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In this paper, we present a formal solution to the nonlinear field equations of ten-dimensional super Yang-
Mills theory. It is assembled from products of linearized superfields which have been introduced as
multiparticle superfields in the context of superstring perturbation theory. Their explicit form follows
recursively from the conformal field theory description of the gluon multiplet in the pure spinor superstring.
Furthermore, superfields of higher-mass dimensions are defined and their equations of motion are spelled out.
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I. INTRODUCTION

Super Yang-Mills (SYM) theory in ten dimensions can
be regarded as one of the simplest SYM theories; its
spectrum contains just the gluon and gluino, related by 16
supercharges. However, it is well known that its dimen-
sional reduction gives rise to various maximally super-
symmetric Yang-Mills theories in lower dimensions,
including the celebrated N =4 theory in D =4 [1].
Therefore, a better understanding of this theory propagates
a variety of applications to any dimension D < 10.

In a recent line of research [2,3], scattering amplitudes of
ten-dimensional SYM have been determined and simplified
using so-called “multiparticle superfields” [4]. They re-
present entire tree-level subdiagrams and build up in the
conformal field theory (CFT) on the world sheet of the pure
spinor superstring [5] via operator product expansions
(OPEs). Multiparticle superfields satisfy the linearized field
equations with the addition of contact terms, i.e. inverse off-
shell propagators. In this paper we demonstrate that these
oft-shell modifications can be resummed to capture the
nonlinearities in the SYM equations of motion. The generat-
ing series of multiparticle superfields as seen in (18) is shown
to solve the nonlinear field equations spelled out in (4).

We also define superfields of arbitrary mass dimension
and reduce their nonlinear expressions to the linearized
superfields of lower mass dimensions. This framework
simplifies the expressions of kinematic factors in higher-
loop scattering amplitudes, including the D®R* operator in
the superstring three-loop amplitude [6].

II. REVIEW OF TEN-DIMENSIONAL SYM

The equations of motion of ten-dimensional SYM theory
can be described covariantly in superspace by defining
supercovariant derivatives [7,8],
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vaEDa_Aa<x’9>7 vm Eam_Anz(xve)' (1)

The connections A, and A,, take values in the Lie algebra
associated with the non-Abelian Yang-Mills gauge group.
The derivatives are taken with respect to ten-dimensional
superspace coordinates (x”,0%) with vector and spinor
indices m,n =0,...,9and a,f = 1, ..., 16 of the Lorentz
group. The fermionic covariant derivatives

1
Do= 04500 DDy} =10n ()
involve the 16 x 16 Pauli matrices Yap = Vha subject to the

Clifford algebra y%y")/ﬁ’ = 25"}, and the convention for

(anti)symmetrizing indices does not include %
The connections in (1) give rise to field strengths

l]:aﬂ = {Va, Vﬂ} - }/Zlﬁvm, [an = _[vm’ vn] (3)

One can show that the constraint equation [,z = 0 puts the
superfields on-shell, and Bianchi identities lead to the
nonlinear equations of motion [8],

{vaa vﬁ} - y?:/;’vm
[Vm vm] - _(me)a
1
{v(l’ Wﬂ} = Z (},mn)aﬁn:mn
Ve B = [VI" (y1W),]. (4)
In the subsequent, we will construct an explicit solution for
the superfields A, A,,, W* and F"" in (4). The main result

is furnished by the generating series in (18) whose
constituents will be introduced in the next section.
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III. LINEARIZED MULTIPARTICLE
SUPERFIELDS

In perturbation theory, it is conventional to study
solutions A,, A,,, ... of the linearized equations of motion

{D(m Aﬂ)} = 721/}Am
[DmAm] = kA, + (VmW)a

1
{D{I’ W/}} = Z (ymn)aﬂan

[Dy F™] = K (y"1W),. (5)

Their dependence on the bosonic coordinates x is described
by plane waves X~ with on-shell momentum k%> = 0. In a
gauge where 9°A,, = 0, the & dependence is known in terms of
fermionic power series expansions from [9,10] whose coeffi-
cients contain gluon polarizations and gluino wave functions.

