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Abstract
We study the tidal deformations of the shape of a spinning black hole horizon
due to a binary companion in the Bowen–York initial data set. We use the
framework of quasi-local horizons and identify a black hole by marginally
outer trapped surfaces. The intrinsic horizon geometry is specified by a set of
mass and angular-momentum multipole moments n and n, respectively.
The tidal deformations are described by the change in these multipole
moments caused by an external perturbation. This leads us to define two sets
of dimensionless numbers, the tidal coefficients for n and n, which specify
the deformations of a black hole with a binary companion. We compute these
tidal coefficients in a specific model problem, namely the Bowen–York initial
data set for binary black holes. We restrict ourselves to axisymmetric situa-
tions and to small spins. Within this approximation, we analytically compute
the conformal factor, the location of the marginally trapped surfaces, and
finally the multipole moments and the tidal coefficients.

Keywords: black holes, tidal deformations, initial data

1. Introduction

Among the fundamental properties of any classical or quantum mechanical physical system is
its response to external perturbations. For example, the study of elasticity is the study of the
deformation of a solid body subject to an external force; in quantum mechanics, an important
property of atoms is the splitting of atomic spectral lines in the presence of external electric
and magnetic fields. In gravitational physics, an important example is the deformation of a
star due to the gravitational field of a binary companion. This paper studies the deformation of
a black hole horizon subject to an external perturbation. One of the earliest discussions of
tidal deformations in general relativity, the Love numbers, and their role in formulating the
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laws of motion is due to Damour [1]. Some recent studies of tidal deformations, Love
numbers for neutron stars and their potential implications for gravitational wave observations,
are [2–6]. Love numbers for non-spinning black holes are discussed in [7].

Both in Newtonian gravity and in general relativity, one could consider either (i) the
deformations in the gravitational field of the object at large distances from it, or (ii) the change
in the shape of the body itself. However, the relationship between the two calculations is yet
to be fully understood in general relativity. The papers cited in the previous paragraph were,
for the most part, concerned with the distortions of the bodyʼs asymptotic gravitational field.
Deformations of the shape of black hole horizons (again in the non-spinning case) are
discussed in [8, 9]. Some other papers which discuss the geometry of tidally distorted non-
spinning black holes are [10–12].

Tidal deformations of spinning black holes are not as well understood. The tidal
deformations of a Kerr black hole were studied by Hartle in a series of papers in the 1970s
[13, 14] using the framework of black hole perturbation theory for small spins. Recent work
by Hughes and OʼSullivan implements Hartleʼs formalism numerically [15] for larger spins.
This paper studies the deformation of a spinning black hole and in particular, the deformation
of its horizon shape in a very different framework, namely, in an initial data set and uses the
isolated horizon multipole moments. We shall assume that the black hole angular momentum3

is small and that the companion is far away (compared to the mass of the black hole).
Furthermore, we shall specialize to the manifestly axisymmetric case when the black hole
angular momentum and the separation vector between the black holes are parallel to each
other.

The essential ingredients in our calculation are the invariant horizon multipole moments
n and n for = …n 0, 1, 2, . These moments fully characterize the intrinsic geometry of a
black hole horizon and will be affected by the external field. We shall therefore begin with a
brief introduction to these moments. Our goal will be to compute how these moments are
affected when a binary companion is introduced. We shall work with a particular model
binary system, namely black holes in the Bowen–York initial data set [16]. This is one of the
simplest ways of studying a binary black hole system consisting of spinning components. The
Bowen–York initial data construction assumes that the spatial three metric is conformally flat
and that the extrinsic curvature tensor of the initial data surface is trace-free. With these
assumptions, it provides a prescription for solving the Hamiltonian and momentum con-
straints for an arbitrary number of black holes including both angular momentum J and linear
momentum P for each black hole. We shall solve for the conformal factor perturbatively
assuming that both J and P are small in magnitude. This allows us to find the location of the
marginally trapped surfaces perturbatively and to thereby calculate the black hole source
multipole moments. We can then identify how the multipole moments are affected by the
presence of the second black hole and therefore find a set of numbers which uniquely
characterize how the moments are affected by an external perturbation. The calculation of
these coefficients is the main result of this paper.

