Angewandte
 Eine Zeitschrijt der Gesellschaft Deutscher Chemiker Chemie

Supporting Information

© Wiley-VCH 2008
69451 Weinheim, Germany

SUPPORTING INFORMATION

Coordination Chemistry of Ene-1,1-diamines and a Prototype "Carbodicarbene"

Alois Fürstner,* Manuel Alcarazo, Richard Goddard, and Christian W. Lehmann
Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
E-mail: fuerstner@mpi-muelheim.mpg.de

General : All reactions were carried out in flame-dried glassware under Ar. The solvents were purified by distillation over the drying agents indicated and were transferred under Ar. THF, $\mathrm{Et}_{2} \mathrm{O}$ (Mg anthracene), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{P}_{4} \mathrm{O}_{10}\right), \mathrm{MeCN}, \mathrm{Et}_{3} \mathrm{~N}\left(\mathrm{CaH}_{2}\right), \mathrm{MeOH}(\mathrm{Mg})$, hexane, toluene $(\mathrm{Na} / \mathrm{K})$. Flash chromatography: Merck silica gel 60 (230-400 mesh). IR: Nicolet FT-7199 spectrometer, wavenumbers (\widetilde{v}) in cm^{-1}. MS (EI): Finnigan MAT $8200(70 \mathrm{eV})$, ESI-MS: Finnigan MAT 95, accurate mass determinations: Bruker APEX III FT-MS (7 T magnet). NMR: Spectra were recorded on a Bruker DPX 300 or AV 400 spectrometer in the solvents indicated; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts (δ) are given in ppm relative to TMS, ${ }^{19} \mathrm{~F}$ chemical shifts are reported in ppm relative to $\mathrm{CF}_{3} \mathrm{COOH}$, coupling constants (J) in Hz . The solvent signals were used as references and the chemical shifts converted to the TMS scale. Melting points: Büchi melting point apparatus B-540 (corrected). Elemental analyses: H. Kolbe, Mülheim/Ruhr. All commercially available compounds (Acros, Fluka, Lancaster, Aldrich) were used as received unless stated otherwise. 2-(Benzoylmethyl)-1-methylimidazole, ${ }^{1}(E)$-ethyl 2-(1-methylpyridin-2ylidene)acetate, ${ }^{2}$ and tetra(dimethylamino)allene, ${ }^{3}$ were prepared according to literature procedures.

1,2,3-Trimethylimidazolium iodide (2). MeI ($4.36 \mathrm{~mL}, 70 \mathrm{mmol}$) was added to a solution of 1,2-
 dimethylimidazole ($5.67 \mathrm{~g}, 60 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ and the reaction mixture was stirred at ambient temperature overnight. The white precipitate obtained was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo ($13.3 \mathrm{~g}, 93 \%$). m. p. $=312-314^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta=7.60(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}\right): \delta=145.1$, 122.3, 35.2, 9.7. IR. (neat) $v=3084,2943,1626,1596,1552,1519,1432,1260,1138,1032,760,740$ cm^{-1}. HRMS calcd. for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{2}{ }^{+}$: 111.09214 ; found 111.09222. Elemental analysis calcd. (\%) for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{I}: \mathrm{C} 30.27$, H 4.66, N 11.77; found C 30.32, H 4.62, N 11.82 .

1,2,3-Trimethylpyridinium iodide (10). $\mathrm{MeI}(4.36 \mathrm{~mL}, 70 \mathrm{mmol})$ was added to a solution
 of 2,3-dimethylpyridine ($6.8 \mathrm{~mL}, 60 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ and the mixture was stirred at

[^0]ambient temperature for seven days. The yellow precipitate obtained was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo ($13.2 \mathrm{~g}, 88 \%$). m. p. $=202-204^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta=8.84(\mathrm{~d}, J=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=7.8,1 \mathrm{H}), 7.83(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4,26(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta=155.4,145.5,144.1,138.0,124.6,46.8,19.6,17.3$. IR (neat): $\widetilde{v}=3036$, $3005,1620,1494,1450,1281,1027,995,813,694 \mathrm{~cm}^{-1}$. MS (ESI) calcd. for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}^{+}$: 122.11 ; found 122.13. Elemental analysis calcd.(\%) for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NI}$: C 40.93, H 5.72, N 5.30; found C 39.65, H 5.81, N 5.61 .

