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In this paper, we present a formal solution to the nonlinear field equations of ten-dimensional super Yang-
Mills theory. It is assembled from products of linearized superfields which have been introduced as
multiparticle superfields in the context of superstring perturbation theory. Their explicit form follows
recursively from the conformal field theory description of the gluon multiplet in the pure spinor superstring.
Furthermore, superfields of higher-mass dimensions are defined and their equations ofmotion are spelled out.
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I. INTRODUCTION

Super Yang-Mills (SYM) theory in ten dimensions can
be regarded as one of the simplest SYM theories; its
spectrum contains just the gluon and gluino, related by 16
supercharges. However, it is well known that its dimen-
sional reduction gives rise to various maximally super-
symmetric Yang-Mills theories in lower dimensions,
including the celebrated N ¼ 4 theory in D ¼ 4 [1].
Therefore, a better understanding of this theory propagates
a variety of applications to any dimension D ≤ 10.
In a recent line of research [2,3], scattering amplitudes of

ten-dimensional SYM have been determined and simplified
using so-called “multiparticle superfields” [4]. They re-
present entire tree-level subdiagrams and build up in the
conformal field theory (CFT) on the world sheet of the pure
spinor superstring [5] via operator product expansions
(OPEs). Multiparticle superfields satisfy the linearized field
equations with the addition of contact terms, i.e. inverse off-
shell propagators. In this paper we demonstrate that these
off-shell modifications can be resummed to capture the
nonlinearities in the SYM equations of motion. The generat-
ing series ofmultiparticle superfields as seen in (18) is shown
to solve the nonlinear field equations spelled out in (4).
We also define superfields of arbitrary mass dimension

and reduce their nonlinear expressions to the linearized
superfields of lower mass dimensions. This framework
simplifies the expressions of kinematic factors in higher-
loop scattering amplitudes, including the D6R4 operator in
the superstring three-loop amplitude [6].

II. REVIEW OF TEN-DIMENSIONAL SYM

The equations of motion of ten-dimensional SYM theory
can be described covariantly in superspace by defining
supercovariant derivatives [7,8],

∇α ≡Dα −Aαðx; θÞ; ∇m ≡ ∂m − Amðx; θÞ: ð1Þ

The connections Aα and Am take values in the Lie algebra
associated with the non-Abelian Yang-Mills gauge group.
The derivatives are taken with respect to ten-dimensional
superspace coordinates ðxm; θαÞ with vector and spinor
indices m; n ¼ 0;…; 9 and α; β ¼ 1;…; 16 of the Lorentz
group. The fermionic covariant derivatives

Dα ≡ ∂α þ
1

2
ðγmθÞα∂m; fDα; Dβg ¼ γmαβ∂m ð2Þ

involve the 16 × 16 Pauli matrices γmαβ ¼ γmβα subject to the

Clifford algebra γðmαβ γ
nÞβγ ¼ 2ηmnδγα, and the convention for

(anti)symmetrizing indices does not include 1
2
.

The connections in (1) give rise to field strengths

Fαβ ≡ f∇α;∇βg − γmαβ∇m; Fmn ≡ −½∇m;∇n�: ð3Þ

One can show that the constraint equation Fαβ ¼ 0 puts the
superfields on-shell, and Bianchi identities lead to the
nonlinear equations of motion [8],

f∇α;∇βg ¼ γmαβ∇m

½∇α;∇m� ¼ −ðγmWÞα
f∇α;Wβg ¼ 1

4
ðγmnÞαβFmn

½∇α; Fmn� ¼ ½∇½m; ðγn�WÞα�: ð4Þ

In the subsequent, we will construct an explicit solution for
the superfields Aα, Am,Wα and Fmn in (4). The main result
is furnished by the generating series in (18) whose
constituents will be introduced in the next section.
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III. LINEARIZED MULTIPARTICLE
SUPERFIELDS

In perturbation theory, it is conventional to study
solutions Aα; Am;… of the linearized equations of motion

fDðα; AβÞg ¼ γmαβAm

½Dα; Am� ¼ kmAα þ ðγmWÞα
fDα;Wβg ¼ 1

4
ðγmnÞαβFmn

½Dα; Fmn� ¼ k½mðγn�WÞα: ð5Þ
Their dependence on the bosonic coordinates x is described
by plane waves ek·x with on-shell momentum k2 ¼ 0. In a
gaugewhereθαAα ¼ 0, theθ dependence isknown in termsof
fermionic power series expansions from [9,10] whose coeffi-
cients contain gluon polarizations and gluinowave functions.
As an efficient tool to determine and compactly represent

scattering amplitudes in SYM and string theory, multi-
particle versions of the linearized superfields have been
constructed in [4]. They satisfy systematic modifications of
the linearized equations of motion (5), and their signifi-
cance for Becchi-Rouet-Stora-Tyutin (BRST) invariance
was pointed out in [11]. For example, their two-particle
version,

