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Abstract

Linear arithmetic extended with free predicate symbols is undecidable, in general. We

show that the restriction of linear arithmetic inequations to simple bounds extended with the

Bernays-Schönfinkel-Ramsey free first-order fragment is decidable and NEXPTIME-complete.

The result is almost tight because the Bernays-Schönfinkel-Ramsey fragment is undecidable

in combination with linear difference inequations, simple additive inequations, quotient in-

equations and multiplicative inequations.

1 Introduction

Satisfiability of the Bernays-Schönfinkel-Ramsey (BSR) fragment of first-order logic is decidable
and NEXPTIME-complete [Lew80]. The complexity remains if the fragment is restricted to a
clause normal form. Only further restrictions on the number of literals per clause enable better
complexity results [Pla84]. Its extension with linear arithmetic is undecidable. For example,
Halpern [Hal91] showed that the combination of Presburger Arithmetic with one unary predicate
yields undecidability. His proof relies on ∀∃ quantifier alternations on the arithmetic part. The
naturals can be defined on the basis of linear real arithmetic with the help of one (extra) unary
predicate. Fietzke and Weidenbach [FW12] showed undecidability for the combination of linear
real arithmetic with several binary or one ternary predicate. The proof is based on a reduction of
the two-counter machine model [Min67] to this fragment where a purely universal quantifier prefix
suffices. Two-counter machine instructions are translated into clauses of the form

(i) x′ = x+ 1 ‖ P (i, x, y) → P (i + 1, x′, y)
(ii) x = 0 ‖ P (i, x, y) → P (j, x′, y)

x > 0, x′ = x− 1 ‖ P (i, x, y) → P (i + 1, x′, y)

where P (i, x, y) models the program at instruction i with counter values x, y. Then, clause
(i) models the increment of counter x (analogous for y) and a go to the next instruction; clauses
(ii) model the conditional decrement of x (analogous for y) and, otherwise, a jump to instruction
j. The start state is represented by a clause ‖→ P (1, n,m) for two positive integer values n, m,
and the halt instruction is represented by an atom P (halt, x, y) and reachability of the halting
state by a clause ‖ P (halt, x, y) → �. Then, a two-counter machine program halts if and only if
the BSR clause set of linear arithmetic with one ternary predicate constructed out of the program
is unsatisfiable. Note that for this reduction it does not matter whether integer or real arithmetic
is the underlying arithmetic semantics. The first argument of P is always a natural.

∗This work has been partly funded by the German Transregional Collaborative Research Center SFB/TR 14
AVACS.
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Our first contribution is refinements of the two-counter machine reduction where the arith-
metic constraints are further restricted to linear difference inequations x − y ⊳ c, simple additive
inequations x+y⊳c, quotient inequations x⊳c·y and multiplicative inequations x·y⊳c where c ∈ R,
and ⊳ ∈ {<,≤,=, 6=,≥, >}. Under all these restrictions, the combination remains undecidable,
respectively (see Section 7).

On the positive side, we prove decidability of the restriction to arithmetic constraints consisting
of simple bounds of the form x ⊳ c, where ⊳ and c are as above. Underlying the result is the
observation that similar to the finite model property of BSR, only finitely many test points are
sufficient for the arithmetic simple bounds constraints. Our construction is motivated by results
from quantifier elimination [LW93] and hierarchic superposition [BGW94, KW12, FW12]. For
example, consider the two clauses

x2 6= 5 ‖ R(x1) → Q(u1, x2)
y1 < 7, y2 ≤ 2 ‖ → Q(c, y2), R(y1)

where u1 is a free first-order variable, xi, yi are variables over the reals, and c is a free first-order
constant. Our main result reveals that this clause set is satisfiable if and only if for every variable
at the first argument of Q the constant c is substituted (Corollary 16), for the second argument of
Q the abstract real values 5+ε and −∞ and for R the value −∞ (Definitions 6, 8, Lemma 13). The
instantiation does not need to consider the simple bounds y1 < 7, y2 ≤ 2, because it is sufficient
to explore the reals either from −∞ upwards or from +∞ downwards, as is similarly done in
linear quantifier elimination [LW93]. Also instantiation does not need to consider the value 5 + ε
for R, motivated by the fact that hierarchic superposition will not derive the respective simple
bound for the first argument of R in any generated clause [BGW94]. This idea can be extended
to free argument positions of predicates and the respective free constants. Every BSR clause set
combined with simple bounds is always sufficiently complete because it does not contain a free
non-constant function symbol.

All abstract values are represented by Skolem constants over the reals, together with defining
axioms. For the example, we introduce the fresh Skolem constants α−∞ to represent −∞ and
α5+ε to represent 5 + ε together with axioms expressing α−∞ < 2 < 5 < α5+ε. Eventually, we
obtain the ground clause set

α−∞ ≥ 2 ‖ → �

5 ≥ α5+ε ‖ → �

α5+ε 6= 5 ‖ R(α−∞) → Q(c, α5+ε)
α−∞ 6= 5 ‖ R(α−∞) → Q(c, α−∞)

α−∞ < 7, α5+ε ≤ 2 ‖ → Q(c, α5+ε), R(α−∞)
α−∞ < 7, α−∞ ≤ 2 ‖ → Q(c, α−∞), R(α−∞)

which has the model αA
−∞ = 1, αA

5+ε = 6, RA = {1}, QA = {(c, 6), (c, 1)}, for instance. Using
the result that every BSR clause set with simple bounds has a satisfiability-preserving ground
instantiation with respect to finitely many constants, we prove NEXPTIME-completeness of the
fragment in Section 5. For this result, the fine grained instantiation introduced in Section 3 and
explained above by example is not needed. However, our further goal is to develop useful reasoning
procedures for the fragment for which a smaller set of instances improves efficiency a lot. For the
same reason, we do not restrict our attention to the BS fragment, but consider equality as a first
class citizen of the logic from the very beginning.

Once a BSR clause set with simple bounds is grounded, there are a variety of efficient decision
procedures known, such as SMT solvers employing the Nelson-Oppen [NO79] principle. However,
for a large number of Skolem constants or large clause sets, an a-priori grounding may, due to its
exponential increase in size, not be affordable. We are not aware of any calculus that is actually a
decision procedure for the BSR fragment with simple bounds, although some work in this direction
has been done already [BFT08, Rüm08, BLdM11, KW12].

The decidability result on simple bounds can be lifted to constraints of the form x ⊳ s where
x is the only variable and s a ground expression. The lifting is done by the introduction of
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further Skolem constants for complicated ground terms, following ideas of [KW12] and presented
in Section 6. The paper ends with a conclusion, Section 8.

2 Basic Definitions

Hierarchic combinations of first-order logic with background theories [BGW94] build upon sorted
logic with equality. A (sorted) signature Σ consists of a set Ξ of sorts, a set Ω of function
symbols together with sort information and a set Π of predicate symbols also equipped with sort
information. For the sake of simplicity, we restrict ourselves to two sorts: the base sort R –
interpreted as the set R of reals by all the interpretations we shall consider – and the free sort S –
interpreted by some freely selectable nonempty domain. Throughout the paper we use convenient
notation such as P : ξ1 × . . . × ξm ∈ Π to address an m-ary predicate symbol with full sort
information; P/m ∈ Π if there is some predicate symbol P of arity m in Π; P ∈ Π if there is
some m such that P/m ∈ Π. To avoid confusion, we assume that Π contains at most one pair
P : ξ1 × . . .× ξm for every P , and do not allow for multiple occurrences of P with different arity
or sorting. Similar conventions shall hold for function symbols. In addition, we occasionally use
the notation Ω ∩ C (where C is an arbitrary set of constant symbols without annotated sorting
information) to denote the set {c | c : ξ ∈ Ω for some sort ξ and c ∈ C}.

We instantiate the framework of hierarchic specification from [BGW94] by the hierarchic com-
bination of the BSR fragment of first-order logic with a base theory allowing for the formulation of
simple constraints on real-valued constant symbols and variables. Formally, the used specification
of the base theory comprises the base signature ΣLA :=

〈
{R}, ΩLA ∪ Ωα

LA,ΠLA

〉
, where

ΩLA := {r :R | r ∈ R} ∪ {c1 :R, . . . , cκ :R},

Ωα
LA := {α−∞ :R} ∪ {αc+ε :R| c ∈ ΩLA},

ΠLA := {< : R2, ≤ : R2, = : R2, 6= : R2, ≥ : R2, > : R2},

together with the class M of models containing one base model M for every possible allocation
of the Skolem constants c1, . . . , cκ in ΩLA and the ones in Ωα

LA to real numbers. Moreover, each
of the base models M ∈ M shall extend the standard model MLA of linear arithmetic over the
reals, i.e. RM = R and cM = c for every constant symbol c ∈ ΩLA ∩ R and ⊳M = ⊳ for every
⊳ ∈ {<,≤,=, 6=,≥, >} – in other words all real numbers serving as constant symbols represent
their canonical value under each M ∈ M and every such M interprets all predicate symbols
<,≤,=, 6=,≥, > by their standard meaning on the reals.

The definition of the base theory leaves the exact number κ of additional Skolem constants
open; it may be 0. While adding all reals as constant symbols to the signature serves the aim
of defining M to contain term-generated models only, the Skolem constants c1, . . . , cκ serve at
least two purposes. Firstly, the modeling capabilities of our logical language are enhanced by real-
valued constant symbols of which the exact value is not predetermined. Secondly, in Section 6 we
outline a technique which allows us to soften our requirements towards the syntax a bit so that
ground non-constant terms s of the base sort become admissible in addition to constant symbols
and variables. The method has already been described in [KW12] under the name basification
and introduces defining unit clauses such as c = s where c is a fresh Skolem constant and s is a
variable-free term.

In fact, we introduce even more Skolem constants by adding the set Ωα
LA to the base signature.

For notational convenience, we syntactically distinguish this special kind of base-sort constant
symbols αt, t being of the form −∞ or d + ε for arbitrary base-sort constant symbols d ∈ ΩLA.
These will play a key role when we instantiate base-sort variables later on. We associate an
inherent meaning with constant symbols αt that will be formalized by means of special of axioms.

We hierarchically extend the base specification 〈ΣLA,M〉 by the free sort S and finite sets
Ω and Π of free constant symbols and free predicate symbols, respectively, each equipped with
appropriate sort information. We use the symbol ≈ to denote the built-in equality predicate on
S. To avoid confusion, we assume each constant or predicate symbol to occur in at most one of
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the sets ΩLA, Ω
α
LA, Ω, ΠLA, Π and that none of these sets contains the ≈ symbol. In the light of

sorted terms we consider two disjoint countably infinite sets of variables VR – the variables of the
base sort, usually denoted x, y, z – and VS – the free-sort variables, usually denoted u,w.

Definition 1 (BSR Clause Fragment with Simple Bounds).
Let

〈
{R,S},Ω,Π

〉
be a signature such that Ω exclusively contains constant symbols c of the

free sort and no function symbols of greater arity, and such that for every predicate symbol
P : ξ1 × . . .× ξm ∈ Π and every argument position i ≤ m it holds ξi ∈ {R,S}.

An atomic constraint is of the form c⊳d or x⊳d or αt ⊳d or x = αt or αt = αt′ with c, d ∈ ΩLA,
x ∈ VR, αt, αt′ ∈ Ωα

LA and ⊳ ∈ {<,≤,=, 6=,≥, >}.
A free atom A is either of the form s ≈ s′ with s, s′ being free-sort constant symbols in Ω or

free-sort variables in VS , respectively, or A is of the form P (s1, . . . , sm), where P : ξ1× . . .×ξm ∈ Π
is an m-ary predicate symbol. For each i ≤ m the term si shall be of the sort ξi. If ξi = R, then
si must be a variable x ∈ VR, and in case of ξi = S, si may be a variable u ∈ VS or a constant
symbol c : S ∈ Ω.

