Eur. J. Org. Chem. 2014 · © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2014 · ISSN 1099-0690

SUPPORTING INFORMATION

DOI: 10.1002/ejoc.201403269

Title: Functionalization of the *meso*-Phenyl Ring of Rhodamine Dyes Through S_NAr with Sulfur Nucleophiles: Synthesis, Biophysical Characterizations, and Comprehensive NMR Analysis **Author(s)**: Gyuzel Yu. Mitronova,* Svetlana Polyakova, Christian A. Wurm, Kirill Kolmakov, Thomas Wolfram, Dirk N. H. Meineke, Vladimir N. Belov,* Michael John,* Stefan W. Hell

Functionalization of meso-Phenyl Ring of Red-emitting Rhodamine Dyes through S_NAr with Sulfur Nucleophiles: Synthesis, Biophysical Characterizations and Comprehensive NMR analysis

Gyuzel Yu. Mitronova,^{*[a]} Svetlana Polyakova,^[a] Christian A. Wurm,^[a] Kirill Kolmakov,^[a] Thomas Wolfram,^[a] Dirk N. H. Meineke,^[a] Vladimir N. Belov,^{*[a]} Michael John,^{*[b]} and Stefan W. Hell^[a]

[a] Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany Fax : +49 551 2012505 E-mail: gmitron@gwdg.dei_vbelov@gwdg.de http://www.mpibpc.mpg.de/de/hell
[b] Institute for Inorganic Chemistry, Georg August University Tammannstrasse 4, 37077 Göttingen, Germany Fax : +49 551 2012505 E-mail: mjohn@gwdg.de

Supporting Information

Figure S1. Comparison of the imaging performance of antibody conjugates obtained from fluorescent dye 5-H (Abberior Star 600) and Alexa Fluor® 594. To compare the imaging performance of the conjugates, subunits of the nuclear pore complexes were labeled by indirect immunofluorescence staining. Then confocal (left) and STED images (right) of the samples were recorded. The performance of the dyes under conventional an STED microscopy conditions were similar. The optical resolutions were found to be ~55 nm for compound 5-H and Alexa Fluor® 594, under the applied imaging parameters.

Figure S2. Spectral crosstalk and specificity of the labeling. (A) To analyze the spectral crosstalk of the dyes used for twocolor nanoscopy, subunits of the nuclear pore complexes were labeled with the reference fluorescent dye KK114 (top) and Abberior StarTM 600 (compound **5**-NHS in Scheme 1) by indirect immunofluorescence staining (see main text for details). The color table was kept constant for the individual color channels. Very low crosstalk was detected. (B) Note that in addition to the specific nuclear pore complex labeling, *both* dyes show some incorporation into vesicles and membrane bound cell organelles. In order to minimize the unspecific binding, the structure of KK114 dye was decorated with two sulfonic acid residues (see references 6a, 8d, 12, and 18 in the main text). Many applications of KK114 dye showed that it provides fluorescent images with negligible background (see references 24 in the main text). Therefore, it is not surprising that in the case of KK114 dye, this effect is less pronounced than for Abberior StarTM 600 dye.

Table S1. Degrees of labeling (DOL) of antibody conjugates used in immunofluorescence

Conjugates	DOL		
Star 600 Goat anti-Rabbit IgG	3.4 (fluorescence quantum yield		
	33%)		
KK 114 Goat anti-Rabbit IgG	2.6		
Star 600 Sheep anti-Mouse IgG	9.7 (fluorescence quantum yield		
	20%)		
KK 114 Sheep anti-Mouse IgG	5.2		
Alexa Fluor [®] 594 Sheep anti-Mouse IgG	1.7		

Table S2. Structures of rhodamine derivatives of the present study. In some cases (if Z = O), the equilibrium between the "closed" (lactone) and "open" (zwitterionic) forms may take place (see footnotes to table).