A12
α ≡ −

1

2
½A1

αðk1 · A2Þ þ A1
mðγmW2Þα − ð1 ↔ 2Þ�

A12
m ≡ 1

2
½Ap

1F
2
pm − A1

mðk1 · A2Þ þ ðW1γmW2Þ − ð1 ↔ 2Þ�

Wα
12 ≡ 1

4
ðγmnW2ÞαF1

mn þWα
2ðk2 · A1Þ − ð1 ↔ 2Þ

F12
mn ≡ F2

mnðk2 · A1Þ þ 1

2
F2
½m

pF1
n�p

þ k1½mðW1γn�W2Þ − ð1 ↔ 2Þ; ð6Þ
can be checked via (5) to satisfy the following two-particle
equations of motion:

fDðα;A12
βÞg ¼ γmαβA

12
m þ ðk1 · k2ÞðA1

αA2
β þA1

βA
2
αÞ

½Dα;Am
12� ¼ γmαβW

β
12 þ km12A

12
α þ ðk1 · k2ÞðA1

αAm
2 −A2

αAm
1 Þ

fDα;W
β
12g ¼

1

4
ðγmnÞαβF12

mn þ ðk1 · k2ÞðA1
αW

β
2 −A2

αW
β
1Þ

½Dα;F12
mn� ¼ k12m ðγnW12Þα − k12n ðγmW12Þα

þ ðk1 · k2ÞðA1
αF2

mn þA1
½nðγm�W2Þα − ð1↔ 2ÞÞ:

ð7Þ
The modifications as compared to the single-particle case
(5) involve the overall momentum k12 ≡ k1 þ k2 whose
propagator is generically off-shell, k212 ¼ 2ðk1 · k2Þ ≠ 0.
The construction of the two-particle superfields in (6) is

guided by string theory methods. In the pure spinor
formalism [5], the insertion of a gluon multiplet state on

the boundary of an open string world sheet is described by
the integrated vertex operator,

Ui ≡ ∂θαAi
α þ ΠmAi

m þ dαWα
i þ

1

2
NmnFi

mn: ð8Þ

World sheet fields ½∂θα;Πm; dα; Nmn� with conformal
weight one and well-known OPEs are combined with
linearized superfields associated with particle label i.
The multiplicity-two superfields in (6) are obtained from
the coefficients of the conformal fields in the OPE [4]

U12 ≡ −
I

ðz1 − z2Þα0k1·k2U1ðz1ÞU2ðz2Þ

¼ ∂θαA12
α þ ΠmA12

m þ dαWα
12 þ

1

2
NmnF12

mn; ð9Þ

where α0 denotes the inverse string tension, and total
derivatives in the insertion points z1; z2 on the world sheet
have been discarded in the second line. The contour integral
in (9) isolates the singular behaviour of the Ui with respect
to ðz1 − z2Þ which translates into propagators k−212 of the
gauge theory amplitude after performing the α0 → 0 limit.
In other words, OPEs in string theory govern the pole
structure of tree-level subdiagrams in SYM theory obtained
from the point-particle limit.
The CFT-inspired two-particle prescription (6) can be

promoted to a recursion leading to superfields of arbitrary
multiplicity, see (3.54), (3.56) and (3.59) of [4]. Their
equations of motion are observed to generalize along the
lines of

fDðα;A123
βÞ g ¼ γmαβA

123
m þðk12 · k3Þ½A12

α A3
β − ð12↔ 3Þ�

þ ðk1 · k2Þ½A1
αA23

β þA13
α A2

β − ð1↔ 2Þ� ð10Þ

for suitable definitions of A123
α and A123

m ; see (3.17), (3.19)
and (3.29) of [4].
Multiparticle superfields can be arranged to satisfy

kinematic analogues of the Lie algebraic Jacobi relations
among structure constants, e.g. A123

α þA231
α þA312

α ¼0.
They, therefore, manifest the BCJ duality [12] between
color and kinematic degrees of freedom in scattering
amplitudes; see [13] for a realization at tree level.
Together with the momenta k12…j≡k1þk2þ���þkj in their
equations of motion, this suggests associating them with
tree-level subdiagrams shown in the subsequent figure [4]:
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The cubic-graph organization of superfields already
accounts for the quartic vertex in the bosonic Feynman
rules of SYM. This ties in with the string theory origin of
n-particle tree-level amplitudes where each contribution
stems from n − 3 OPEs.