A clause has the form Λ ‖ Γ → ∆, where Λ is a multiset of atomic constraints, and Γ and ∆
are multisets of free atoms. We usually refer to Λ as the constraint part and to Γ → ∆ as the free
part of the clause.

We conveniently denote the union of two multisets Θ and Θ′ by juxtaposition Θ,Θ′. Moreover,
we often write Θ, A as an abbreviation for the multiset union Θ ∪ {A}. In our clause notation
empty multisets are usually omitted left of “→” and denoted by � right of “→” (where � at the
same time stands for falsity).

Intuitively, clauses Λ ‖ Γ → ∆ can be read as
(∧

Λ∧
∧
Γ
)
→

∨
∆. Put into words, the multiset

Λ stands for a conjunction of all atomic constraints it contains, Γ stands for a conjunction of the
free atoms in it and ∆ stands for a disjunction of the contained free atoms. All occurring variables
are implicitly universally quantified. Requiring the free part Γ → ∆ of clauses to not contain
any base-sort constant symbols does not pose any restriction to expressiveness. Every base-sort
constant symbol c in the free part can safely be replaced by a fresh base-sort variable xc when
an atomic constraint xc = c is added to the constraint part of the clause (a process known as
purification, cf. [BGW94, KW12]).

In the rest of the paper we omit the phrase “over the BSR fragment with simple bounds”
when talking about clauses and clause sets, although we mainly restrict our considerations to this
fragment.

A hierarchic interpretation over the hierarchic specification
〈
〈ΣLA,M〉, 〈{S,R},Ω,Π〉

〉
is an

algebra A which extends a model M ∈ M, i.e. A and M interpret the base sort and all constant
and predicate symbols in ΩLA ∪Ωα

LA and ΠLA in exactly the same way. Moreover, A comprises a
nonempty domain SA, assigns to each constant symbol c :S in Ω a domain element cA ∈ SA and
interprets every predicate symbol P :ξ1× . . .× ξm ∈ Π by a set PA ⊆ ξA1 × . . .× ξAm. Summing up,
A extends the standard model of linear arithmetic and adopts the standard approach to semantics
of (sorted) first-order logics when interpreting the free part of clauses.

Given a hierarchic interpretation A, a variable assignment is a sort-respecting total mapping
β : VR∪VS → R∪SA so that β(x) ∈ R for every variable x ∈ VR and β(u) ∈ SA for every u ∈ VS .
We write A(β)(s) to mean the value of the term s under A with respect to the variable assignment
β. In accordance with the notation used so far, we thus define A(β)(v) := β(v) for every variable
v and A(β)(c) := cA for every constant symbol c. As usual, we use the symbol |= to denote truth
under a hierarchic interpretation A, possibly with respect to a variable assignment β. In detail, we
have the following for atomic constraints, equational and nonequational free atroms and clauses,
respectively:

• A, β |= s ⊳ s′ if and only if A(β)(s) ⊳A(β)(s′),

• A, β |= s ≈ s′ if and only if A(β)(s) = A(β)(s′),

• A, β |= P (s1, . . . , sm) if and only if〈
A(β)(s1), . . . ,A(β)(sm)

〉
∈ PA,

4



• A, β |= Λ ‖ Γ → ∆ if and only if

– A, β 6|= s ⊳ s′ for some atomic constraint (s ⊳ s′) ∈ Λ,

– A, β 6|= A for some free atom A ∈ Γ, or

– A, β |= B for some free atom B ∈ ∆.

The variables occurring in clauses shall be universally quantified. Therefore, given a clause C, we
call A a hierarchic model of C, denoted A |= C, if and only if A, β |= C holds for every variable
assignment β. For clause sets N , we say A is a hierarchic model of N , also denoted A |= N , if
and only if A is a model of all clauses in N . We call a clause C (a clause set N) satisfiable w.r.t.
M if and only if there exists a hierarchic model A of C (of N). Most of the time, we will omit
the explicit reference to M, although we shall only consider models as satisfying that extend the
standard model of linear real arithmetic.

From now on, we implicitly base all further considerations on a hierarchic specification〈
〈ΣLA,M〉, 〈{S,R},Ω,Π〉

〉
whose extension part 〈{S,R},Ω,Π〉 fulfills the requirements stipulated

in Definition 1 and which we simply take for granted. Often the sets ΩLA\R, Ω and Π will coincide
with the constant and predicate symbols that occur in a given clause set, and we thus assume a
proper definition of the hierarchic specification.

Substitutions σ shall be defined in the standard way as sort-respecting mappings from variables
to terms over our underlying signature. The restriction of the domain of a substitution σ to a
set V of variables is denoted by σ|V and shall be defined so that vσ|V := vσ for every v ∈ V
and vσ|V = v for every v 6∈ V . While the application of a substitution σ to terms, atoms and
multisets thereof can be defined as usual, we need to be more specific for clauses. Consider a
clause C = Λ ‖ Γ → ∆ and let x1, . . . , xk denote all base-sort variables occurring in C for which
xiσ 6= xi. We then set Cσ := Λσ, x1 = x1σ, . . . , xk = xkσ ‖ (Γ → ∆)σ|VS . Simultaneous
substitution of k ≥ 1 distinct variables v1, . . . vk with terms s1, . . . , sk shall be denoted in vector
notation

[
v1, . . . , vk

/
s1, . . . , sk

]
(or

[
v̄
/
s̄
]
for short), where we require every si to be of the same

sort as vi, of course.
Consider a clause C and let σ be an arbitrary substitution. The clause Cσ and variable-

renamed variants thereof are called instances of C. A term s is called ground, if it does not
contain any variables. A clause C shall be called essentially ground if it does not contain free-sort
variables and for every base-sort variable x occurring in C, there is an atomic constraint x = d in
C for some constant symbol d ∈ ΩLA ∪Ωα

LA. A clause set N is essentially ground if all the clauses
it contains are essentially ground.

We can restrict the syntactic form of clauses even further without limiting expressiveness.

Definition 2 (Normal Form of Clauses and Clause Sets). A clause Λ ‖ Γ → ∆ is in normal form
if all base-sort variables which occur in Λ do also occur in Γ → ∆. A clause set N over the BSR
fragment with simple bounds is in normal form if all clauses in N are in normal form and pairwise
variable disjoint.

Let us briefly clarify why the above requirement on clauses does not limit expressiveness.
Any base-sort variable x not fulfilling the stated requirement can be removed from the clause
Λ ‖ Γ → ∆ by existential quantifier elimination methods that transform Λ into an equivalent
constraint Λ′ in which x does not occur.1 Moreover, Λ′ can be constructed in such a way that it
contains only atomic constraints of the form admitted in Definition 1 and so that no variables or
constant symbols other than the ones in Λ are necessary.

Given a clause set N , we will use the following notation: the set of all constant symbols
occurring in N shall be denoted by consts(N). While the set bconsts(N) exclusively contains all
base-sort constant symbols from ΩLA that occur in N , all base-sort constant symbols αt appearing
in N shall be collected in the set αconsts(N) := consts(N)∩Ωα

LA. The set of all free-sort constant

1Methods for the elimination of existentially quantified real variables include Fourier-Motzkin variable elimina-
tion [DE73], the Loos-Weispfenning procedure [LW93] and many others, see e.g. Chapter 5 in [KS08] for further
details.
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symbols in N is called fconsts(N). Altogether, the sets bconsts(N), αconsts(N) and fconsts(N)
together form a partitioning of consts(N) for every clause set N . We moreover denote the set of
all variables occurring in a clause C (clause set N) by vars(C) (vars(N)).

3 Instantiation of Base-Sort Variables

We first summarize the overall approach described in this section in an intuitive way. To keep the
informal exposition simple, we pretend that all base-sort constant symbols are taken from R and
thus are interpreted by their canonical value in all hierarchic interpretations. Consequently, we
can speak of real values instead of constant symbols, and even refer to improper values such as
−∞ (a “sufficiently small” real value) and r + ε (a real value “slightly larger than r but not too
large”). A formal treatment with proper definitions will follow.

Given a finite clause set N , we aim at partitioning the reals R into finitely many partitions so
that whenever N is satisfiable, there exists a hierarchic model A of N

(Pr) whose interpretation of predicate symbols does not distinguish between values within the
same partition.

As soon as we found such a finite partitioning P , we pick one real value rp ∈ p as representative from
every partition p ∈ P . The following observation motivates why we can use those representatives
instead of using universally quantified variables: given a clause C that contains a base-sort variable
x, and given a set {c1, . . . , ck} of constant symbols such that {cA1 , . . . , c

A
k } = {rp | p ∈ P} it holds

A |= C ⇐⇒ A |=
{
C
[
x
/
ci
] ∣∣ 1 ≤ i ≤ k

}
. (1)

The equivalence claims that we can transform universal quantification over the base domain
into finite conjunction over all representatives of partitions in P . The formal version of this
statement is given in Lemma 13, and we will see that hierarchic models complying with property
(Pr) play a key role in its proof. Since P is supposed to be finite, the resulting set of instances{
C
[
x
/
ci
]
| 1 ≤ i ≤ k

}
is finite, too.

It turns out that the notion of elimination sets described by Loos and Weispfenning in [LW93]
(in the context of quantifier elimination for linear arithmetic) can be adapted to yield reasonable
sets of representatives from which we can construct a finite partitioning exhibiting the described
characteristics. In this case the partitions are intervals on the real axis. Intuitively speaking, we
start with the partitioning P0 consisting of a single partition P0 =

{
(−∞,+∞)

}
. This initial

partition shall be represented by −∞ (the “default representative”). We then successively extract
from the given clause set N larger and larger points r on the real axis at which we have to introduce
a new boundary, cut off the interval that is currently unbounded from above at that boundary and
introduce the cut-off part as a new interval to the partitioning. For instance, an interval [r′,+∞)
might be cut into two parts [r′, r] and (r,+∞) for some point r ≥ r′. Both parts become then
new partitions in the partitioning and while the interval [r′, r] will be represented by r′, the other
partition (r,+∞) will have r+ ε as its representative. At the end of this process the overall result
will be a finite partitioning of the real numbers with the desired properties.

In fact, we will operate on a more fine-grained level than described so far, as we define such
partitionings independently for certain groups of base-sort variables. The possible benefit may be
a significant decrease in the number of necessary instances. But there is even more potential for
savings. The complete line of definitions and arguments will be laid out in detail for one direction
of instantiation along the real axis, namely in the positive direction starting from −∞ and going on
to larger and larger instantiation points. However, one could as well proceed in the opposite way,
starting from +∞ and becoming smaller and smaller thereafter. While theoretically this duality
is not worth much more than a side note, it appears to be quite interesting from a practical point
of view. As it turns out, one can choose the direction of instantiation independently for each
base-sort variable that needs to be instantiated. Hence, one could always pick the direction that
results in less instantiation points. Such a strategy might again considerably cut down the number
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of instances in the resulting clause set and therefore might lead to shorter processing times when
applying automated reasoning procedures.

Formally, the aforementioned representatives are induced by constant symbols when interpreted
under a hierarchic interpretation. Independently of any interpretation these constant symbols will
serve as symbolic instantiation points, i.e. they will be used to instantiate base-sort variables
similar to the ci in equivalence (1). We start off by defining the set of instantiation points that
need to be considered for every base-sort variable. This set depends on the constraints affecting
such a variable. However, we first need to develop a proper notion of what it means for a base-sort
variable to be affected by a constraint. The following example shall illustrate the involved issues.

Example 3. Consider the following clauses:

x1 6= −5 ‖ → T (x1), Q(x1, x2) ,
y1 < 2, y2 < 0 ‖ → Q(y1, y2) ,

z1 ≥ 6 ‖ T (z1) → � .

