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Abstract

The common graph Laplacian regularizer is established in semi-supervised
learning and spectral dimensionality reduction. However, as a first-order reg-
ularizer, it can lead to degenerate functions in high-dimensional manifolds.
The iterated graph Laplacian enables high-order regularization, but it has
a high computational complexity and so cannot be applied to large prob-
lems. We introduce a new regularizer which is globally high order and so
does not suffer from the degeneracy of the graph Laplacian regularizer, but
is also sparse for efficient computation in semi-supervised learning applica-
tions. We reduce computational complexity by building a local first-order
approximation of the manifold as a surrogate geometry, and construct our
high-order regularizer based on local derivative evaluations therein. Experi-
ments on human body shape and pose analysis demonstrate the effectiveness
and efficiency of our method.
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Local High-order Regularization on Data Manifolds

Abstract

The common graph Laplacian regularizer is established
in semi-supervised learning and spectral dimensionality re-
duction. However, as a first-order regularizer, it can lead
to degenerate functions in high-dimensional manifolds. The
iterated graph Laplacian enables high-order regularization,
but it has a high computational complexity and so cannot be
applied to large problems. We introduce a new regularizer
which is globally high order and so does not suffer from the
degeneracy of the graph Laplacian regularizer, but is also
sparse for efficient computation in semi-supervised learning
applications. We reduce computational complexity by build-
ing a local first-order approximation of the manifold as a sur-
rogate geometry, and construct our high-order regularizer
based on local derivative evaluations therein. Experiments
on human body shape and pose analysis demonstrate the
effectiveness and efficiency of our method.

1. Introduction

The graph Laplacian regularizer is established as one
of the most popular regularizers for semi-supervised learn-
ing [5], spectral clustering [20, 14], and dimensionality re-
duction [3]. The underlying assumption for using the graph
Laplacian regularizer is that data lie on a low-dimensional
sub-manifold, and the object (e.g., a function) of interest
should be regularized as defined on the manifold rather than
as defined on the entire ambient space. By measuring local
pairwise deviations of the function values in the ambient
space, the graph Laplacian regularizer approximates the first-
order variations on the manifold, thereby enabling us to reg-
ularize the function based on its first-order energy without
having to know the manifold analytically.

Despite its solid theoretical background [4, 10] and suc-
cess in many applications, the graph Laplacian regularizer
has an important shortcoming that makes its usage less fa-
vorable on data lying in high-dimensional manifolds: as we
will discuss, as a first-order regularizer, the null space of the
graph Laplacian regularizer contains discontinuous functions
on manifolds with dimensionality larger than 2 [16, 24].

Recently, Zhou and Belkin [24] proposed an iterated
graph Laplacian approach that avoids this degeneracy and

enables regularization on high-dimensional manifolds. The
price for the non-degeneracy and the resulting simplicity of
the algorithm is high computational complexity: the iterated
graph Laplacian regularizer is constructed by taking powers
of the graph Laplacian matrix, which makes the original ma-
trix denser and, accordingly, for large-scale problems (e.g.,
0(100, 000)) it cannot be directly applied efficiently.

We propose an empirical regularizer which avoids degen-
eracy and leads to a sparse matrix. Our algorithm is based
on the local linear approximation of the manifold: At each
point, the corresponding neighborhood is projected onto
its tangent space, where the high-order derivatives of the
function are defined in this surrogate geometry. Instead of
explicitly calculating high-order derivatives and measuring
the corresponding complexity of the function, we measure
its reproducing kernel Hilbert space (RKHS) norm. Similar
to the graph Laplacian, its sparsity is explicitly controlled
based on the local neighborhood structure. We present ex-
perimental results on human body shape and pose datasets,
which show that our method is superior to graph Laplacian
and iterated graph Laplacian techniques in terms of accuracy
and computational complexity.

2. Problem statement

While our proposed regularizer can be used in clustering
and dimensionality reduction, as with the graph Laplacian
and iterated graph Laplacian regularizers, we focus on semi-
supervised learning which enables us to compare numeri-
cally the performance of each algorithm.

For a set of data points X = {X1,...,X,} C R” plus
the corresponding labels {Y7,...,Y;} C R for the first
points in X where [ < u, the goal of semi-supervised learn-
ing is to infer the labels of the remaining v — [ data points
in X. Our approach is based on regularized empirical risk
minimization:

l

argminZ(Yi — F(X))? + AR>S, (D)

fR*—>R i—1
where R(-) is the regularization functional. Here, we use
the standard squared loss function for simplicity, though
our framework is applicable to any convex loss function.
This problem can be solved either by reconstructing the
underlying function f or by identifying its evaluation f]|x



on X. In this paper, we focus on the second case, which is
often called transductive learning.

Most semi-supervised learning algorithms can be charac-
terized by how the unlabeled data points of X" are used to
construct a corresponding regularizer R(f|x). One of the
best established regularizers is the graph Laplacian L [14]:

u
Rp(f) :=f£TLE = > (Wi (f;
i,j=1
where f; = f(X;), £ := flx = [f1,..., fu] ", and W is
a non-negative input similarity matrix which is typically
defined based on a Gaussian:

- fi)? 2)

. 12
LR B

[Wlij = exp (— >

One way of justifying the use of the graph Laplacian
comes from its limit case behavior as u — oo and b — 0:
When the data X is generated from an underlying manifold
M with dimension m < n, i.e., the corresponding proba-
bility distribution P has support in M, the graph Laplacian
converges to the Laplace-Beltrami operator A on M [4, 10].
The Laplace-Beltrami operator can be used to measure the
first-order variations of a continuously differentiable func-
tion f on M:

12 = / FOOIAf|x]dV (2 / IV ]2V (X),

“
where g is the Riemannian metric, and dV is the corre-
sponding natural volume element [13] of M. The second
equality is the result of Stokes’ theorem. Accordingly, a
graph Laplacian-based regularizer R, can be regarded as
an empirical estimate of the first-order variation of f on M
based on X.

