea of their definition is to capture the notion of the individual commuter, that is implicit in
Wardrop’s definition for continuous functions. The Dafermos equilibrium on the other hand is a stronger
concept that captures the notion of coordinated deviationsby groups of commuters.

We adopt the concept of User Equilibrium. Formally, we say that a feasible flowf that routesr units
of flow from s to t is a User Equilibrium, iff for allp1, p2 ∈ P with fp1 > 0,

ℓp1( f )≤ lim inf
ε↓0

ℓp2( f + ε1p2 − ε1p1), (1)

where1p denotes the flow where only one unit passes along a pathp.
Note that for continuous functions the above definition is identical to the Wardrop Equilibrium. One

has to be careful when designing a Coordination Mechanism with discontinuous functions, because the
existence of equilibria is not always guaranteed7. It is important to emphasize, that all the mechanisms
that we suggest in this paper use both lower semicontinuous and regular8 latencies, and therefore User
Equilibrium existence is guaranteed due to the theorem of [4]. Moreover, since our modified latencies
are non-decreasing, all User Equilibria are also Dafermos-Sparrow equilibria. From now on, we refer to
the User Equilibria as Nash Equilibria, or simply Nash flows.

Our Contribution: We demonstrate the possibility of reducing the Price of Anarchy for Selfish Routing
via Coordination Mechanisms. We obtain the following results for networks ofk parallel links.

• if original and modified latency functions are continuous, no improvement is possible, i.e.,ePoA≥
PoA; see Section 2.

• for the case of affine cost functions, we describe a simple coordination mechanism that achieves
an engineered Price of Anarchy strictly less than 4/3; see Section 3. The functionŝℓe are of the
form

ℓ̂e(x) =

{
ℓe(x) for x≤ re

∞ for x> re.
(2)

For the case of two parallel links, the mechanism gives 5/4 (see Section 3.1), for Pigou’s network
it gives 1, see Figure 1.

4See [26, 24] for an excellent exposure of the relevant concepts, the relation among them, as well as for conditions that
guarantee their existence.

5In [15], Dafermos weakened the orginal definition by [14] to make it closer to the concept of Nash Equilibrium.
6See Section 5 for a formal definition.
7See for example [16, 4] for examples where equilibria do not exist even for the simplest case of two parallel links and

non-decreasing functions.
8See [4] for a definition of regular functions.
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• For the case of two parallel links with affine cost functions,we describe anoptimal9 mechanism;
its engineered Price of Anarchy lies between 1.191 and 1.192(see Sections 4 and 5). It uses
modified cost functions of the form

ℓ̂e(x) =

{
ℓe(x) for x≤ re andx≥ ue

ℓe(ue) for re < x< ue.
(3)

The Price of Anarchy is a standard measure to quantify the effect of selfish behavior. There is a vast
literature studying the Price of Anarchy for various modelsof selfish routing and scheduling problems
(see [25]). We show that simple coordination mechanisms canreduce the Price of Anarchy for selfish
routing games below the 4/3 worst case for networks of parallel links and affine cost functions.

We believe that our arguments extend to more general cost functions, e.g., polynomial cost functions.
However, the restriction to parallel links is crucial for our proof. We leave it as a major open problem to
prove results for general networks or at least more general networks, e.g., series-parallel networks.

Implementation: We discuss the realization of the modified cost function in a simple traffic scenario
where the driving speed on a link is a decreasing function of the flow on the link and hence the transit
time is an increasing function. The step function in (3) can be realized by setting a speed limit corre-
sponding to transit timeℓe(ue) once the flow is abovere. The functions in (2) can be approximately
realized by access control. In any time unit onlyre items are allowed to enter the link. If the usage rate
of the link is abovere, the queue in front of the link will grow indefinitely and hence transit time will go
to infinity.

Related Work: The concept of Coordination Mechanisms was introduced in (the conference version
of) [9]. Coordination Mechanisms have been used to improve the Price of Anarchy in scheduling prob-
lems for parallel and related machines [9, 19, 22] as well as for unrelated machines [3, 6]; the objective is
makespan minimization. Very recently, [10] considered as an objective the weighted sum of completion
times. Truthful coordination mechanisms have been studiedin [1, 7, 2].

Another very well-studied attempt to cope with selfish behavior is the introduction of taxes (tolls)
on the edges of the network in selfish routing games [11, 18, 20, 21, 17, 5]. The disutility of a player is
modified and equals her latency plus some toll for every edge that is used in her path. It is well known
(see for example [11, 18, 20, 21]) that so-called marginal cost tolls, i.e.,ℓ̂e(x) = ℓe(x)+xℓ′e(x), result in
a Nash flow that is equal to the optimum flow for the original cost functions.10 Roughgarden [27] seeks
a subnetwork of a given network that has optimal Price of Anarchy for a given demand. [12] studies
the question whether tolls can reduce the cost of a Nash equilibrium. They show that for networks with
affine latencies, marginal cost pricing does not improve thecost of a flow at Nash equilibrium, as well
as that the maximum possible benefit that one can get is no morethan that of edge removal.

Discussion: The results of this paper are similar in spirit to the resultsdiscussed in the previous para-
graph, but also very different. The above papers assume thattaxes or tolls are determined with full
knowledge of the demand rater. Our coordination mechanisms musta priori decide on the modified
latency functionswithout knowledge of the demand; it must determine the modified functionsℓ̂ and then
an adversary selects the input rater. More importantly, our target objectives are different; wewant
to minimize the ratio of the modified cost (taking into account the increase of the latencies) over the

9The lower bound that we provide in Section 5 holds for all deterministic coordination mechanisms that usenon-decreasing
modified latencies, with respect to both notions of equilibrium described in the previous paragraph.