Obviously, the variables x1, y1, y2 and z1 are affected by the constraints in which they occur
explicitly. In the given clauses variables are just names addressing argument positions of predicate
symbols. Thus, it is more suitable to speak of the argument position 〈T, 1〉 instead of variables
x1 and z1 that occur as the first argument of predicate symbol T in the first and third clause.
Speaking in such terms, argument position 〈T, 1〉 is directly affected by the constraints x1 6= −5
and z1 ≥ 6, argument position 〈Q, 1〉 is directly affected by x1 6= −5 and y1 < 2, and finally 〈Q, 2〉
is affected by y2 < 0. As soon as we take logical consequences into account, the notion of “being
affected” needs to be extended. The above clause set, for instance, logically entails the clause
x ≥ 6 ‖ → Q(x, y). Hence, although not directly affected by the constraint z1 ≥ 6 in the clause
set, the argument position 〈Q, 1〉 is still indirectly subject to this constraint. The source of this
effect lies in the first clause as it establishes a connection between argument positions 〈T, 1〉 and
〈Q, 1〉 via the simultaneous occurrence of variable x1 in both argument positions.

One lesson learned from the example is that argument positions can be connected by variable
occurrences. Such links in a clause set N shall be expressed by the relation ⇌N .

Definition 4 (Connections between Argument Positions). Let N be a clause set in normal form.
We define the relation ⇌N to be the smallest equivalence relation over pairs in Π × N such
that 〈Q, j〉 ⇌N 〈P, i〉 whenever there is a clause in N containing free atoms Q(. . . , v, . . .) and
P (. . . , v, . . .) in which the variable v occurs at the j-th and i-th argument position, respectively.
(Note that Q = P or j = i is possible.)

The relation ⇌N induces the set
{
[〈P, i〉]⇌N

| P/m ∈ Π, 1 ≤ i ≤ m
}
of equivalence classes.

To simplify notation a bit, we write [〈P, i〉] instead of [〈P, i〉]⇌N
when the set N is clear from the

context.

As we have argued earlier, it is more precise to speak of argument positions rather than
variables, since their names are of no particular relevance. Nevertheless, variable names are a
syntactical necessity. The following definition is supposed to provide a means to address the
argument position class a variable stands for.

Definition 5 (Argument Position Class). Let N be a clause set in normal form. Consider a
variable v that occurs at the i-th argument position of a free atom P (. . . , v, . . .) in N . We denote
the equivalence class of argument positions v is related to in N by apN (v), i.e. apN (v) := [〈P, i〉]⇌N

.
If v is a free-sort variable that exclusively occurs in equations v ≈ s in N , we set apN (v) := ∅.

There is a crucial subtlety in this definition that guarantees well-definedness, namely that the
clauses in N are variable disjoint. Given a clause C ∈ N and a variable v which occurs in different
argument positions 〈Q, j〉 and 〈P, i〉 in C, the definition of ⇌N entails 〈Q, j〉 ⇌N 〈P, i〉. Therefore,
[〈Q, j〉] and [〈P, i〉] are identical. Since v does not occur in any other clause in N , the class apN (v)
is well-defined to be [〈P, i〉].
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Next, we collect the instantiation points that are necessary to eliminate base-sort variables by
means of finite instantiation. In order to do this economically, we rely on the same idea that also
keeps elimination sets in [LW93] comparatively small.

Definition 6 (Instantiation Points for Base-Sort Argument Positions). Let N be a clause set
in normal form and let P : ξ1 × . . . × ξm ∈ Π be a free predicate symbol occurring in N . Let
J := {i | ξi = R, 1 ≤ i ≤ m} be the indices of P ’s base-sort arguments. For every i ∈ J , we define
IP,i,N to be the smallest set fulfilling

(i) d ∈ IP,i,N if there exists a clause C in N containing an atom P (. . . , x, . . .) in which x occurs
as the i-th argument and a constraint x = d or x ≥ d with d ∈ ΩLA appears in C, and

(ii) αd+ε ∈ IP,i,N if there exists a clause C in N containing an atom of the form P (. . . , x, . . .),
in which x is the i-th argument and a constraint of the form x 6= d or x > d or x = αd+ε

with d ∈ ΩLA appears in C.

The most apparent peculiarity about this definition is that atomic constraints of the form x < d
and x ≤ d are completely ignored when collecting instantiation points for x’s argument position.
First of all, this is one of the aspects that makes this definition interesting from the efficiency point
of view, because the number of instances that we have to consider might decrease considerably
in this way. To develop an intuitive understanding why it is enough to consider constraints x ⊳ d
with ⊳ ∈ {=, 6=,≥, >} when collecting instantiation points, the following example may help.

Example 7. Consider two clauses C = x > 2, x ≤ 5 ‖ → T (x) and D = x < 0 ‖ T (x) → �.
Recall that we are looking for a finite partitioning P of R so that we can construct a hierarchic
model A of the clause set {C,D} that complies with (Pr), i.e. for every partition p ∈ P and
arbitrary real values r1, r2 ∈ p it shall hold r1 ∈ TA if and only if r2 ∈ TA. Of course, there exist
infinitely many candidates for P . A natural one is {(−∞, 0), [0, 2], (2, 5], (5,+∞)} which takes
every atomic constraint in C and D into account. Correspondingly, we find a candidate predicate
for TA, namely the interval (2, 5], so that A is a hierarchic model of C and D alike and it obeys
(Pr) with respect to the proposed partitioning P .

But there are other interesting possibilities, too, for instance, the more coarse-grained par-
titioning {(−∞, 2], (2,+∞)} together with the predicate TA = (2,+∞). This latter candidate
partitioning completely ignores the constraints x < 0 and x ≤ 5 that constitute upper bounds
on x. Dually, we could have concentrated on the upper bounds instead (completely ignoring the
lower bounds). This would have lead to the partitioning {(−∞, 0), [0, 5], (5,+∞)} and candidate
predicates TA = [0, 5] (or TA = [0,+∞)). Both ways are possible, but the first one induces a
simpler partitioning.

The example has revealed quite some freedom in choosing an appropriate partitioning of the
reals. A larger number of partitions directly leads to a larger number of representatives (one
for each interval). In fact, we use the collected instantiation points as representatives and taken
together they induce the partitioning (as we will see in the next definition). It is due to this direct
correspondence of partitions and instantiation points that a more fine-grained partitioning entails
a larger number of instances that need to be considered. Hence, regarding efficiency, it is of high
interest to keep the partitioning coarse.

Definition 8 (Instantiation Points for Argument Position Classes and Induced Partitioning of
R). Let N be a clause set in normal form and let A be a hierarchic interpretation (over the same
signature). For every equivalence class [〈P, i〉] induced by ⇌N we define the following:

The set I[〈P,i〉],N of instantiation points for [〈P, i〉] is defined by

I[〈P,i〉],N := {α−∞} ∪
⋃

〈Q,j〉∈[〈P,i〉]

IQ,j,N .

The sequence r1, . . . , rk shall comprise all real values in the set
{
cA

∣∣ c ∈ I[〈P,i〉],N ∩ ΩLA or

αc+ε ∈ I[〈P,i〉],N

}
ordered so that r1 < . . . < rk.
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Given a real number r, we say I[〈P,i〉],N A-covers r if there exists an instantiation point c ∈
I[〈P,i〉],N∩ΩLA with cA = r; analogously (r+ε) is A-covered by I[〈P,i〉],N if there is an instantiation
point αc+ε ∈ I[〈P,i〉],N with cA = r.

The partitioning P[〈P,i〉],N,A of the reals into finitely many intervals shall be the smallest
partitioning (smallest w.r.t. the number of partitions) fulfilling the following requirements:

(i) If r1 isA-covered by I[〈P,i〉],N , then (−∞, r1) ∈ P[〈P,i〉],N,A; otherwise, (−∞, r1] ∈ P[〈P,i〉],N,A.

(ii) For every j, 1 ≤ j ≤ k, if rj and rj+ε are both A-covered by I[〈P,i〉],N , then [rj , rj ] = {rj} ∈
P[〈P,i〉],N,A.

(iii) For every ℓ, 1 ≤ ℓ < k,

(iii.i) if rℓ + ε and rℓ+1 are both A-covered by I[〈P,i〉],N , then (rℓ, rℓ+1) ∈ P[〈P,i〉],N,A,

(iii.ii) if rℓ + ε is A-covered by I[〈P,i〉],N but rℓ+1 is not, then (rℓ, rℓ+1] ∈ P[〈P,i〉],N,A,

(iii.iii) if rℓ + ε is not A-covered by I[〈P,i〉],N but rℓ+1 is, then [rℓ, rℓ+1) ∈ P[〈P,i〉],N,A,

(iii.iv) if neither rℓ + ε nor rℓ+1 is A-covered by I[〈P,i〉],N , then [rℓ, rℓ+1] ∈ P[〈P,i〉],N,A.

(iv) If rk + ε is A-covered by I[〈P,i〉],N , then (rk,+∞) ∈ P[〈P,i〉],N,A; otherwise [rk,+∞) ∈
P[〈P,i〉],N,A.

Please note that partitionings as described in the definition do always exist, and do not contain
empty partitions. Moreover, it is worth to notice that for all instantiation points c and αc+ε in a
set IQ,j,N we have c ∈ ΩLA. Hence, the concrete values assigned to constant symbols αt do not
contribute to the respective partitionings of R.

We now fix the semantics of constant symbols αt by giving appropriate axioms that make
precise what it means for α−∞ to be “small enough” and for αc+ε to be “a little larger than c but
not too large” under any hierarchic model A that satisfies the corresponding axioms.

Definition 9 (Axioms for Instantiation Points αt). Let I be a set of instantiation points and
C ⊆ ΩLA be a set of base-sort constant symbols. We define the set of axioms

AxI,C :=
{
α−∞ < c

∣∣ α−∞ ∈ I and c ∈ C
}

∪
{
d < αd+ε

∣∣ αd+ε ∈ I}

∪
{
d < c → αd+ε < c

∣∣ αd+ε ∈ I and c ∈ C \ {d}
}

∪
{
d = c → αd+ε = αc+ε

∣∣ αd+ε ∈ I and c ∈ C \ {d}
}
.

The axioms we just introduced are clearly not in the admissible clause form. But they can
easily be transformed into proper clauses with empty free parts. For convenience, we stick to the
notation given here, but keep in mind that formally the axioms have a form in accordance with
Definition 1.

The following proposition shows that every hierarchic interpretation can be turned into a model
of a given set of axioms of the above shape by modifying the values assigned to constant symbols
αt. The proposition relies on three facts concerning the ordering (R, <): totality of <, the lack of
minimal and maximal elements, and the density of (R, <), i.e. for arbitrary reals r1 < r2 there is
an r′ between them.

Proposition 10. Let I be a nonempty set of instantiation points and let C be a nonempty set
of base-sort constant symbols from ΩLA. Given an arbitrary hierarchic interpretation A, we can
construct a hierarchic model B so that (ii) B |= AxI,C and B and A differ only in the interpretation
of the constant symbols in αconsts(AxI,C).

Proof. The model B can be derived from A by redefining the interpretation of all constant symbols
αt ∈ I as follows:

αB
−∞ := min{cA | c ∈ C} − 1 ,

αB
d+ε :=

1
2

(
dA +min({cA | c ∈ C, cA > dA} ∪ {dA + 1})

)
.

Everything else is taken over from A.
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Previously, we have been speaking of representatives of partitions p in a partitioning P of the
reals. As far as we know by now, these are just real values rp ∈ p from the specific interval they
represent. The next lemma shows that we can find constant symbols cp in the set of instantiation
points to address them. Furthermore, we will see where the values of these constant symbols lie
within the respective interval.

In order to have a compact notation at hand when doing case distinctions on intervals, we use
“(·” to stand for “(” as well as for “[”. Analogously, “·)” is used to address the two cases “)” and
“]” at the same time.

Lemma 11. Let N be a clause set in normal form and let A be a hierarchic model of
AxI[〈P,i〉],N ,bconsts(N) for an arbitrary argument position pair 〈P, i〉. For every partition p ∈

P[〈P,i〉],N,A we find some constant symbol c[〈P,i〉],p ∈ I[〈P,i〉],N so that cA[〈P,i〉],p ∈ p and

(i) if p = (−∞, ru·) or p = (−∞,+∞), then cA[〈P,i〉],p < dA for every d ∈ bconsts(N),

(ii) if p = [rℓ, ru·) or p = [rℓ,+∞), then cA[〈P,i〉],p = rℓ.