However, the convergence of the graph Laplacian L to
the Laplace-Beltrami operator A reveals an important short-
coming for it to be used as the standard regularizer for high-
dimensional data: For high-dimensional manifolds (m > 1),
the null space of A includes discontinuous functions on M.
This is suggested by the Sobolev embedding theorem that
states that, in general, any (semi-)norm induced by differen-
tial operators with order d < m /2 will have discontinuous
functions in its null space [18]. In particular, the norm || - || o
in Eq. 4 which measures the first-order variation has a null
space consisting only of continuous functions (in particular,
constant functions) when m = 1 only. For m > 1, the null
space of A contains some discontinuous functions as a sub-
set of L? space which are equivalent almost everywhere to
constant functions, except for the set of measure zero [7]. In
other words, there are “spiky” functions f, e.g., Dirac delta
functions, with norm || |3 = 0 (Fig. 1).

This is especially important in semi-supervised learn-
ing because we actively minimize the regularized risk of
attaining a zero value by such a function (Eq. 1). While

this has been well-known in statistics, its effect on semi-
supervised learning has only recently been analyzed by
Nadler et al. [16]. They showed that, in the limit case
(i.e., u — o0), where R, is used, indeed the null space
of the empirical risk functional (Eq. 1) includes a function f
which is zero everywhere except for the labeled data points
{X1,..., X}, where f agrees with the given labels, and no
generalization is obtained.

In practice, due to the finite number of data points u, the
learned function f (more precisely, its evaluation f on X)) is
not a Dirac delta function exactly, but is a very steep, sheer-
sided spike which peaks at the labeled data points (Fig. 1).
For discrete problems, e.g., classification, where only relative
values of f are relevant, it is possible to normalize the output
values based on the local distribution of f to soften such
peaks, as exemplified in [22]. However, this technique is not
applicable for learning continuous functions.

Zhou and Belkin [24] presented the first approach that
explicitly prevents this degenerate case in semi-supervised
learning. They proposed using powers of graph Laplacian
(or iterated graph Laplacian) as a regularizer:

Ripv(f) := f1 LPf, )

with p > 7. In the limit case as u — oo, LP converges to
AP, which corresponds to the penalizer of (selected) [£]-th
order variations in the context similar to Eq. 4 [24]:

1713, = /Mf(X)[N’flx]dV(X% ©)

which is infinite when f is discontinuous. The ability to reg-
ularize over higher-order derivatives avoids the degenerate
case of learning discontinuous functions.

One of the major limitations of iterated graph Laplacian is
that, due to the density of the resulting matrix LP, it cannot be
directly applied to large-scale problems. For a non-iterated
graph Laplacian, finding the minimizer of Eq. 1 with R,
requires building and solving a linear system of size u X w.
Even for large-scale problems (e.g., u ~ 10°), this is af-
fordable since the corresponding weight matrix W can be
well-approximated by a sparse matrix constructed from a
k-nearest neighbor (NN) graph. However, in general, iter-
ating L (taking powers L”) makes a sparse matrix denser.
This is especially true when p is large, which is required for
high-dimensional data, as suggested by the Sobolev embed-
ding theorem. For instance, with v = 50, 000, solving Eq. 1
with iterated graph Laplacian is 15x slower (Sec. 6) than
the Laplacian case.

3. Local high-order regularization

Our goal is to build a new regularizer that shares the de-
sirable properties of both penalizing discontinuous functions
with L? and being sparse in L for fast computation. To
achieve this goal, we build a global regularization matrix G
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Figure 1. Example on 2D data. Section 5 contains details of this toy example; the surface in the training data plot is to help with visualization
only, and no regularization has taken place. The Lap result largely fails to regularize, apart from points very near to the original training
data. These spikes can be seen in the zoom inlay. The result of i-Lap looks hyperbolic because its null space includes polynomials. In this
example, both i-Lap and LG are acceptable since they lead to smooth functions. Inspired by [24].

based on local regularizers evaluated at each point in X'.

First, we take a class of high-order manifold operators
as regularizers by adopting the regularization framework of
Yuille and Grzywacz [23]. These regularizers correspond to
generalizations of Eq. 4:!

1713 = / S alDHflcPAV(X), @)
M j—1

D f = AFf D¥*HLE = V(AR ®)

where ¢, > 0, |D?!f|? := (D?* f)2 for even cases, and
|DPHLf|2 .= g(D?k+1 f D2k+1 ) for odd cases.

For a known manifold with known metric and Christoffel
symbols [13], the derivative operators in Eq. 8 are easy to
calculate. However, in most practical applications, the mani-
fold is not directly observed but is only indirectly observed
as a point cloud of sampled data points X C R", where
M is a (m-dimensional) sub-manifold of R™. Accordingly,
direct calculation of Eq. 8 is infeasible.

A local first-order approximation Dy. We bypass this
problem by using a local first-order approximation 7'x (M)
of manifold M at each point X (Mx) in R" as a proxy ge-
ometry for M near X. Since T'x (M) is identified with R™,
evaluating the derivative operators in Eq. 8 on X boils down
to the calculation of the derivative operators in Euclidean
geometry. In particular, evaluating the Laplace-Beltrami
operator becomes the calculation of the Laplacian operator:

m
2 2
Diflx = Doflx =Y & flx. ©)
r=1
!As a special case, when ¢, = 1 and {cg }rzp = O, || - ||% becomes

|- ||2Ap (Eq. 6). In general, different choices of differential operators are
possible, e.g., Hessian, rather than the powers of A and V. This choice was
motivated by the demonstrated empirical success of the resulting regularizer
in many applications [23], and the computational efficiency as facilitated
by the use of the corresponding Gaussian RKHS as discussed in Sec. 4.

Subscript 0 denotes operators defined on the proxy geometry,
where Ag[-]|x is the Laplacian defined at T'x (M). Prac-
tically, the dimension of m is unknown and so is a hyper-
parameter.