10It is important to observe that although the Nash flow is equalto the optimum flow, its cost with respect to the marginal
cost function can be twice as large as its cost with respect tothe original cost function. For Pigou’s network, the marginal costs
areℓ̂1(x) = 2x andℓ̂2(x) = 1. The cost of a Nash flow of rater with r ≤ 1/2 is 2r2 with respect to marginal costs; the cost of
the same flow with respect to the original cost functions isr2.
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original optimal cost. Our simple strategy presented in Section 3 canbe viewed as a generalization of
link removal. Removal of a link reduces the capacity of the edge to zero, our simple strategy reduces
the capacity to a thresholdre. Following [9], we studylocal mechanisms; the decision of modifying the
latency of a link is taken based on the amount of flow that comesthrough the particular linkonly.11

2 Continuous Latency Functions Yield No Improvement

The network in this section consists ofk parallel links connectings to t and the original latency func-
tions are assumed to be continuous and non-decreasing. We show that substituting them by continuous
functions brings no improvement.

Lemma 1. Assume that the original functionsℓe are continuous and non-decreasing. Consider some
modified latency functionŝℓ and some rate r for which there is a Nash Equilibrium flowf̂ such that the
latency functionℓ̂i is continuous atf̂i(r) for all 1≤ i ≤ k. Then ePoA(r)≥ PoA(r).

Proof. It is enough to show that̂CN(r) ≥CN(r). Let f be a Nash flow for rater and the original cost
functions. If f = f̂ , the claim is obvious. Iff̂ 6= f , there must be aj with f̂ j(r) > f j(r). The local
continuity of ℓ̂i at f̂i(r), implies thatℓ̂i( f̂i(r)) = ℓ̂i′( f̂i′(r)), for all i, i′ ≤ k such that f̂i(r), f̂i′(r) > 0.
Therefore,

ĈN(r) = Ĉ( f̂ (r)) =
k

∑
i=1

f̂i(r)ℓ̂i( f̂i(r)) = r · ℓ̂ j( f̂ j(r)) ≥ r · ℓ j( f̂ j(r)) ≥ r · ℓ j( f j(r))

sinceℓ̂ j(x)≥ ℓ j(x) for all xandℓ j is non-decreasing. Sincef is a Nash flow we haveℓi( fi(r))≤ ℓ j( f j(r))
for any i with fi(r)> 0. Thus

CN(r) =
k

∑
i=1

fi(r)ℓi( fi(r))≤ r · ℓ j( f j(r)).

3 A Simple Coordination Mechanism

Let ℓi(x) = aix+bi =(x+γi)/λi be the latency function of thei-th link, 1≤ i ≤ k. We callλi theefficiency
of the link. We order the links in order of increasingb-value and assume 0≤ b1 < b2 < .. . < bk as two
links with the sameb-value may be combined (by adding their efficiencies). We saythat a link isused
if it carries positive flow. We may assumeai > 0 for all i < k; if ai = 0, links i +1 and higher will never
be used. The following theorem summarizes some basic facts about optimal flows and Nash flows; it
is proved by straightforward calculations.12 We state the theorem for the case thatak is positive. The
theorem is readily extended to the caseak = 0 by lettingak go to zero and determining the limit values.
We will only use the theorem in situations, whereak > 0.

11It is not hard to see that, similarly to the case where the demand is known, using global flow information (at least for the
case of parallel links) can lead to mechanisms withePoA= 1. We would like to thank Nicolás Stier Moses for making us
emphasizing that distinction.

12In a Nash flow all used links have the same latency. Thus, ifj links are used at rater and f N
i is the flow on thei-th link,

thena1 f N
1 +b1 = . . .= a j f N

j +b j ≤ b j+1 andr = f N
1 + . . .+ f N

j . The values forr j and f N
i follow from this. Similarly, in an

optimal flow all used links have the same marginal costs.
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Theorem 1. Let0≤ b1 < b2 < .. . < bk andλi ≥ 0 for all i. Let Λ j = ∑i≤ j λi andΓ j = ∑i≤ j γ j . Consider
a fixed rate r and let f∗i and fNi , 1≤ i ≤ k, be the optimal flow and the Nash flow for rate r respectively.
Let

r j = ∑
1≤i< j

(b j −bi)λi = ∑
1≤i< j

(bi+1−bi)Λi .

Then
(a) Γ j + r j = b jΛ j andΓ j−1+ r j = b jΛ j−1.

(b) If Nash uses exactly j links at rate r then

r j ≤ r ≤ r j+1, f N
i =

rλi

Λ j
+δi, whereδi =

Γ jλi

Λ j
− γi, and CN(r) =

1
Λ j

(
r2+Γ jr

)
.

(c) If Opt uses exactly j links at rate r then

r j

2
≤ r ≤ r j+1

2
, f ∗i =

rλi

Λ j
+δi/2, whereδi =

Γ jλi

Λ j
− γi,

and

Copt(r) =
1

Λ j

(
r2+Γ jr

)
−∑

i≤ j

δ 2
i

4λi
=

1
Λ j

(
r2+Γ jr

)
−Cj ,where Cj =

(
h

∑
i=1

j

∑
h=i

(bh−bi)
2λhλi

)
/(4Λ j ).

(d) If s< r and Opt uses exactly j links at s and r then

Copt(r) =Copt(s)+
1

Λ j

(
(r −s)2+(Γ j +2s)(r −s)

)
.

(e) If s< r and Nash uses exactly j links at s and r then

CN(r) =CN(s)+
1

Λ j

(
(r −s)2+(Γ j +2s)(r −s)

)
.

We next define our simple coordination mechanism. In the caseof k links, it is governed by param-
etersR1, R2, . . . ,Rk−1; Ri ≥ 2 for all i. We call the j-th link super-efficient(with respect to parameters
R1 to Rk−1) if λ j > Rj−1Λ j−1. In Pigou’s network (see Figure 1), the second link is super-efficient for
any choice ofR1 sinceλ2 = ∞ andΛ1 = λ1 = 1. Super-efficient links are the cause of high Price of
Anarchy. Observe that Opt starts using thej-th link at rater j/2 and Nash starts using it at rater j . If
the j-th link is super-efficient, Opt will send a significant fraction of the total flow across thej-th link
and this will result in a high Price of Anarchy. Our coordination mechanism induces the Nash flow to
use super-efficient links earlier. The latency functionsℓ̂i are defined as follows:̂ℓi = ℓi if there is no
super-efficient linkj > i; in particular the latency function of the highest link (= link k) is unchanged.
Otherwise, we choose a threshold valueTi (see below) and set̂ℓi(x) = ℓi(x) for x≤ Ti andℓ̂i(x) = ∞ for
x > Ti . The threshold values are chosen so that the following behavior results. We call this behavior
modified Nash (MN).