(iii) if p = (rℓ, ru·) or p = (rℓ,+∞), then rℓ < cA[〈P,i〉],p and c
A
[〈P,i〉],p < dA for every d ∈ bconsts(N)

with rℓ < dA.

Proof. We proceed by case distinction on the form of the partition p.

Case p = (−∞, ru·) for some real value ru. By construction of P[〈P,i〉],N,A, there is a constant
symbol e ∈ bconsts(N) so that eA = ru. Moreover, we find the instantiation point α−∞

in I[〈P,i〉],N and thus AxI[〈P,i〉],N ,bconsts(N) contains the axiom α−∞ < d for every constant

symbol d ∈ bconsts(N), in particular α−∞ < e. Hence, αA
−∞ ∈ (−∞, ru).

Case p = (−∞,+∞). We find the instantiation point α−∞ in I[〈P,i〉],N , and obviously αA
−∞ lies

in p. Moreover, AxI[〈P,i〉],N ,bconsts(N) contains the axiom α−∞ < d for every constant symbol
d ∈ bconsts(N).

Case p = [rℓ, ru·) for real values rℓ, ru with rℓ ≤ ru.

If p is a point interval [rℓ, rℓ], then we find a constant symbol e ∈ I[〈P,i〉],N ∩ ΩLA so that
p = {eA}.

If p is not a point interval, i.e. rℓ < ru, then the definition of P[〈P,i〉],N,A entails the existence
of a constant symbol e ∈ bconsts(N) such that eA = rℓ and either e ∈ I[〈P,i〉],N or
αe+ε ∈ I[〈P,i〉],N . But since the partition p is not a point interval, rℓ + ε cannot be
A-covered by I[〈P,i〉],N , and thus αe+ε cannot be in I[〈P,i〉],N . Consequently, e must be
in I[〈P,i〉],N and we can choose c[〈P,i〉],p := e.

The case of p = [rℓ,+∞) can be argued analogously to the previous case.

Case p = (rℓ, ru·) for real values rℓ, ru with rℓ < ru.

By construction of P[〈P,i〉],N,A, we find some instantiation point αe+ε ∈ I[〈P,i〉],N so that
eA = rℓ. Moreover, there exists a second constant symbol e′ ∈ bconsts(N) for which
e′A = ru. As a consequence of αe+ε ∈ I[〈P,i〉],N the set AxI[〈P,i〉],N ,bconsts(N) contains the
axioms e < αe+ε and e < d → αe+ε < d for every constant symbol d ∈ bconsts(N), in
particular for d = e′. And since A is a model of AxI[〈P,i〉],N ,bconsts(N), requirement (iii) is

satisfied and furthermore αA
e+ε ∈ p follows, since eA < αA

e+ε < e′A.

Case p = (rℓ,+∞). There must be an instantiation point αe+ε in I[〈P,i〉],N such that eA = rℓ. As
we have already done in Definition 8, we denote by r1, . . . , rk all real values in ascending order
which A assigns to constant symbols d ∈ bconsts(N) that either themselves are instantiation
points in I[〈P,i〉],N or for which αd+ε occurs in I[〈P,i〉],N . By construction of P[〈P,i〉],N,A, we
know rℓ = rk > rk−1 > . . . > r1, and thus there is no base-sort constant symbol e′ in
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bconsts(N) fulfilling rℓ < e′A. Consequently, (iii) is satisfied if we choose c[〈P,i〉],p := αe+ε.
Finally, we may conclude αA

e+ε ∈ p, because AxI[〈P,i〉],N ,bconsts(N) contains the axiom e <
αe+ε.

We have arrived at one of the core results of the present paper. The next lemma shows that we
can eliminate base-sort variables x from clauses C in a clause set N by replacing C with finitely
many instances in which x is substituted with the instantiation points that we computed for x.
The resulting clause set shall be called N̂x. In addition, the axioms that stipulate the meaning
of newly introduced constant symbols αt need to be added to N̂x. Iterating this step for every
base-sort variable in N eventually leads to a clause set that is essentially ground with respect to
the constraint parts of the the clauses it contains (free-sort variables need to be treated separately,
of course, see Section 4).

The line of argument leading from a hierarchic model of the original clause set N to a hierarchic
model of the modified clause set N̂x (with instances and additional axioms) is almost trivial. The
converse direction, however, rests on a model construction that yields a hierarchic model B which
complies with property (Pr) discussed in the beginning of the current section. Given a hierarchic

model A of the instantiated clause set N̂x, we construct the partitioning PapN (x),N,A based on
the argument position class associated to x in the original clause set N . By virtue of Lemma 11,
we know that each partition p in the partitioning is represented by an instantiation point cp in
IapN (x),N and for each of these instantiation points there is one clause in the modified clause set

N̂x in which x is instantiated by cp. Since B is supposed to comply with (Pr), i.e. it shall not
distinguish between real values that stem from the same partition, the information how the model
A treats the representative of a partition can be transferred to all values from this partition. An
example might be best suited to illustrate the key ideas.

Example 12. Consider the clause set N =
{
x > 2, z = 4 ‖ Q(x, z) → T (x)

}
. With respect to N

there are two instantiation points for variable x, namely α−∞ and α2+ε. This will lead to the set
of instances and axioms

N̂x =
{
α−∞ > 2, z = 4, x = α−∞ ‖ Q(x, z) → T (x) ,

α2+ε > 2, z = 4, x = α2+ε ‖ Q(x, z) → T (x)
}

∪ Ax{α−∞,α2+ε},{2,4}

where the axioms express the fact that the value of α−∞ is strictly smaller than 2 and the value

of α2+ε shall lie within the interval (2, 4) in any hierarchic model of N̂x. This already reveals
redundancy of the first instance in the presence of the axioms, since the atomic constraint α−∞ > 2
is false under every hierarchic model of the axiom α−∞ < 2 that is contained in Ax{α−∞,α2+ε},{2,4}.

We assume to have a hierarchic model A of N̂x at hand with αA
−∞ = 0 and αA

2+ε = 3. Then the
two intervals (−∞, 2] and (2,+∞) constitute the partitioning PapN (x),N,A, and the partitioning

PapN (z),N,A is given by
{
(−∞, 4), [4,+∞)

}
. Moreover, assume that the set QA contains the pairs

〈0, 0〉, 〈3, 4〉 and 〈7, 4〉 while the set TA shall be the union of intervals (0, 5] ∪ [6, 7). Clearly, A is

a hierarchic model of N̂x. (However, A is not a hierarchic model of N , since the pair 〈7, 4〉 is in
QA but 7 does not belong to TA.)

We now construct a hierarchic model B from A so that B complies with (Pr). First of all, B
takes over all values assigned to constant symbols, i.e. αB

−∞ := αA
−∞ and αB

2+ε := αA
2+ε. The defi-

nition of T under B will be piecewise with respect to the partitioning P[〈T,1〉],N,A = PapN (x),N,A =
{(−∞, 2], (2,+∞)}. To do so, we use the idea of representatives: the interval (−∞, 2] is repre-
sented by αA

−∞ = 0 and the interval (2,+∞) has αA
2+ε = 3 as its representative. At the same

time, αA
−∞ also represents the interval (−∞, 4) in partitioning P[〈Q,2〉],N,A, and [4,+∞) from the

same partitioning is represented by the constant 4. Putting the abstract idea of property (Pr)
into action, the set TB will be defined so that (−∞, 2] ⊆ TB if and only if αA

−∞ ∈ TA, and
(2,+∞) ⊆ TB if and only if αA

2+ε ∈ TA. For the set QB matters are technically more involved but
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follow the same scheme. For instance, all pairs 〈r1, r2〉 with r1 ∈ (2,+∞) and r2 ∈ [4,+∞) shall
be in QB if and only if the pair 〈αA

2+ε, 4〉 is in Q
A. Consequently, we end up with TB = (2,+∞]

and QB = {〈r1, r2〉 | r1 ∈ (−∞, 2] and r2 ∈ (−∞, 4)}∪ {〈r1, r2〉 | r1 ∈ (2,+∞) and r2 ∈ [4,+∞)}.

The net results is a hierarchic interpretation B that is a model of N̂x just as A is. But beyond
that B is also a hierarchic model of the original clause set N . This is by no means a coincidence
as the proof of Lemma 13 shows.

Lemma 13. Let N be a clause set in normal form, and assume that N contains all the axioms in
Axαconsts(N),bconsts(N) and for every αe+ε ∈ αconsts(N) we have e ∈ bconsts(N). Suppose there

is a clause C in N which contains a base-sort variable x. Let the clause set N̂x be constructed as
follows: N̂x :=

(
N \ {C}

)
∪

{
C
[
x
/
c
] ∣∣ c ∈ IapN (x),N

}
∪ AxIapN (x),N ,bconsts(N). The original

clause set N is satisfiable if and only if N̂x is satisfiable.

Proof. The “only if”-part is almost trivial to show: Let A be a hierarchic model of N . Every axiom
in AxIapN (x),N ,bconsts(N) which does not appear in N concerns constant symbols αt that do not
occur inN . By virtue of Proposition 10, we can derive a hierarchic model B fromA that differs from
A only in how these αt are interpreted and that is a hierarchic model of AxIapN (x),N ,bconsts(N) \N .

Thus, B |= N follows from A |= N . Since the variable x is universally quantified in C, B |= C

entails B |= C
[
x
/
c
]
for every instance C

[
x
/
c
]
. Altogether, we obtain B |= N̂x.

The “if”-part requires a more sophisticated argument: Let A be a hierarchic model of N̂x. We
use A to construct the hierarchic model B that extends a model in M as follows. For the domain
SB we reuse A’s free domain SA. For all base-sort and free-sort constant symbols c ∈ consts(N),
we set cB := cA. For every predicate symbol P : ξ1 × . . . × ξm ∈ Π that occurs in N and for
every argument position i, 1 ≤ i ≤ m, Lemma 11 guarantees the existence of a base-sort constant
symbol c[〈P,i〉],p ∈ IapN (x),N for every partition p ∈ P[〈P,i〉],N,A, such that cA[〈P,i〉],p ∈ p and the

requirements (i) to (iii) of the lemma are met. Based on this, we define the family of functions
ϕ[〈P,i〉] : R ∪ SB → R ∪ SA by

ϕ[〈P,i〉](a) :=





cA[〈P,i〉],p if ξi = R and p ∈ P[〈P,i〉],N,A

is the partition a lies in,

a if ξi = S.

Using the functions ϕ[〈P,i〉], we define the PB so that for all domain elements a1, . . . , am of appro-

priate sorts
〈
a1, . . . , am

〉
∈ PB if and only if

〈
ϕ[〈P,1〉](a1), . . . , ϕ[〈P,m〉](am)

〉
∈ PA.

We next show B |= N . Consider any clause C′ = Λ′ ‖ Γ′ → ∆′ inN and let β : VR∪VS → R∪SB

be an arbitrary variable assignment. From β we derive a special variable assignment βϕ for which
we will infer A, βϕ |= C′ as an intermediate step:

βϕ(v) :=

{
cAapN (v),p if v ∈ VR and β(v) ∈ p ∈ PapN (v),N,A,

β(v) if v ∈ VS ,

for every variable v. If C′ 6= C, then N̂x already contains C′, and thus A, βϕ |= C′ must hold. In
case of C′ = C, let p∗ be the partition in PapN (x),N,A containing the value β(x), and let c∗ be an

abbreviation for capN (x),p∗
. Due to βϕ(x) = cA∗ and since A is a model of the clause C

[
x
/
c∗
]
in

N̂x, we conclude A, βϕ |= C. Hence, in any case we can deduce A, βϕ |= C′. By case distinction
on why A, βϕ |= C′ holds, we may transfer this result to obtain B, β |= C′, too.