With a manifold approximation, the next step is to con-
struct approximations of Eq. 8 and Eq. 9 given X and f|x.
Suppose that for each data point X;, the corresponding k£-NN
Nj(X;) C X are identified. First, we estimate the first-order
approximation T'x, (M) by performing principal component
analysis on Nj(X;) [0]: The representations {x;}*_, of
Ni(X;) on Tx, (M) are given as the first m-principal com-
ponents of Ny (X;). Then, at X;, the approximation of the
Laplacian in Eq. 9 is obtained by fitting a smooth interpola-
tion ¢’ in () to {f(X;)}5_, and then extracting the trace
of the resulting Hessian H ' of ¢, which we denote as
52 (X;). The surrogate function ' can be a (constrained)
second-order polynomial h* (for A) or a Gaussian kernel
interpolation ¢* (for A*, k > 0):

Wi(x) = f(Xi)+ > [a'la”+ > ]2’z (10)
r=1

r=1,s=r
k
' (%) = f(X0) + ) _[a']; K (x;, %), an
j=1
where x = [z1,...,2™] ", and
12
K(x,x') = exp (—W) . (12)

The coefficients {a’, b’} and {a'} of h? and g, respectively,
are calculated as the standard least squares fits:
k

arg min Z(f(Xj)—hi(Xj))27 (13)

weRmMAm(m+1)/2 =

[a’iv bl] =

. u _ 2
o = argminz (f(XJ) — gz(xj)) . (14)
a€RF =1



By combining these estimates of the local Laplacians and
re-arranging the variables, one can construct a matrix B as a
new regularizer on a point cloud X’

1113, ~ Rp(f) = £TBf = > f(X;)SP(X,). (15)
=1

To evaluate the squared Laplacian operator A3|x,, we
calculate the corresponding fourth-order derivatives of (. In
the case when ¢ = g, the derivatives of ( of any order are
easily calculated by noting that the derivative of a Gaussian
function can be evaluated based on the original Gaussian
and the combinations of Hermite polynomials [11]. The
corresponding empirical regularizer R based on a finite
number of points X’ can be constructed similarly to Eq. 15:

Re(f) =Y af TEMf:=) "Sx.(f), 16)
k=1 i=1

where k indexes the order of derivatives, Sx,(f) =
S ekl SM(X;)]2, S®)(X;) corresponds to an empirical
approximation of D f| x,, and E(*)(X;) is the correspond-
ing regularization matrix.

Relation between D and D,. The regularizer R de-
pends on the local first-order approximation T'x (M) at each
X. If the M is smoothly embedded in the ambient space
R™, especially in the sense that the corresponding second
fundamental form is bounded, then the approximation error
is third-order: Let dx := dx (-, ) be the geodesic distance
between two points on M in the neighborhood N (X) of
X2 then the distance dx between these points in the proxy
geometry T'x (M) is related as [4, 10]

dx = dx + O(d%). (17)

The use of local first-order approximations to a mani-
fold is justified by its success in many applications (e.g.,
[19, 6]). We support this approximation further by noting
that the corresponding orthonormal coordinates in T'x (M)
can be regarded as approximations of Riemannian normal
coordinates [12]. In a Riemannian normal coordinate chart
centered at a point X, the manifold appears Euclidean up to
second-order. Specifically, at X, the corresponding Rieman-
nian metric g becomes Euclidean: the first order derivatives
vanish, and evaluating the Laplace-Beltrami operator boils
down to the calculation of the Laplacian in Euclidean space:

i 0r(g"*\/det gos f)
Aflx =)
o) Vdet g

where 0, = 5%, 0 = >, " g1s, 052 0L = 1if r = s and
0, otherwise, g,s = g(9y, s), and det g is the determinant
of the matrix evaluation {g, }. Using this setup, similarly to

=Aoflx, (18)

2The injectivity radius inj(X) of X € M is always positive [13]. Here,
we assume that A'(X) C inj(X).

the graph Laplacian L case, one can show the convergence
of the matrix B (Eq. 15) to A in the limit case as u — oo,
the diameter e of Ny, is controlled carefully:

Definition 1 (Audibert and Tsybakov [1]) For given con-
stants co, €9 > 0, a Lebesgue measurable set A C R™ is
called (cy, €o)-regular if

AMANB(x,€)] > coA\[B(x,€)], Ve € [0,€0],Vx € A,

where \|S] is the Lebesgue measure of S C R™ [7]. We
fix constants co,eg > 0 and 0 < ppin < fmax < 0O
and a compact C C R%. We say that the strong density
assumption is satisfied if the distribution P is supported on
a compact (cg, €o)-regular set A C C and has a density p
w.r.t. X bounded above and below by between iy, and iy

fmin < (%) < pimax, VX € A and p(x) = 0 otherwise.

Proposition 1 If Hessian H f on M is Lipschitz continuous
with the Lipschitz constant vy, and the natural volume element
dV is bounded in the sense that the underlying probability
distribution P satisfies strong density assumption, then there
are constants C1,Ca, g > 0 such that with probability
larger than 1 — (m? + 3m) exp(—Caue™):

k 0162’)/2

uem,

|tr[HRh(x)] = Af(X)* < , (19
where tr[A] calculates the trace of A, k = |X N B(X,¢€)|,
and B(X, €) is the e-neighborhood of X in coordinates, i.e.
B(X,€) :={X": [|x = X[l (ar) < €}

The proof of this convergence be found in the supplemental
material. For simplicity of proof, we use the e-neighborhood
B(X, €) instead of k-NNs N (X). It can be easily modified
for the k-NN case (see supplemental material). Accordingly,
in Eq. 19, € is the only parameter to be controlled to obtain
the convergence. The role of ¢ is similar to the width of the
Laplacian weight function (Eq.3) in [4]: Roughly, decreasing
€ guarantees that the local surrogate function A is flexible
enough to well-approximate f. However, it should not shrink
too fast to ensure that there are sufficient data points k in
B(X, €) to prevent h from overfitting to f. This leads to the
condition that ¢"*-shrink should be slower than u-increase,
so that ue™ — oco. The number of neighborhoods k in
Eq. 19, given as | B(X, €) N X|, is automatically controlled
by sampling X" from P. This leads to O(Mim) = 1 (see sup-
plemental material) guaranteeing quadratic (¢2) convergence.
All other constants C, Co, pig, and 7y are independent of .

The strong density assumption is moderate. In particu-
lar, it holds for any compact manifold with a continuous
distribution.