Berends-Giele currents

As a convenient basis of multiparticle fields KB ∈
fAB

α ; Am
B ;W

α
B; F

mn
B g with multiparticle label B ¼ 12…p,

we define Berends-Giele currents KB ∈ fAB
α ;Am

B ;
Wα

B;F
mn
B g, e.g. K1 ≡ K1 and [4]

K12 ≡ K12

s12
; K123 ≡ K123

s12s123
þ K321

s23s123
ð11Þ

with generalized Mandelstam invariants s12…p ≡ 1
2
k212…p.

Berends-Giele currents KB are defined to encompass all
tree subdiagrams compatible with the ordering of the
external legs in B. The propagators s−1i…j absorb the
appearance of explicit momenta in the contact terms of
the equations of motion such as (7) and (10).
As illustrated in the following figure, the three-particle

current in (11) is assembled from the s and t channels of a
color-ordered four-point amplitude with an off-shell leg
(represented by …):

In contrast to the bosonic Berends-Giele currents in [14],
the currents KB manifest maximal supersymmetry, and
their construction does not include any quartic vertices. A
closed formula at arbitrary multiplicity [4,15] involves the
inverse of the momentum kernel1 S½·j·�1 [16],

K1σð23…pÞ ≡
X

ρ∈Sp−1

S−1½σjρ�1K1ρð23…pÞ; ð12Þ

with permutation σ ∈ Sp−1 of legs 2; 3;…; p.
The combination of color-ordered trees as in (11)

and (12) simplifies their multiparticle equations of
motion [4]

fDðα;AB
βÞg ¼ γmαβA

B
m þ

X
XY¼B

ðAX
αAY

β −AY
αAX

β Þ

½Dα;AB
m� ¼ kBmAB

α þ ðγmWBÞα þ
X
XY¼B

ðAX
αAY

m −AY
αAX

mÞ

fDα;W
β
Bg ¼ 1

4
ðγmnÞαβFB

mn þ
X
XY¼B

ðAX
αW

β
Y −AY

αW
β
XÞ

½Dα;Fmn
B � ¼ k½mB ðγn�WBÞα þ

X
XY¼B

ðAX
αFmn

Y −AY
αFmn

X Þ

þ
X
XY¼B

ðA½n
X ðγm�WYÞα −A½n

Y ðγm�WXÞαÞ:

ð13Þ

Momenta kB ≡ k1 þ k2 þ � � � kp are associated with multi-
particle labels B ¼ 12…p, and

P
XY¼B instructs us to sum

over all their deconcatenations into nonempty X ¼ 12…j
and Y ¼ jþ 1…p with 1 ≤ j ≤ p − 1. The three-particle
equation of motion of A123

α , e.g., reads

fDðα;A123
βÞ g ¼ γmαβA

123
m

þA1
αA23

β þA12
α A3

β −A23
α A1

β −A3
αA12

β ;

ð14Þ

and a comparison with (10) highlights the advantages of the
diagram expansions in (11). Superfields up to multiplicity
five satisfying (13) were explicitly constructed in [4], and
there are no indications of a breakdown of (13) at higher
multiplicity.
The symmetry properties of the KB can be inferred from

their cubic-graph expansion and summarized as [17]

ð15Þ

where denotes the shuffle product2 [18]. For example,

ð16Þ

1The momentum kernel is defined by [16]

S½σð2; 3;…; pÞjρð2; 3;…; pÞ�1

¼
Yp
j¼2

�
s1;jσ þ

Xj−1
k¼2

θðjσ ; kσÞsjσ ;kσ
�

and depends on reference leg 1 and two permutations σ; ρ ∈ Sp−1
of additional p − 1 legs 2; 3;…; p. The symbols θðjσ ; kσÞ keep
track of labels which swap their relative positions in the two
permutations σ and ρ, i.e. θðjσ ; kσÞ ¼ 1 (¼ 0) if the ordering of
the legs jσ ; kσ is the same (opposite) in the ordered sets
σð2; 3;…; pÞ and ρð2; 3;…; pÞ. The inverse in (12) is taken
with respect to matrix multiplication which treats σ and ρ as row
and column indices.