As an efficient tool to determine and compactly represent
scattering amplitudes in SYM and string theory, multi-
particle versions of the linearized superfields have been
constructed in [4]. They satisfy systematic modifications of
the linearized equations of motion (5), and their signifi-
cance for Becchi-Rouet-Stora-Tyutin (BRST) invariance
was pointed out in [11]. For example, their two-particle
version,

1
AP == SIALK - A7) + AL G"W?), = (1 < 2)

1

A2 = 3 [AVF,, — AL (K" - A%) + (Wy,,W?) — (1 < 2)]
1

W, = Z(y’"”Wz)“F},m + W‘é‘(k2 -Al) -(1+2)

1
12 — 52 (12 .41 2 1

Fon= an(k A ) +§F[mpFn]l7

+ kL (W g W2) = (1 2), (6)

can be checked via (5) to satisfy the following two-particle
equations of motion:

12
DAy

[Dy, Ay] = 7/:1"ﬁW/132 + kAL + (k' -k (ARAY — AZAT)
1
(D W} =2 (r70) P 4 (0 -2) ALWE — AZWD)
[Da’ Frlnzn] = kllnz(ynwlz)a - krltz(ymwlz)a

+ (k' K2)(ALF o + AL (rm W), — (1 2)).
(7)

The modifications as compared to the single-particle case
(5) involve the overall momentum ki, = k; + k, whose
propagator is generically off-shell, k3, = 2(k, - k) # 0.
The construction of the two-particle superfields in (6) is
guided by string theory methods. In the pure spinor
formalism [5], the insertion of a gluon multiplet state on

= AR + (K I2) (AL + AJA2)
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the boundary of an open string world sheet is described by
the integrated vertex operator,

U' = 00°Al, + I A, + d W + %N”‘"Fi,m. (8)
World sheet fields [06% 1", d,, N™]| with conformal
weight one and well-known OPEs are combined with
linearized superfields associated with particle label i.
The multiplicity-two superfields in (6) are obtained from
the coefficients of the conformal fields in the OPE [4]

U =- j{(Zl — 25) MU () U (20)

= 00°A2 + TI"A? + d ,W$, + %N’""F,l,fn, 9)
where o denotes the inverse string tension, and total
derivatives in the insertion points z;, z, on the world sheet
have been discarded in the second line. The contour integral
in (9) isolates the singular behaviour of the U’ with respect
to (z; — z,) which translates into propagators k77 of the
gauge theory amplitude after performing the & — 0 limit.
In other words, OPEs in string theory govern the pole
structure of tree-level subdiagrams in SYM theory obtained
from the point-particle limit.

The CFT-inspired two-particle prescription (6) can be
promoted to a recursion leading to superfields of arbitrary
multiplicity, see (3.54), (3.56) and (3.59) of [4]. Their
equations of motion are observed to generalize along the
lines of

(Do AR} =y AR + (K12 1) AP} — (12 3)]
+ (K- k) [AAT + APAG - (1<2)]  (10)

for suitable definitions of A>3 and AL?; see (3.17), (3.19)
and (3.29) of [4].

Multiparticle superfields can be arranged to satisfy
kinematic analogues of the Lie algebraic Jacobi relations
among structure constants, e.g. AL +A23 +A32=0.
They, therefore, manifest the BCJ duality [12] between
color and kinematic degrees of freedom in scattering
amplitudes; see [13] for a realization at tree level.
Together with the momenta ky, ;=k;+k,+---+k; in their
equations of motion, this suggests associating them with
tree-level subdiagrams shown in the subsequent figure [4]:

123..p
Ay

123...p
Am

(e}
Wibs. p

123...p
Epoop,
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The cubic-graph organization of superfields already
accounts for the quartic vertex in the bosonic Feynman
rules of SYM. This ties in with the string theory origin of
n-particle tree-level amplitudes where each contribution
stems from n — 3 OPEs.

Berends-Giele currents

As a convenient basis of multiparticle fields Kz €
{AB Am W4, F#n} with multiparticle label B = 12.. p,

we define Berends-Giele currents Kj € { A5,
% FE'Y, eg. Ky =K, and [4]
K12 Kio; K3
K= ) Kipy=——+—"— (11)
S12 S125123  $235123

with generalized Mandelstam invariants sy, , =3k%, p

Berends-Giele currents Kp are defined to encompass all
tree subdiagrams compatible with the ordering of the
external legs in B. The propagators s;! ; absorb the
appearance of explicit momenta in the contact terms of
the equations of motion such as (7) and (10).