In general, the derivatives of the metric g with orders
higher than 2 are non-vanishing even in normal coordinates.
In this case, for instance, A% flx deviates from A?f|x in



third-order:
A% flx = Ajflx +D*(flx), (20)

where D3(f|x) contains selected derivatives of f at X up
to third-order.’

However, since they agree at the highest (fourth) order,
AZ shares two important properties with A? which are pre-
cisely what leads to a proper regularizer for m < 4. When
m < 4, and the metric g and the embedding 7 : M — R”
are smooth:

1. c2g + ¢4 A with ¢, ¢4 > 0, has the null space con-
sisting of truly constant functions (i.e., excluding the
degenerate functions which deviate from constant func-
tions on sets of measure zero), and

2. The evaluation of the corresponding norm defined simi-
larly to Eq. 4 is infinite for any discontinuous functions.

This property extends to general high-order cases: The
approximation error of Ak|x to A¥|x is of order k — 1
and, for a manifold with dimension m > 4, the regular-
izers || - ||3,, that replaces D* with D§ in || - ||, (Eq. 7)
with ¢!, ..., cl™/2+1] > ( share the same null space with
|| - |%. Furthermore, their evaluations on any discontinuous
functions produce infinite value.

4. Local Gaussian regularization

The regularization cost functional R g (Eq. 16) has both
the desired properties of being a high-order regularizer and
of leading to a sparse system. However, evaluating it requires
explicitly calculating the powers of the Laplacian evaluation
Ak f|x, at each point X; € X and for each non-zero co-
efficient c;. This is not only tedious but also numerically
unstable since, in practice, the corresponding high-order
derivatives are estimated by fitting a function ¢° to only a
small number (k) of data points Ny (X;): fitting a high-order
polynomial (as an extension of A’ in Eq. 11) is very unstable
in general. While this can be resolved with smooth Gaussian
interpolation i.e. ¢’ = ¢, due to the existence of high-order
polynomials contained in the derivatives of ¢g° (Eq. 11), the
resulting derivative estimates can still be unstable, i.e., per-
turbed significantly with respect to slight variations of f.

We focus on a special case of the regularization functional
R g, with a specific choice of derivative operator contribu-
tion {cx }, which enables us to bypass the explicit evaluation

3This can be easily verified by expanding the derivatives in normal
coordinates at X:
m

S EED

id,rs=1

<5i3j [97°0r0s f] + 0:0; [0,[0g"°]0s f]

1 m
+ 509, {g” > gf“aT[agtu}asf} )

t,u=1

of individual derivatives D* while retaining the desired prop-
erties of being a sparse, robust, and high-order regularizer.

First, the stability problem in evaluating derivatives can
be addressed by taking integral averages of derivative evalu-
ations (D f; Eq. 8) and the corresponding magnitude | D f|
within a neighborhood U/ (X;) of X;, rather than their point
evaluations at X;. For instance, for derivative operators of
even powers, instead of |D8’f f (Eq. 7), we use:

1 ,
R Akl J2dx, (21
vol(U(X;)) /u(X,,-,)[ 0@ 2D

where vol(A) measures the volume of A C T'x, (M), which
is a fixed constant given M.

X

This still requires explicit calculation of derivatives. How-
ever, for the special case of Eq. 7 where the coefficients {c }
are given as:

O.Zk

LK
with o2 as defined in (11) we can efficiently calculate an

approximation: First, the local energy of ¢ = g over Tk,
defined as

1613 =3 e /T oy [P = 23)
k=1 X;

(22)

Ck

can be analytically evaluated as the corresponding Gaussian
reproducing kernel Hilbert space (RKHS) norm || - || x: We
obtain the second equality by solving the Euler-Lagrange
equation that adopts the energy in Eq. 7 with ¢ given in
Eq. 22 [23].

Second, we note that, for large u, the local energy (Eq. 23)
well approximates the sum of local stabilized derivations
(Eq. 21). For a Gaussian function K (x;,-), its value and
derivatives decrease rapidly as the corresponding points of
evaluation deviate from center X; (depending on its width
a?). Accordingly, its support is effectively limited within
a neighborhood U’ (X ). Since D* g’ is a kernel expansion
of N (X;), its support is limited to a larger neighborhood
N(X;) of X; that encompasses {U'(X), VX; € Ni(X;)}.
Then, we set U (X;) by N (X;) and obtain the local energy
lg%||% as a replacement of the integrand in (7).

In general, for given (X ), this approximation becomes
more accurate as o2 and [V, & (X;) decrease to zero, which is
the case as u — oo (see accompanying supplemental mate-
rial). However, for practical applications, we do not tune o2
or N (X;) to minimize error or to achieve a desired level
of accuracy since explicitly calculating the corresponding
error is tedious (see Appendix). More importantly, having
too small o2 or Ny (X;) for finite u will lead to a bad in-
terpolation function: a Gaussian kernel interpolation with
small 02 may lead to a highly non-linear function ¢° that
overfits to { f(X;)}¥_,. While we propose setting o and
N (X;) as decreasing functions with respect to u so that



the approximation becomes exact as u — oo, for practical
applications with fixed u (including our experiments), we
implicitly determine the diameter of Ny (X;) based on the
selected k-NN, and regard k and o2 as hyper-parameters.
As described in Sec. 6, o2 is actually adaptively determined
based on Ny (X;) and accordingly only Ny (X;) is tuned.
Now, we build a new regularizer R as a combination of

local regularizers on ' — f(X;) fori =1,...,u:
Ra(f)= > £ Gt (24)
=1 u
with
i vigi i
G = f(Xi) - ¢' ()% 25
= (1 - 11T (K) (I - 119)f,  (26)

where (Kl = K (xi, %) £ = [F(X1),., F(X0)]T,
K™ is the Moore-Penrose pseudoinverse of K, and 11* is an
indicator matrix whose element is zero except for the [(7)-th
column that consists of ones with [(¢) being the index of X;

5. Augmenting null spaces

Our local Gaussian regularizer completely eliminates the
possibility of generating degenerate functions and so pro-
vides a valid regularization on high-dimensional manifolds.
Further, it is designed as a combination of local regularizers
(Eq. 24) and so is tailored to incorporate a priori knowl-
edge of the local behavior of functions. In particular, it is
easy to tune the regularizer such that it does not penalize
functions with desirable properties (i.e., to augment the null
space of the regularizer so that it contains those functions).
One good choice for f are geodesic functions: both Donoho
and Grimes [0] and Kim et al. [12] have demonstrated that
geodesic functions, which are linear along geodesics, i.e.,
nothing more than linear functions in Euclidean space, are
preferred over other functions since they correspond to the
most natural parametrization of the underlying data.