Assume that Opt usesh links, i.e.,rh/2≤ r ≤ rh+1/2. If λi+1 ≤RiΛi for all i, 1≤ i < h, MN behaves
like Nash. Otherwise, letj be minimal such that linkj +1 is super-efficient; MN changes its behavior
at rater j+1/2. More precisely, it freezes the flow across the firstj links at their current values when
the total flow is equal tor j+1/2 and routes any additional flow across linksj +1 to k. The thresholds
for the lower links are chosen in such a way that this freezingeffect takes place. The additional flow
is routed by using the strategy recursively. In other words,let j1+ 1, . . . , jt + 1 be the indices of the
super-efficient links. Then MN changes behavior at ratesr ji+1/2. At this rate the flow across links 1 to
j i is frozen and additional flow is routed across the higher links.
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We useCMN(r) = ĈR1,...,Rk−1
N (r) to denote the cost of MN at rater when operated with parametersR1

to Rk−1. ThenePoA(r) =CMN(r)/Copt(r). For the analysis of MN we use the following strategy. We
first investigate thebenigncase when there is no super-efficient link. In the benign case, MN behaves
like Nash and the worst case bound of 4/3 on the PoA can never beattained. More precisely, we will
exhibit a functionB(R1, . . . ,Rk−1) which is smaller than 4/3 for all choices of theRi ’s and will prove
CMN(r)≤ B(R1, . . . ,Rk−1)Copt(r). We then investigate the non-benign case. We will derive a recurrence
relation for

ePoA(R1, . . . ,Rk−1) = max
r

ĈR1,...,Rk−1
N (r)
Copt(r)

.

In the case of a single link, i.e.,k = 1, MN behaves like Nash which in turn is equal to Opt. Thus
ePoA() = 1. The coming subsections are devoted to the analysis of two links and more than two links,
respectively.

3.1 Two Links

The modified algorithm is determined by a parameterR≥ 2. If λ2 ≤ Rλ1, modified Nash is identical to
Nash. Ifλ2 > Rλ1, the modified algorithm freezes the flow across the first link at r2/2 once it reaches
this level, i.e.,ℓ̂1(x) = ℓ1(x) for x≤ r2/2 andℓ̂1(x) = ∞ for x> r2/2.13

Theorem 2. For the case of two links, ePoA≤ max{1+1/R,(4+4R)/(4+3R)}. In particular ePoA=
5/4 for R= 4.

Proof. Consider first the benign caseλ2 ≤ RΛ1. There are three regimes: forr ≤ r2/2, Opt and Nash
behave identically. Forr2/2 ≤ r ≤ r2, Opt uses both links and Nash uses only the first link, and for
r ≥ r2, Opt and Nash use both links.PoA(r) is increasing forr ≤ r2 and decreasing forr ≥ r2. The worst
case is atr = r2. ThenPoA(r2) =CN(r2)/Copt(r2) =CN(r2)/(CN(r2)−C2) = 1/(1−C2/CN(r2)). We
upper-boundC2/CN(r2). Recall thatr2 = (b2 − b1)λ1, r2 +Γ1 = b2λ1 andCN(r2) = 1/λ1(r2

2 +Γ1r2).
We obtain

C2

CN(r2)
=

(b2−b1)
2λ1λ2

4Λ2(1/λ1)(r2
2 + γ1r2)

=
(b2−b1)

2λ1λ2

4Λ2(1/λ1)(b2−b1)λ1b2λ1
≤ λ2

4Λ2
≤ 1

4(1+1/R)
.

ThusPoA(r)≤ B(R) := 1
1− R

4(R+1)
= (4+4R)/(4+3R).

We come to the caseλ2 >RΛ1: There are two regimes: forr ≤ r2/2, Opt and MN behave identically.
For r > r2/2, Opt uses both links and MN routesr2/2 over the first link andr − r2/2 over the second
link. Thus forr ≥ r2/2:

ePoA(r) =
CMN(r)
Copt(r)

=
Copt(r2/2)+ (r−r2/2)2

λ2
+b2(r − r2/2)

Copt(r2/2)+ (r−r2/2)2

Λ2
+b2(r − r2/2)

≤ Λ2

λ2
≤ 1+1/R.

3.2 Many Links

As already mentioned, we distinguish cases. We first study the benign caseλi+1≤RiΛi for all i, 1≤ i < k,
and then deal with the non-benign case.

13In Pigou’s network we haveℓ1(x) = x andℓ2(x) = 1. Thusλ2 = ∞. The modified cost functions arêℓ2(x) = ℓ2(x) and
ℓ̂1(x) = x for x≤ r2/2= 1/2 andℓ̂1(x) = ∞ for x> 1/2. The Nash flow with respect to the modified cost function is identical
to the optimum flow in the original network and̂CN( f ∗) =C( f ∗). ThusePoA= 1 for Pigou’s network.
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The Benign Case: We assumeλi+1 ≤ RiΛi for all i, 1≤ i < k. Then MN behaves like Nash. We will
showePoA≤ B(R1, . . . ,Rk−1) < 4/3; hereB stands for benign case or base case. Our proof strategy is
as follows; we will first show (Lemma 2) that for thei-th link the ratio of Nash flow to optimal flow is
bounded by 2Λk/(Λi +Λk). This ratio is never more than two; in the benign case, it is bounded away
from two. We will then use this fact to derive a bound on the Price of Anarchy (Lemma 4).

Lemma 2. Let h be the number of links that Opt is using. Then

f N
i

f ∗i
≤ 2Λh

Λi +Λh

for i ≤ h. If λi′+1 ≤ Ri′Λi′ for all i ′, then

2Λh

Λi +Λh
≤ 2P

P+1
,

where P:= ∏1≤i<k(1+Ri).

Proof. Let j be the number of links that Nash is using. Fori > j, the Nash flow on thei-th link is zero
and the claim is obvious. Fori ≤ j, we can write the Nash and the optimal flow through linki as

f N
i = rλi/Λ j +(Γ jλi/Λ j − γi) and f ∗i = rλi/Λh+(Γhλi/Λh− γi)/2.