As illustrated in the following figure, the three-particle
current in (11) is assembled from the s and ¢ channels of a
color-ordered four-point amplitude with an off-shell leg

(represented by ...):

2 3 3
> S12 5123
K123 = ST + 55 L.
1 2 1

In contrast to the bosonic Berends-Giele currents in [14],
the currents Cp manifest maximal supersymmetry, and
their construction does not include any quartic vertices. A
closed formula at arbitrary multiplicity [4,15] involves the
inverse of the momentum kernel' S[-|-], [16],

"The momentum kernel is defined by [16]

Sl6(2,3,....,p)|p(2.3, ..., p)]
P J—1
:H(Slyj”—'- 9]0" )
j=2 k=2

and depends on reference leg 1 and two permutations ¢,p € S,,_;
of additional p — 1 legs 2,3, ..., p. The symbols 6(j,, k,) keep
track of labels which swap their relative positions in the two
permutations ¢ and p, i.e. 0(j,, k,) = 1 (= 0) if the ordering of
the legs j,, k, is the same (opposite) in the ordered sets
6(2,3,...,p) and p(2,3,...,p). The inverse in (12) is taken
with respect to matrix multiplication which treats ¢ and p as row
and column indices.
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=) s (12)

PES,_i

’C1023 ) [6lp] 1K1p23...p)

with permutation ¢ € Sp_] of legs 2,3, ..., p.

The combination of color-ordered trees as in (11)
and (12) simplifies their multiparticle equations of
motion [4]

{L%d’“4 ) __yaﬂ“4 + zz: Jix “4§)

[Dm AVB;I] = kgl‘Ag + (7mWB)a + Z (‘Aét(Ar):l - AZA,),(,)
XY=B
1
{Da Wi} = L (7™ Fli D (AW = ADWR)
XY=B

(D0 FY) = K5 (7 Wa)o + D (AXFY" = ALFYY)

XY=B
+) A

ROMWy) = AV (MWy),).

(13)

Momenta kg = k; + k; + - - - k, are associated with multi-
particle labels B = 12...p, and ) y,_p instructs us to sum
over all their deconcatenations into nonempty X = 12...j
and Y =j+ 1...p with 1 < j < p — 1. The three-particle
equation of motion of A!*, e.g., reads
[Die AP} =y 413
+ALAZ 4 AR - ABAL - AR,
(14)

and a comparison with (10) highlights the advantages of the
diagram expansions in (11). Superfields up to multiplicity
five satisfying (13) were explicitly constructed in [4], and
there are no indications of a breakdown of (13) at higher
multiplicity.

The symmetry properties of the /Cp can be inferred from
their cubic-graph expansion and summarized as [17]

ICALUB:Ov VAvB#(Z)v (15)

where denotes the shuffle product2 [18]. For example,
0=~Kiwe = K2+ Ko
0=Kiwaz = Ki2z + Koz + Kaz1 (16)

0=Kiows — Kiwse = K123 — K3o1,

*The shuffle product in Kaw 5 is defined to sum all K, for
permutations ¢ of AUB which preserve the order of the individual
elements of both sets A and B.
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and symmetries (15) at higher multiplicity leave (p — 1)!
independent permutations of Ky, . Any permutation can
be expanded in a basis of ;3. ,) with o € §,,_; through
the Berends-Giele symmetry,

Kpia = (~D)"PIK;awpe) (17)

where |B| = p and B = b,,...b,b; for a multiparticle label
B = bb,...b,. Since the Berends-Giele current Ky, is
composed from the cubic diagrams in a partial amplitude
with an additional off-shell leg, (17) can be understood as a
Kleiss-Kuijf relation among the latter [19].

IV. GENERATING SERIES OF SYM SUPERFIELDS

In order to connect multiparticle fields and Berends-
Giele currents with the nonlinear field equations (4), we
define generating series K € {A,, A™, W%, F""}

K= ZIC t+ ZIC,Jt’tJ + Kyttt 4

i,j.k

—ZICt’ 2ZIC,Jt’ 1] + 3ZIC,jk (7, ¢

i.j.k
SEEEE (]8)

where ' denote generators in the Lie algebra of the non-
Abelian gauge group. Hence, the generating series in (18)
adjoin color degrees of freedom to the polarization and
momentum dependence in the linearized multiparticle
superfields Kz. The second line follows from the symmetry
(15), which guarantees that K is a Lie element [18].

As a key virtue of the series K € {A,, A”, W* F""} in
(18), they allow us to rewrite the D, action on Berends-
Giele currents Ky € {AB, A2 W%, Fu} in (13) as non-
linear equations of motion,

{D(av Aﬂ)} = J/Z'/Am + {Aav Aﬂ}

(Do Ay = [5m, Ao + (W), + [Ag. A,y]
{Da’ Wﬁ} = Z( )aﬂ[an + {Aw Wﬁ}
Dy B = [0, (11 W)] + [Ag. F™] = [Al", (y1W),],
(19)

where [0", K] translates into components k}KCp.