The geodesic functions are completely characterized by
their local behavior. In particular, in the Riemannian normal
coordinates, they are locally linear functions. Accordingly,
we can easily add geodesic functions to the null space of
the global regularizer R (f) by including linear functions
in the null space of the local regularizers (Eq. 26): We fita
linear function to f? and subtract the resulting function from
f? before we fit the non-linear function (Eq. 11). This can be
easily incorporated into new local regularization matrices:

(G = II£(X3) = oL() = ' ()i @27
= (L) (K) 'L, 28)
where ¥ (+) is the linear regressor fitting f* in normal coor-

dinates (i.e., QOLL(X) = (@2)"’([ — 111)fLX), (1)LL c RkX’m
is the design matrix whose rows correspond to the normal

Algorithm 1: The construction of the regularization
functional R from a point cloud X'
Input: X = {X;,..
Output: G'.

Initialization: Find k nearest neighbors, e.g., build
KD-tree;
fori=1,...,udo
Construct the local approximation M at X; using
n-dimensional PCA of Ny (X;);
Calculate the local regularization matrix G* for
N (X;) in the PCA representation:
(G")! = (L) T (K*) "L (Egs. 28 and 29);
end
Re-arrange {(G’)*} according to the indices of {f*} in
f to construct matrix G’ s.t. f' G'f = Re (f);

., X, }, manifold dimension n, k.

coordinate values of Ny (X;), and
Li=1-11"— &% (®")F (I —11%). (29)

The new regularization functional R, in which {(G’)?}
replaces {G'}, has a richer null space: a one-dimensional
space of constant functions plus an m-dimensional space of
geodesic functions. This null space should not be confused
with the foo large null space of the original graph Laplacian
regularizer. The null space of our updated local Gaussian
regularizer does not include any degenerate functions.

While this setup does not cause any noticeable increase
of computational complexity, in our preliminary MoCap
experiments (see Sec. 6), this reduced error rates by around
3%. Accordingly, throughout the entire experiments, we use
this new local Gaussian regularizer.

R construction pseudocode is in Algorithm 1.

6. Experiments

To demonstrate our algorithm performance, we consider
examples of estimating continuous values in human body
shape and pose analysis: the MoCap database [2] of op-
tical motion capture data and the CAESAR human body
database [17]. For comparison, we performed experiments
with existing graph Laplacian (Lap) [14, 3] and iterated
graph Laplacian (i-Lap) [24] regularizers.

Toy example. We uniformly sample 10,000 data points
in [-1,1] x [—1,1]. Five points (four corners and center)
were assigned labels in {—1, 10} (red dots in Fig. 1). While
the original graph Laplacian (Lap) produces a “spiky” func-
tion, the iterated graph Laplacian (i-Lap) and our regularizer
(LG) produced smooth functions, which demonstrate the
importance of high-order regularization.



Figure 2. The CAESAR database contains 4, 258 3D scans of human beings, along with ground-truth body measurements taken with calipers.

Here, we see variation in female shape across the database.

(a)

Joint angles
(€,0)
Root

Figure 3. (a) Skeletal kinematic chain. (b) End effectors (blue)
recovered from a geometric model fit to the skeleton. Each joint
angle is in angle-axis form, with axis é and angle 6.

MoCap database. This contains 50, 000 entries describ-
ing human body poses captured with an optical marker-based
system [2]. For each pose entry, inverse kinematics is applied
to recover skeletal joint angles represented as axis-angle
(é,0). A body model comprising a surface mesh consisting
of 6,449 vertices is deformed via surface skinning by em-
bedding this skeleton of 62 joints, leading to 42 degrees of
freedom parameterized by the joint angles. The locations of
end effectors (left/right hand, left/right foot, and head) were
separately recorded from the surface mesh model. These con-
stitute a 15 (5 x 3)-dimensional coarse, mid-level represen-
tation (Figure 3). The task is to estimate the 42-dimensional
joint angles from the mid-level representation. This is useful
for retrieval and indexing of motion data, e.g., for motion
capture with motion priors of similar poses [2], fast MoCap
data indexing in authoring tools [ 1 5], or synthesis of motions
from sparse sensor data with pose priors [21].

We randomly chose 100 labels, with the remaining data
points used as unlabeled examples. The experiment was
repeated 10 times with different sets of labeled examples
and the results were averaged (Table 1). We also show
the corresponding results measured in the 186 (62 x 3)-
dimensional joint location space that is restored by applying
forward kinematics. Both in terms of joint angle and position
error, we outperform the competing methods.

CAESAR database. This contains 4, 258 3D scans of hu-
man beings, along with ground-truth measurements of their
bodies obtained with calipers (Fig. 2). Detailed description

Table 1. Mean L2-reconstruction error on the MoCap dataset.
Algorithm Lap i-Lap LG

Joint angles error 1.62 124 1.16
Joint locations error 1.22  0.72 0.50

and example usages of this dataset can be found in [9]. With
the technique of Hasler et al. [8], we fit a statistical body
model to each of the scans, which is able to represent body
variations such as height, hip and belly girth, limb length,
and so on. Each body scan is represented as a vector in 20-
dimensional feature space spanned by a linear shape basis.

Table 2 shows absolute error in semi-supervised learning
performance when comparing the three regularizers, over
different numbers of labeled items. Each experiment was
repeated 10 times and averaged. In most cases, our approach
improves performance, reducing errors by 3 — 388% over
Lap (mean 86%), and 1 — 194% over i-Lap (mean 32%).
The worse performance of LG over i-Lap for some cases is
caused by over-fitting in cross-validation.