Therefore their ratio as a function ofr is

F(r) =
f N
i

f ∗i
=

Λh

Λ j
· 2r +2Γ j −2biΛ j

2r +Γh−biΛh
.

The sign of the derivativeF ′(r) is equal to the sign ofΓh−biΛh−2Γ j +2biΛ j and hence constant. Thus
F(r) attains its maximum either forr j or for r j+1. We have

F(r j+1)≤
Λh

Λ j
· 2r j+1+2Γ j −2biΛ j

2r j+1+Γh−biΛh
=

Λh

Λ j
· 2(b j+1−bi)Λ j

2b j+1Λ j+1−2Γ j+1+Γh−biΛh

=
2(b j+1−bi)Λh

∑g≤ j+1(2b j+1−2bg)λg+∑g≤h(bg−bi)λg
=

2(b j+1−bi)Λh

∑g≤ j(2b j+1−bg−bi)λg+∑ j<g≤h(bg−bi)λg

=
2(b j+1−bi)Λh

∑g≤i(2b j+1−bg−bi)λg+∑i<g≤ j(2b j+1−bg−bi)λg+∑ j<g≤h(bg−bi)λg

≤ 2(b j+1−bi)Λh

∑g≤i 2(b j+1−bi)λg+∑i<g≤h(b j+1−bi)λg

=
2Λh

∑g≤i 2λg+∑i<g≤hλg
=

2Λh

Λi +Λh

and

F(r j)≤
Λh

Λ j
· 2r j +2Γ j −2biΛ j

2r j +Γh−biΛh
=

Λh

Λ j
· 2(b j −bi)Λ j

2b jΛ j −2Γ j +Γh−biΛh

=
2(b j −bi)Λh

∑g≤ j(2b j −2bg)λg+∑g≤h(bg−bi)λg
=

2(b j −bi)Λh

∑g≤ j(2b j −bg−bi)λg+∑ j<g≤h(bg−bi)λg

=
2(b j −bi)Λh

∑g≤i(2b j −bg−bi)λg+∑i<g≤ j(2b j −bg−bi)λg+∑ j<g≤h(bg−bi)λg

≤ 2(b j −bi)Λh

∑g≤i 2(b j −bi)λg+∑i<g≤h(b j −bi)λg
=

2Λh

∑g≤i 2λg+∑i<g≤hλg
=

2Λh

Λi +Λh
.

If λi′+1 ≤ Ri′Λi′ for all i′, thenΛi′+1 = λi′+1 +Λi′ ≤ (1+Ri′)Λi′ for all i′ and henceΛh ≤ Λk ≤
PΛi .
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Lemma 3. For any positive realsµ , α , andβ with 1≤ µ ≤ 2 andα/β ≤ µ , βα ≤ µ−1
µ2 α2+β 2.

Proof. We may assumeβ ≥ 0. If β = 0, there is nothing to show. So assumeβ > 0 and letα/β = δ µ
for someδ ≤ 1. We need to show (divide the target inequality byβ 2) δ µ ≤ (µ−1)δ 2+1 or equivalently
µδ (1−δ )≤ (1−δ )(1+δ ). This inequality holds forδ ≤ 1 andµ ≤ 2.

Lemma 4. If f N
i / f ∗i ≤ µ ≤ 2 for all i, then PoA≤ µ2/(µ2−µ +1). If λ j+1 ≤ RjΛ j for all j, then

PoA≤ B(R1, . . . ,Rk−1) :=
4P2

3P2+1
,

where P:= ∏1≤i<k(1+Ri).

Proof. Assume that Nash usesj links and letL be the common latency of the links used by Nash. Then
L = ai f N

i +bi for i ≤ j andL ≤ bi = ai f N
i +bi for i > j. Thus, by use of Lemma 3,

CN(r) = Lr = ∑
i

L f ∗i ≤∑
i

(
ai f N

i +bi
)

f ∗i ≤ µ −1
µ2 ∑

i

ai( f N
i )2+∑

i

(
ai( f ∗i )

2+bi f
∗
i

)

≤ µ −1
µ2 CN(r)+Copt(r)

and hencePoA≤ µ2/(µ2 − µ + 1). If λ j+1 ≤ RjΛ j for all j, employing Lemma 2, we may useµ =
2P/(P+1) and obtainPoA≤ 4P2/(3P2+1).

The General Case: We come to the case whereλi+1 ≥ RiΛi for somei. Let j be the smallest such
i. For r ≤ r j+1/2, MN and Opt use only links 1 toj and we are in the benign case. HenceePoAis
bounded byB(R1, . . . ,Rj−1)< 4/3. Assume now thatr > r j+1/2. MN routes the flow exceedingr j+1/2
exclusively on higher links.

Lemma 5. MN does not use links before Opt.

Proof. This is trivially true for the j + 1-st link. Consider anyh > j + 1. MN starts to use linkh at
sh = r j+1/2+∑ j+1≤i<h(bi+1−bi)(Λi −Λ j) and Opt starts to use it atrh/2= r j+1/2+∑ j+1≤i<h(bi+1−
bi)Λi/2. We havesh ≥ rh/2 sinceΛi −Λ j ≥ Λi/2 for i > j.