It is important to keep in mind an important caveat here. From a physical viewpoint, what
we really want is to carry out a similar computation for two Kerr black holes rather than for
Bowen–York black holes. It is known that the Kerr spacetime does not admit conformally flat
spatial slices [17] and thus, the Bowen–York black hole horizon is expected a priori to be
different from a Kerr horizon. In binary black hole numerical simulations which start with
Bowen–York data, it is found that the initial deviations from Kerr are radiated away in the so
called ‘junk radiation’ and the individual black hole horizons very quickly become

3 In this paper by ‘angular momentum’ we shall always mean the intrinsic angular momentum of the black hole.
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indistinguishable from a Kerr horizon. While this is not a problem for the numerical simu-
lations which can ignore the initial burst of junk radiation, in our case this will be more
important. The tidal properties of a Bowen–York black hole may well be quite different from
a Kerr black hole. While it would be interesting to investigate this further, it is nevertheless
useful since this would be the first such calculation for a spinning black hole. It also provides
an interesting application of the horizon multipole moments which clearly quantify the
deviations of a Bowen–York black hole from the Kerr horizon. Since the Bowen–York data
set is commonly used as a starting point for numerical relativity calculations, this might be
useful for numerical relativity applications. There are numerous suggestions for constructing
initial data which resembles a system of two Kerr black holes more closely (see e.g. [18, 19]),
but the Bowen–York data is the simplest example for a spinning black hole.

A similar comment applies in fact also to non-spinning black holes. In principle we
would like to consider a spacetime consisting of two Schwarzschild black holes far away from
each other and falling head-on towards each other. However, there are potentially different
ways of approximating this physical situation. We could, as in [8], note that the spacetime
must be axisymmetric and thus model it by a static Weyl metric. This will have the unphysical
feature that the black holes will continue to remain in a static configuration. The two black
holes are held apart by a ‘strut’ and it is not clear how one should separate the influence of this
strut from the gravitational interaction between the two bodies. Alternatively, we could
consider the Brill–Lindquist [20] or Misner [21] initial data sets for binary systems, both of
which contain two black holes initially at rest. None of these choices are perhaps entirely
unreasonable4 but we cannot suppose that they will yield the same values of the horizon Love
numbers or in general, the tidal coefficients.

The plan for the rest of this paper is as follows. In section 2 we shall review the
definitions of the horizon multipole moments and describe how these moments change under
the influence of an external perturbation. The Bowen–York initial data set is described briefly
in section 3. Section 4 considers a single spinning Bowen–York black hole. Section 5 dis-
cusses a binary system and the deformation of the black hole multipole moments due to a
binary companion. Finally section 6 discusses some implications of these results and direc-
tions for future work. We shall work in geometric units with G = c = 1. The spacetime metric,
with signature − + + +( ), will be denoted by gab and ∇a will be the derivative operator
compatible with it. Our convention for the Riemann tensor Rabcd is

ω ω− =    R( )a b b a c abc
d

d .

2. The horizon multipole moments

2.1. The general framework

We shall use the framework of quasi-local horizons to describe black holes. This encompasses
a wide range of physical situations: black holes in equilibrium are modeled by isolated
horizons [22–27], and a black hole growing due to in-falling matter/radiation is modeled as a
dynamical horizon [28, 29]. Both of these are closely related to the notion of trapping
horizons introduced earlier by Hayward [30–33]. All these notions build on the idea of a
marginally outer trapped surface. Let  be a closed two-dimensional surface. Let ℓa and na be