Parameters. There are four hyper-parameters in our algo-
rithm: the number (k) of nearest neighbors, the dimension-
ality (m) of the manifold, the regularization parameter (\),
and the local scale parameter (o; see Eq. 22). In preliminary
experiments, the performance of our algorithm varied sig-
nificantly with respect to the first three parameters, while it
was rather robust to o variations. We decide o adaptively for
each point X;, at 0.1 times the mean distance between X
and the elements of Ny (X;) while the remaining three hyper-
parameters were optimized by 5-fold cross-validation (CV)
where, in each run, a subset of labeled points were left out
while all unlabeled data points are kept. There are three and
four hyper-parameters for Lap and i-Lap, respectively: A, k,
and the parameter b for building the graph Laplacian (Eq. 3)
for Lap and the iteration parameter p for i-Lap (Eq. 5). These
parameters were tuned in the same way as for LG. Across
Table 2, k varied from 20 to 40, m from 10 to 17, A from
10e~8 to 10e~5, b from 5 to 300, and p from 1 to 4.

Computation complexity and time. For each algorithm,
this depends on the number of data points u, the number of
nearest neighbors k, and the number of non-zeros entries



Table 2. Mean absolute error for estimating 6 ground truth parameters from the CAESAR dataset. Bold face marks the best results. The
Deviation from mean replaces the evaluation of each f(X;) with the mean of each output variable (calculated from the entire data set). This
presents an idea of the difficulty of the estimation problem for each parameter.

# Labels Algorithm Age Arm length Shoulder breadth Weight Sit height Foot length
Deviation from mean  10.89 35.98 36.13 13.94 39.50 15.57

Lap 10.89 30.23 32.69 12.80 32.58 13.80

20 i-Lap 12.46 19.54 25.34  6.30 20.54 10.30
LG 12.55 17.92 20.64 3.17 19.31 9.87

Lap 10.79 24.28 28.88 10.99 26.05 11.14

50 i-Lap 10.61 17.43 21.14  6.62 18.39 8.20
LG 11.03 16.30 16.15 2.25 16.49 8.34

Lap 10.64 20.62 26.00  9.60 21.72 9.46

100 i-Lap 10.21 16.97 19.33 5.08 17.65 7.99
LG 9.85 15.07 1539 1.98 15.59 8.05

Lap 10.45 18.23 23.07  8.09 18.99 8.38

200 i-Lap 9.99 16.49 17.56  4.11 17.25 7.81
LG 9.40 13.96 1493 1.77 12.42 7.76

Lap 10.00 16.44 19.39  6.02 17.31 7.75

500 i-Lap 9.52 15.62 15.84 2.93 16.65 7.59
LG 8.93 13.42 14.53 1.60 11.94 7.54

of the resulting regularization matrix that lies in-between
O(uk) and O(uk?), depending on the well-behavedness
of neighborhoods (where O(uk?) corresponds to random
neighbors). The most time-consuming component of each
algorithm is solving the corresponding system.

For the MoCap dataset, with u = 50, 000, k£ = 20, and
p = 4 for i-Lap, it took 30, 50, and 40 seconds for Lap,
i-Lap, and LG to build the regularization matrices, respec-
tively. The corresponding sparsity, defined as the number of
nonzero entries divided by the number of all entries in the
regularization matrix, is 0.0005, 0.0400, and 0.0017 for Lap,
i-Lap, and LG, respectively. This resulted in the run-times
for solving the systems of roughly 50, 720, and 120 seconds,
respectively, on an Intel Xeon 3GHz CPU in MATLAB. For
the CAESAR dataset, with u = 4, 258, run-times were only
a few seconds. The improvement in computation time for
large sets, coupled with the accuracy improvements demon-
strated, makes our new regularizer a good alternative to Lap
and i-Lap. Our code will be made available on the web.

7. Discussion

Local first-order approximation approaches, like ours, are
supported by their success in manifold learning and regular-
ization [19, 6]. However, local first-order approximations
result in the corresponding derivatives being exact up to
second order, but at third order and higher, the derivatives
may deviate from the underlying covariant derivatives. Nev-
ertheless, since the highest-order terms agree, calculating

the Euclidean derivatives therein enables us to completely
eliminate the possibility of generating degenerate functions.

Furthermore, the number of hyper-parameters to be tuned
(the other parameter o* is adaptively decided) is the same
as for classical graph Laplacian and is one smaller than for
iterated graph Laplacian. Combined with the observed empir-
ical performance of our algorithm, and the computationally
efficient regularization, this supports its usage.

Our local Gaussian interpolation varies o* with the local
neighborhood size Ny (X) (instead of making it constant per
dataset), which desires rigorous limit case behavior analysis.
Further future work should address the theoretical analysis
of our regularizer (e.g., error bound), and the possible benefit
to spectral clustering and dimensionality reduction.

8. Conclusion

We have presented the local Gaussian regularizer: a new
high-order regularization framework on data manifolds. Our
algorithm does not suffer from the degeneracy of graph
Laplacian-based regularizers. Further, it leads to a sparse reg-
ularization matrix, thereby facilitating application to large-
scale datasets. Experiments on human body shape and pose
analysis demonstrate the improved accuracy and faster exe-
cution time of our new algorithm.
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Supplementary material for
“Local High-order Regularization on Data Manifolds”

We show the proof of proposition 1 in the main paper and analyze the speed of the convergence of our RKHS
norm-based energy estimate to the stabilized regularization energy.

1 Proof of proposition 1

In Riemannian normal coordinates (x = [xl, ... ,a:m]T) centered at each point X, Laplacian evaluation at X

becomes the trace of the Hessian matrix given as an evaluation of the Hessian operator at X. Given this, the proof is
obtained by slightly modifying the techniques used in the convergence analysis of [Audibert and Tsybakov, 2007]
and [Kim et al., 2013]. We include the proof for completeness.

Given an underlying probability distribution P supported by a manifold M, our goal is to show that for each
point X € M, tr[Hh(x)] converges to A f(X) as the size u(t) of X, = {X1,..., Xy@)} C M grows.

