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Abstract

We reconsider the well-studied Selfish Routing game witimaffatency functions. The Price of
Anarchy for this class of games takes maximum value 4/3;rttagimum is attained already for a
simple network of two parallel links, known as Pigou’s netkwd\e improve upon the value 4/3 by
means of Coordination Mechanisms.

We increase the latency functions of the edges in the netwerkif £¢(X) is the latency function
of an edgee, we replace it by/e(x) with £e(x) < /¢(x) for all x. Then an adversary fixes a demand
rate as input. Thengineered Price of Anarctof the mechanism is defined as the worst-case ratio
of the Nash social cost in the modified network over the optsoaial cost in the original network.
Formally, if Cy(r) denotes the cost of the worst Nash flow in the modified networkdter and
Copt(r) denotes the cost of the optimal flow in the original netwonktfe same rate then

ePoA= max ()
r>0 Copy(r)
We first exhibit a simple coordination mechanism that agksder any network of parallel links
an engineered Price of Anarchy strictly less than 4/3. Ferahse of two parallel links our ba-
sic mechanism gives 5/4 = 1.25. Then, for the case of two lghtadks, we describe anptimal
mechanism; its engineered Price of Anarchy lies betweedillahd 1.192.

1 Introduction

We reconsider the well-studied Selfish Routing game witmaffiost functions and ask whether increas-
ing the cost functions can reduce the cost of a Nash flow. leratlords, the increased cost functions
should induce a user behavior that reduces cost despita¢héhht the cost is now determined by in-
creased cost functions. We answer the question positindlyei following sense. The Price of Anarchy,
defined as the maximum ratio of Nash cost to optimal cost,3sf@¥ this class of games. We show
that increasing costs can reduce the price of anarchy taua gatictly below 4/3 at least for the case of
networks of parallel links. For a network of two parallelds) we reduce the price of anarchy to a value
between 1.191 and 1.192 and prove that this is optimal. lardaistate our results precisely, we need
some definitions.

We consider single-commodity congestion games on netwald&ned by a directed graph =
(V,E), designated nodest €V, and a set = (/¢)ece Of NON-decreasing, non-negative functiofisis
the latency function of edgec E. Let P be the set of all paths fromto t, and letf(r) be a feasible
s,t-flow routingr units of flow. For anyp € P, let fy(r) denote the amount of flow thd{r) routes via
pathp. For ease of notation, whanis fixed and clear from context, we will write simplyf,, instead
of f(r), fp(r). By definition, ¥ ,cp fp =r. Similarly, for any edgee € E, let fe be the amount of flow
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Figure 1: Pigou's network: We show the original network i, the optimal flow in (b) and the Nash
flow in (c) as a function of the rate respectively. The Price of Anarchy as a function of the iste
shown in (d);PoA(r) is 1 forr < 1/2, then starts to grow until it reaches its maximum g84tr =1,
and then decreases again and approaches hass to infinity. Finally, in (e) we show the modified
latency functions. We obtai@PoAr) = 1 for all r in the case of Pigou’s network.

going throughe. We define the latency gf under flowf as/p(f) = Yecple(fe) and the cost of flow
f asC(f) = Sece fe- le(fe) and useCop(r) to denote the minimum cost of any flow of rateWe will
refer to such a minimum cost flow as aptimalflow (Opt). A feasible flowf that routes units of flow
from stot is atNash (or Wardrop([28]) Equilibriund if for py, p> € P with f,, > 0, £, () < £, ().
We useCy (r) to denote the maximum cost of a Nash flow for ratérhe Price of Anarchy (PoAj23]
(for demand) is defined as
Cn(r)

PoAr) = Conll) and PoA= r:1>e(1)xPoA(r).
PoA is bounded by A3 in the case of affine latency functioAgx) = asx+ be with az > 0 andbe > 0;
see[[28| 1B]. The worst-case is already assumed for a singpleork of two parallel links, known as
Pigou’s network; see Figuké 1.

A Coordination Mechanis@weplaees the cost functioriée)ece by function§ ¢ = (Ye)eck Such that
le(X) > £e(x) for all x> 0. LetC(f) be the cost of flowf when for each edgec E, /. is used instead
of /¢ and letCy (r) be the maximum cost of a Nash flow of ratéor the modified latency functions. We
define theengineered Price of Anarch(§or demand) as

Cn(r)

ePoAr) = and ePoA= rpgxePoA(r).

B Copt(r)

IThis assumes continuity and monotonicity of the latencyfioms. For non-continuous functions, see the discussiten |
in this section.

2Technically, we considesymmetriccoordination mechanisms in this work, as definedn [9] thee,latency modifications
affect the users in a symmetric fashion.

30ne can interpret the differenég— (e as a flow-dependent toll imposed on the edge




We stress that the optimal cost refers to the original latdémactions/.

Non-continuous Latency Functions. In the previous definition, as it will become clear in Secfffyn
it is important to allow non-continuous modified latencié®wever, when we move from continuous
to non-continuous latency functions, Wardrop equilibriandt always exist. Non-continuous functions
have been studied by transport economists to model thetefféstep-function congestion tolls and
traffic lights. Several notions of equilibrium that handisabntinuities have been proposed in the liter-
atur@. The ones that are closer in spirit to Nash equilibria, aosehproposed by Dafernﬁ)E;LS] and
Berstein and SmithH [4]. According to the Dafermds’[[15] défim of user optimizationa flow is in
equilibrium if nosufficiently smalfraction of the users on any path, can decrease the lateege#peri-
ence by switching to another ptrBerstein and Smith [4] introduced the conceptskr Equilibrium
weakening further the Dafermos equilibrium, taking thefian of the users to the limit approaching 0.
The main idea of their definition is to capture the notion @ itidividual commuterthat is implicit in
Wardrop’s definition for continuous functions. The Dafeswguilibrium on the other hand is a stronger
concept that captures the notion of coordinated deviatigrgroups of commuters

We adopt the concept of User Equilibrium. Formally, we say thfeasible flowf that routes units
of flow from stot is a User Equilibrium, iff for allpy, p> € P with f,, > 0,

lp, () < Iimirﬂ‘)épz(f +elp, —€ly), (1)
&

wherel, denotes the flow where only one unit passes along apath

Note that for continuous functions the above definition éniital to the Wardrop Equilibrium. One
has to be careful when designing a Coordination Mechanidimdiscontinuous functions, because the
existence of equilibria is not always guaran@ekﬂ is important to emphasize, that all the mechanisms
that we suggest in this paper use both lower semicontinundsegulatl latencies, and therefore User
Equilibrium existence is guaranteed due to the theorern]ofNtbreover, since our modified latencies
are non-decreasing, all User Equilibria are also DaferBysrow equilibria. From now on, we refer to
the User Equilibria as Nash Equilibria, or simply Nash flows.