We need to bound the cost of MN in terms of the cost of Opt. In order to do so, we introduce an
intermediate flow Mopt (modified optimum) that we can readilyrelate to MN and to Opt. Mopt uses
links 1 to j to router j+1/2 and routesf = r − r j+1/2 optimally across linksj +1 to k. Let f ∗i and f m

i
be the optimal flows and the flows of Mopt, respectively, at rate r. Let rs= ∑i≤ j f ∗i ≥ r j+1/2 be the total
flow routed across the firstj links in the optimal flow (the subscripts stands for small) and let

t =
r − r j+1/2

r − rs

We will showt ≤ 1+1/Rj below. We next relate the cost of Mopt on linksj +1 to k to the cost of Opt
on these links. To this end we scale the optimal flow on these links by a factor oft, i.e., we consider the
following flow across linksj +1 to k: on link i, j +1≤ i ≤ k, it routest · f ∗i . The total flow on thehigh
links, i.e., links j +1 to k, is r − r j+1/2 and hence Mopt incurs at most the cost of this flow on its high
links. Thus

∑
i> j

ℓi( f m
i ) f m

i ≤ ∑
i> j

ℓi(t f ∗i )t f ∗i ≤ t2

(

∑
i> j

ℓi( f ∗i ) f ∗i

)
.
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The cost of MN on the high links is at mostePoA(Rj+1, . . . ,Rk−1) times this cost by the induction
hypothesis. We can now bound the cost of MN as follows:

CMN(r) =CN(r j+1/2)+CMN(flow f across linksj +1 tok)

≤ B(R1, . . . ,Rj−1)Copt(r j+1/2)+ t2ePoA(Rj+1, . . . ,Rk−1)

(

∑
i> j

ℓi( f ∗i ) f ∗i

)

≤ B(R1, . . . ,Rj−1)

(

∑
i≤ j

ℓi( f ∗i ) f ∗i

)
+ t2ePoA(Rj+1, . . . ,Rk−1)

(

∑
i> j

ℓi( f ∗i ) f ∗i

)

≤ max
{

B(R1, . . . ,Rj−1), t2ePoA(Rj+1, . . . ,Rk−1)
}

Copt(r)

Lemma 6. t ≤ 1+1/Rj , where j is the smallest i for whichλi+1 ≥ RiΛi .

Proof. Assume that Opt usesh links where j +1≤ h≤ k. Thenrh/2≤ r ≤ rh+1/2. Let r = rh/2+ δ .
According to Theorem 1,f ∗i = rλi/Λh+(Γhλi/Λh− γi)/2 and hence

rs =
( rh

2
+δ
) Λ j

Λh
+

1
2

(
ΓhΛ j

Λh
−Γ j

)
.

SinceΓh+ rh = bhΛh andΓ j + r j = b jΛ j (see Theorem 1), this simplifies to

rs =
Λ jδ
Λh

+
bhΛh−Γh

2
Λ j

Λh
+

1
2

(
ΓhΛ j

Λh
−b jΛ j + r j

)
=

Λ jδ
Λh

+
1
2
((bh−b j)Λ j + r j) =

Λ jδ
Λh

+ r∗s,

wherer∗s =
1
2 ((bh−b j)Λ j + r j). We can now boundt.

t =
r − r j+1/2

r − rs
=

rh/2+δ − r j+1/2
rh/2+δ − r∗s −Λ jδ/Λh

≤ max

{
rh/2− r j+1/2

rh/2− r∗s
,

1

1− Λ j

Λh

}
.

Next observe that

rh/2− r j+1/2
rh/2− r∗s

=
∑ j+1≤i<h(bi+1−bi)Λi(

∑ j≤i<h(bi+1−bi)Λi
)
− (bh−b j)Λ j

=
∑ j+1≤i<h(bi+1−bi)Λi

∑ j+1≤i<h(bi+1−bi)(Λi −Λ j)

≤ max
j+1≤i<h

Λi

Λi −Λ j
=

Λ j+1

Λ j+1−Λ j
=

Λ j +λ j+1

λ j+1
≤ 1+

1
Rj

.

The second term in the upper bound fort is also bounded by this quantity.

We summarize the discussion.

Lemma 7. For every k and every j with1≤ j < k. If λ j+1 > RjΛ j andλi+1 ≤ RiΛi for i < j, then

ePoA(R1, . . . ,Rk−1)≤ max

{
B(R1, . . . ,Rj−1),

(
1+

1
Rj

)2

ePoA(Rj+1, . . . ,Rk−1)

}
.

We are now ready for our main theorem.

Theorem 3. For any k, there is a choice of the parameters R1 to Rk−1 such that the engineered Price of
Anarchy with these parameters is strictly less than4/3.
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Proof. We will showePoA(Ri, . . . ,Rk−1) < 4/3 by downward induction oni, i.e., we will defineRk−1,
Rk−2, down toR1 in this order. Fori = k, we haveePoA() = 1< 4/3.

We now come to the induction step. We have already definedRk−1 down toRi+1 and now defineRi.
We have

ePoA(Ri, . . . ,Rk−1)≤ max





B(Ri, . . . ,Rk−1),

maxj;i≤ j<k

{
B(Ri, . . . ,Rj−1),

(
1+ 1

Rj

)2
ePoA(Rj+1, . . . ,Rk−1)

}


 ,

where the first line covers the benign case and the second linecovers the non-benign case (Lemma 7).
We now fixRi . We haveB(Ri, . . . ,Rk−1)< 4/3 andB(Ri, . . . ,Rj−1)< 4/3 for all j, i ≤ j < k by Lemma 4
for any choice ofRi. This completes the induction if the first line defines the maximum. So assume that
the second line defines the maximum. We only need to deal with the casej = i in the second line, as the
casej > i was already dealt with for largeri. The casej = i is handled by choosingRi sufficiently large,
i.e., such that(1+1/Ri)

2ePoA(Ri+1, . . . ,Rk−1)< 4/3.

Remark 1. Alternatively, we could take i= k−1 as the base case. Then, j= i −1 in the non-benign
case and hence

ePoA(Rk−1) = max(B(Rk−1),B(),(1+
1

Rk−1
)2ePoA())

= max(
4(1+Rk−1)

2

3(1+Rk−1)2+1
,(1+

1
Rk−1

)2)

where the bound on B(Rk−1) comes from Lemma 4. For Rk−1= 7, the bound becomesmax((4/3)(64/65),64/49)=
max(64/65,48/49) ·4/3.

4 An Improved Mechanism for the Case of Two Links

In this section we present a mechanism which achievesePoA= 1.192 for a network that consists of two
parallel links. The ratioCN(r)/Copt(r) is maximized atr = r2. At this rate Nash still uses only the first
link and Opt uses both links. In order to avoid this maximum ratio (if larger than 1.192), we force MN
to use the second link earlier by increasing the latency of the first link after some ratex1, r2/2≤ x1 ≤ r2

to a value aboveb2. In the preceding section, we increased the latency to∞. In this way, we avoided a
bad ratio atr2, but paid a price for very large rates. The idea for the improved construction, is to increase
the latency to a finite value. This will avoid the bad ratio, but also allow MN to use both links for large
rates. In particular, we obtain the following result.