2-(Benzoylmethyl)-1,3-dimethylimidazolium triflate (6). MeOTf ($1.19 \mathrm{~mL}, 10.5 \mathrm{mmol}$) was added to a
 suspension of 2-(benzoylmethyl)-1-methylimidazole ($2.0 \mathrm{~g}, 10 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(20$ $\mathrm{ml})$ and the mixture was stirred at ambient temperature overnight. The off white precipitate obtained was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo (3.42 g , 94%). m. p. $=125-127^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-acetone): $\delta=8.16$ (d, $J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.78(\mathrm{~s}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5,35(\mathrm{~s}, 2 \mathrm{H})$, $4.00(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{d}_{6}$-acetone): $\delta=193.0,144.2,136.6,135.6$, 130.2, 130.0, 124.6, 36.3, 35.7. IR (neat): $\widetilde{v}=3150,2951,1687,1327,1254,1159,1027,761,736,689$ cm^{-1}. HRMS calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}^{+}$: 215.11789; found 215.11775. Elemental analysis calcd.(\%) for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SF}_{3}$: C 46.15, H 4.15, N 7.69; found C 46.22, H 4.20, N 7.57.

1,3-Dimethyl-2-methylene-2,3-dihydro-1H-imidazole (3). 1,2,3-Trimethylimidazolium iodide (3.57 g , $15 \mathrm{mmol})$ was added to a suspension of $\mathrm{KH}(1.2 \mathrm{~g}, 30 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ and the mixture was stirred at ambient temperature for two days in the absence of light. After filtration and removal of the organic solvent in vacuo, the desired product was obtained as a white crystalline, very air sensitive solid ($1.43 \mathrm{~g}, 87 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{d}_{6}$-benzene): $\delta=5.26(\mathrm{~s}, 2 \mathrm{H}), 2.56$ (s, 2H), $2.32(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{d}_{6}$-benzene): $\delta=153.3,113.2,40.3,32.8$. HRMS calcd. for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2}$: 110.084399 ; found 110.084215 .

1,3-Dimethyl-2-methylene-1,2-dihydropyridine (11). 1,2,3-Trimethylpyridinium iodide ($2.50 \mathrm{~g}, 10$ $\mathrm{mmol})$ was added to a suspension of $\mathrm{KH}(600 \mathrm{mg}, 15 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{ml})$ and the mixture was stirred at ambient temperature for 24 h in the absence of light. Insoluble residues were filtered off (and carefully destroyed), and the filtrate was evaporated to give the title compound as a yellow air sensitive oil $(1.02 \mathrm{~g}, 84 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-benzene): $\delta=5.98$ (dd, $J=$ $6.1,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$, $1.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, d_{6}-benzene): $\delta=148.3,136.1,128.2,125.6,99.0,70.1,40.5,20.3$. HRMS calcd. for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}$: 121.08915; found 121.08921.

Compound 7. 2-(Benzoylmethyl)-1,3-dimethylimidazolium triflate ($1.82 \mathrm{~g}, 5 \mathrm{mmol}$) was added to a suspension of KH ($240 \mathrm{mg}, 6 \mathrm{mmol}$) in THF (20 ml) and the mixture was stirred
 overnight at ambient temperature. Evaporation of the organic solvent produces a yellow solid that was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined extracts were evaporated to give the title compound as a yellow solid ($845 \mathrm{mg}, 79 \%$). m. p. $=$ $175-176^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.79-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 3 \mathrm{H})$, $6.59(\mathrm{~s}, 2 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.6,153.4,145.2,130.1$, 129.2, 128.3, 119.8, 70.4, 37.2. IR (neat): $\widetilde{v}=3064,1573,1519,1485,1429,1396,1330,1212,878,701$
cm^{-1}. HRMS calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}^{+}$: 215.11789; found 215.11780. Elemental analysis calcd.(\%) for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C} 72.87$, H 6.59, N 13.07; found C 72.79, H 6.53, N 13.01.