2The shuffle product in is defined to sum all Kσ for
permutations σ of A∪Bwhich preserve the order of the individual
elements of both sets A and B.

SOLUTION TO THE NONLINEAR FIELD EQUATIONS ON … PHYSICAL REVIEW D 92, 066001 (2015)

066001-3



and symmetries (15) at higher multiplicity leave ðp − 1Þ!
independent permutations of K12…p. Any permutation can
be expanded in a basis of K1σð23…pÞ with σ ∈ Sp−1 through
the Berends-Giele symmetry,

ð17Þ

where jBj ¼ p and Bt ¼ bp…b2b1 for a multiparticle label
B ¼ b1b2…bp. Since the Berends-Giele current K12p is
composed from the cubic diagrams in a partial amplitude
with an additional off-shell leg, (17) can be understood as a
Kleiss-Kuijf relation among the latter [19].

IV. GENERATING SERIES OF SYM SUPERFIELDS

In order to connect multiparticle fields and Berends-
Giele currents with the nonlinear field equations (4), we
define generating series K ∈ fAα;Am;Wα; Fmng

K≡X
i

Kiti þ
X
i;j

Kijtitj þ
X
i;j;k

Kijktitjtk þ � � �

¼
X
i

Kiti þ
1

2

X
i;j

Kij½ti; tj� þ
1

3

X
i;j;k

Kijk½½ti; tj�; tk�

þ � � � ; ð18Þ

where ti denote generators in the Lie algebra of the non-
Abelian gauge group. Hence, the generating series in (18)
adjoin color degrees of freedom to the polarization and
momentum dependence in the linearized multiparticle
superfieldsKB. The second line follows from the symmetry
(15), which guarantees that K is a Lie element [18].
As a key virtue of the series K ∈ fAα;Am;Wα; Fmng in

(18), they allow us to rewrite the Dα action on Berends-
Giele currents KB ∈ fAB

α ;Am
B ;W

α
B;F

mn
B g in (13) as non-

linear equations of motion,

fDðα;AβÞg ¼ γmαβAm þ fAα;Aβg
½Dα;Am� ¼ ½∂m;Aα� þ ðγmWÞα þ ½Aα;Am�

fDα;Wβg ¼ 1

4
ðγmnÞαβFmn þ fAα;Wβg

½Dα; Fmn� ¼ ½∂ ½m; ðγn�WÞα� þ ½Aα; Fmn� − ½A½m; ðγn�WÞα�;
ð19Þ

where ½∂m;K� translates into components kmBKB.
Remarkably, they are equivalent to the nonlinear SYM

field equations (4) if the connection in (1) is defined
through the representatives Aα and Am of the generating
series in (18). In other words, the resummation of linearized
multiparticle superfields fAB

α ; Am
B ;W

α
B; F

mn
B g through the

generating series (18) of Berends–Giele currents (12)
solves the nonlinear SYM equations (4).

Given that the multiparticle superfields satisfy [4]

Fmn
B ¼ k½mB An�

B −
X
XY¼B

ðAm
XA

n
Y −Am

YA
n
XÞ

kBmðγmWBÞα ¼
X
XY¼B

½AX
mðγmWYÞα −AY

mðγmWXÞα�

kBmFmn
B ¼

X
XY¼B

½2ðWXγ
nWYÞ þAX

mFmn
Y −AY

mFmn
X �;

ð20Þ

the above definitions are compatible with (3) and

½∇m; ðγmWÞα� ¼ 0; ½∇m; Fmn� ¼ γnαβfWα;Wβg;
ð21Þ

whose lowest components in θ encode the Dirac and Yang-
Mills equations for the gluino and gluon field.
A linearized gauge transformation in particle one,

δ1A1
α ¼ DαΩ1; δ1A1

m ¼ k1mΩ1; ð22Þ

can be described by a scalar superfield Ω1, it shifts the
gluon polarization by its momentum. The gluino compo-
nent and the linearized field strengths are invariant under
(22), δ1Wα

1 ¼ δ1Fmn
1 ¼ 0, whereas Berends–Giele currents

of multiparticle superfields with B ¼ 12…p transform as
follows [20]:

δ1AB
α ¼ ½Dα;ΩB�þ

X
XY¼B

ΩXAY
α ; δ1Wα

B ¼
X
XY¼B

ΩXWα
Y

δ1AB
m ¼ ½∂m;ΩB� þ

X
XY¼B

ΩXAY
m; δ1Fmn

B ¼
X
XY¼B

ΩXFmn
Y :

ð23Þ

The multiparticle gauge scalars Ω12…p are exemplified in
appendix B of [20] and gathered in the generating series

L1 ≡Ω1t1 þ
X
i

Ω1i½t1; ti� þ
X
j;k

Ω1jk½½t1; tj�; tk� þ � � �

ð24Þ

This allows us to cast (23) into the standard form of
nonlinear gauge transformations,

δ1Aα ¼ ½∇α;L1�; δ1Wα ¼ ½L1;Wα�
δ1Am ¼ ½∇m;L1�; δ1Fmn ¼ ½L1; Fmn�; ð25Þ

such that traces with respect to generators ti furnish a
suitable starting point to construct gauge invariants.
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V. HIGHER-MASS DIMENSION SUPERFIELDS

The introduction of the Lie elements K and their
associated supercovariant derivatives allow the recursive
definition of superfields with higher-mass dimensions,

Wm1…mkα ≡ ½∇m1 ;Wm2…mkα�;
Fm1…mkjpq ≡ ½∇m1 ; Fm2…mkjpq�; ð26Þ

where the vertical bar separates the antisymmetric pair of
indices present in the recursion start Fpq. Their component
fields are defined by

Wm1…mkα ≡X
B≠∅

tBWm1…mkα
B ;

Fm1…mkjpq ≡X
B≠∅

tBFm1…mkjpq
B ; ð27Þ

with tB ≡ t1t2…tp for B ¼ 12…p. They inherit the
Berends–Giele symmetries (15) and can be identified as

Wm1…mkα
B ¼ km1

B Wm2…mkα
B

þ
X
XY¼B

ðWm2…mkα
X Am1

Y −Wm2…mkα
Y Am1

X Þ;

Fm1…mkjpq
B ¼ km1

B Fm2…mkjpq
B

þ
X
XY¼B

ðFm2…mkjpq
X Am1

Y − Fm2…mkjpq
Y Am1

X Þ:

ð28Þ

Note from (28) that the nonlinearities in the definition of
higher-mass superfields do not contribute in the single-
particle context with Wm1…mkα

i ¼ km1

i Wm2…mkα
i whereas

the simplest two-particle correction reads

Wmα
12 ¼ km12W

α
12 þWα

1A
m
2 −Wα

2A
m
1 : ð29Þ

Equations of motion at higher-mass dimension

The equations of motion for the superfields of higher-
mass dimension (26) follow from ½∇α;∇m� ¼ −ðγmWÞα
and ½∇m;∇n� ¼ −Fmn together with Jacobi identities
among iterated brackets. The simplest examples are
given by

f∇α;Wmβg ¼ 1

4
ðγpqÞαβFmjpq − fðWγmÞα;Wβg;

½∇α; Fmjpq� ¼ ðWm½pγq�Þα − ½ðWγmÞα; Fpq�; ð30Þ

which translate into component equations of motion

DαW
mβ
B ¼ 1

4
ðγpqÞαβFmjpq

B þ
X
XY¼B

ðAX
αW

mβ
Y −AY

αW
mβ
X Þ

−
X
XY¼B

½ðWXγ
mÞαWβ

Y − ðWYγ
mÞαWβ

X�;

DαF
mjpq
B ¼ ðWm½p

B γq�Þα þ
X
XY¼B

ðAX
αF

mjpq
Y −AY

αF
mjpq
X Þ

−
X
XY¼B

½ðWXγ
mÞαFpq

Y − ðWYγ
mÞαFpq

X �: ð31Þ

In general, one can prove by induction that

f∇α;WNβg ¼ 1

4
ðγpqÞαβFNjpq −

X
M∈PðNÞ
M≠∅

fðWγÞMα ;WðNnMÞβg

½∇α; FNjpq� ¼ ðWN½pγq�Þα −
X
M∈PðNÞ
M≠∅

½ðWγÞMα ; F ðNnMÞpq�: ð32Þ

The vector indices have been gathered to a multi-index
N ≡ n1n2…nk. Its power set PðNÞ consists of the 2k

ordered subsets, and ðWγÞN ≡ ðWn1…nk−1γnkÞ.
The higher-mass-dimension superfields obey further

relations which can be derived from Jacobi identities of
nested (anti)commutators. For example, (3) determines
their antisymmetrized components