Theorem 4. There is a mechanism for a network of two parallel links that achieves ePoA= 1.192.

Proof. Recall (Theorem 2) that the Price of Anarchy is upper boundedby (4+ 4R)/(4+ 3R) where
R= a1/a2. Let R0 be such that(4+ 4R0)/(4+ 3R0) = 1.192. ThenR0 = 96/53. We only need to
consider the caseR> R0. The latency function of the second link is unchanged and thelatency function
of the first link is changed into

ℓ̂1(x) =





ℓ1(x), x≤ x1

ℓ1(x2), x1 < x≤ x2

ℓ1(x) x> x2.
(4)

wherex1 andx2 satisfy r2/2 ≤ x1 ≤ r2 ≤ x2 and will be fixed later. In words, when either the flow in
the first link does not exceedx1, or is larger thanx2, the network remains unchanged. However, when
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ePoA(r)

r

1

r2/2 x1 r∗r2 r∗∗

Figure 2: The engineered price of anarchy for the construction of Section 4.

the flow in the first link is between these two values, the mechanism increases the latency of this link to
ℓ1(x2). Let r∗ be such that

ℓ2(r
∗−x1) = ℓ1(x2).

We will fix x1 andx2 such thatr∗ ≥ r2.
What is the effect of this modification? Forr ≤ r2/2, Opt and MN are the same andePoA(r) = 1.

For r2/2≤ r ≤ x1, MN behaves like Nash andePoA(r) increases. Atr = x1, MN starts to use the second
link. MN will route any additional flow on the second link until r = r∗. At r = r∗, MN routesx1 on the
first link andr∗−x1 on the second link. Beyondr∗, MN routes additional flow on the first link until the
flow on the first link has grown tox2. This is the case atr∗∗ = r∗−x1+x2. Forr ≥ r∗∗, MN behaves like
Nash.

Figure 2 shows the graph ofePoA(r). We haveePoA(r) = 1 for r ≤ r2/2. Forr2/2≤ r ≤ x1, ePoA(r)
increases to

ePoA(x1) =
a1x2

1+b1x1

Copt(x1)
.

Forx1 ≤ r ≤ r∗, ePoA(r) is convex. It will first decrease and reach the value one (thisassumes thatr∗ is
big enough) at the rate where Opt routesx1 on the first link; after this rate it will increase again. Atr∗,
ePoAhas a discontinuity because atr∗ MN routesx1 on the first link for a cost ofℓ1(x1)x1 and atr∗+ ε
it routesx1+ ε on the first link for a cost ofℓ1(x2)(x1+ ε). Thus

lim
r→r∗+

CMN(r)
Copt(r)

= lim
r→r∗+

ℓ1(x2)r
Copt(r)

=
ℓ1(x2)r∗

Copt(r∗)
=

ℓ2(r∗−x1)r∗

Copt(r∗)
.

For r ≥ r∗, ePoA(r) decreases. Thus

ePoA= max

{
a1x2

1+b1x1

Copt(x1)
,
ℓ2(r∗−x1)r∗

Copt(r∗)

}
. (5)

It remains to show thatx1 ≤ r2 andr∗ ≥ r2 can be chosen14 such that the right-hand side is at most 1.192.
By Theorem 1 (c),

Copt(r) = b1r +
a1

1+R

(
r2+Rr2r −Rr22/4

)
,

14The optimal choice forx1 and r∗ is such that both terms are equal and as small as possible. We were unable to solve
the resulting system explicitly. We will prove in the next section that the mechanism defined by these optimal choices of the
parametersx1 andr∗ is optimal.
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for r ≥ r2/2 andR= a1/a2. Also ℓ2(r∗−x1) = a2(r∗−x1)+b2 = a2(r∗−x1)+b1+a1r2.
We first determine the maximumx1 ≤ r2 such that

(
a1x2

1+b1x1
)
/Copt(x1)≤ 1.192 for allb1. Since

the expression
(
a1x2

1+b1x1
)
/Copt(x1) is decreasing inb1, this x1 is determined forb1 = 0. It follows

thatα = x1/r2 is defined by the equation

4(R+1)α2

4αR−R+4α2 = 1.192. (6)

For R≥ R0, this equation has a unique solutionα0 ∈ [1/2,1], namely

α0 =
1
2
· 149R+2

√
894R(R+1)

125R−24
.

We turn to the second term in equation (5). Forr∗ > r2, it is a decreasing function ofb1. Substituting
b1 = 0 into the second term and settingβ = r∗/r2 yields after some computation

ePoA2 =
4β (R+1)(β −α +R)

R(4β 2+4βR−R)
. (7)

For fixedα = α0 and anyR≥ R0, ePoA2 is minimized forβ = β0 =
R+

√
R
√

R+4α0(R−α0)

4α0
. For R≥ R0,

one can proveβ0 ≥ 1, as needed. Substitutingα0 andβ0 into ePoA2 yields a function ofR. It is easy to
see, using the derivative, that the maximum value of this function for R≥ R0 is at most 1.192.

5 A Lower Bound for the Case of Two Links

We prove that the construction of the previous section is optimal among the class of deterministic mech-
anisms that guarantee the existence of an equilibrium for every rater > 0 and that use non-decreasing15

latency functions. For these mechanisms we show thatePoA≥ 1.191.
As in the preceding sections, we useℓ̂ to denote the modified latency functions. The use ofR

throughout this section denotes the ratio of the linear coefficients of the two latency functions of the
instance, and should not be confused with its use in the previous sections, were it was a parameter of the
mechanism. As mentioned above, we are making two assumptions about theℓ̂’s: an equilibrium flow
must exist for every rater, and ℓ̂i is non-decreasing, i.e., ifx < x′, then ℓ̂i(x) ≤ ℓ̂i(x′), for i = 1,2. It
is worthwhile to recall the equilibrium conditions for general latency functions (as given by Dafermos-
Sparrow [14]): if(x,y) is an equilibrium for rater = x+y, thenℓ̂2(y′)≥ ℓ̂1(x) for y′ ∈ (y, r] (otherwise
y′ − y amount of flow would move from the first link to the second) andℓ̂1(x′) ≥ ℓ̂2(y) for x′ ∈ (x, r]
(otherwise,x′− x amount of flow would move from the second link to the first). Since we assume our
functions to be monotone, the conditionℓ̂2(y′) ≥ ℓ̂1(x) for y′ ∈ (y, r] is equivalent to liminfy′↓y ℓ̂2(y′) ≥
ℓ̂1(x) provided thaty < r (or equivalently,x > 0). Since we are discussing a network of two parallel
links, the latter condition is in turn equivalent to (1).