4 Each of these are unphysical in their own way. The Weyl metric approach yields a static solution as mentioned
previously, the Brill–Lindquist data is time symmetric, and the Misner data represents a wormhole connecting the
two black holes. Thus, strictly speaking, none of these can represent two Schwarzschild black holes which were far
away in the past and are coming closer to each other.
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its outward and inward pointing null normals respectively.  is said to be a marginally
trapped surface if the expansions of ℓa and na, denoted by Θ ℓ( ) and Θ n( ) respectively, satisfy
Θ = 0ℓ( ) and Θ < 0n( ) .  is said to be a marginally outer trapped surface if Θ = 0ℓ( ) with no
restriction onΘ n( ) . In practice we will not check the condition onΘ n( ) (though, since we work
with perturbed surfaces in this paper, we will not deal with highly distorted cases which might
violate Θ < 0n( ) ).  will be assumed to have spherical topology. The time evolution of  has
been shown to be well behaved (locally in time) provided it satisfies a suitable stability
condition [34, 35]; the three-dimensional hypersurface generated by this time evolution is
thus smooth. Isolated, dynamical and trapping horizons are all special cases of such three-
dimensional hypersurfaces. We shall not go into the detailed definitions of these notions
because we shall work only with marginally outer trapped surfaces  at a single instant
of time.

We shall denote the spacelike two metric on  by ∼qab, the covariant derivative compa-
tible with ∼qab is ͠a, the intrinsic scalar curvature of ∼qab is ͠, and the invariant volume two-
form is ϵ∼ .ab We shall work with  embedded in a spatial hypersurface Σ. The outgoing unit
spacelike normal to  within Σ is denoted by ra and the extrinsic curvature of Σ embedded
within the spacetime manifold  is Kab. Another important field is the one-form
ω = ∼K q r˜a cb a

c b. We assume that  is axisymmetric, i.e. it admits a rotational symmetry φa

which preserves ∼qab and ω̃a [19, 36–39]. Let A be the area of  and π= R A 4 its area
radius. The angular momentum associated with  in vacuum general relativity is given by

∮ ∮π
ω φ

π
φ= =φ  J V K r V

1

8
˜ d

1

8
d , (1)a

a
ab

a b( ) 2 2

where Vd2 is the invariant volume element on  . We shall usually drop the superscript in φJ .( )

The mass associated with  is

= +


 M
R

R J
1

2
4 . (2)4 2

We shall need higher order multipoles beyond the mass and angular momentum. Multipole
moments for isolated horizons were introduced in [40]. A general procedure valid for
dynamical black holes without assuming symmetries is given in [41]. However, this requires
access to the time evolution of  which is beyond the scope of this paper. We shall therefore
use a simpler and more limited method described in [42] which is a simple extension of [40].
See also [43] for numerical methods for computing multipole moments.

The starting point for this method is to construct a preferred coordinate system on 
adapted to the axial symmetry: ζ ϕ( , ), with ζ− ⩽ ⩽1 1 and ϕ π⩽ <0 2 . We normalize φa

so that it has affine length π2 . Then ϕ is the affine parameter along φ φ ϕ =͠: 1a a
a . The other

coordinate ζ is defined by:

∮ζ φ ϵ ζϵ= =∼ ∼͠
 R

1
, 0. (3)a

b
ba2

It can then be shown that in these coordinates the metric ∼qab takes the form [40]:

ζ ζ ϕ ϕ= +∼ ͠ ͠ ͠ ͠−     ( )q R f f , (4)ab a b a b
2 1

where f is a function of ζ: φ φ= f Ra
a 2. On a round sphere in Euclidean space with the usual

spherical coordinates θ ϕ( , ), ζ θ= cos . Regularity of ∼qab at the poles requires
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ζ′ = ∓
ζ→±

flim ( ) 2. (5)
1

It can also be shown that the scalar curvature is

ζ= − ″͠
R

f
1

( ). (6)
2

In these coordinates, the invariant volume element on  is independent of f, and is thus the
same as on a round two-sphere where θ ζ= = −f sin 12 2. The normalization condition for
spherical harmonics therefore works with the invariant volume element. The mass multipoles
are:

∮π
ζ= ͠  


M R

P V
8

( ) d , (7)n

n

n
2

and the angular momentum multipoles are

∮π
ϵ ζ= ∼ ͠

+
 


R

P K r V
8

( ) d . (8)n

n
ab

a n bc
c

1
2

Here, ζP ( )n are the Legendre polynomials. On general grounds, it follows that = M0 and
= 00 . The first angular momentum multipole is just the angular momentum: = J1 .