Remarkably, they are equivalent to the nonlinear SYM
field equations (4) if the connection in (1) is defined
through the representatives A, and A,, of the generating
series in (18). In other words, the resummation of linearized
multiparticle superfields {AZ, A%, W%, F"} through the
generating series (18) of Berends—Giele currents (12)
solves the nonlinear SYM equations (4).
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Given that the multiparticle superfields satisfy [4]

Fyr = kg Ay = Y (ApAy — ApAL)
XY=B
krB;l(ymWB)a = Z [Ai(n(ymWY)a - "4111/1 (ymWX)a}
XY=B
KB =" 2(Wyr"Wy) + ASFyn — ALF,
XY=B

(20)
the above definitions are compatible with (3) and

Vi (r"W)] = 0. [V, F"] = g, { W, W},

(21)

whose lowest components in § encode the Dirac and Yang-
Mills equations for the gluino and gluon field.
A linearized gauge transformation in particle one,

51A(11 = D(zQI» 51Arln = kr]ngh (22)
can be described by a scalar superfield €, it shifts the
gluon polarization by its momentum. The gluino compo-
nent and the linearized field strengths are invariant under
(22), 6, W¢ = 6, F"* = 0, whereas Berends—Giele currents

of multiparticle superfields with B = 12...p transform as
follows [20]:

5, AB =[D,,Qp] +

Z QyAL,
Z QXAma

5IWg = Z Qg

Z QyFmn,

(23)

5, A8 =[0,,,Q5] + O Fg" =

The multiparticle gauge scalars €, , are exemplified in
appendix B of [20] and gathered in the generating series

|]_1 = Qltl + Z‘Qli[tl

A+ 3l )+
J.k

(24)

This allows us to cast (23) into the standard form of
nonlinear gauge transformations,

51Aa = [vw u—l]’
= [V,.. L],

51Wa — [ﬂ_l,W“]
S Fm™ =Ly, F™],  (25)

g

such that traces with respect to generators # furnish a
suitable starting point to construct gauge invariants.
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V. HIGHER-MASS DIMENSION SUPERFIELDS

The introduction of the Lie elements K and their
associated supercovariant derivatives allow the recursive
definition of superfields with higher-mass dimensions,

Wmi---md = [le , Wm2...mka]’
[F'”]~~~mk|Pq = [le s [szmmk‘P(Z], (26)

where the vertical bar separates the antisymmetric pair of
indices present in the recursion start [F79. Their component
fields are defined by

my...mpot — B my...nya
W = E "Wy ,
B#0

Frm---milpg = ZIBJT;?;]---’”HPCI, (27)
B+

with 8 =¢'4>...t" for B=12...p. They inherit the
Berends—Giele symmetries (15) and can be identified as

Wml'“mka o mlez...mka
B =
+ mz mka m _sz...mkaAml)
E Y X /)
XY=B
.7_-7"1~~mk|Pq _ k’"l]:mrumk\Pq
B =
m .my|pq gm my...m|pq gm
+ § /‘ z ] A 1_fyz ] AXI)'
XY=B

(28)

Note from (28) that the nonlinearities in the definition of
higher-mass superfields do not contribute in the single-
particle context with W/ " = /"W whereas
the simplest two-particle correction reads

1o = kLW,

FOWEAT — WA, (29)

Equations of motion at higher-mass dimension

The equations of motion for the superfields of higher-
mass dimension (26) follow from [V,.V,] = —(y,W),

and [V,.V,] =-F,, together with Jacobi identities
among iterated brackets. The simplest examples are
given by

1
{vw Wmﬁ} = Z (ypq)a/i[[:m\pq - {(Wym)a’ Wﬂ}’

[V B71P9) = (Wrlpydl), — [(Wy™),, FP4), (30)

which translate into component equations of motion

PHYSICAL REVIEW D 92, 066001 (2015)

m, 1 m m, m,
D(IW /= Z(ypq)aﬁfB‘pq + Z ('AgWYﬁ - A({W)(ﬁ)
XY=B
- 2{: Wxr™) = (Wyr"), VVQL
XY=B
DFR = V), + D0 (ALFYT - ALFRY)
XY=B
= > (W™ F¥ = Wiy FY]. (31)
XY=B