Theorem 5. The construction of Section 4 is optimal and ePoA≥ 1.191.

Proof. We analyze a network with latency functionsℓ1(x) = x andℓ2(x) = x/R+ 1= (x+R)/R, 2≤
R≤ 4, and derive a lower bound as a function of the parameterR; the restriction 2≤ R≤ 4 will become
clear below. In a second step we chooseR so as to maximize the lower bound; the optimal choice is
R= R∗ ≈ 2.1. Forr ≤ 1/2, Opt uses one link andCopt(r) = r2, and forr ≥ 1/2, Opt uses two links and
Copt(r) = (r2+Rr−R/4)/(1+R); Copt(1) = (3R+4)/(4R+4) andCN(1) = 1. ThusPoA= PoA(1) =
(4R+4)/(3R+4). ForR≥ 2, we havePoA(1) ≥ 12/10= 1.2.

15It remains open whether similar arguments can be applied forshowing the lower bound for non-monotone mechanisms
with respect to User Equilibria.
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Consider now some modified latency functionsℓ̂1, ℓ̂2, and let(x1,1−x1) be an equilibrium flow for
rate 1 for the modified network. Let

r∗ = inf{r ; there is an equilibrium flow(x, r −x) for MN with x> x1};

r∗ = ∞ if there is no equilibrium flow(x,y) with x> x1. The equilibrium conditions for flow(x1,1−x1)
imply

ℓ̂1(x
′)≥ ℓ̂2(1−x1)≥ ℓ2(1−x1)≥ 1 for x1 < x′ ≤ 1. (8)

The above definition ofr∗ is a core element of our proof. In Lemma 8 we restrict the domain of
r∗, as well as the range of the modified latencies for efficient mechanisms (those ones with lowePoA),
ending up with the lower bound provided in (9). Then in Lemmas9, 10 we focus on the properties that
the equilibria of efficient mechanisms should satisfy. In Lemma 9, we bound from above the amount of
equilibrium flow that uses the first link if the mechanism is efficient, while in Lemma 10 we obtain a
second lower bound on theePoA. Finally, in Lemma 11 we summarize the above properties ending up
with the lower bound of (11).

Lemma 8. If ℓ̂1(x1)≥ 1 or r∗ = ∞ or r∗ ≤ 1, ePoA≥ 1.2.

Proof. If ℓ̂1(x1)≥ 1 , we haveCMN(1)≥ 1 and henceePoA≥ PoA(1)≥ 1.2.
If r∗ = ∞, ePoA(∞)≥ 1+1/R. ForR≤ 4, this is at least 1.25.
If r∗ ≤ 1, there is an equilibrium flow(x,y) with x > x1 and r = x+ y ≤ 1. Thenℓ̂1(x) ≥ 1 by

inequality (8). Alsoℓ̂2(y)≥ 1. ThusCMN(r)≥ 1≥ r and henceePoA(r)≥ r/Copt(r). Forr ≤ 1, we have

r
Copt(r)

=
r(1+R)

r2+Rr−R/4
≥ 1+

R/4
r2+Rr−R/4

≥ 1+
R/4

1+R−R/4
=

4+4R
4+3R

= PoA(1) ≥ 1.2.

In the light of the Lemma above, we proceed under the assumption ℓ̂1(x1) < 1, and hencex1 < 1,
and 1< r∗ < ∞. Then(x1,0) is an equilibrium flow, sincêℓ1(x1)< 1≤ ℓ̂2(y′) for 0< y′ ≤ x1. Thus

ePoA(x1)≥
x2

1

Copt(x1)
. (9)

By definition of r∗, MN routes at mostx1 on the first link for any rater < r∗ and for anyε > 0 there is
anr < r∗+ ε such that(x, r −x) with x> x1 is an equilibrium flow for MN.

For r < r∗, any equilibrium flow(x, r −x) hasx≤ x1. Thus, forx′ ∈ (x, r] ⊇ (x1, r], ℓ̂1(x′) ≥ ℓ̂2(r −
x)≥ ℓ2(r −x)≥ ℓ2(r −x1). Since this inequality holds for anyr < r∗, we have

ℓ̂1(x
′)≥ ℓ2(r

∗−x1) for x′ ∈ (x1, r
∗). (10)

For ε > 0, let

Fε = {(x,y);(x,y) is an equilibrium flow withr∗ ≤ x+y≤ r∗+ ε andx> x1}.

Observe thatFε is non-empty by definition ofr∗.

Lemma 9. If for arbitrarily small ε > 0, there is a(x,y) ∈ Fε with x≥ r∗, then ePoA≥ PoA(1)≥ 1.2.

Proof. Let r = x+y. ThenePoA≥ r2/Copt(r). Since this inequality holds for arbitrarily smallε ,

ePoA≥ (r∗)2/Copt(r
∗)≥ PoA(1) = 1.2.
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We proceed under the assumption that there is anε0 > 0 such thatFε0 contains no pair(x,y) with
x≥ r∗.

Lemma 10. If for arbitrarily small ε ∈ (0,ε0), Fε contains either a pair(x, r∗−x1) or pairs (x,y) and
(u,v) with y 6= v, then ePoA≥ ℓ2(r∗−x1)r∗/Copt(r∗).