Compound 4. To a suspension of 1,3-dimethyl-2-methylene-2,3-dihydro-1H-imidazole (3) ($22 \mathrm{mg}, 0.2$
 $\mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ were added $\mathrm{Ph}_{3} \mathrm{PAuCl}(98 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{NaSbF}_{6}(51.7 \mathrm{mg}$, 0.2 mmol). After stirring for 1 h , the solvent was evaporated and the remaining solid suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The suspension was filtered, the filtrate evaporated and the residue triturated with $\mathrm{Et}_{2} \mathrm{O}(2 \times 2 \mathrm{~mL})$ to give the desired complex as an off white solid ($143 \mathrm{mg}, 89 \%$). m. p. $=166-167^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$): $\delta=$ 7.99-7.45 (m, 15H), $6.79(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 6 \mathrm{H}), 2.32(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): δ $=157.3(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 134.8(\mathrm{~d}, J=13.1 \mathrm{~Hz}), 132.6(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 130.1(\mathrm{~d}, J=11.3 \mathrm{~Hz}), 120.1,35.2$, 22.1 (d, $J=80.2 \mathrm{~Hz}$). IR (neat): $\widetilde{v}=1576,1520,1481,1436,1157,1102,1029,748,710 \mathrm{~cm}^{-1}$. HRMS calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{AuP}^{+}$: 569.14154; found 569.14177. Elemental analysis calcd.(\%) for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{AuF}_{6} \mathrm{SbP}: \mathrm{C} 35.80$, H 3.13, N 3.48; found C 35.70, H 3.21, N 3.27.

Compound 12. To a suspension of 1,3-dimethyl-2-methylene-1,2-dihydropyridine (11) ($24 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ in THF (2 mL) were added $\mathrm{Ph}_{3} \mathrm{PAuCl}(98 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(68.7 \mathrm{mg}$,
 $0.2 \mathrm{mmol})$. After stirring for 1 h , the solvent was evaporated and the remaining solid suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The suspension was filtered, the filtrate evaporated, and the residue triturated with $\mathrm{Et}_{2} \mathrm{O}(2 \times 2 \mathrm{~mL})$ to give the desired complex as a pale grey solid ($111 \mathrm{mg}, 68 \%$). m. p. $=177-179^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=$ $8.36(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.50(\mathrm{~m}, 15 \mathrm{H}), 7.26(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~s}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=167.1,140.1(\mathrm{~d}, \mathrm{~J}=$ 11.0 Hz), $133.6(\mathrm{~d}, J=13.1 \mathrm{~Hz}), 133.4,131.6(\mathrm{bs}), 129.5,129.1(\mathrm{~d}, J=11.3 \mathrm{~Hz}), 45.0,34.6(\mathrm{bs}), 19.2 .{ }^{31} \mathrm{P}$ NMR ($121.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=41.3$. IR (neat): $\widetilde{v}=1624,1575,1487,1436,1247,1238,1101,990,979$, $799,749,693 \mathrm{~cm}^{-1}$. HRMS calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NAuP}^{+}: 580.14629$; found 580.14682 . Elemental analysis calcd.(\%) for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{AuF}_{6} \mathrm{NPSb}$: C 38.26, H 3.21, N 1.72; found C 39.19, H 3.18, N 1.76.