Furthermore, since ζ ζ− = −P P( ) ( 1) ( )n
n

n , if the horizon is axisymmetric and also symmetric
under a reflection (ζ ζ→ − , ϕ ϕ π→ + ), then = 0n for all odd n and = 0n for all
even n.

2.2. The Kerr multipole moments

It is useful to illustrate these notions for a Kerr horizon parameterized by a mass m and spin
parameter a. We shall later compare the Kerr multipole moments with the corresponding
moments for a single spinning Bowen–York black hole.

We first note that the horizon mass and spin are respectively m and am as expected. In
Boyer–Lindquist coordinates θ ϕt r( , , , ), the horizon is located at = +r r such that (see e.g.
[44])

= + −+r m m a . (9)2 2

The two metric on a cross-section of the horizon is

ρ θ θ
ρ

θ ϕ ϕ= +
+∼

+
+

+

   
( )

q
r a

sin , (10)ab a b a b
2

2 2 2

2
2

where ρ θ= ++ +r a cos2 2 2 2 . The volume two-form on  is

ϵ θ θ ϕ= + ∧∼
+( )r a sin d d . (11)2 2

The area of any closed cross-section of the horizon is π= ++A r a4 ( )2 2 and the area radius is

= ++R r a2 2 . The invariant coordinate ζ is, as for round two-spheres, ζ θ= cos . The two
metric can be written in the form given in equation (4) with

ζ θ
ρ

ζ
ζ

= = −
− −+ ( )

f
R

a R
( )

sin 1

1 ( ) 1
. (12)

2 2

2

2

2 2

It is easy to see that equation (5) is satisfied. The general calculation of the Kerr multipole
moments is discussed in [40] and here we shall need the multipoles in the limit of small spins.
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Keeping terms up to  a( )2 :

ζ ζ ζ= − + − + ⎜ ⎟
⎛
⎝

⎞
⎠ ( ) ( )f

a

R
a( ) 1 1 , (13)2

2
2 2 4

which implies

ζ ζ ζ= − ″ = − +͠  ( )
R

f
R

a

R
P a( )

1
( )

2 8
( ) . (14)

2 2

2

4 2
4

Apart from the mass and angular momentum, the only non-vanishing multipole moment at
 a( )2 is

= − = − ma
J

m

4

5

4

5
. (15)2

2
2

It is easier to calculate the n from the Weyl tensor component Ψ2 (in Boyer–Lindquist
coordinates):

Ψ
θ

θ θ= −
−

= − + − + ⎛
⎝⎜

⎞
⎠⎟( )m

r a

m

r

a

r

a

r
a

( i cos )
1

3i
cos

6
cos . (16)2 3 3

2

2
2 3

For isolated horizons in vacuum general relativity, it can be shown that Ψ= −͠ 4Re [ ]2

[24, 26]. Writing m and r in terms of R and a, equation (14) is recovered. The moments of the
imaginary part ofΨ2 yield the angular momentum multipole moments n [40]. It is again easy
to see that = 00 and = = J am1 . All other moments vanish at this order of approximation.

2.3. Perturbations of the multipole moments

Consider a black hole with mass M1, angular momentum J1, and multipole moments n, n.
We shall be concerned with how the multipole moments change under the influence of an
external perturbation. Let δn and δn be the changes in n and n respectively. Consider
an external perturbation caused by a non-spinning binary companion of mass M2 placed at a
distance d. We shall restrict ourselves to axisymmetric situations where the separation vector
between the two black holes is parallel to the spin-vector of the first black hole. Let us define
the dimensionless spin of the first black hole as χ = J M1 1

2; χ can be shown to be restricted to
χ <| | 1 [45]. We assume that the full set of multipole moments is fully determined by the
lowest non-vanishing moments, i.e. the mass and the angular momentum.