Proof. Assume first thatFε contains a pair(x, r∗−x1) and letr = x+ r∗−x1. Then

CMN(r) = ℓ̂1(x)x+ ℓ̂2(r
∗−x1)(r

∗−x1)≥ ℓ2(r
∗−x1)r

sinceℓ̂1(x)≥ ℓ2(r∗−x1) by (10).
Assume next thatFε contains pairs(x,y) and(u,v) with y 6= v. Thenℓ̂1(x)≥ ℓ2(r∗−x1) andℓ̂1(u)≥

ℓ2(r∗−x1) by (10). We may assume,y> v. Let r = x+y. Since(u,v) is an equilibriumℓ̂2(y′) ≥ ℓ̂1(u)
for y′ ∈ (v,u+v) and hencêℓ2(y)≥ ℓ̂1(u) . Thus

CMN(r) = ℓ̂1(x)x+ ℓ̂2(y)y≥ ℓ2(r
∗−x1)r.

We have now shown thatCMN(r) ≥ ℓ2(r∗ − x1)r for r ’s greater thanr∗ and arbitrarily close tor∗.
ThusePoA≥ ℓ2(r∗−x1)r∗/Copt(r∗).

We proceed under the assumption that there is anε0 > 0 such thatFε0 contains no pair(x,y) with
x≥ r∗, no pair(x, r∗ − x1) and no two pairs with distinct second coordinate. In other words, there is a
y0 < r∗−x1 such that all pairs inFε0 have second coordinate equal toy0.

Let (x0,y0) ∈ Fε0. Theny0 < r∗−x1. Let (x,y) be an equilibrium for rater = (r∗+x1+y0)/2. Then
r = (2r∗+y0− (r∗−x1))/2< r∗ and hencex≤ x1. Thusy= r −x≥ r −x1 = (r∗−x1+y0)/2> y0 and
r −y0 > x1. Consider the pair(r −y0,y0). Its rate is less thanr∗ and its flow across the first link isr −y0

which is larger thanx1. Thus it is not an equilibrium by the definition ofr∗. Therefore there is either an
x′′ ∈ (r −y0, r] with ℓ̂1(x′′)< ℓ̂2(y0) or ay′′ ∈ (y0, r] with ℓ̂2(y′′)< ℓ̂1(r −y0). We now distinguish cases.

Assume the former. Since(x,y) is an equilibrium, we havêℓ1(x′) ≥ ℓ̂2(y) for all x′ ∈ (x,x+ y] and
in particular forx′′; observe thatr −y0 ≥ x sincer −x= y> y0. Thusℓ̂2(y0)> ℓ̂2(y), a contradiction to
the monotonicity ofℓ̂2.

Assume the latter. Since(x0,y0) is an equilibrium, we havêℓ2(y′) ≥ ℓ̂1(x0) for all y′ ∈ (y0,x0+ y0]
and in particular fory′′. Thusℓ̂1(r −y0)> ℓ̂1(x0), a contradiction to the monotonicity ofℓ̂1; observe that
r −y0 < x0 sincer < r∗ ≤ x0+y0.

Lemma 11.

ePoA≥ min

{
1.2,min

x1≤1
max

{
x2

1

Copt(x1)
,min
r∗≥1

ℓ2(r∗−x1)r∗

Copt(r∗)

}}
. (11)

Proof. If x1 ≥ 1 or r∗ ≤ 1 or r∗ = ∞, we haveePoA≥ 1.2. So assumex1 < 1 and 1< r∗ < ∞. The
argument preceding this Lemma shows that the hypothesis of either Lemma 9 or 10 is satisfied. In

the former case,ePoA≥ 1.2. In the latter case,ePoA≥ max
{

x2
1

Copt(x1)
, ℓ2(r∗−x1)r∗

Copt(r∗)

}
. This completes the

proof.

It remains to bound

min
x1≤1

max

{
x2

1

Copt(x1)
,min
r∗≥1

ℓ2(r∗−x1)r∗

Copt(r∗)

}
= min

x1≤1
max

{
x2

1

Copt(x1)
,min
r∗≥1

4r∗(R+1)(r∗−x1+R)
R(4(r∗)2+4Rr∗−R)

}
(12)

from below. We prove a lower bound of 1.191. The termx2
1/Copt(x1) is increasing inx1. Thus there is a

unique valueα1 ∈ [1/2,1] such that the first term is larger than 1.191 forx1 > α1. If the minimizingx1

is larger thanα1 we have established the bound.
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The second term is minimized forr∗ = max
{

1,
(

R+
√

R2+4R2x1−4Rx2
1

)
/(4x1)

}
. Sincex1 ≤ 1

and hencex2
1 ≤ x1, we have(R+

√
R2+4R2x1−4Rx2

1)/(4x1))≥ 2R/4≥ 1 and hence

r∗ =

(
R+

√
R2+4R2x1−4Rx2

1

)
/(4x1).

The second term is decreasing inx1 and hence we may substitutex1 by α1 for the purpose of establishing
a lower bound. We now specializeR to 21/10. For this value ofRandx1 = α1

ℓ2(r∗−α1)r∗

Copt(r∗)
|
r∗=(R+

√
R2+4R2α1−4Rα2

1)/(4α1) andR=21/10
≥ 1.191.

This completes the proof of the lower bound.

We next argue that the construction of Section 4 is optimal. Equations (5) of Section 4 forb1 = 0
and Equation (12) agree. Hence our refined solution is optimal.

6 Open Problems

Clearly the ultimate goal is to design coordination mechanisms that work for general networks. In the
case of parallel links that we studied, we showed that our mechanism approaches 4/3, as the number of
links k grows. It is still an open problem to show a bound of the form 4/5−α , for some strictly positive
α . A possible approach could be to use the ideas of Section 4. Another approach would be to define the
benign case more restrictively. AssumingRi = 8 for all i, we would call the following latencies benign:
ℓ1(x) = x, andℓi(x) = 1+ ε · i +x/8i for i > 1 and small positiveε . However, Opt starts using thek-th
link shortly after 1/2 and hence uses an extremely efficient link for small rates.

Also, our results hold only for affine original latency functions.What can be said for the case of more
general latencies, for instance polynomials? On the more technical side, it would be interesting to study
whether our lower bound construction of Section 5 can be extended to modified latency functionŝℓ that
do not need to satisfy monotonicity.
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