Compound 8. To a solution of compound $7(43 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{THF}(2 \mathrm{~mL})$ were added $\mathrm{Ph}_{3} \mathrm{PAuCl}(98$
 $\mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(68.7 \mathrm{mg}, 0.2 \mathrm{mmol})$. After stirring for 1 h , the solvent was evaporated and the remaining solid suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The suspension was filtered, the filtrate evaporated, and the residue triturated with $\mathrm{Et}_{2} \mathrm{O}$ $(2 \mathrm{~mL})$ to give the desired complex as an off white solid ($154 \mathrm{mg}, 85 \%$). m. p. $=$ $190-191^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=8.27$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.70-7.55(\mathrm{~m}, 6 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.17(\mathrm{~s}, 2 \mathrm{H}), 5.41(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}_{3}$): $\delta=198.6,137.4,133.9(\mathrm{~d}, J=13.9 \mathrm{~Hz}), 133.6(\mathrm{~d}, J=13.4 \mathrm{~Hz})$, $132.4,131.8,131.7,129.1(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 128.8(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 128.4,128.1,127.6,121.1,48.0(\mathrm{~d}, J$ $=62.7 \mathrm{~Hz}$), 36.2. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=39.7$. IR (neat): $\widetilde{v}=1639,1579,1505,1436,1333$, 1209, 1101, 1016, 928, 741, $704 \mathrm{~cm}^{-1}$. MS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{AuOP}^{+}$: 673.17; found 673.21. Elemental analysis calcd.(\%) for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{AuF}_{6} \mathrm{~N}_{2} \mathrm{OPSb}$: C 40.95, H 3.21, N 3.08; found C 41.03, H 3.16, N 3.13.

Compound 19. To a suspension of tetra(dimethylamino) allene 18 ($64 \mathrm{mg}, 0.3 \mathrm{mmol}$) in THF (2 mL) were added $\mathrm{Ph}_{3} \mathrm{PAuCl}(98 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{NaSbF}_{6}(51.7 \mathrm{mg}, 0.2 \mathrm{mmol})$. After
 stirring for 1 h , the solvent was evaporated and the remaining oil washed with $\mathrm{Et}_{2} \mathrm{O}$ ($2 \times 2 \mathrm{~mL}$). The residue was then suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, insoluble residues were filtered off and the filtrate was evaporated to a volume of ca. 2 mL . Addition of $\mathrm{Et}_{2} \mathrm{O}$ effects the precipitation of the product which was obtained as a very light green solid ($130 \mathrm{mg}, 72 \%$). m. p. $=162-164^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.46-7.34(\mathrm{~m}, 15 \mathrm{H}), 2.90(\mathrm{~s}, 24 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=177.4,134.3(\mathrm{~d}, \mathrm{~J}=$ $13.6 \mathrm{~Hz}), 131.9(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 131.0,130.3,129.5(\mathrm{~d}, J=10.8 \mathrm{~Hz}), 41.6 .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=43.3$. IR (neat): $\widetilde{v}=1504,1437,1371,1099,1025,751,695 \mathrm{~cm}^{-1}$. HRMS calcd. for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{AuP}^{+}$: 671.25724; found 671.25694. Elemental analysis calcd.(\%) for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{AuF}_{6} \mathrm{PSb}$: C 38.39, H 4.33, N 6.17; found C 38.48, H 4.31, N 6.12.

Compound 5. Compound 3 ($55 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added to a solution of $\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}(97 \mathrm{mg}, 0.25$ $\mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ and the resulting mixture was stirred for 1 h at ambient
 temperature. For work up, the solvent was evaporated and the residue triturated with $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ before it was dissolved in THF $(3 \mathrm{~mL})$. Pentane was added until the solution became turbid and the mixture was kept overnight at $-24^{\circ} \mathrm{C}$, causing the precipitation of the product in form of orange crystals ($89 \mathrm{mg}, 59 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=$ 5.42 (s, 2H), 2.65 (s, 6H), 1.80 (d, $J=2.6 \mathrm{~Hz}, 2 \mathrm{H}$). IR (neat): $\widetilde{v}=2040,1966 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI): 304 (7), 276 (13), 248 (9), 212 (21), 110 (100), 95 (28), 68 (21), 54 (17), 42 (22), 28 (50). Elemental analysis calcd.(\%) for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{Rh}$: C 31.55, H 3.31, N 9.20; found C 31.34, H 3.23, N 8.99.