Our Contribution: We demonstrate the possibility of reducing the Price of &hgifor Selfish Routing
via Coordination Mechanisms. We obtain the following réestor networks ok parallel links.

o if original and modified latency functions are continuousjmprovement is possible, i.@PoA>
PoA; see Sectiohl2.

o for the case of affine cost functions, we describe a simplediation mechanismAthat achieves
an engineered Price of Anarchy strictly less than 4/3; seti@®43. The functiong, are of the

le(X) =
%) 00 for x > re.

For the case of two parallel links, the mechanism gives %d &ectiof 3]1), for Pigou’s network
it gives 1, see Figurlg 1.

4See [26[°24] for an excellent exposure of the relevant cdecéipe relation among them, as well as for conditions that
guarantee their existence.

5In [15], Dafermos weakened the orginal definition byl[14] takm it closer to the concept of Nash Equilibrium.

6See Sectiofil5 for a formal definition.

"See for exampld [16,] 4] for examples where equilibria do mistesven for the simplest case of two parallel links and
non-decreasing functions.

8See|[4] for a definition of regular functions.



e For the case of two parallel links with affine cost functiong, describe anptimal@ mechanism;
its engineered Price of Anarchy lies between 1.191 and 1(46@2 Sectionkl4 ard 5). It uses
modified cost functions of the form

®3)

A le(X)  forx<reandx> Ue
le(x) =
le(Ug) fOrre < X< Ue.

The Price of Anarchy is a standard measure to quantify trecetif selfish behavior. There is a vast
literature studying the Price of Anarchy for various modaiselfish routing and scheduling problems
(see[25]). We show that simple coordination mechanismsedunce the Price of Anarchy for selfish
routing games below the 4/3 worst case for networks of paratlks and affine cost functions.

We believe that our arguments extend to more general codtidms, e.g., polynomial cost functions.
However, the restriction to parallel links is crucial forrqaroof. We leave it as a major open problem to
prove results for general networks or at least more genetalarks, e.g., series-parallel networks.

Implementation: We discuss the realization of the modified cost function ifngpke traffic scenario
where the driving speed on a link is a decreasing functiomeffiow on the link and hence the transit
time is an increasing function. The step function[ih (3) carrdmlized by setting a speed limit corre-
sponding to transit timés(ue) once the flow is above.. The functions in[(R) can be approximately
realized by access control. In any time unit ordytems are allowed to enter the link. If the usage rate
of the link is above, the queue in front of the link will grow indefinitely and hentransit time will go

to infinity.

Related Work: The concept of Coordination Mechanisms was introducedhi@ ¢pnference version
of) [9]. Coordination Mechanisms have been used to imprbeePrice of Anarchy in scheduling prob-
lems for parallel and related machings[9,[19, 22] as welbbastirelated machines|[3, 6]; the objective is
makespan minimization. Very recently, [10] consideredrasigective the weighted sum of completion
times. Truthful coordination mechanisms have been studi¢t, [7,(2].

Another very well-studied attempt to cope with selfish bédrais the introduction of taxes (tolls)
on the edges of the network in selfish routing games[[11], 1@ 2017]5]. The disutility of a player is
modified and equals her latency plus some toll for every eldgeis used in her path. It is well known
(see for example [11, 18, P0,121]) that so-called marginat tails, i.e.,@e(x = lo(X) + Xlg(X), result in
a Nash flow that is equal to the optimum flow for the originaltdaactiond.q Roughgarder [27] seeks
a subnetwork of a given network that has optimal Price of Amarfor a given demand. [12] studies
the question whether tolls can reduce the cost of a Nashiledquih. They show that for networks with
affine latencies, marginal cost pricing does not improvecthst of a flow at Nash equilibrium, as well
as that the maximum possible benefit that one can get is no ttmamethat of edge removal.

Discussion: The results of this paper are similar in spirit to the resditzussed in the previous para-
graph, but also very different. The above papers assumeakas or tolls are determined with full
knowledge of the demand rate Our coordination mechanisms mwspriori decide on the modified
latency functionsvithout knowledge of the demaritimust determine the modified functioAsind then
an adversary selects the input rate More importantly, our target objectives are different; want

to minimize the ratio of the modified cost (taking into accothe increase of the latencies) over the

9The lower bound that we provide in Sectfdn 5 holds for all detristic coordination mechanisms that usm-decreasing
modified latencieswith respect to both notions of equilibrium described ie grevious paragraph.

101t is important to observe that although the Nash flow is etquighe optimum flow, its cost with respect to the marginal
cost function can be twice as large as its cost with respebttoriginal cost function. For Pigou’s network, the maegicosts
are/1(x) = 2xand/,(x) = 1. The cost of a Nash flow of ratewith r < 1/2 is 22 with respect to marginal costs; the cost of
the same flow with respect to the original cost functiongis
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original optimal cost. Our simple strategy presented in Seétion Joeaviewed as a generalization of
link removal. Removal of a link reduces the capacity of thgestb zero, our simple strategy reduces
the capacity to a threshotd. Following [C], we studylocal mechanisms; the decision of modifying the
latency of a link is taken based on the amount of flow that catmesigh the particular IinIonIy

2 Continuous Latency Functions Yield No I mprovement

The network in this section consists loparallel links connecting to t and the original latency func-
tions are assumed to be continuous and non-decreasing. dWetlsat substituting them by continuous
functions brings no improvement.