$R^{4} R^{5} R^{5} R^{4}$ $R^{3} N + O + N^{2} R^{3}$ $R^{2} + P^{2} + R^{2}$ $R^{2} + P^{2} + R^{2}$ $R^{2} + P^{2} + R^{2}$ $R^{3} + R^{3} + R^{3} + R^{3}$ $R^{2} + R^{2} + R^{2}$ $R^{3} + R^{3} + R^{3} + R^{3} + R^{3}$ $R^{2} + R^{3} $							
Compound	\mathbf{R}^1	a R ²	R ³	ы R ⁴	R ⁵	v	7
6	COOH	<u>к</u> Н	H	CE CH	H	<u>н</u>	0
7	COOH	Н	Н	CF ₃ CH ₂	SO ₂ H	н	0
8	COOH	F	Н	CF ₂ CH ₂	SO ₂ H	Н	Ő
9	COOCH ₃	Н	Н	CF ₃ CH ₂	H	Н	Ō
13	COOCH ₂ CH ₃	$-C(CH_3) =$	CH-C(CH ₃) ₂ -	CH ₃	Н	Н	0
14	COOCH ₂ CH ₃	-C(CH ₂ SO ₃ H	I)=CH-C(CH ₃) ₂ -	CH ₃	Н	Н	Ο
15	COOH	-C(CH ₃ OH)	=CH-C(CH ₃) ₂ -	-(CH ₂))3-	Н	Ο
16	COOCH ₂ CH ₃	-C(CH ₃ OH)	=CH-C(CH ₃) ₂ -	-(CH ₂)) ₃ -	Н	Ο
17	SCH ₂ COOH	$-C(CH_3) =$	CH-C(CH ₃) ₂ -	CH ₃	Н	F	Ο
18	SCH ₂ COOCH ₂ CH ₃	-C(CH ₂ SO ₃ H	I)=CH-C(CH ₃) ₂ -	-(CH ₂))3-	F	OAll ^[a]
19	2×SCH ₂ COOCH ₂ CH ₃ ^[b]	-C(CH ₂ SO ₃ H	I)=CH-C(CH ₃) ₂ -	-(CH ₂))3-	F	OAll ^[a]
20	SCH ₂ COOCH ₂ CH ₃	-C(CH ₂ SO ₃ CH	H ₃)=CH-C(CH ₃) ₂ -	-(CH ₂))3-	F	OAll ^[a]
21	$S(CH_2)_2SO_3H$	$-C(CH_2OH)$	=CH-C(CH ₃) ₂ -	-(CH ₂))3-	F	Ο
22	SCH ₂ COOCH ₂ CH ₃	-(0	CH ₂) ₃ -	-(CH ₂))3-	F	О
23	NMe(CH ₂) ₂ OH	-(0	CH ₂) ₃ -	-(CH ₂))3-	F	Ο
24	NMe(CH ₂) ₂ CO ₂ CH ₃	-(0	CH ₂) ₃ -	-(CH ₂))3-	F	0
25	NMe(CH ₂) ₂ CO ₂ H	-(0	CH ₂) ₃ -	-(CH ₂))3-	F	О
26	F	-C(CH ₂ SO ₃ H	I)=CH-C(CH ₃) ₂ -	-(CH ₂))3-	F	NMe(CH ₂) ₂ CO ₂ H ^[a]
[a] allyl esters ($Z = OAll$) and amides ($Z = NR_2$) exist only in the "open" form (b); [b] disubstituted compound.							

Table S3. Chemical shifts (δ , ppm) and coupling constants (J, Hz) of aromatic protons H-4'–H-7' in compounds 6-9, 13-16.

	•		-	
Compound,	H-4´ (J)	H-5´(J)	H-6´ (J)	H-7´ (J)
solvent				
6 (5')	7.76 dd	-	7.62 dd	6.64 dd
[D ₆]DMSO-	(1.5, 0.7)		(8.0, 1.5)	(8.0, 0.7)
6 (6´)	7.82 d (7.9)		-	7.53 s
[D ₆]DMSO-	8.12 d (7.9)			
7 (5′)	8.63 br. s	-	8.34 dd	7.58 d
[D ₆]DMSO-			(8.0, 1.6)	(8.0)
7 (6´)	8.40-8.49 m		-	8.08 d
[D ₄]methanol				(0.9)
8 (5´)	8.44 s	-	8.14 d	7.56 d
[D ₆]DMSO-			(8.0)	(8.0)
8 (6´)	8.26 -	8.34 m	-	7.84 s
[D ₆]DMSO-				
9 (5´)	8.87 dd	-	8.39 dd	7.52 d
[D ₄]methanol	(1.8, 1.3)		(8.0, 1.8)	(8.0)
9 (6´)	8.35 – 8.42 m		-	7.98 d
[D ₄]methanol				(1.0)
13 (5')	8.72 d	-	8.27 dd	7.23 d
[D ₄]methanol	(1.5, 0.7)		(8.0, 1.5)	(8.0)
13 (6')	8.10 d	8.23 dd	-	7.78 dd
[D ₄]methanol	(8.0)	(8.0, 1.4)		(1.4, 0.7)
14 (5')	8.85 d	-	8.42 d	7.52 d
[D ₄]methanol	(1.3)		(8.0)	(8.0)
14 (6´)	8.32-8.35 m		-	7.97 d
[D ₄]methanol				(1.4)
15 (5')	8.71 s	-	8.14 d	7.23 d
[D ₄]methanol			(7.7)	(7.7)
15 (6')	8.31-8.33 m		-	7.91 br. s
[D ₃]acetonitrile				
16 (5')	8.70 d	-	8.19 dd	7.35 d
[D ₄]methanol	(1.7)		(8.0, 1.7)	(8.0)
16 (6')	8.10 d	8.23 dd	-	7.88 d
[D ₄]methanol	(8.1)	(8.1, 1.7)		(1.7)