Compound 9. $\mathrm{BF}_{3} \mathrm{OEt}_{2}(142 \mathrm{mg}, 1 \mathrm{mmol})$ was added to a suspension of compound $7(214 \mathrm{mg}, 1 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and the resulting mixture stirred for 2 h at ambient temperature.
 The solvent was then removed and the residue was triturated with $\mathrm{Et}_{2} \mathrm{O}(2 \times 1 \mathrm{~mL})$. The white solid material consisted of a ~ 2 : 1 diasteromeric mixture of the desired product (NMR) ($259 \mathrm{mg}, 92 \%$), whereas recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane gave a single isomer (cf. crystal structure analysis). m. p. $=155-156^{\circ} \mathrm{C}$. Characteristic data of the major diastereomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=3.71(\mathrm{~s}, 6 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 7.24$ (s, 2H), 7.42-7.50 (m, 3H), 7.83-7.90 (m, 2). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=34.9,85.4,121.1,126.7$, 127.8, 129.4, 137.6, 164.5. IR (neat): $\widetilde{v}=3142,1961,1632,1521,1362,1071,1048,1033,959,979,777$, $744,699 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI): 263 (3), 214 (100), 199 (16), 161 (25), 171 (151), 137 (92), 109 (17), 95 (20), 77 (19), 42 (18).

Crystallographic Data

X-ray Crystal Structure Analysis of Complex 4 (CCDC 670972): $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{Au} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{P} \mathrm{Sb}, M_{r}=$ $890.07 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$, colorless plate, crystal size $0.24 \times 0.20 \times 0.12 \mathrm{~mm}$, orthorhombic, space group Pbca, $a=$ 14.7563(2) $\AA, b=19.2882(2) \AA, c=20.9883(3) ~ \AA, V=5973.74(13) \AA^{3}, T=100 \mathrm{~K}, Z=8, D_{\text {calc }}=1.979$ $\mathrm{g} \cdot \mathrm{cm}^{3}, \lambda=0.71073 \AA, \mu\left(M o-K_{\alpha}\right)=6.098 \mathrm{~mm}^{-1}$, empirical absorption correction $\left(\mathrm{T}_{\min }=0.16, \mathrm{~T}_{\max }=0.47\right)$, Nonius KappaCCD diffractometer, $2.96<\theta<33.13,160764$ measured reflections, 11368 independent reflections, 8976 reflections with $I>2 \sigma(I)$, Structure solved by direct methods and refined by full-matrix least-squares against F^{2} to $R_{1}=0.035[I>2 \sigma(I)], w R_{2}=0.093,345$ parameters, absolute structure parameter $=0.00, \mathrm{H}$ atoms riding, $S=1.065$, residual electron density $+2.0 /-2.7 \mathrm{e} \AA^{-3}$.

X-ray Crystal Structure Analysis of Compound 7 (CCDC 671017): $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}, M_{r}=214.26 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$, colorless plate, crystal size $0.50 \times 0.40 \times 0.23 \mathrm{~mm}$, monoclinic, space group $P 2_{1} c, a=9.8827$ (11) $\AA, b=$ $10.3817(11) \AA, c=11.2299(12) \AA, \beta=90.687(4)^{\circ}, V=1152.1(2) \AA^{3}, T=200 \mathrm{~K}, Z=4, D_{\text {calc }}=1.235$ $\mathrm{g} \cdot \mathrm{cm}^{3}, \lambda=1.54178 \AA, \mu\left(C u-K_{\alpha}\right)=0.635 \mathrm{~mm}^{-1}$, Semi-empirical absorption correction $\left(\mathrm{T}_{\min }=0.75, \mathrm{~T}_{\max }=\right.$ 0.83), Bruker AXS Proteum X8 diffractometer, $5.80<\theta<62.14$, extinction coefficient $=0.031(2), 23242$ measured reflections, 1780 independent reflections, 1622 reflections with $I>2 \sigma(I)$, Structure solved by direct methods and refined by full-matrix least-squares against F^{2} to $R_{1}=0.044[I>2 \sigma(I)], w R_{2}=0.124$, 202 parameters, H atoms riding, $S=1.066$, residual electron density $+0.2 /-0.1$ e \AA^{-3}.