Lemma 1. Assume that the original functiorfg are continuous and non-decreasing. Consider some
modified latency functionand some rate r for which there is a Nash Equilibrium fibwuch that the
latency functiorY; is continuous affi(r) for all 1 <i < k. Then ePo/A) > PoA(r).

Proof. It is enough to show thay (r) > Cn(r). Let f be a Nash flow for rate and the original cost
functions. If f = f, the claim is obvious. Iff # f, there must be g with fj(r) > f;(r). The local

continuity of /; at fi(r), implies that/;(fi(r)) = Z(fi(r)), for all i,i’ < k such thatf;(r), f.(r) > 0.
Therefore,

since@j (X) > ¢;(x) for all xand/; is non-decreasing. Sindes a Nash flow we havg(fi(r)) </¢;(f;(r))
for anyi with fi(r) > 0. Thus

3 A Simple Coordination Mechanism

Let/i(x) = ax+bj = (x+ ) /A be the latency function of theth link, 1 <i < k. We callA; theefficiency
of the link. We order the links in order of increasibgyalue and assume<Qb; < by, < ... < by as two
links with the samé-value may be combined (by adding their efficiencies). Wetkaya link isused

if it carries positive flow. We may assunag> O for alli < k; if g = 0, linksi+ 1 and higher will never
be used. The following theorem summarizes some basic faoist @ptimal flows and Nash flows; it
is proved by straightforward calculatidf®.We state the theorem for the case thgis positive. The
theorem is readily extended to the cage= 0 by lettingax go to zero and determining the limit values.
We will only use the theorem in situations, whexe> 0.

111t is not hard to see that, similarly to the case where the aenimknown, using global flow information (at least for the
case of parallel links) can lead to mechanisms wefloA= 1. We would like to thank Nicolas Stier Moses for making us
emphasizing that distinction.

12| a Nash flow all used links have the same latency. Thugliifks are used at rateand fiN is the flow on thea-th link,
thenar fN+by =...=a;fN+bj <bjiqandr = fN+ ...+ ij. The values forj and fN follow from this. Similarly, in an
optimal flow all used links have the same marginal costs.



a fixed rate r and let;f and ﬁN, 1 <i <k, be the optimal flow and the Nash flow for rate r respectively.
Let

Theorem 1. LetO<Iby <bp <... <bcandA; > Oforalli. LetAj=¥;-;Aj andlj = ¥;; yj. Consider

ry= Z (bj —by)Ai = Z (biy1—bi)A;.

1<i<j 1<i<|

Then
@Trj+rj=bjAjandlj_1+r; =bjAj_1.
(b) If Nash uses exactly j links at rate r then

r<r<rj, fiNer—Aj'Jrci, wherecizl‘\—j'—v., and G«(r)z,\ij(fz”jf)-

(c) If Opt uses exactly jlinks at rate r then

r ri A A
S L A ;\'+d/2 Whered_/\——y,,
i i

and

>

<

1 52 i
Copt(r) = A r2+Tr) 27:/\_, 24Tjr) —Cj,where G = (I;h (bn—by) )\h)\i> /(4N;).
(d) If s< rand Opt uses exactly jlinks at s and r then

Copt(r) = Copt(S) + /\ij (r=s)2+(Tj+2s)(r—9)).

(e) If s< rand Nash uses exactly jlinks at s and r then

Cn(r) :CN(S)JF/\ij (r=92+(Mj+2s)(r—9)).

We next define our simple coordination mechanism. In the ofkdinks, it is governed by param-
etersRy, Ry,...,R«_1; R > 2 for alli. We call thej-th link super-efficien{with respect to parameters
Ry to Re_1) if Aj > Rj_1/A\j_1. In Pigou’s network (see Figufé 1), the second link is sugfécient for
any choice ofR; sinceA; = o andA; = A; = 1. Super-efficient links are the cause of high Price of
Anarchy. Observe that Opt starts using fath link at raterj/2 and Nash starts using it at ratg If
the j-th link is super-efficient, Opt will send a significant frimet of the total flow across thgth link
and this will result in a high Price of Anarchy. Our coordioatmechanism induces the Nash flow to
use super-efficient links earlier. The latency functiépare defined as followsf; = ¢ if there is no
super-efficient linkj > i; in particular the latency function of the highest link (akik) is unchanged.
Otherwise, we choose a threshold valyésee below) and sét(x) = /(i(X) for x <T; and@i(x) = oo for
x > T;. The threshold values are chosen so that the following behaesults. We call this behavior
modified Nash (MN)

Assume that Opt uséslinks, i.e.,rn/2 <r <rn;1/2. If Air1 <RA; foralli, 1<i < h, MN behaves
like Nash. Otherwise, lef be minimal such that link + 1 is super-efficient; MN changes its behavior
at raterj,1/2. More precisely, it freezes the flow across the fjréinks at their current values when
the total flow is equal t@;1/2 and routes any additional flow across links 1 tok. The thresholds
for the lower links are chosen in such a way that this freegfiigct takes place. The additional flow
is routed by using the strategy recursively. In other wohelsj; + 1, ..., ji + 1 be the indices of the
super-efficient links. Then MN changes behavior at rajgs/2. At this rate the flow across links 1 to
ji is frozen and additional flow is routed across the higherslink
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We useCyn(r) = éﬁl"“’R“*l(r) to denote the cost of MN at ratevhen operated with parametd®s
to Re_1. ThenePoAr) = Cun(r)/Copt(r). For the analysis of MN we use the following strategy. We
first investigate thdenigncase when there is no super-efficient link. In the benign,ddé&behaves
like Nash and the worst case bound of 4/3 on the PoA can nevattdieed. More precisely, we will
exhibit a functionB(Ry, ...,Rk_1) which is smaller than A3 for all choices of thér’s and will prove
Cun(r) < B(R4,...,Re_1)Copt(r). We then investigate the non-benign case. We will derivearrence
relation for SRR ‘)

R R p
ePoARy,...,R1) mrax Conl)

In the case of a single link, i.ek = 1, MN behaves like Nash which in turn is equal to Opt. Thus
ePoA) = 1. The coming subsections are devoted to the analysis ofibke &nd more than two links,
respectively.