W½n1n2�n3…nkβ ¼ ½Wn3…nkβ; Fn1n2 �
F ½n1n2�n3…nkjpq ¼ ½Fn3…nkjpq; Fn1n2 �: ð33Þ

Moreover, the definitions (26) via iterated commutators
imply that

F ½mjnp� ¼ 0; F ½mn�jpq þ F ½pq�jmn ¼ 0; ð34Þ

and the gauge-variations δ1∇m ¼ ½L1;∇m� and (25) yield

δ1Wα
N ¼ ½L1;Wα

N �; δ1FNjpq ¼ ½L1; FNjpq�: ð35Þ

Manifold generalizations of (21), (33) and (34) can be
generated using these same manipulations.

VI. OUTLOOK AND APPLICATIONS

The representation of the nonlinear superfields of ten-
dimensional SYM theory described in this paper was
motivated by the computation of scattering amplitudes in
the pure spinor formalism. Accordingly, they give rise to
generating functions for amplitudes. For example, color-
dressed SYM amplitudes at tree level Mð1; 2;…; nÞ
involving particles 1; 2;…; n are generated by

1

3
TrhVVVi ¼

X∞
n¼3

ðn − 2Þ
X

i1<i2<…<in

Mði1; i2;…; inÞ: ð36Þ
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As first pointed out in the Appendix of [21], the generating
series V ≡ λαAα involving the pure spinor λα satisfies the
field equations QV ¼ VV of the action Tr

R
d10xh1

2
VQV −

1
3
VVVi [22] with BRSToperatorQ≡ λαDα. The zero mode

prescription of schematic form hλ3θ5i ¼ 1 extracting the
gluon and gluino components is explained in [5] and
automated in [23]. With n ¼ 3 or n ¼ 4 external states,
for instance, assembling the components VB ≡ λαAB

α of
VVV in (36) with the appropriate number of labels yields

Mð1; 2; 3Þ ¼ Trðt1½t2; t3�ÞhV1V2V3i

2Mð1; 2; 3; 4Þ ¼ Trðt1t2t3t4Þ
�
V12V3V4

s12
þ V23V4V1

s23

þ V34V1V2

s34
þ V41V2V3

s41

�
þ permð2; 3; 4Þ:

ð37Þ

The pure spinor representation of ten-dimensional3 n-point
SYM amplitudes is described in [2]. Further details and
generalizations to superamplitudes with a single insertion
of supersymmetrized operators F4 or D2F4 will be given
elsewhere [25].
The multiparticle superfields of higher-mass dimensions

can be used to obtain simpler expressions for higher-loop
kinematic factors of superstring amplitudes. For example,
the complicated three-loop kinematic factors generating
the matrix element of the (supersymmetrized) operator
D6R4 [6]

MD6R4 ¼ jT12;3;4j2
s12

þ jTm
1234j2 þ ð1; 2j1; 2; 3; 4Þ ð38Þ

can be equivalently represented by

T12;3;4 ≡ hðλγmWn
12ÞðλγnWp

½3ÞðλγpWm
4�Þi

Tm
1234 ≡ hAm

ð1T2Þ;3;4 þ ðλγmWð1ÞL2Þ;3;4i

L2;3;4 ≡ 1

3
ðλγnWq

½2ÞðλγqWp
3 ÞFnp

4� i: ð39Þ

In (38), the notation ðA1;…; Ap∣A1;…; AnÞ instructs us to
sum over all possible ways to choose p elements
A1; A2;…; Ap out of the set fA1;…; Ang, for a total of
ðnpÞ terms. The tensor products of left- and right-moving

SYM superfields in jT12;3;4j2 ¼ T12;3;4
~T12;3;4 are under-

stood to yield superfields of type IIB or type IIA super-
gravity. Accordingly, the component polarizations of the
supergravity multiplet arise from the tensor product of
gluon polarizations and gluino wavefunctions within the
SYM superfields.
The low-energy limit of the three-loop closed string

amplitude given in (38) is proportional to the ðα0Þ6
correction of the corresponding tree-level amplitude which
in turn defines the aforementioned D6R4 operator.
It would be interesting to explore the dimensional

reduction [1] of the above setup and its generalization to
SYM theories with less supersymmetry or to construct
formal solutions to supergravity field equations along
similar lines.
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