Table S4. ¹⁹F NMR data of red emitting rhodamines **5**, **17-27**.^[a]

<u> </u>	E 44 (D	F 74 (1)	F 54 (D	F (1 ())	
Compound,	F-4(J)	F-7(J)	F-5(J)	F-0 (J)	
5 Julie	141.0.11	100.0.1/12.5)	104.5.1		
5-H ¹⁻¹	-141.8 dd	-108.8 d (13.5)	-124.5 d		
[D ₆]DMSO	(20.0, 13.5)		(20.0)		
17	-143.4 dd	-112.4 d	-125.8 dd	-	
[D ₆]DMSO	(25.5, 17.3)	(17.3)	(25.5, 3.6)		
18	-140.16 dd	-107.7 dd	-124.1 dd	-	
[D ₄]methanol	(23.0, 14.2)	(14.2, 3.8)	(23.0,3.8)		
19	-107	.0 (15.5)	-	—	
[D ₄]methanol	-107	.5 (15.5)			
20	-137.5 dd	-108.2 dd	-125.5 dd	-	
[D ₆]acetone	(23.0, 13.9)	(13.9, 3.6)	(23.0, 3.6)		
21	-142.7 m	-109.4 dd	-125.1 dd	-	
CDCl ₃		(15.2)	(22.5)		
22	-144.8 dd	-110.3 d	-126.8 dd	-	
[D ₄]methanol	(24.4, 14.6)	(14.6)	(24.4, 2.0)		
23	-144.8 dd	-125.0 m	-143.1 dd	-	
[D ₄]methanol	(20.5, 12.3)		(20.5, 5.3)		
24	-144.9 dd	-125.1 dd	-142.8 dd	-	
[D ₄]methanol	(23, 14)	(14, 8)	(23, 8)		
25	-144.7 m	-125.0 m	-142.2 d	_	
[D ₄]methanol			(20.7)		
26	-136.0 m		-150.8 ddd (22.2, 21.2. 5.8)		
D_2O	-138.7 ddd		-149.3 ddd (22.2, 21.2, 5.8)		
(22.2, 11.3, 5.8)					
27	-138.1 m ^[c]	- 138.2 m ^[c]	-152.7 m	-151.1 dd	
[D ₄]methanol				(18.9, 4.4)	
				(,	

[a] Chemical shifts are given in ppm, coupling constants (J) in Hz; [b] second set of signals of lower intensity was observed ; [c] overlapping multiplets.

Figure S3. Diagnositic regions of the ¹H NMR spectra of the two isomers of compound **11** in CDCl₃. a) 5⁻-isomer with the signals of H-7⁻, H-6⁻ and H-4⁻, and b) 6⁻-isomer with the signals of H-7⁻, H-4⁻ and H-5⁻.

Figure S4. Aromatic regions of the 2D NOESY spectra of the two isomers of 11 in CDCl₃. a) 5' isomer; b) 6' isomer.

Figure S5. ¹H, ¹⁹F-HOESY spectrum of a) compound **1**, b) compound **2**, c) compound **27**, d) compound **28**, e) compound **4**.

Figure S6a. ¹H, ¹H-NOESY spectrum of the compound **28**.

Figure S6b. ¹H, ¹H-NOESY spectrum of the compound **29**

Figure S7a. ¹H,¹³C-HMBC spectrum of the compound **28**

Figure S7b. ¹H,¹³C-HMBC spectrum of the compound **29**

Figure S8. ¹H, ¹³C NMR spectra and IR spectra

FT-IR compound 28

¹H NMR of compound 29