3.1 TwolLinks

The modified algorithm is determined by a param&er 2. If A, < RA1, modified Nash is identical to
Nash. IfA; > BAl, the modified algorithm f[eezes the flow across the first link, @22 once it reaches
this level, i.e. /1(x) = ¢1(x) for x < r,/2 and/l1(x) = oo for x > r2/2

Theorem 2. For the case of two links, ePcAmax{1+ 1/R, (4+4R)/(4+ 3R)}. In particular ePoA=
5/4for R=4.

Proof. Consider first the benign cage < RA;. There are three regimes: foK r,/2, Opt and Nash
behave identically. Fory/2 <r <r,, Opt uses both links and Nash uses only the first link, and for
r >rp, Opt and Nash use both linkBoA(r) is increasing for <r, and decreasing far> r,. The worst
case is at =rp. ThenPoA(ry) =Cn(r2)/Copt(r2) = Cn(r2)/(Cn(r2) —C2) =1/(1—-Cy/Cn(r2)). We
upper-boundC; /Cn(r2). Recall thatry; = (bp —bi)Aq, r2+ 1 =boA; andCy(ra) = 1/)\1(@ +1rp).

We obtain

Co _ (-b)®Mho  _ (p-b)PAde  _h 1
CN(rz) 4/\2(1/)\1)(r§+ ylrz) 4/\2(1/)\1)(b2 — bl))\le)\l 4N, T 4(l+ l/R) )

ThusPoAr) < B(R) = 1_% = (4+4R)/(4+3R).

We come to the cas® > RA;: There are two regimes: for<r,/2, Opt and MN behave identically.
Forr >ry/2, Opt uses both links and MN routes/2 over the first link and —r,/2 over the second
link. Thus forr >ry/2:

Copt(r2/2) + =2/2% 1 py(r —1,/2
ePoAr) — () _ on(12/2) + =5, 2 2/)<&§1+1/R.

- Conll)  Cop(rz/2) + 2 L by(r —1/2) ~ A2

3.2 Many Links

As already mentioned, we distinguish cases. We first stuglipéimign casa; ; <R, foralli, 1 <i <Kk,
and then deal with the non-benign case.

_ BIn Pigou's network we havé; (x) = x and¢,(x) = 1. Thus), = «. The modified cost functions arg(x) = ¢>(x) and
£1(x) = xfor x <rz/2=1/2 and{y(x) = e for x> 1/2. The Nash flow with respect to the modified cost function étital
to the optimum flow in the original network ai@} (f*) = C(f*). ThusePoA= 1 for Pigou’s network.



TheBenign Case:  We assum@;.; < RA; for alli, 1 <i < k. Then MN behaves like Nash. We will
showePoA< B(Ry,...,Rk-1) < 4/3; hereB stands for benign case or base case. Our proof strategy is
as follows; we will first show (Lemmial 2) that for theh link the ratio of Nash flow to optimal flow is
bounded by 2/(A; + Ax). This ratio is never more than two; in the benign case, it isrioled away
from two. We will then use this fact to derive a bound on the®uof Anarchy (Lemmal4).

Lemma 2. Let h be the number of links that Opt is using. Then
o
f* = Ni+Nn

fori <h. If Ay,1 <Ry foralli’, then

2M\n < 2P
Ni+NAn ~ P41

where P.=[1<ik(1+R).

Proof. Let j be the number of links that Nash is using. For j, the Nash flow on theth link is zero
and the claim is obvious. FoK j, we can write the Nash and the optimal flow through lirgs

fiN = I‘Ai//\j =+ (Fj)\i/Aj — y,’) and fi* = r)\i/Ah+ (rh)\i//\h — y.)/z
Therefore their ratio as a function ofs

F(r) _ fiN _ An 2r+2rj—2bi/\j
- fi* _/\j 2r+Th—biAy -

The sign of the derivative’(r) is equal to the sign df, — bi/An — 2I"j + 2biA; and hence constant. Thus
F(r) attains its maximum either far; or forr; 1. We have

F(rHl)Sﬁ.2rj+l+2rj—2bi/\j :ﬁ. 2(bj1—by)A;
Nj 2 +Th—biAn Aj 20 A1 — 201+ Th—biAg
B 2(bj+1 — bi)An B 2(bj+1 —bi)An
 Ygejr1(2bj1 = 2bg)Ag+ Tgen(Bg—bi)Ag T gej(20j41— g —bi)Ag+ T jgen(bBg —bi)Ag
_ 2(bj 1 —bi)An
 Ygi(2Dj41 = bg — bi)Ag + Ficg<j(2Dj41 — by — bi)Ag + 3 j<g<n(Bg — bi)Ag
< 2(bj 11 —bi)An
~ Yg<i2(bjr1 —bi)Ag+ Yicgen(Bj41 — bi)Ag
B 2N\n 2N\
C Yg<i2Ag+ YicgenAg Ai+An
and
F(r_)<ﬁ‘2rj+2rj—2bi/\j :ﬁ‘ Z(bj—bi)/\j
1= /\j 2rj+rh—bi/\h /\j ij/\j—zrj+rh—bi/\h
B 2(bj — bi)An B 2(bj — bi)An
 Yg<i(2b) = 2bg)Ag+ Y gen(bg —bi)Ag 3 g<j (205 —bg—bi)Ag+ 3 jg<n(bg —bi)Ag
_ 2(bj —bi)An
 Yg<i(2bj —bg—bi)Ag+ Yicg<j(2b; —bg — bi)Ag+ ¥ < g<n(bg — bi)Aq
Z(bj —bi)An 2N\n _ 2N\n

< = = .
T Yg<i2(bj —b)Ag+ Ficgen(b) —bi)Ag  Fg<i2Ag+ Ticg<hAg  Ait+An
If A1 < RuAy for all i’, thenAi 1 = Ay + A < (1+Ry)Ay for all i and hence\p, < Ag <

PA;. O



Lemma 3. For any positive realg, a, andg with1 < u < 2anda /B < u, Ba < “u—_zla2+32.