X-ray Crystal Structure Analysis of Complex 8 (CCDC 670968): $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{Au} \mathrm{F}_{6} \mathrm{~N}_{2} \mathrm{OP} \mathrm{Sb}, M_{r}=909.25$ $\mathrm{g} \cdot \mathrm{mol}^{-1}$, colorless plate, crystal size $0.20 \times 0.08 \times 0.05 \mathrm{~mm}$, monoclinic, space group $P 2_{1} / c, a=$ $16.8216(2) \AA, b=10.14670(10) \AA, c=20.0184(2) \AA, \beta=111.4830(10)^{\circ}, V=3179.44 \AA^{3}, T=100 \mathrm{~K}, Z=$ $4, D_{\text {calc }}=1.900 \mathrm{~g} \cdot \mathrm{~cm}^{3}, \lambda=0.71073 \AA, \mu\left(M o-K_{\alpha}\right)=5.571 \mathrm{~mm}^{-1}$, empirical absorption correction $\left(\mathrm{T}_{\text {min }}=\right.$ $0.29, \mathrm{~T}_{\max }=0.75$), Nonius KappaCCD diffractometer, $2.93<\theta<27.50,63119$ measured reflections, 7279 independent reflections, 6985 reflections with $I>2 \sigma(I)$, Structure solved by direct methods and refined by full-matrix least-squares against F^{2} to $R_{1}=0.017[I>2 \sigma(I)], w R_{2}=0.058,390$ parameters, H atoms riding, $S=0.993$, residual electron density $+0.7 /-1.2$ e \AA^{-3}.

X-ray Crystal Structure Analysis of Complex 9 (CCDC 670970): $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~B} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}, M_{r}=282.07 \mathrm{~g}$. mol^{-1}, colorless plate, crystal size $0.25 \times 0.22 \times 0.13 \mathrm{~mm}$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}, a=$ $6.9392(5) \AA, b=11.5597(7) \AA, c=16.2135(10) \AA, V=1300.57(15) \AA^{3}, T=100 \mathrm{~K}, Z=4, D_{\text {calc }}=1.441$ $\mathrm{g} \cdot \mathrm{cm}^{3}, \lambda=1.54178 \AA, \mu\left(C u-K_{\alpha}\right)=1.034 \mathrm{~mm}^{-1}$, empirical absorption correction $\left(\mathrm{T}_{\min }=0.66, \mathrm{~T}_{\max }=0.87\right)$, Bruker AXS Proteum X8 diffractometer, $4.70<\theta<70.48,28928$ measured reflections, 2437 independent reflections, 1866 reflections with $I>2 \sigma(I)$, Structure solved by direct methods and refined by full-matrix least-squares against F^{2} to $R_{1}=0.090[I>2 \sigma(I)], w R_{2}=0.271,183$ parameters, absolute structure parameter $=-0.1(4), \mathrm{H}$ atoms riding, $S=1.174$, residual electron density $+0.4 /-0.6$ e \AA^{-3}.

X-ray Crystal Structure Analysis of Complex 12 (CCDC 670971): $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{AuF}_{6} \mathrm{NP} \mathrm{Sb}, M_{r}=816.16 \mathrm{~g}$ $\cdot \mathrm{mol}^{-1}$, colorless plate, crystal size $0.11 \times 0.09 \times 0.06 \mathrm{~mm}$, triclinic, space group $P \overline{1}, a=10.4508(5) \AA, b$ $=11.0356(5) \AA, c=14.2226(5) \AA, \alpha=94.738(2)^{\circ}, \beta=105.926(2)^{\circ}, \gamma=117.421(2)^{\circ}, V=1357.52(10) \AA^{3}$, $T=100 \mathrm{~K}, Z=2, D_{\text {calc }}=1.997 \mathrm{~g} \cdot \mathrm{~cm}^{3}, \lambda=0.71073 \AA, \mu\left(M o-K_{\alpha}\right)=6.508 \mathrm{~mm}^{-1}$, empirical absorption correction ($\mathrm{T}_{\min }=0.23, \mathrm{~T}_{\max }=0.43$), Nonius KappaCCD diffractometer, $2.93<\theta<33.13$, extinction coefficient $=0.031(2), 33323$ measured reflections, 10270 independent reflections, 8045 reflections with I $>2 \sigma(I)$, Structure solved by direct methods and refined by full-matrix least-squares against F^{2} to $R_{1}=$ $0.043[I>2 \sigma(I)], w R_{2}=0.112$, 327 parameters, H atoms riding, $S=0.986$, residual electron density +1.7 / -3.1 e \AA^{-3}.