Case A, βϕ 6|= c ⊳ d for some atomic constraint c ⊳ d in Λ′ with base-sort constant symbols
c, d ∈ ΩLA ∪ Ωα

LA and ⊳ ∈ {<,≤,=, 6=,≥, >}. Since B and A interpret constant symbols in
the same way and independently of a variable assignment, we immediately get B, β 6|= c ⊳ d.

Case A, βϕ 6|= (y ⊳ d) ∈ Λ′ for an arbitrary base-sort variable y and a constant symbol d ∈ ΩLA.
This translates to βϕ(y)6⊳ dA. Let p ∈ PapN (y),N,A be the partition which contains β(y) and
therefore also βϕ(y).
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If dA lies outside of p, then βϕ(y) ⊳ d
A if and only if β(y) ⊳ dA, since βϕ(y) ∈ p. Thus,

dB = dA entails B, β 6|= y ⊳ d.

If p is the point interval p = {dA}, then β(y) = βϕ(y), and thus B, β 6|= y ⊳ d.

If p = (·rℓ, ru·) and rℓ < dA ≤ ru, then ⊳ 6∈ {<,≤, 6=}, since βϕ(y) = cAapN (y),p < dA (by

(ii) and (iii) of Lemma 11). Moreover, we conclude d 6∈ IapN (y),N , since otherwise p

would be of the form p = [dA, ru·) by the construction of PapN (y),N,A (requirements (ii),
(iii.iii) and (iii.iv)). Therefore, ⊳ 6∈ {=,≥}, since otherwise the instantiation point d
would be in IapN (y),N . This only leaves ⊳ = >. Hence, the constraint y > d occurs in N
and thus we find the instantiation point αd+ε in IapN (y),N . Consequently, requirements

(iii.ii) and (iii.iv) of the construction of PapN (y),N,A entail p = (·rℓ, dA], which leads to

β(y) ≤ dA because of β(y) ∈ p. Therefore, B, β 6|= y > d must be true.

The cases p = (·rℓ,+∞), p = (−∞, ru·) and (−∞,+∞) with rℓ < dA ≤ ru can be
handled by similar arguments.

If p = [dA, ru·) and dA < ru, then βϕ(y) = cAapN (y),p = dA by (ii) of Lemma 11. Con-

sequently, ⊳ 6∈ {≤,=,≥}. We conclude αd+ε 6∈ IapN (y),N , because otherwise [dA, ru·)

would be a point interval, contradicting dA < ru. Hence, the only remaining possibility
is ⊳ = <. But by β(y) ∈ p we deduce β(y) ≥ dA. Therefore, we clearly get B, β 6|= y < d.

The case p = [dA,+∞) is covered by analogous arguments.

Case A, βϕ 6|= (y = αt) ∈ Λ′ for an arbitrary variable y and a constant symbol αt ∈ Ωα
LA. Let p ∈

PapN (y),N,A be the partition which contains β(y). We immediately conclude αA
t
6= cAapN (y),p

since cAapN (y),p = βϕ(y) 6= αA
t
.

If αA
t

does not lie in p, then β(y) 6= αA
t
, and thus B, β 6|= y = αt.

Assume αA
t

lies in p. By cAapN (y),p ∈ p and the facts αA
t

6= cAapN (y),p and αA
t

∈ p, p

cannot be a point interval. Moreover, p cannot be of the form (−∞, ru·), since then
capN (y),p = α−∞ and ru < αA

c+ε for all αc+ε ∈ αconsts(N) would follow by construction
of PapN (y),N,A (since A |= Axαconsts(N),bconsts(N)), contradicting either αt 6= capN (y),p

or αA
t

∈ p. Consequently, there exists a constant symbol d ∈ bconsts(N) so that
αt = αd+ε. Hence, the atomic constraint y = αd+ε contributes the instantiation point
αd+ε to IapN (y),N .

The constant symbol capN (y),p cannot stem from ΩLA, since then p would be of the form

[cAapN (y),p,+∞) or [cAapN (y),p, ru·) for some real value ru and we would have cAapN (y),p =

dA, i.e. cAapN (y),p and cAapN (y),p + ε would be A-covered by IapN (y),N – a contradiction,

as we have already argued then p cannot be a point interval. Hence, there exists a
constant symbol e ∈ bconsts(N) so that e 6= d and capN (y),p = αe+ε and thus p is

either of the form (eA,+∞) or (eA, ru·) for some real value ru. In case of dA 6= eA,
the instantiation point αd+ε results in a partition p′ ∈ PapN (y),N,A such that αA

d+ε ∈ p′

and p′ 6= p. But this contradicts our assumption αA
t

= αA
e+ε ∈ p. Consequently,

dA = eA. As N̂x contains Ax{αd+ε},{e} as a subset, A must be a hierarchic model of
the axiom d = e→ αd+ε = αe+ε. This yields a contradiction, since above we concluded
αA
d+ε = αA

t
6= cAapN (y),p = αA

e+ε.

Case A, βϕ 6|= s ≈ s′ for some free atom s ≈ s′ ∈ Γ′. Hence, s and s′ are either variables or
constant symbols of the free sort, which means they do not contain subterms of the base
sort. Since B and A behave identical on free-sort constant symbols and β(u) = βϕ(u) for
any variable u ∈ VS , it must hold B, β 6|= s ≈ s′.

Case A, βϕ |= s ≈ s′ for some s ≈ s′ ∈ ∆′. Analogous to the above case, B, β |= s ≈ s′ holds.

Case A, βϕ 6|= P (s1, . . . , sm) for some free atom P (s1, . . . , sm) ∈ Γ′. This translates to〈
A(βϕ)(s1), . . . ,A(βϕ)(sm)

〉
6∈ PA.
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Every si of the free sort is either a constant symbol or a variable. Thus, we haveA(βϕ)(si) =
B(β)(si) = ϕ[〈P,i〉](B(β)(si)), since free-sort constant symbols are interpreted in the
same way by A and B, and because βϕ(u) = β(u) for every free-sort variable u.

Every si that is of the base sort must be a variable. Hence, A(βϕ)(si) = cA[〈P,i〉],p =

ϕ[〈P,i〉](B(β)(si)), where p is the partition in P[〈P,i〉],N,A which contains β(si) (and thus
also βϕ(si)) and where we have apN (si) = [〈P, i〉].

Put together, this yields
〈
ϕ[〈P,1〉](B(β)(s1)), . . . , ϕ[〈P,m〉](B(β)(sm))

〉
6∈ PA. But then, by

construction of B, we have
〈
B(β)(s1), . . . ,B(β)(sm)

〉
6∈ PB, which entails B, β 6|= P (s1, . . . ,

sm).

Case A, βϕ |= P (s1, . . . , sm) for some free atom P (s1, . . . , sm) ∈ ∆′. Analogous to the above case
we conclude B, β |= P (s1, . . . , sm).

Altogether, we have shown B |= N .

We have already pointed out that we intend to iteratively instantiate base-sort variables in an
initial clause set N by means of the construction described in Lemma 13. However, for efficiency
reasons it is not desirable to recompute all necessary information such as argument position classes,
sets of instantiation points and the like from scratch at each stage. The next lemma shows that
the ingredients for the elimination of base-sort variables are invariant under instantiation. The
main reason is that when x is instantiated, constraints x = c are introduced to the clause and free
atoms P (. . . , x, . . .) remain untouched (however, x might be renamed afterwards). Consequently,
it is indeed sufficient to compute, for instance, the relation ⇌N and the set of instantiation points
I[〈P,i〉],N once and for all at the beginning for every argument position pair 〈P, i〉 that is of interest
and only use it at the appropriate stages of the overall instantiation process. How this can be
done will be described in detail in Section 5.

Lemma 14. Let N be a clause set in normal form that contains a clause C in which a base-sort
variable x occurs. Further assume Axαconsts(N),bconsts(N) ⊆ N and for every αe+ε ∈ αconsts(N) we

have e ∈ bconsts(N). Suppose N̂x is constructed from N as described in Lemma 13 and variables

have been renamed so that all clauses in N̂x are variable disjoint. We observe the following facts:

(i) ⇌N = ⇌
N̂x

.

(ii) bconsts(N) = bconsts(N̂x) and fconsts(N) = fconsts(N̂x).

(iii) For every argument position class [〈P, i〉] induced by ⇌N we have I[〈P,i〉],N = I[〈P,i〉],N̂x
.

(iv) N̂x is in normal form, Ax
αconsts(N̂x),bconsts(N̂x)

⊆ N̂x, and for every αe+ε ∈ αconsts(N̂x) we

have e ∈ bconsts(N̂x).

Proof. We prove the different parts separately.

(i): The relations ⇌N and ⇌
N̂x

exclusively depend on the free parts of the clauses in N and N̂x,
respectively, irrespective of variable names. Since IapN (x),N is nonempty, all free parts of clauses

in N do occur in N̂x (modulo variable renaming), and vice versa.

(ii): bconsts(N) ⊆ bconsts(N̂x) and fconsts(N) ⊆ fconsts(N̂x) hold due to IapN (x),N being

nonempty. bconsts(N̂x) ⊆ bconsts(N) is a consequence of IapN (x),N ∩ ΩLA ⊆ bconsts(N).

fconsts(N̂x) ⊆ fconsts(N) is true, because free parts of clauses are merely copied and variables
renamed.

(iii): We start with two observations:
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(1) For every clause D 6= C in N , we find a clause D̂ in N̂x such that D and D̂ are the same

modulo variable renaming. Conversely, every D̂ in N̂x is either identical to a clause D in
N modulo renaming of variables or it is equal to C

[
x
/
c
]
up to variable renaming for some

constant symbol c.

(2) Regarding C we find the instance C
[
x
/
α−∞

]
in N̂x, possibly with renamed variables.

Consequently, for every base-sort variable y 6= x for which C contains an atomic constraint
y⊳s and a free atom Q(. . . , y, . . .) with y in the j-th argument position, C

[
x
/
α−∞

]
contains

the constraint y ⊳ s and the free atom Q(. . . , y, . . .) with y in the j-th argument position –
again, modulo variable renaming. The converse also holds.

That said, we distinguish two cases for every argument position pair 〈P, i〉.

If 〈P, i〉 does not belong to the equivalence class apN (x), i.e. apN (x) 6= [〈P, i〉], then we get
I[〈P,i〉],N = I[〈P,i〉],N̂x

, since (1) and (2) together entail IQ,j,N = I
Q,j,N̂x

for all 〈Q, j〉 ∈

[〈P, i〉].

If [〈P, i〉] = apN (x), then there is an argument position pair 〈Q, j〉 ∈ [〈P, i〉] so that C contains

a free atom Q(. . . , x, . . .) in which x is the j-th argument. Moreover, N̂x is a superset of{
C
[
x
/
c
] ∣∣ c ∈ IapN (x),N

}
modulo renaming of variables. This entails IapN (x),N \ {α−∞} ⊆

I
Q,j,N̂x

, and therefore, IapN (x),N ⊆ I[〈P,i〉],N̂x
.

On the other hand, assume there is an instantiation point in I[〈P,i〉],N̂x
that is not in

IapN (x),N , i.e. there is a clause D̂ in N̂x of which a variable-renamed variant has not al-
ready been in N , and in which an atomic constraint y ⊳ s and a free atom Q(. . . , y, . . .)

occur with y in the j-th argument position. By (1), D̂ must be a variable-renamed variant
of C

[
x
/
c
]
for some constant symbol c. But according to (2), we must have (y ⊳ s) = (x = c)

modulo variable renaming. But this constraint can only lead to an instantiation point that
is contained in IapN (x),N – a contradiction. Hence, we also have I[〈P,i〉],N̂x

⊆ IapN (x),N .

Put together, we just derived I[〈P,i〉],N = I[〈P,i〉],N̂x
for this case.