Proof. We may assumg > 0. If B = 0, there is nothing to show. So assufie- 0 and leta /3 = du
for somed < 1. We need to show (divide the target inequality@® du < (1 —1)6°+ 1 or equivalently
uoé(1—9) < (1-9)(1+9). This inequality holds fod < 1 andu < 2. O

Lemmad. If fN/f* < p < 2foralli, then POA< p2/(u? — u+1). If Aj11 < RjA; for all j, then

PoA< B(R Re-1) = 4P
> 1y k-1 _3P2+17

where P.= [1<i«(1+R).

Proof. Assume that Nash usgdinks and letL be the common latency of the links used by Nash. Then

L=afN+bfori<jandL <l =afN+bfori> j. Thus, by use of Lemnid 3,

Cn ()_Lr_ZLf*<z (afN+by) fi <

+Z )2+ i)

-1
< “FCN(rHcopt(r)

and hencePoA < p?/(u? — u+1). If Aj;1 <RjA; for all j, employing Lemmal2, we may uge=
2P/(P+1) and obtairPoA< 4P?/(3P? 4 1). O

The General Case:.  We come to the case wheM,; > RA; for somei. Let j be the smallest such
i. Forr <rjy1/2, MN and Opt use only links 1 tg and we are in the benign case. Hemd0Ais
bounded byB(Ry,...,Rj_1) < 4/3. Assume now that>r;,,/,,. MN routes the flow exceeding, 1/2
exclusively on higher links.

Lemma5. MN does not use links before Opt.

Proof. This is trivially true for thej + 1-st link. Consider anyr > j 4+ 1. MN starts to use link at

S$h="rj11/2+ Y ji1<i<n(biz1 —bi)(Ai —Aj) and Opt starts to use it &t/2 =rj,1/2+ 3 | 11<jcn(biy1 —
bi)A\i/2. We haves, > r,/2 since/\j — \j > N\ /2 fori > . O

We need to bound the cost of MN in terms of the cost of Opt. Ireptd do so, we introduce an
intermediate flow Mopt (modified optimum) that we can readédiate to MN and to Opt. Mopt uses
links 1 to j to router;j,1/2 and routes =r —rj;1/2 optimally across linkg + 1 tok. Let f;* and f™
be the optimal flows and the flows of Mopt, respectively, atratetrs= ;- f* >rj,1/2 be the total
flow routed across the firgtlinks in the optimal flow (the subscrigtstands for small) and let

We will showt < 1+ 1/R; below. We next relate the cost of Mopt on links- 1 tok to the cost of Opt

on these links. To this end we scale the optimal flow on theds by a factor of, i.e., we consider the
following flow across linksj + 1 tok: on linki, j+1 <i <k, it routest - f;*. The total flow on théiigh
links, i.e., linksj+1 tok, isr—rj;1/2 and hence Mopt incurs at most the cost of this flow on its high

links. Thus
S GUEMEN< S GO < t2 (Z G(F) fi*> .

i>] i>] i>]



The cost of MN on the high links is at mosPoAR;1,...,R« 1) times this cost by the induction
hypothesis. We can now bound the cost of MN as follows:

Cun(r) =Cn(rj+1/2)+Cun(flow f across linksj + 1 tok)

<B(Ry,...,Rj_1)Copt(rj1/2) +t*€PoAR; 1,...,Rc 1) <z Gi(f) fi*>
i>]

Zei(fi*)fi*> +12%ePoAR;1,...,Re1) (Z Ei(fi*)fi*>
<J

i>]

< B(Rl7 [ERE Rj—l) (

< max{B(Ry,...,Rj_1), t?ePOAR};1,...,Rc_1) } Copt(r)

Lemma6. t <1+ 1/R;, where jis the smallest i for which 1 > RA;.

Proof. Assume that Opt usdslinks wherej+1<h<k. Thenr,/2<r <rp;1/2. Letr =r,/2+ 9.
According to Theorerl1f;* = rA; /An+ (FnAi/An— ) /2 and hence

o A1 (ThA
rs:(EhJ“a)/\_:]J“E( A j)'

Sinceln +rp = bn/A\p andlj +r; = bj/\j (see Theorerl1), this simplifies to

A& eAn—TnA; 1 (THA; A 1 NS
= A h_1+_<L—bj/\J+rJ>:;+_((bh—bj)/\j+rj):/+h

r*
An 2 An 2\ N Nn 2 s

Is

whererg = 1 ((bn — bj)Aj +rj). We can now boundl

t:r—rj+1/2_ M/24+0—rj:1/2 <max{rh/2—rj+1/2 1 }

r—rs /240 —ri—Nj0/An ~ h/2—r% ’1_%

Next observe that

M/2—1j41/2 Y j+1<i<h(Bira —bi)A; _ Yjracich(bipr —BOA;
rh/2—rg (Yj<icn(bisa—b)A) — (b —=bpA;  Fjracicn(biva —bi) (A = Aj)
N /\j+1 /\j —|—)\j+1 1
< max = = <1+ —.
T jti<i<h A = A Njr1—N; Aj_,_l - +Rj
The second term in the upper bound fdés also bounded by this quantity. O

We summarize the discussion.
Lemma7. For every k and every jwith < j <k. If Aj;1 > Rj/Aj andAi 1 < RA; fori < j, then
1\2
EPOA(R]_, ceey Rk,]_) < max{ B(Rl, ceey Rj,]_), <l+ E) EPOA(Rj+1, RN Rkl)} .
j
We are now ready for our main theorem.