At each data point X; € X, the Hessian H f(X;) of f is estimated by fitting h’ to f|x.(x,), Where N (X;) =
B(Xi,e) N X, B(X;,€) is the e-neighborhood of X in coordinates, i.e., B(X, €) := {X" : |x — x/||7 () < €}
and h|s denotes the restriction of a function / on a set S: The Hessian Hh'(x;) of h® is used as an estimate
of Hf(X;). Since the convergence property is homogeneous, we focus only on a single point X; € M. For
notational convenience, we will omit the index ¢ and furthermore, we will identify a point X; € M with its normal
coordinate representation x; € T'x, (M) at X; whenever the latter is defined: The normal coordinate value x; of
X is defined when X is included in the injectivity radius inj(X;) of X; [Lee, 1997]. Here, we assume that (for
sufficiently large u) NV (X;) € inj(X;). This is possible since in a Riemannian manifold, inj(X;) is always positive
for any X; € M. For the points X; ¢ inj(X;), the corresponding normal coordinate values are assigned with 0.

Accordingly, N.(X;) will be represented based on its elements in coordinates {g1, . . ., g }. Here, we use letter
g instead of x to stress its indexing within N, (X;) rather than X. Note that at the normal coordinate chart centered
at X, the coordinate value x; of X; is zero.

The coefficients of h (Eq. 10 in the main paper):

h(x) = f0)+ Y lala"+ > [Blnsa"a’, (1)
r=1 r=1,s=r

are obtained by solving a weighted least squares problem centered at x; = 0:
A~ B = argmin [K(XQ — £)|?
= (XTKX) !X TKf, 2)

where X is the design matrix containing the first and the second-order monomials of the coordinate values (centered
at x; = 0) of data points in X:

T
A= |VFO)T, %vec[Hf(O)} ,B=1..., [a]r,...,[b]ns,...]T g =[f(X1),..., f(X)]", 3)

where vec(M) extracts the upper triangular elements of a symmetric matrix M and forms a vector as a linear
alignment of them, and K is a diagonal weight matrix with [K]; ; = K(x;, €) and the kernel K is defined as:

K(x,q) = 1{x|<q)> 4

'For simplicity, we use the e-neighborhood instead of k nearest neighbors Ny (X;). The convergence in the latter case can
easily be established by enforcing Ny (X;) C B(X;,€).



with 1(gj is the indicator function of the set S. Note that when X; ¢ inj(X;), x; = 0.
The convergence of H f(0) is established when ||A — B|| — 0 as 4 — oo and € — 0.
First, we decompose this deviation as:
1A= B|* < |(XTKX)"[|2|[K(XA - )], Q)
where we have used K = K2 = K and |[CTC|% = |CT||2 for any matrix C. In Eq. 5, the first term depends
only on the distribution P on M and it is upper bounded as:
1 1

XTKX)™!, < — < : 6
”( ) ”2 = ”uemg,lBg,lHZ - u€m+4)\§ ©)
where
E= dlag([l/e L1/e1/é% . 1)),
:uemZXXJ/G X(Xj/ ) (X]7 )7
X(x) = [xl,...,xm,...,mrm‘g7...,] e RP,
D=m+ m(mﬂ) , and A\ is the smallest eigenvalue of B. The remainder of this section quantifies | K(XA—f)||?

and Ay based on the two regularity assumptions on the Hessian operator H and the probability distribution P.

1.1 Quantifying |K(XA — f)|?
The deviation between the second-order approximation KX A and Kf depends on the smoothness of f. In partic-
ular, we can quantify them based on the boundedness of H f:

Lemma 1 ([Belward et al., 2008]) Suppose that the Hessian (H f(a) := H¢(a)) is Lipschitz continuous with the
Lipschitz constant . Then

K (XA = )5 = Cry*ke” ()
with a constant C; > 0 where k is the size of N, (0).
Proof: For the simplicity of exposition, let’s represent each element of AV,(0) = {g1, ..., g} based on its scale
and the normalized coordinate values: g; = s;v; with ||v;|| = 1.

Applying the first-order Taylor series remainder formula to f expanded at O gives for each point g;,

1
f(siv5) = £(0) = s;v] V£(0) :/0 (1 —t)s;v; Hy(sjv;t)s v dt,

1 1
& f(sjvi) = §SJVJTHf(0)SjVj — J(0) = 5;v/ V;(0) :/0 (L —t)s;v] (Hy(sjvit) — Hp(0)) s5v;dt, (8)
where V¢ := V f.

Substituting the definition of A (Equation 3) into (8) gives [K(XA — f)]; = 0 when [K]; ; = 0 and

[K(XA - 1)]; |—’ 55V Hy(0)s;v; = f(s;v;) + f(0) + 55, V1 (0)

/ (1= )s;v] (Hp(0) — Hy(s,v5) s,v; | dt

fys 7, otherwise.

6
Then
- 1
IK(XA-f)[IP =D [KXA-f)]} < %MQEG, )
=1
where we used the fact that only k£ summands are non-zero and s; < e. O
Substituting Egs. 9 and 6 into Eq. 5 gives
11 ky?
14 = BI° < 555 enz (10)



1.2 Quantifying \ 5

Here, we adopt the results of [Audibert and Tsybakov, 2007] to construct a lower bound of Agz. Applying
this result requires requires a certain regularity assumption on the underlying probability distribution P on M
([Audibert and Tsybakov, 2007]; Definition 1 of the main paper):

For some constants ¢, €g > 0, we will say that a Lebesgue measurable set A C R™ is (co, € )-regular if

AMANB(x,€)] > co\[B(x,€)], Ve € [0,€0],Vx € A, (11

where A[S] is the Lebesgue measure of S C R™. We fix constants ¢, g > 0 and 0 < fimin < fimax < 00 and
a compact C C R™. We say that the strong density assumption is satisfied if the distribution P is supported on a
compact (cg, €g)-regular set A C C and has a density p w.r.t. the Lebesgue measure bounded away from zero and
infinity on A (between fimin and fimax)

Hmin < p(X) < fimax, VX € A and p(x) = 0 otherwise. (12)

Theorem 1 ([Audibert and Tsybakov, 2007]) Let P satisfy the strong density assumption. Then, there exist con-
stants Cyq, pg > 0 such that for any 0 < € < €g and any n > 1,