(iv): The construction of N̂x from N preserves the normal form property for each clause individ-
ually, since we start from a clause in normal form, copy the free part of the clause and no new
variables are introduced to the constraint part which do not also occur in the free part. Afterwards,
consistent renaming of variables ensures pairwise variable disjointness of the clauses in N̂x.

Ax
αconsts(N̂x),bconsts(N̂x)

⊆ N̂x is a consequence of Axαconsts(N),bconsts(N) ⊆ N \ {C} (true

by assumption and the fact that C’s free part is not empty but the free parts of axioms are)

and AxIapN (x),N ,bconsts(N) ⊆ N̂x (true by construction). Moreover, Ax
αconsts(N̂x),bconsts(N̂x)

=

Axαconsts(N),bconsts(N) ∪ AxIapN (x),N ,bconsts(N) is ensured by (ii) and the fact that αconsts(N̂x) ⊆

αconsts(N) ∪ IapN (x),N .

Suppose there is a constant symbol αe+ε in N̂x so that e does not occur as constant symbol

in N̂x. Hence, αe+ε must have been an instantiation point in IapN (x),N . Due to (ii), e cannot
occur in N either. Consequently, αe+ε has been introduced to IapN (x),N by the occurrence of
an atomic constraint y = αe+ε in some clause in N . But we assumed e′ ∈ bconsts(N) for every
αe′+ε ∈ αconsts(N) – a contradiction.

4 Instantiation of Free-Sort Variables

Checking satisfiability of a finite clause set N over the classical Bernays-Schönfinkel fragment
can be done näıvely by trying all Herbrand interpretations (we assume N contains at least one
constant symbol). One key argument is that the domain of these interpretations is the set of
all constant symbols occurring in N and is thus finite. If we add equality to the fragment,
the canonical interpretations are Herbrand interpretations modulo congruences on the occurring
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constant symbols. Although this means we have to consider more than one domain, there are
still only finitely many of them. Moreover, their size is upper bounded by the number of constant
symbols in N . This idea of canonical domains can easily be transferred to hierarchic models over
the BSR fragment with simple bounds. More precisely, we can prove that any clause set N over
the BSR fragment with simple bounds is satisfiable w.r.t. M if and only if there exists a hierarchic
model A so that its free domain is the set of free-sort constant symbols in N modulo a congruence
relation ∼, i.e. SA = fconsts(N)/∼, and so that every free-sort constant symbol c is interpreted
by the corresponding congruence class [c]∼.

Lemma 15. Let N be a clause set in normal form and let A be a hierarchic model of N . We
assume fconsts(N) to contain at least one constant symbol (otherwise we may add the tautology
‖ → c ≈ c to N).

By ŜA we denote the restricted domain {a ∈ SA | there is a d ∈ fconsts(N) such that a = dA}.
Let ∼A be the binary relation on fconsts(N) satisfying c ∼A d if and only if cA = dA.
We can construct a hierarchic model B of N which meets the following requirements:

(i) the domain SB is the set fconsts(N)/∼A of equivalence classes w.r.t. ∼A;

(ii) dB = [d]∼A for every free-sort constant symbol d ∈ fconsts(N);

(iii) cB = cA for every base-sort constant symbol c ∈ bconsts(N) ∪ αconsts(N); and

(iv) for every atom A in N and every variable assignment β : VS ∪ VR → SA ∪ R for which

β(u) ∈ ŜA for all u ∈ VS , we have A, β |= A if and only if B, β∼A |= A, where for any
variable v ∈ VR ∪ VS we set

β∼A(v) :=





[d]∼A if v ∈ VS and β(v) = dA

for some d ∈ fconsts(N),

β(v) if v ∈ VR.

Proof. We construct the hierarchic interpretation B as follows:

• SB := fconsts(N)/∼A .

• For every constant symbol d ∈ fconsts(N), we set dB := [d]∼A .

• For every constant symbol c ∈ bconsts(N) ∪ αconsts(N), we set cB := cA.

• To help the formulation of the interpretation of predicate symbols under B we first define
the function ψ : SB ∪ R → SA ∪R by

ψ(a) :=





dA if a = [d]∼A ∈ SB for some free-sort

constant symbol d,

a if a ∈ R.

(Please note that this is well-defined, since d ∼A d′ entails dA = d′A.)

For every predicate symbol P/m that occurs in N and for all arguments a1, . . . , am of
appropriate sorts, we define the interpretation of P under B such that

〈
a1, . . . , am

〉
∈ PB if

and only if
〈
ψ(a1), . . . , ψ(am)

〉
∈ PA.

Obviously, requirements (i), (ii) and (iii) are satisfied. Due to the fact that we find a β whose image

is a subset of ŜA ∪ R (as described in (iv)) for every variable assignment γ : VR ∪ VS → SB ∪ R

so that β∼A = γ, a proof of (iv) entails B |= N . Hence, it remains to show (iv).

Suppose A is an atomic constraint s ⊳ t. The definitions of B and β∼A immediately imply the
equivalence of A, β |= A and B, β∼A |= A.
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Suppose A is of the form s ≈ t, s and t being variables or constant symbols of the free sort, respec-

tively. Because of A(β)(s),A(β)(t) ∈ ŜA, there exist constant symbols ds, dt ∈ fconsts(N)
such that dAs = A(β)(s) and dAt = A(β)(t). Consequently, A(β)(s) = A(β)(t) holds if and
only if ds ∼A dt, i.e. if and only if [ds]∼A = [dt]∼A . Put differently, A, β |= s ≈ t is equivalent
to B, β∼A |= s ≈ t.

Suppose A is of the form P (t1, . . . , tm) for some predicate symbol P/m occurring in N . As we
have already argued in the previous case, we can find for every ti of the free sort a constant
symbol di fulfilling d

A
i = A(β)(ti).

If ti = c ∈ fconsts(N), then ψ(B(β∼A)(c)) = ψ([c]∼A) = cA = A(β)(c).

If ti = u ∈ VS , then ψ(B(β∼A)(u)) = ψ(β∼A(u)) = ψ([di]∼A) = dAi = β(u) = A(β)(u).

On the other hand, for all ti of the base sort, we get ψ(B(β∼A)(ti)) = B(β∼A)(ti) = A(β)(ti).

Altogether, this leads to
〈
ψ
(
B(β∼A)(t1)

)
, . . . , ψ

(
B(β∼A)(tm)

)〉
=

〈
A(β)(t1), . . . ,A(β)(tm)

〉

and, consequently, also to
〈
B(β∼A)(t1), . . . ,B(β∼A)(tm)

〉
∈ PB if and only if

〈
A(β)(t1), . . . ,

A(β)(tm)
〉
∈ PA.

Having such canonical models, it is easy to argue that we can eliminate free-sort variables by
exhaustive instantiation with all occurring free-sort constant symbols.

Corollary 16. Let N be a clause set in normal form that contains at least one constant symbol
of the free sort. Suppose there is a clause C in N which contains a free-sort variable u. Let the
clause set Ñu be constructed as follows: Ñu :=

(
N \ {C}

)
∪

{
C
[
u
/
c
] ∣∣ c ∈ fconsts(N)

}
. The

original clause set N is satisfiable if and only if Ñu is satisfiable.

Proof. While the “only if”-part holds because of Ñu containing only instances of clauses in N ,
the “if”-part is slightly more complicated. Let A be a hierarchic model of Ñu so that SA =
fconsts(Ñu)/∼ for some congruence relation ∼ on fconsts(N), and for every free-sort constant
symbol c we have cA = [c]∼. But then A |=

{
C
[
u
/
c
] ∣∣ c ∈ fconsts(N)

}
entails A |= C, since the

set {[c]∼ | c ∈ fconsts(N)} covers the whole domain SA due to fconsts(Ñu) = fconsts(N). Hence,
we obtain A |= N .

5 The Complexity of Deciding Satisfiability

In the last two sections we have seen how to eliminate base-sort and free-sort variables by means
of finite instantiation. In this section, we put these instantiation mechanisms together to obtain a
nondeterministic algorithm that decides the hierarchic satisfiability problem for the BSR fragment
with simple bounds and investigate its complexity. As a measure of the length of clause sets,
clauses, atoms and multisets thereof, we use the number of occurrences of constant symbols and
variables in the respective object, and denote it by len(·).

Theorem 17. Let N be a clause set (of length at least 2) that does not contain any constant
symbol from Ωα

LA but at least one free-sort constant symbol. Satisfiability of N w.r.t. M can
be decided in nondeterministic exponential time. To put it more precisely: the problem lies in
NTIME

(
len(N)c·len(N)

)
for some constant c > 1.

Proof. We devise a näıve algorithm that decides a given problem instance as follows. As input we
assume a finite clause set N such that αconsts(N) = ∅ and bconsts(N) 6= ∅.

(I) Transform the input clause set N into normal form by applying three steps to every clause
C = Λ ‖ Γ → ∆ in N that contains exactly k > 0 distinct base-sort variables x1, . . . , xk
occurring in Λ but not in Γ → ∆:
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(I.I) Let ȳ be the vector of all variables xj among x1, . . . , xk for which there is an atomic
constraint xj = cj in Λ, and let c̄ denote the corresponding vector of constant symbols
cj . We replace C by Λ

[
ȳ
/
c̄
]
‖ Γ → ∆ in N .

(I.II) If Λ contains an atomic constraint of the form xj 6= cj after Step (I.I), then replace
C in N by two clauses Λ′, xj < cj ‖ Γ → ∆ and Λ′, xj > cj ‖ Γ → ∆, where
Λ′ := Λ \ {xj 6= cj}. Iterate this procedure on the newly added clauses until all
atomic constraints concerning one of the variables x1, . . . , xk have the form xj ⊳ cj with
⊳ ∈ {<,≤,≥, >}.

(I.III) Apply Fourier-Motzkin quantifier elimination to every base-sort variable among x1, . . . ,
xk that is left in N .

We call the resulting clause set N ′. In addition, rename variables so that all clauses in N ′

are variable disjoint.

(II) Compute the equivalence classes with respect to the equivalence relation ⇌N ′ induced by
N ′.

(III) Compute the set bconsts(N ′) of all base-sort constant symbols that occur in N ′.

For every equivalence class [〈P, i〉]⇌N′ with P : ξ1 × . . . × ξm ∈ Π such that ξi = R,
collect all instantiation points that are connected to it, i.e. compute I[〈P,i〉],N ′ . Whenever a
constant symbol αt freshly enters the collection of instantiation points, construct the axiom
set Ax{αt},bconsts(N ′) according to Definition 9 and add all these axioms to a maintained
axiom set Ax.

(IV) Compute the set fconsts(N ′) of all free-sort constant symbols occurring in N ′.

(V) Perform an all-at-once instantiation process on N ′ that leads to

N ′′ :=
{
C
[
x, u

/
c, d

] ∣∣∣ C ∈ N ′ and {x1, . . . , xk} = vars(C) ∩ VR and

{u1, . . . , uℓ} = vars(C) ∩ VS and

ci ∈ IapN′(xi),N ′ and dj ∈ fconsts(N ′) for all i and j
}
.

(VI) Nondeterministically construct a hierarchic interpretation A in three steps:

(VI.I) Nondeterministically choose a total ordering�A on the constant symbols in bconsts(N ′′)
∪αconsts(N ′′) so that for all c, d ∈ bconsts(N ′′) ∩ R it holds c �A d if and only
if c ≤ d. Based on this ordering, construct (in a deterministic fashion) a mapping
µA : bconsts(N ′′) ∪ αconsts(N ′′) → R so that

• for all c ∈ bconsts(N ′′) ∩ R we get µA(c) = c, and

• for all d1, d2 ∈ bconsts(N ′′) ∪ αconsts(N ′′) it holds µA(d1) ≤ µA(d2) if and only if
d1 �A d2.

Set cA := µA(c) for every c ∈ bconsts(N ′′).

(VI.II) Nondeterministically choose a mapping νA : fconsts(N ′′) → fconsts(N ′′).