Theorem 3. For any Kk, there is a choice of the parameterst® R, 1 such that the engineered Price of
Anarchy with these parameters is strictly less tHd8.
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Proof. We will showePoAR;,...,R¢_1) < 4/3 by downward induction on i.e., we will defineRy_1,
Rk_2, down toRy in this order. Foi =k, we haveePoA) = 1 < 4/3.

We now come to the induction step. We have already deffpegd down toR;; 1 and now defindz;.
We have

B(R;,...,R1), }

ePoAR,;,...,Rc 1) < max{ man;i<j<k{B(Ri,...,Rj_l), (1+Rij>zeP0A(Rj+1,...,Rk_1)}
where the first line covers the benign case and the seconddivezs the non-benign case (Lemima 7).
We now fixR;. We haveB(R;,...,R« 1) <4/3andB(R;,...,Rj_1) < 4/3forall j,i < j <kby Lemmd#
for any choice oR,. This completes the induction if the first line defines the imaxn. So assume that
the second line defines the maximum. We only need to deal héticasg =i in the second line, as the
casej > i was already dealt with for largér The casg =i is handled by choosinB; sufficiently large,
i.e., such thaf1+ 1/R)%ePoAR 1,...,Rc_1) < 4/3. O

Remark 1. Alternatively, we could take= k— 1 as the base case. Then=ji — 1 in the non-benign
case and hence

ePOAR. 1) = MaXB(Ri 1),B(), 1+ ) ?ePoA)

4(1+ Re_1)? 1,
(14
(1+Re1)2+1 ( kal) )
where the bound on(B_1) comes from Lemma 4. FokR = 7, the bound becomesax((4/3)(64/65),64/49) =
max(64/65,48/49) -4/3.

:max(3

4 An Improved M echanism for the Case of Two Links

In this section we present a mechanism which achiefReg\= 1.192 for a network that consists of two
parallel links. The rati€@y(r)/Copt(r) is maximized at = r,. At this rate Nash still uses only the first
link and Opt uses both links. In order to avoid this maximunioréf larger than 1.192), we force MN

to use the second link earlier by increasing the latencyefitit link after some ratey, ro/2 < x; <r>

to a value abové,. In the preceding section, we increased the lateney.tn this way, we avoided a

bad ratio at,, but paid a price for very large rates. The idea for the impdosonstruction, is to increase
the latency to a finite value. This will avoid the bad ratiot &lso allow MN to use both links for large
rates. In particular, we obtain the following result.

Theorem 4. There is a mechanism for a network of two parallel links thatiaves ePoA- 1.192

Proof. Recall (Theoren]2) that the Price of Anarchy is upper bourtded + 4R) /(4 + 3R) where

R=a;/ay. Let Ry be such that4+ 4Ry)/(4+ 3Ry) = 1.192. ThenRy = 96/53. We only need to
consider the cade > Ry. The latency function of the second link is unchanged andatieecy function

of the first link is changed into

R (x), xX<x
gl(X) = { El(Xz), X1 < X< Xo (4)
El(X) X> Xo.

wherex; andx; satisfyr,/2 < x; <r, < xp and will be fixed later. In words, when either the flow in
the first link does not exceed, or is larger tharxy, the network remains unchanged. However, when

11



ePoAT)

r2/2 X a2 r* r* r

Figure 2: The engineered price of anarchy for the constnaif Section 4.

the flow in the first link is between these two values, the maidma increases the latency of this link to
/1(X2). Letr* be such that

fz(l’* — Xl) = fl(Xz).

We will fix x; andx, such thatr* > r».

What is the effect of this modification? ForK r,/2, Opt and MN are the same ar&0Ar) = 1.
Forry/2 <r <x;, MN behaves like Nash arePoAr) increases. At = x;, MN starts to use the second
link. MN will route any additional flow on the second link unti=r*. At r = r*, MN routesx; on the
first link andr* — x; on the second link. Beyond, MN routes additional flow on the first link until the
flow on the first link has grown t®,. This is the case at™ =r* —x; +xo. Forr > r**, MN behaves like
Nash.

Figure[2 shows the graph ePoAr). We haveePoAr) =1 forr <r/2. Forr/2 <r <Xy, ePoATr)
increases to

2
a1xg + bixg

ePoAX)) = ————
Axa) Copt(X1)

Forxy <r <r*, ePoAr) is convex. It will first decrease and reach the value one &sssimes that' is
big enough) at the rate where Opt roukgeon the first link; after this rate it will increase again. Kt
ePoAhas a discontinuity becauseratMN routesx; on the first link for a cost of1(x1)x; and atr* + €
it routesx; + € on the first link for a cost of1(x2) (X, + €). Thus

lim CMN(r) — im fl(Xz)r o fl(Xz)r . fz(r —xl)r

I'—>I'i Copt(r) r—>r*+ Copt(r) o Copt(r*) o Copt(r*)

Forr > r*, ePoAr) decreases. Thus

2 * *
ePOA— max{ a]_Xl + b]_X]_ fz(l’ X]_)I’ }

, 5
Copt(X1) Copt(r*) ©)
It remains to show that; <r, andr* >r, can be chos@ such that the right-hand side is at most 1.192.
By Theorentl (c), a

1

(r®+Rrr —Rr3/4),

14The optimal choice fox; andr* is such that both terms are equal and as small as possible. eéeumable to solve
the resulting system explicitly. We will prove in the nextgen that the mechanism defined by these optimal choicelseof t
parameters; andr* is optimal.

12



forr >ry/2 andR=a; /ay. Also lo(r* —xg) = ap(r* —xq) + by = ap(r* — x1) + by +ayro.