X-ray Crystal Structure Analysis of Compound 14 (CCDC 670969): $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N} \mathrm{O}_{2}, M_{r}=179.21 \mathrm{~g}$. mol^{-1}, yellow plate, crystal size $0.36 \times 0.14 \times 0.06 \mathrm{~mm}$, orthorhombic, space group $\mathrm{Pca2}_{1}, a=16.909$ (2) $\AA, b=6.6595(9) \AA, c=8.3993(12) \AA, V=945.8(2) \AA^{3}, T=100 \mathrm{~K}, Z=4, D_{\text {calc }}=1.259 \mathrm{~g} \cdot \mathrm{~cm}^{3}, \lambda=$ $1.54178 \AA, \mu\left(C u-K_{\alpha}\right)=0.714 \mathrm{~mm}^{-1}$, Semi-empirical absorption correction $\left(\mathrm{T}_{\min }=0.64, \mathrm{~T}_{\max }=0.75\right)$, Bruker AXS Proteum X8 diffractometer, $5.23<\theta<54.15,16503$ measured reflections, 1127 independent reflections, 1077 reflections with $I>2 \sigma(I)$, Structure solved by direct methods and refined by full-matrix least-squares against F^{2} to $R_{1}=0.039[I>2 \sigma(I)], w R_{2}=0.106,119$ parameters, H atoms riding, $S=1.127$,
residual electron density $+0.2 /-0.2$ e \AA^{-3}.

X-ray Crystal Structure Analysis of Complex 19 (CCDC 670973): $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{AuF}_{6} \mathrm{~N}_{4} \mathrm{P} \mathrm{Sb}, M_{r}=907.33$ $\mathrm{g} \cdot \mathrm{mol}^{-1}$, colorless plate, crystal size $0.20 \times 0.10 \times 0.04 \mathrm{~mm}$, monoclinic, space group $P 2_{1} / c, a=$ $10.2249(2) \AA, b=12.4927(2) \AA, c=25.8391(5) \AA, \beta=100.5430(10)^{\circ}, V=3244.88(10) \AA^{3}, T=100 \mathrm{~K}, Z$ $=4, D_{\text {calc }}=1.857 \mathrm{~g} \cdot \mathrm{~cm}^{3}, \lambda=0.71073 \AA, \mu\left(M o-K_{\alpha}\right)=5.458 \mathrm{~mm}^{-1}$, empirical absorption correction $\left(\mathrm{T}_{\text {min }}=\right.$ $0.20, \mathrm{~T}_{\max }=0.70$), Nonius KappaCCD diffractometer, $2.29<\theta<30.45,78814$ measured reflections, 9813 independent reflections, 8535 reflections with $I>2 \sigma(I)$, Structure solved by direct methods and refined by full-matrix least-squares against F^{2} to $R_{1}=0.028[I>2 \sigma(I)], w R_{2}=0.093,387$ parameters, H atoms riding, $S=1.249$, residual electron density $+1.4 /-1.7 \mathrm{e}^{-3}$.

[^0]: ${ }^{1}$ L. A. M. Bastiaansen, A. A. Macco, E. F. Godefroi, J. Chem. Soc. Chem. Commun. 1974, 36.
 ${ }^{2}$ R. M. Acheson, J. Woollard, J. Chem. Soc. Perkin Trans. 1 1975, 744-748.
 ${ }^{3}$ H. G. Viehe, Z. Janousek, R. Gompper, D. Lach, Angew. Chem. 1973, 85, 581-582., Angew. Chem. Int. Ed. Engl. 1973, 12, 566-567.