While νA’s image shall induce the free domain SA := {νA(c) | c ∈ fconsts(N ′′)}, the
value νA(c) shall be assigned to c under A for every c ∈ fconsts(N ′′).

(VI.III) Let At(N ′′) denote the set of nonequational ground atoms induced by the essentially
ground clause set N ′′, formally

At(N ′′) :=
{
A
[
x̄
/
c̄
] ∣∣there is a nonequational free atom A in the free part Γ → ∆

of a clause (Λ, x1 = c1, . . . , xk = ck ‖ Γ → ∆) ∈ N ′′

with {x1, . . . , xk} = vars(A)
}
.
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Given At(N ′′), we construct the set Ât(N ′′) by syntactically replacing every base-sort
constant symbol c in At(N ′′) by µA(c) and every free-sort constant symbol e by νA(e).

Nondeterministically choose a subset ÂtA(N
′′) of Ât(N ′′) that represents the atoms in

Ât(N ′′) which shall be true under A, i.e. construct a Herbrand model over the atoms

in Ât(N ′′).

(VII) Check whether A is a hierarchic model of N ′′ ∪Ax. ♦

Regarding the correctness of the algorithm, there are two crucial points which we need to
address, namely (a) the equisatisfiability of N and N ′, and (b) the equisatisfiability of N ′ and
N ′′ ∪Ax.

Ad (a): It is straightforward to check that (I.I) and (I.II) lead to equisatisfiable clause sets with
respect to the standard semantics of linear arithmetic.

The Fourier-Motzkin elimination step in (I.III) works for existentially quantified real-valued
variables (cf. [DE73], [KS08]). Given a clause C = Λ ‖ Γ → ∆ that contains a base-sort variable
x occurring in Λ but not in Γ → ∆, let z̄ denote the vector of all variables in Λ except for x.
Recall that C can be informally understood as ∀z̄∀x

((∧
Λ ∧

∧
Γ
)
→

∨
∆
)
. Since x does neither

occur in ∆ nor in Γ and since any formula φ → ψ is equivalent to ¬φ ∨ ψ, we can equivalently
write ∀z̄

((
(∃x

∧
Λ) ∧

∧
Γ
)
→

∨
∆
)
. Now Fourier-Motzkin variable elimination can be applied to

the part ∃x
∧
Λ to transform it into a formula

∧
Λ′ over linear arithmetic constraints (each of the

form c ⊳ d or y ⊳ e) so that
∧
Λ′ is equivalent to ∃x

∧
Λ with respect to the standard semantics

of linear arithmetic, Λ′ does not contain x anymore and all variables and constant symbols in Λ′

have already occurred in Λ (cf. [DE73]).
Treating all base-sort variables that occur in Λ but not in Γ → ∆ as described above, we finally

obtain a clause Λ′′ ‖ Γ → ∆ that is equivalent to Λ ‖ Γ → ∆ and is in normal form.

Ad (b): The construction of clause set N ′′ done in Step (V) resembles |vars(N ′)∩VR| consecutive
applications of Lemma 13 to the base-sort variables x1, . . . , xk followed by |vars(N ′)∩ VS | consec-
utive applications of Corollary 16 to the free-sort variables u1, . . . , uℓ in order to instantiate all
variables that occur in N ′.

For an arbitrary clause C in N ′ we have
fconsts

(
C
[
x̄
/
c̄
][
u1

/
d1
]
. . .

[
uj

/
dj
])

⊆ fconsts(N ′) for every j, 0 ≤ j ≤ ℓ. Hence, Corollary 16

entails equisatisfiability of N ′′ ∪ Ax and the intermediate set N ′′′ ∪ Ax where N ′′′ :=
{
C
[
x̄
/
c̄
] ∣∣

C ∈ N ′ and {x1, . . . , xk} = vars(C) ∩ VR and ci ∈ IapN′(xi),N ′ for all i
}
.

It remains to show equisatisfiability of N ′ and N ′′′ ∪ Ax. In order to do so, we first reduce
the problem to showing equisatisfiability of N ′ ∪ Ax and N ′′′ ∪ Ax: If N ′ is satisfiable, then so is
N ′ ∪ Ax by Proposition 10, since N ′ does not contain constant symbols from Ωα

LA. Conversely,
N ′ is obviously satisfiable whenever N ′ ∪ Ax is.

Let x1, . . . , xk be a list of pairwise distinct base-sort variables such that {x1, . . . , xk} :=
vars(N ′) ∩ VR = vars(N ′ ∪ Ax) ∩ VR. We set N ′

0 := N ′ and for every j, 1 ≤ j ≤ k, we de-
fine

N ′
j :=

{
C
[
xj

/
cj
] ∣∣ C ∈ N ′

j−1 and cj ∈ IapN′(xj),N ′

}
.

As the x1, . . . , xk are pairwise distinct and since the involved substitution operations only
substitute variables with constant symbols, we can equivalently write

N ′
j =

{
C
[
x1

/
c1
]
. . .

[
xj

/
cj
] ∣∣ C ∈ N ′ and ci ∈ IapN′(xi),N ′ and 1 ≤ i ≤ j

}

for every j, 1 ≤ j ≤ k. Variable disjointness of the clauses in N ′ entails N ′
k = N ′′′, since in this

case the iterative substitution in the construction of N ′
k yields the same result as simultaneous

substitution in the construction of N ′′′ does.
Consider the sequenceN ′

0, N
′
1, . . . , N

′
k of clause sets, for which we knowN ′

0 = N ′ andN ′
k = N ′′′.

If we rename the variables in each set in the sequence such that the clauses are variable disjoint,
we can apply Lemma 13 k times to conclude equisatisfiability of N ′

0 ∪ Ax, N ′
1 ∪ Ax and so on
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up to N ′
k ∪ Ax. To support this claim, we need to show that the prerequisites of Lemma 13 are

fulfilled along the sequence. They certainly are for the starting point N ′
0 ∪ Ax, since we assume

N ′ to be in normal form and to not contain constant symbols αt. For the rest of the sequence, we
invoke Lemma 14, since it ensures ⇌N ′

0∪Ax = . . . = ⇌N ′
k
∪Ax and I[〈P,i〉],N ′

0
= . . . = I[〈P,i〉],N ′

k
for

all equivalence classes [〈P, i〉] induced by ⇌N ′
0∪Ax.

The following observations justify why it is legitimate for the algorithm described in steps (I)
to (VII) to mostly ignore the axioms in Ax.

(b.1) ⇌N ′ = ⇌N ′∪Ax, because the relation ⇌N ′∪Ax exclusively depends on the free parts of
clauses in N ′ ∪Ax, but the clauses in Ax do not have free parts.

(b.2) bconsts(N ′)=bconsts(N ′∪Ax), since the definition of Ax entails bconsts(Ax) ⊆ bconsts(N ′).

(b.3) fconsts(N ′) = fconsts(N ′∪Ax) holds because clauses in Ax do not contain constant symbols
of the free sort.

(b.4) I[〈P,i〉],N ′ = I[〈P,i〉],N ′∪Ax, since only atomic constraints that involve one base-sort variable
contribute to the set of instantiation points, but Ax is a set of ground clauses.

Altogether, the iterative application of Lemma 13 shows that N ′∪Ax has a hierarchic model if
and only ifN ′′′∪Ax has one. But as we have already argued above, this entails the equisatisfiability
of N ′ and N ′′′ ∪ Ax and even N ′′ ∪ Ax.

This finishes our considerations regarding the correctness of the presented algorithm. Next, we
investigate its running time. In order to do so, we take a look at every step individually. (I): While
the substitution operations in Step (I.I) take a total amount of time that is polynomial in len(N),
the length of the clause set does not grow. The second step, however, may blow up the length of
the clause set exponentially. Every clause Λ ‖ Γ → ∆ might be copied up to 2|Λ| times, since Λ
can contain at most |Λ| constraints of the form xj 6= cj . Hence, Step (I.II) increases the length of
the clause set to not more than len(N) ·2len(N) and in the worst case takes time polynomial in that
new length. Given a multiset Λ of atomic constraints, in which variables x1, . . . , xk ∈ vars(Λ) are
supposed to be eliminated one after another by the Fourier-Motzkin procedure, we can partition Λ
into k+1 parts Λ0,Λ1, . . . ,Λk so that for all i > 0 the part Λi contains all atomic constraints that
involve xi and only those, and Λ0 := Λ \ (Λ1 ∪ . . . ∪ Λk). It turns out that eliminating a variable

xi from Λ results in a multiset (Λ \ Λi) ∪ Λ̂i where |Λ̂i| is at most |Λi|2. Hence, after eliminating
all xi, we end up with a multiset of atomic constraints of size |Λ0| + |Λ1|2 + . . . + |Λk|2 ≤ |Λ|2.
Consequently, Step (I.II) may increase the length of the clause set at most quadratically. The
time taken for this step is polynomial in that new length. Overall, we end up with a length of at
most len(N)2 · 22·len(N) ≤ len(N)3·len(N) for N ′ (recall that we assumed len(N) ≥ 2).

(II): This step can be performed in time that is polynomial in the length of N ′ using an efficient
union-find data structure.

(III): The computation of bconsts(N ′) and the collection of all relevant instantiation points takes
time polynomial in the length of N ′. The set of instantiation points for any base-sort variable
is a subset of bconsts(N ′) ∪ {αd+ε | d ∈ bconsts(N ′)} ∪ {α−∞}. It is worthwhile to note that
Steps (I.I) to (I.III) do not lead to a change in the number of instantiation points, since they only
modify atomic constraints that do not contribute to instantiation points. The reason is that the
variables x1, . . . , xk addressed in Step (I) do not occur in the free parts of the modified clause. For
every argument position pair 〈P, i〉, there are at most len(N) instantiation points, as every atomic
constraint y ⊳ c in N can induce at most one instantiation point (either c of αc+ε). To account for
α−∞: if there is a base-sort variable y to be instantiated in N ′ at all, then N ′ must also contain a
free atom Q(. . . , y, . . .) which did already occur in N , and which thus also contributes to the length
of N . In addition, we have bconsts(N ′) ⊆ bconsts(N), leading to |bconsts(N ′)| ≤ len(N). The
construction of the required axiom set Ax can be done in polynomial time in len(N ′) + len(Ax),
where we can bound the length of the axiom set from above by 2 · 2 · len(N) + 2 · 4 · len(N)2 ≤
10 · len(N)2.
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(IV): The extraction of fconsts(N ′) does not take longer than polynomial time in the length of
N ′.

(V): At first, we consider each clause C = Λ ‖ Γ → ∆ in N ′ separately. Since |fconsts(N ′)| is upper
bounded by len(N) (every free-sort constant symbol in N ′ did already occur in N), instantiation
of the free-sort variables yields a factor of at most len(N)|vars(Γ→∆)∩VS |. We have already argued
– when looking at Step (III) – that the number of instantiations points for each base-sort variable
is bounded from above by len(N). Hence, instantiation of all base-sort variables in the clause
adds a factor of at most len(N)|vars(Γ→∆)∩VR|. There are at most len(Γ → ∆) different variables
in C that need to be instantiated, and as Γ → ∆ did already occur in N (modulo variable
renaming), we have len(Γ → ∆) ≤ len(N). When instantiating a clause, the constraint part
may increase in length, namely by at most double the number of instantiated variables. In the
worst case, we thus get triple the length of the original, e.g. in case of instantiating the clause
‖ → P (x) with the default instantiation point α−∞ we obtain x = α−∞ ‖ → P (x). In total,
instantiating a single clause C = Λ ‖ Γ → ∆ taken from N ′ leads to a clause set of length at most
3 · len(C) · len(N)len(Γ→∆). Consequently, we can upper bound the length of the fully instantiated
clause set N ′′ by 3 · len(N ′) · len(N)len(N) ≤ 3 · len(N)4·len(N). Instantiating the set of clauses
needs only time that is bounded by some polynomial in len(N ′′).

(VI): The construction of A can be done nondeterministically in time that is bounded from above
by some polynomial in the length of N ′′.