We first determine the maximumy < r, such that(ayx% + b1x;) /Copt(x1) < 1.192 for allb;. Since
the expressior(ale + blxl) /Copt(X1) is decreasing itby, this x; is determined fob; = 0. It follows
thata = x; /2 is defined by the equation

4R+ 1)a?

i A S Y T 6
4aR— R+ 4a2 )

ForR > Ry, this equation has a unique solutiag € [1/2,1], namely

1 14R+2,/89RR+1)

2 125R—24

Qg =

We turn to the second term in equation (5). For>ry, it is a decreasing function dfy. Substituting
b; = 0 into the second term and settifig=r* /r, yields after some computation

4B(R+1)(B—a+R)

SPOR = TR@BT 1 4BR_R)

()

For fixeda = ap and anyR > Ry, ePoA is minimized forp = By = RivRy R+4a° R=%) ForR> Ry,
one can provésy > 1, as needed. Substitutireg and 3y into ePoA yields a functlon oR. ltis easy to
see, using the derivative, that the maximum value of thistion for R> Ry is at most 1192. O

5 A Lowe Bound for the Case of Two Links

We prove that the construction of the previous section iBr@dtamong the class of deterministic mech-
anisms that guarantee the existence of an equilibrium feryenater > 0 and that use non-decrea@g
latency functions. For these mechanisms we showaRaA> 1.191.

As in the preceding sections, we uédo denote the modified latency functions. The useRof
throughout this section denotes the ratio of the linearfonefts of the two latency functions of the
instance, and should not be confused with its use in thequie\dections, were it was a parameter of the
mechanism. As mentioned above, we are making two assurspioout the’’s: an equilibrium flow
must exist for every rate, and/; is non-decreasing, i.e., ¥ < X, then@i(x) < Ei(x’), fori=12. It
is worthwhile to recall the equilibrium conditions for geaklatency functions (as given by Dafermos-
Sparrow [14]): if(x,y) is an equilibrium for rate = x+y, thenl,(y') > 71(x) for y € (y,r] (otherwise
y —y amount of flow would move from the first link to the second) da(k) > Z5(y) for X € (x,r]
(otherwise X' — x amount of flow would move from the second link to the first). c®inmve assume our
functions to be monotone, the conditién(y’) > /1(x) for y € (y,r] is equivalent to liminf,, />(y) >
El(x) provided thaty < r (or equivalently,x > 0). Since we are discussing a network of two parallel
links, the latter condition is in turn equivalent id (1).

Theorem 5. The construction of Sectidn 4 is optimal and eRPoA.191

Proof. We analyze a network with latency functioAgx) = x and/>(x) = x/R+1= (x+R)/R, 2<

R < 4, and derive a lower bound as a function of the parantttre restriction < R < 4 will become
clear below. In a second step we cho®éseo as to maximize the lower bound; the optimal choice is
R=R"~2.1. Forr <1/2, Opt uses one link arGu(r) = r2, and forr > 1/2, Opt uses two links and
Copt(r) = (r?+ Rr—R/4)/(1+R); Copt(1) = (3R+4)/(4R+4) andCy(1) = 1. ThusPoA= PoA(1) =
(4R+4)/(3R+4). ForR> 2, we havePoA(1) > 12/10=1.2.

151t remains open whether similar arguments can be appliedtowing the lower bound for non-monotone mechanisms
with respect to User Equilibria.

13



Consider now some modified latency functi(iﬁs@z, and let(xz,1—x;) be an equilibrium flow for
rate 1 for the modified network. Let

r* =inf{r ; there is an equilibrium flowx,r — x) for MN with x > x3 };

r* = oo if there is no equilibrium flow(x, y) with x > x;. The equilibrium conditions for flowx;, 1 — x1)

imply A A
El(X’) > @2(1— Xl) > @2(1— Xl) >1forx; < X <1 (8)

The above definition of* is a core element of our proof. In Lemrh 8 we restrict the danadi
r*, as well as the range of the modified latencies for efficienthrarisms (those ones with logPoA,
ending up with the lower bound provided [d (9). Then in Lem@A%0 we focus on the properties that
the equilibria of efficient mechanisms should satisfy. Iminea[9, we bound from above the amount of
equilibrium flow that uses the first link if the mechanism ificént, while in Lemma_1I0 we obtain a
second lower bound on tkePoA Finally, in Lemmd_1ll we summarize the above propertiesrgndp
with the lower bound of (11).

Lemmas8. If /1(x;) > 1or r* =worr* <1, ePoA> 1.2.

Proof. If /1(x;) > 1, we haveCyn(1) > 1 and hencePoA> PoA1) > 1.2.

If r* =00, ePOA) > 1+ 1/R. ForR< 4, thisis at least 25.

If r* <1, there is an equilibrium flowx,y) with x > x; andr = x+y < 1. Then@l(x) > 1 by
inequality [8). Alsof2(y) > 1. ThusCun(r) > 1>r and hencePoAr) > r/Copt(r). Forr <1, we have

r r(l+R R/4 R/4 4+ 4R
__ AR o, R, RA a4t
Copt(r) r2+Rr—R/4 r2+Rr—R/4 1+R-R/4 4+3R

= PoA(1) > 1.2.

O

In the light of the Lemma above, we proceed undgr the assun]f)lt(xl) < 1, and hencey < 1,
and 1< r* < co. Then(xy,0) is an equilibrium flow, sincé(x;) < 1 < /,(y) for0<y < x3. Thus

2
X
ePoAx) > —21—. 9
Ax1) > Com(XD) )
By definition ofr*, MN routes at mosx; on the first link for any rate < r* and for anye > 0 there is
anr < r*+ ¢ such thatx,r —x) with x > x4 is an equilibrium flow for MN. A A
Forr < r*, any equilibrium flow(x,r — x) hasx < x;. Thus, forx' € (x,r] 2 (xq,r], 1(X) > l2(r —
X) > £o(r —X) > £2(r — Xg). Since this inequality holds for any< r*, we have

~

O (X) > lo(r —x1) for X € (xq,r"). (10)
Fore > 0, let
Fe = {(x,y); (x,y) is an equilibrium flow withr* < x+y <r* +€andx > x; }.