In general, one can prove by induction that

{V,, WM} = }1( JSENPg Z {(Wy)M  WN\W)sY

MeP(N)
M#0

(WNPyal), = " [(Wy )l FEV\MIPa]. (32)

MeP(N)
M#D

V.. [FN\M] —

The vector indices have been gathered to a multi-index
N =nn,...n;. Its power set P(N) consists of the 2F
ordered subsets, and (Wy)N = (W-m-1ym),

The higher-mass-dimension superfields obey further
relations which can be derived from Jacobi identities of
nested (anti)commutators. For example, (3) determines
their antisymmetrized components

W[n1n2]113...nkﬂ _ [\/\/;13...nkﬂ7 ﬂ:nlnz}
[ﬂ:n3--.nk\17q’ Frna). (33)

[[:["1"2]”3---7%\1751 —
Moreover, the definitions (26) via iterated commutators
imply that

Firinvl =0, Flmlea 4 pledien =0, (34)

and the gauge-variations 6,V,, = [L,,V,,] and (25) yield

SIWgG = [Ly, Wgl, 8§ FNIPe = [L, FMea]. (35)
Manifold generalizations of (21), (33) and (34) can be

generated using these same manipulations.

VI. OUTLOOK AND APPLICATIONS

The representation of the nonlinear superfields of ten-
dimensional SYM theory described in this paper was
motivated by the computation of scattering amplitudes in
the pure spinor formalism. Accordingly, they give rise to
generating functions for amplitudes. For example, color-
dressed SYM amplitudes at tree level M(1,2,...,n)
involving particles 1,2, ..., n are generated by

[Se]

—Tr\/\/\/ => (n=2) > Mli.iy.....i,). (36)

n=3 i1 <ip<...<i,

066001-5



CARLOS R. MAFRA AND OLIVER SCHLOTTERER

As first pointed out in the Appendix of [21], the generating
series V = A*A, involving the pure spinor A* satisfies the
field equations QV = VV of the action Tr [ d'%x(} VOV —
1VWV) [22] with BRST operator Q = 4%D,,. The zero mode
prescription of schematic form (136°) = 1 extracting the
gluon and gluino components is explained in [5] and
automated in [23]. With n = 3 or n = 4 external states,
for instance, assembling the components V2 = 1?A8 of
VVV in (36) with the appropriate number of labels yields

M(1,2,3) = Tr(e'[, £2])(VIV2V3)
V12v3v4 V23v4v1
2M(1,2,3,4) = Tr('263¢*) +
S12 $23
V34v1 V2 V41 V2 V3
+ + > + perm(2,3,4).
$34 S41

(37)

The pure spinor representation of ten-dimensional’ n-point
SYM amplitudes is described in [2]. Further details and
generalizations to superamplitudes with a single insertion
of supersymmetrized operators F* or D>F* will be given
elsewhere [25].

The multiparticle superfields of higher-mass dimensions
can be used to obtain simpler expressions for higher-loop
kinematic factors of superstring amplitudes. For example,
the complicated three-loop kinematic factors generating
the matrix element of the (supersymmetrized) operator
DPR* [6]

|T123.4]?

Mpogs =
S12

+ | T + (1.2]1,2,3.4)  (38)

3See [24] for expressions in D =4 upon specification of
helicities.
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can be equivalently represented by

T34 = <(l}’mW12)(/17an7)(/17p 4])>
Ty = <A 134+ (A"W(1)Lo) 3.4)

1
Loza= g(lynwfl JArIWE)FL). (39)
In (38), the notation (A, ...,A,|A,,...,A,) instructs us to
sum over all possible ways to choose p elements
Ay A, ...,A, out of the set {A;,...,A,}, for a total of

(Z) terms. The tensor products of left- and right-moving

SYM supertfields in |Ti534)* = T12,3,47~"12!3’4 are under-
stood to yield superfields of type IIB or type IIA super-
gravity. Accordingly, the component polarizations of the
supergravity multiplet arise from the tensor product of
gluon polarizations and gluino wavefunctions within the
SYM superfields.

The low-energy limit of the three-loop closed string
amplitude given in (38) is proportional to the (o')°
correction of the corresponding tree-level amplitude which
in turn defines the aforementioned D®°R* operator.

It would be interesting to explore the dimensional
reduction [1] of the above setup and its generalization to
SYM theories with less supersymmetry or to construct
formal solutions to supergravity field equations along
similar lines.
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