(VII): The check whether A satisfies N ′′ ∪Ax can be performed in a deterministic fashion in time
polynomial in the length of N ′′ ∪Ax.

Taking all the above results into account, we can upper bound the running time of the algo-
rithm by some polynomial in len(N)4·len(N). Hence, there is some constant c ≥ 4 such that the
nondeterministic running time lies in O

(
len(N)c·len(N)

)
. Consequently, the problem of deciding

whether a finite clause set N is satisfiable, lies in NEXPTIME.

NEXPTIME-completeness of satisfiablilty for the Bernays-Schönfinkel-Ramsey fragment of
first-order logic without equality (cf. [Lew80]) immediately yields NEXPTIME-hardness of satis-
fiability for finite clause sets over the BSR fragment with simple bounds. Together with Theorem
17 we thus obtain NEXPTIME-completeness of the problem.

Corollary 18. The problem of deciding satisfiability w.r.t. M of finite clause sets over the BSR
fragment with simple bounds is NEXPTIME-complete.

6 Beyond Simple Bounds

In this section we long to answer the question how simple our constraints have to be. The most
complex atomic constraints we have allowed by now are of the form x⊳ c. Being able to cope with
this kind, we can leverage the idea of flattening to deal with more complicated constraints such
as 3x+ c < 1. The basic idea rests on two steps:

(I) Transform this constraint into the equivalent x < 1− 1
3c.

(II) Introduce a fresh Skolem constant b, transform the constraint into x < b and add a defining
clause Cb expressing b = 1− 1

3c to the clause set.

These two steps already indicate that this technique is restricted to atomic constraints that are
either ground or univariate and linear, and in which the standard operations addition, subtraction,
multiplication and division on the reals may be involved. But we may even allow free function
symbols g : ξ1 × . . .× ξm → ξ with ξ1, . . . , ξm, ξ ∈ {R,S}, as long as all subterms occurring below
g are ground.

The key insight at this point is that complex ground terms s can be replaced by fresh constant
symbols bs of the corresponding sort, if we add a defining clause Cbs that identifies bs with s (a
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technique called basification in [KW12]) – see below for details. Of course, the replacement of s
must be done consistently throughout the clause set. Consequently, we can extend the syntax of
clauses so that more complex terms are admitted.

Definition 19 (BSR Clause Fragment with Ground LA Bounds). Let Ω′ collect nonconstant
free function symbols equipped with sorting information. An atomic constraint is of the form
s ⊳ s′ with ⊳ ∈ {<,≤,=, 6=,≥, >} and well-sorted base-sort terms s, s′ over symbols in ΩLA∪
{+,−, ·, /} ∪ Ω ∪ Ω′ in which every subterm g(s1, . . . , sm) with g ∈ Ω′ is ground and where s ⊳ s′

contains at most one occurrence of a base-sort variable and no free-sort variables. A free atom A
is either of the form s ≈ s′ with s, s′ being either free-sort variables or well-sorted ground terms of
the free sort over function symbols in ΩLA∪{+,−, ·, /}∪Ω∪Ω′, or A is of the form P (s1, . . . , sm),
where P : ξ1 × . . .× ξm ∈ Π and for each i ≤ m the term si is of sort ξi. If ξi = R, then si is a
base-sort variable, and if ξi = S, then si is either a free-sort variable or a ground free-sort term
over function symbols in ΩLA ∪ {+,−, ·, /} ∪ Ω ∪ Ω′.

As we have already sketched, we can easily transform a clause set N that contains clauses over
the extended syntax into an equisatisfiable set N1 ∪N2 so that N1 contains clauses according to
Definition 1 only and all clauses in N2 are of the form bs 6= s ‖ → � or ‖ → bs ≈ s. Clearly, we can
proceed with N1 according to Steps (I) to (V) of the algorithm given in the proof of Theorem 17
and thus obtain the essentially ground clause set N ′′

1 that is equisatisfiable to N1 and a set Ax of
axioms. The construction of a hierarchic interpretation A for N ′′

1 in Step (VI) can be modified so
that it results in an interpretation that also covers all function symbols that occur in N2 but not in
N1. Checking whether A is a hierarchic model of N ′′

1 ∪Ax∪N2 can be done easily. Consequently,
the hierarchic satisfiability problem for clause sets over the extension of the BSR fragment with
ground LA bounds is decidable, too.

7 Undecidable Fragments

So far we have described decidable fragments of first-order logic modulo linear arithmetic. In
[FW12] it has been shown that already the Bernays-Schönfinkel-Horn (BSH) fragment with ad-
dition and subtraction on the reals is undecidable. In the current section we describe more fine-
grained undecidable fragments. As it turns out, two-counter machines – of which the halting
problem has been proven to be undecidable in [Min67] – can be encoded exclusively using very
restricted syntax on the constraint part, such as difference constraints x−y⊳c, additive constraints
x+ y ⊳ c, quotient constraints x ⊳ c · y (which could equivalently be written x

y
⊳ c, hence the name)

or multiplicative constraints x · y ⊳ c. Even more restrictive, in the case of difference constraints
and quotient constraints only a single base-sort constant symbol is necessary. In case of quotient
and multiplicative constraints, lower and upper bounds on the used variables do not lead to a
decidable fragment – which would be the case if we were using variables over the integers.

Difference constraints We use the predicate symbol M : S ×R×R×R to address the state
of the machine as follows: M(u, x, y, z) stands for a machine at instruction u with counter values
i1 = x − z − 1 and i2 = y − z − 1, where the last argument z keeps track of an offset relative to
which x and y store the values of the counters. Following this principle, the increment instruction
for the first counter i1 is encoded by the clause x′ − x = 1 ‖ M(b, x, y, z) → M(b′, x′, y, z), which
leaves the offset untouched. The offset is an appropriate tool that allows us to have a uniform
syntactic structure for all atomic constraints. It is due to the offset encoding that we can easily use
a difference constraint when checking whether a counter is zero or not. The conditional decrement
instruction is split up in two clauses: the zero case x − z = 1 ‖ M(b, x, y, z) → M(b′, x, y, z) and
the non-zero case x − z > 1, y′ − y = 1, z′ − z = 1 ‖ M(b, x, y, z) → M(b′, x′, y, z′). Hence, by
undecidability of the halting problem for two-counter machines, we may conclude that satisfiability
for the BSH fragment with difference constraints (requiring only the constant 1 besides the input)
and a single free 4-ary predicate symbol is undecidable, too.
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Quotient constraints Encoding two-counter machines in the BSH fragment with quotient con-
straints works very similar. We only need to change the representation of counter values in a state
M(u, x, y, z) as follows: i1 = − log2(

2x
z
) = − log2(x) + log2(z) − 1 and i2 = − log2(

2y
z
). In-

crementing the first counter is encoded by 2 · x′ = x ‖ M(b, x, y, z) → M(b′, x′, y, z), and the
conditional decrement instruction is represented by 2 · x = z ‖ M(b, x, y, z) → M(b′, x, y, z) and
2 · x < z, 2 · y′ = y, 2 · z′ = z ‖M(b, x, y, z) →M(b′, x, y′, z′). Analogous to the case of difference
constraints, we may now show undecidability of the satisfiability problem for the BSH fragment
with quotient constraints (requiring only the constant 2) and a single free 4-ary predicate sym-
bol is undecidable. We have chosen negative exponents for the encoding of the counter values,
since this guarantees that the range of the base-sort variables is bounded from below and above.
Thus, we could restrict all base-sort variables to values within (0, 1] (by adding appropriate atomic
constraints to every clause), and still end up with an undecidable satisfiability problem.

Additive constraints Having additive constraints of the form x+y⊳c at hand, we can simulate
subtraction by defining the additive inverse using a constraint x+x− = 0. To keep track of inverses,
we adjust the arity of M accordingly. Counter values are represented in the same way as we have
done for difference constraints. The increment instruction for the first counter is thus encoded
by x′ + x− = 1, x′ + x′− = 0 ‖ M(b, x, x−, y, y−, z, z−) → M(b′, x′, x′−, y, y−, z, z−). It is now
straightforward to come up with the encoding of the conditional decrement. Hence, satisfiability
of the BSH fragment with additive constraints and a single free predicate symbol of arity 7 is
undecidable. However, this time we need two constants, namely 1 and 0.

Multiplicative constraints In order to complete the picture, we shortly leave the realm of
linear arithmetic and consider multiplicative constraints of the form x · y ⊳ c. These relate to
quotient constraints as additive constraints relate to difference constraints. Hence, combining
the previously used ideas of offsets and inverses, we can encode two-counter machines also with
multiplicative constraints:
x · x′−1 = 2, x′ · x′−1 = 1 ‖ M(b, x, x−1, y, y−1, z, z−1) → M(b′, x′, x′−1, y, y−1, z, z−1) encodes the
increment instruction on the first counter, for instance. As in the case of quotient constraints, we
could restrict the range of base-sort variables to (0, 1] by suitable constraints. Consequently, this
leads to another fragment of which the satisfiability problem is undecidable.

8 Conclusion and Future Work

Our main contribution is a proof showing that satisfiability of the BSR fragment equipped with
simple bounds on real arguments is decidable. The key argument describes a satisfiability preserv-
ing replacement of universally quantified clauses by finitely many instances which are in essence
variable free. The analysis of a näıve decision procedure proves that satisfiability of this fragment
is NEXPTIME-complete. The complexity result is of particular interest, since satisfiability of the
Bernays-Schönfinkel fragment has already been known to be NEXPTIME-complete for more than
three decades [Lew80].

Our approach to proving decidability has been tailored to be well-suited for an integration into
reasoning procedures that perform efficiently on practically relevant problem instances. This in
particular applies to the way we handle the real-sorted part of clauses. For the free parts we could
have adopted more fine-grained techniques inspired by the ones we used for the real-sorted part.
However, we did not do so for the sake of simplicity and brevity.

It turned out that we leave the realm of decidability as soon as we add elementary operations
◦ on the reals to our constraint language, even if we restrict the free part to Horn clauses over
the Bernays-Schönfinkel fragment. Constraints of the form x ◦ y ⊳ c are sufficient to obtain an
undecidable fragment, where ◦ can stand for addition, subtraction, multiplication and division, ⊳
represents standard relations <,≤,=, 6=,≥, >, and c is a real-valued constant. This observation
nicely complements our main result, since it quite clearly highlights the limits of decidability in
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this context. Moreover, it reveals some interplay between real-sorted constraints and the free first-
order part. For instance, difference logic (boolean combinations of propositional variables and
existentially quantified constraints x− y ⊳ c with c being a real-valued constant and ⊳ ∈ {<,≤}) is
known to be decidable [MNAM02]. However, we have seen in Section 7 that its combination with
the Bernays-Schönfinkel-Horn fragment is sufficient to formalize two-counter machines.

Although the obvious options for further extending the constraint language lead to undecid-
ability there might still be room for improvement. We leave it as future work to investigate the
BSR fragment with simple bounds plus constraints of the form x ⊳ y with x, y being real-valued
variables and ⊳ ∈ {<,≤,=, 6=,≥, >}. On the other hand, it is conceivable to combine other de-
cidable free first-order fragments with simple bounds, preferably ones satisfying the finite model
property such as the monadic fragment. As we have already pointed out, a natural next step
for us will be to devise useful decision procedures for the BSR fragment with simple bounds that
perform well in practice.
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[Rüm08] Philipp Rümmer. A constraint sequent calculus for first-order logic with linear integer
arithmetic. In Iliano Cervesato, Helmut Veith, and Andrei Voronkov, editors, LPAR,
volume 5330 of LNCS, pages 274–289. Springer, 2008. (Cited on page 2.)

25


	1 Introduction
	2 Basic Definitions
	3 Instantiation of Base-Sort Variables
	4 Instantiation of Free-Sort Variables
	5 The Complexity of Deciding Satisfiability
	6 Beyond Simple Bounds
	7 Undecidable Fragments
	8 Conclusion and Future Work