Observe thaF; is non-empty by definition of*.
Lemma9. If for arbitrarily small € > 0, there is a(x,y) € F¢ with x> r*, then ePoA> PoA(1) > 1.2.

Proof. Letr = x+y. ThenePoA> r2/C0pt(r). Since this inequality holds for arbitrarily small

ePOA> (r*)? /Cop(r*) > PoA(1) = 1.2.
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We proceed under the assumption that there isgan 0 such that, contains no pai(x,y) with
X>r*,

Lemma 10. If for arbitrarily small € € (0,&), Fe contains either a paifx,r* —x;) or pairs (x,y) and
(u,v) with y# v, then ePoA> lo(r* —xq)r* /Copt(r).

Proof. Assume first thaE; contains a paifx,r* — x;) and letr = x+r* —x;. Then
Cun () = u())x+ Co(1 —xa) (I = Xa) = 21" —xa)r

sincel;(X) > £a(r* —xq) by (I0). ) )
Assume next thaf. contains pairgx,y) and(u,v) with y # v. Thenl(x) > £o(r* —xq) and/y (u) >

o(r* —xq) by (10). We may assumg,> v. Letr = x+y. Since(u,v) is an equilibriuméz(y’) > £1(u)
fory € (vu+v) and hencéy(y) > ¢1(u) . Thus

Cun(r) = L1(X)X+ o (y)y > Lo(r* —xq)r.

We have now shown th&yn(r) > ¢2(r* — xq)r for r’s greater than* and arbitrarily close ta*.
ThusePoA> £o(r* —x1)r* /Copt(r*). O

We proceed under the assumption that there ispan 0 such that, contains no paifx,y) with
X >r*, no pair(x,r* —x;) and no two pairs with distinct second coordinate. In otherdspthere is a
Yo < ' — X1 such that all pairs iffrg, have second coordinate equalyto

Let (Xo,Yo0) € Fg,- Thenyp < r* —xq. Let(x,y) be an equilibrium for rate = (r* +x; +yo)/2. Then
r=2r'+yo— (r*—xy))/2<r*and henc < x;. Thusy=r—x>r—x; = (r* —x1+¥o)/2 > yp and
r —yo > X1. Consider the paifr — yo,Yo). Its rate is less thari and its flow across the first link is— yp
which is larger tharx;. Thus it is not an equilibrium by the definition of. Therefore there is either an
X' € (r —yo,r] with Z1(X") < l2(yo) or ay” € (yo,r] with Z5(y") < 1(r — o). We now distinguish cases.

Assume the former. Sinde,y) is an equilibrium, we havé;(x) > Z»(y) for all X € (x,x+Y] and
in particular forx”; observe that —yg > x sincer —x =y > yo. Thus@z(yo) > @z(y), a contradiction to
the monotonicity ofs.

Assume the latter. Sindgao, Yo) is an equilibrium, we havé,(y') > /1(xo) for all y € (Yo, %o+ Yo
and in particular foy”’. Thus/y(r —yo) > /1(x), a contradiction to the monotonicity éf; observe that
I — Yo < Xp sincer < r* < Xg+ Yo.

Lemma 11.

2 o(r* — r*
ePoA> min{l.z,minmax{ X ,min 2" —xa) }} (11)
Xlgl Copt(X]_) r*zl Copt(r*)

Proof. If Xy > 1 orr* <1 orr* = o, we haveePoA> 1.2. So assume; < 1 and 1< r* < o, The
argument preceding this Lemma shows that the hypothesigthafrd.emmd® of 10 is satisfied. In

X2 Lp(rr—xg)r } .
the former caseePoA> 1.2. In the latter caseePoA> max{ Copt%xl)’ Gt |- This completes the

proof. O

It remains to bound

2 * * 2 * *
: X3 -~ o(r —=xq)r : X5 A (R+1)(r' —x1+R)
minmax min = minmax min 12
x <1 {Copt(xl)’r*>1 Copt(r*) x<1 Copt(X1) 'r>1 R(4(r*)?+4Rr* —R) (12)

from below. We prove a lower bound of1B1. The ternx{/Copt(xl) is increasing irx;. Thus there is a
unique valuea; € [1/2,1] such that the first term is larger tharl®1 forx; > a;. If the minimizingxg
is larger tharo; we have established the bound.
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The second term is minimized fot = max{ 1, <R+ \/R2+4R2x1 - 4Rx§) /(4x1)}. Sincex; <1

and hence? < x;, we have(R+ \/RZ +4R2x; — 4R%) /(4x1)) > 2R/4 > 1 and hence

r* = <R+ \/R2+4R2x1 - 4Rx§> /(4xq).

The second term is decreasingimand hence we may substituteby a; for the purpose of establishing
a lower bound. We now specialifeto 21/10. For this value oRandx; = a;

lo(r* —aq)r*

Copt(r*) 1*=(Ri-y/RO-+4RPa;—4Ra?)/(4011) andR=21/10 >1.191

This completes the proof of the lower bound.

We next argue that the construction of Secfibn 4 is optimajudfions[(b) of Sectionl4 fds;, =0
and Equation(12) agree. Hence our refined solution is optima O

6 Open Problems

Clearly the ultimate goal is to design coordination meckiasi that work for general networks. In the
case of parallel links that we studied, we showed that outhargsm approaches/3, as the number of
links k grows. It is still an open problem to show a bound of the forf&4 a, for some strictly positive
a. A possible approach could be to use the ideas of Sdction dth&napproach would be to define the
benign case more restrictively. AssumiRg= 8 for all i, we would call the following latencies benign:
(1(X) = x, and/;(x) = 1+ -i+x/8 fori > 1 and small positive. However, Opt starts using theth
link shortly after /2 and hence uses an extremely efficient link for small rates.

Also, our results hold only for affine original latency fuimets.What can be said for the case of more
general latencies, for instance polynomials? On the maienteal side, it would be interesting to study
whether our lower bound construction of Secfibn 5 can benebet@ to modified latency functiorfsthat
do not need to satisfy monotonicity.
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