P (A5 < po) < 2D exp(—Caue™), (13)

where P®" is the product probability measure according to which the sample is distributed.
Combining Eq. 13 and Eq. 10, we obtain that there are positive constants C1, Ca, o with probability larger than
1 — (m? + 3m) exp(—Coue™),

Gk’
140 uem—2 :

|A-B|” < (14)

Adopting the strong density assumption, the probability P, of sampling a data point from the e-neighborhood of
x; = 0 (which is assumed to be zero) is

P.= AM(X)E[Hxn«]dx < fimax /A L <X = HmaxVme™, (15

where v,,, = A[B(0,1)] and A is the support of P.
Let’s define variables {1.(j)}

~ 1 ifx; e N(0)
Le(7) = { 0 otherwise. (16)
Applying Hoeffding’s inequality to {1.(1),..., Lc(u)} yields
P in(')— Pt <exp( 2 (17)
. e\J Ule 2 S exp 7 .
Jj=1
Substituting Eq. 15 into Eq. 17 we obtain
- 2t2
P (k — (fbmaxUm)ue™ > t) <exp | —— |, (18)
u

which states that £ = O(1).

2 Convergence of the RKHS-norm based energy evaluation to the stabilized energy

In Sec. 4 of the main paper, we use the RKHS-norm based local energy evaluation (Eq. 23 of the main paper)

1613 =3 e /T o [P = L' (19)
k=1 X; UV



as an approximation of the stabilized energy (Eq. 21 of the main paper).

This is motivated by their large-scale behaviors: As uw — oo, the kernel parameter o and the diameter of
N (X;) shrink toward zero, and the approximation error (i.e. deviation between the two energies) converges to
zero at super-linear speed.

We first note that when we use a Gaussian kernel K (x;,-) (X; € Ng(X;); instead of ¢°), the series in
Eq. 19 converges absolutely. Accordingly, the contribution of all high-order (say, from ¢ to infinite) terms in
Eq. 19 is bounded by a monotonically decreasing function G of ¢ [Yuille and Grzywacz, 1988]: Since precisely,
| K (x;,)]|% =1, G is explicitly given as

qg—1
Glqg)=1- ch/ | Dk g |« |2dx. (20)
k=1 T (M)

Furthermore, the corresponding sum of the high-order terms in the stabilized energy is bounded by [0, G(q)].
Accordingly, we can determine a ¢* so that the finite sum up to the ¢*-th summand in Eq. 19 approximates the
local energy with any given approximation accuracy level.

Secondly, for any finite order ¢’ < ¢*, the corresponding derivatives of a Gaussian function are given as the
q'-th order Hermite polynomials multiplied by the Gaussian. Since a Gaussian function suppresses any poly-
nomials, these derivatives decrease rapidly as the corresponding points of evaluation deviates from its center
X; [Kara, 2009]. The speed of this decay is controlled by the width o2 of K. Accordingly, for given upper
bound s on the approximation error and the integral domain (X ), 0% can be determined such that the deviation
between the local energy of K(x;,-) (defined based on the integrals over the entire T'x, (M) in Eq. 19) and its
restriction to U’(X;) becomes smaller than s. This can be shown by straightforwardly evaluating integrals: For

instance when m = 1 and (—p, ) = U’(0), (X is assumed to be 0 without loss of generality), the integral of the

first-order norm of K (x) = exp(—ﬁ—z) over the entire domain R ~ Ty (M) is?

<10 22\ ° © 42 x2 w1
/_Oo‘axexp (—02) dmz/_m?exp (—202> dr = 55 (21)
and the corresponding integral restricted to ¢’(0) is obtained as
u 2 2
1
[ fzow (52| o= [ (v28) - e (v22)
_u |0z o 20 o o o

_ml " 2u u?
_ \/;Uerf (\/50_) ~ exp <—202> , 22)

where erf is the error function of the standard Gaussian distribution. We used the differentiation under the integral
sign (w.r.t. o) technique to calculate the integrals in Eqs. 21 and 22. The approximation error of the first-order term

is then obtained as,
e} 2 u 2 2
c1 </ ’Dl exp (_1:2> dx — / D' exp (_x2> dm)
oo o —u o
o [w 1 21 u?
=20 et (\/if) o lexp (2 ). 23)
2V 2 o T o o?
Similarly, the approximation error of the second-order term is given as,
[es} 2 2 u 2 2
Ca (/ ‘DQ exp (—2) dx — / D?exp (_Q:2) dx)
o o u o
1 /2 2 2w\ 2
=30 /5 |1 = erf (\/QE) + -4/ —exp 72u— =) . 24)
2 o 3V o2 o o

2Since the Gaussian RKHS energy is shift invariant, we assume that X; = 0 without loss of generality.

2




For both the first- and the second-order errors, the normalized errors (terms in the outer parentheses in Egs. 23
and 24) are bounded by [0,1]. When o is large, the exponential terms in the normalized errors dominates and
accordingly, the normalized errors tend to be 1. In this worse case, the approximation error decreases linearly with
respect to o decrease. However, when ¢ is already small, erf dominates in the normalized errors® and therefore, in
this case, the corresponding approximation errors decrease super-linearly. Since iteratively taking the derivatives
of a Gaussian with respect to o2 yields polynomials, repeatedly applying the differentiation under the integral sign
technique shows that all higher-order terms behave exactly the same way: for each k, the approximation error is
given as a linear term a*o (with o being a constant) multiplied by the normalized error which is dominated by
an error function for small . Accordingly, for any order k, the approximation error decreases super-linearly.

Since D¢’ is a kernel expansion of Ny (X;), its effective support can be limited within a neighborhood that
encompass {U'(Xx), VXi € Ng(X;)}. Then, we can control both 0% and the diameter of Ny (X;) so that the
resulting local energy ||g°||3, well-approximates the integrand in the regularizer (Eq. 7 of the main paper).

1713 = / S x [ DF flx Pav(X), 25)
M k=1
where
D f = AFf D = v(AFf), (26)

and where ¢, > 0, |D?! f|2 .= (D?* £)2, and | D+ f|? .= g(D?***1 f, D?*+1§).
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