The small quantities in the problem are M d2 and χ. On general grounds, δn and δn

can be expanded as

∑δ
α χ=+

= =

∞

+


M

M M

d
, (17)n

n
m k j

mkj
n

m k

m k
j

1
1

, 1; 0

( ) 1 2

∑δ
β χ=+

= =

∞

+


M

M M

d
. (18)n

n
m k j

mkj
n

m k

m k
j

1
1

, 1; 0

( ) 1 2

The dimensionless coefficients α n( ) and β n( ) will be called tidal coefficients. The masses M1,2

are the physical masses and will be combinations of the ‘bare’ parameters of the system which
might include the bare masses m1,2, d and the angular momenta; we shall see explicit
examples of this later.

If →M 02 or → ∞d , then the external perturbation vanishes and hence (δn, δn)
must also vanish. This means that in the above sums, we need only consider ⩾k m, 1.
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Similarly, we do not expect a divergence when χ → 0, which shows that ⩾j 1. Thus, all the
exponents m k j( , , ) can take only positive values. We expect additional terms if the second
black hole were also spinning, and if both black holes had non-zero linear momentum. In non-
axisymmetric systems, when for example the angular and linear momenta, and the separation
vector, are not aligned, we would have to consider moments ( ,ℓm ℓm) for ≠m 0 as well.
These generalizations will be discussed in a forthcoming publication.

It is also useful to note that in the non-spinning case, the perturbations start to be non-
vanishing only from  M d( )2

3 onwards. Thus, the first term in, say 2, is proportional to
M M d1

2
2

3 and the corresponding tidal coefficient is α210
(2) . This coefficient will be proportional

to the tidal Love number h2 calculated in [8, 9].

3. The Brill–Lindquist and Bowen–York initial data sets

We work in a 3+1 split of spacetime where initial data are specified on a spacelike hyper-
surface Σ. The initial data consist of the positive-definite three metric hab on Σ, and the
extrinsic curvature Kab describing the embedding of Σ within the spacetime manifold . The
initial data Σ h K( , , )ab ab satisfy the momentum and Hamiltonian constraint equations
respectively:

− = − + =( )D K Kh R K K K0, 0. (19)a
ab ab ab

ab
3 2

Here R3 is the Ricci scalar computed from hab and Da is the covariant derivative compatible
with hab.

We shall take hab to be conformally flat so that ψ=h fab ab
4 , with fab being a flat metric.

Furthermore, we shall take Kab to be trace-free: K = 0, and the metric will be taken to be
asymptotically flat at spatial infinity. With these choices, the constraint equations become

Δψ ψ∂ = = −͠ ͠ ͠−K K K0.
1

8
, (20)a

ab
ab

ab7

Here ψ=K͠ Kab ab
2 is the re-scaled extrinsic curvature, Δ = ∂ ∂: a

a is the flat-space Laplacian
and ∂a is the derivative operator compatible with the flat metric fab. Since the momentum
constraint is now decoupled, we use an appropriate solution K͠ab to the momentum constraint,
plug it into the Hamiltonian constraint and solve the resulting elliptic equation for ψ.
Furthermore, since the momentum constraint is seen to be linear, we can linearly superpose
various solutions. The Hamiltonian constraint however is nonlinear and introduces various
cross-terms between the different pieces included in K͠ab.

The simplest solutions are when the extrinsic curvature vanishes identically so that the
data are time-symmetric. In this case the conformal factor satisfies the Laplace equation in flat
space. Non-trivial solutions are obtained when we have ‘point charges’. Thus, if we place N
masses mi at points ri respectively ( = …i N1 ), then at any position r on Σ away from ri:

∑ψ = +
−=

m
r

r r
( ) 1

2
. (21)

i

N
i

i
BL

1

This is the well known Brill–Lindquist solution [20]; see also [46, 47]. We shall consider the
cases of a single black hole or a binary system so that the sum over i is either just a single term
or the sum of two. The parameters mi are the bare masses of the black holes. In the absence of
any other black hole, these would be the physical horizon mass (and also the ADM mass).
However, this is not the case if other black holes are present.

Class. Quantum Grav. 32 (2015) 045009 M Cabero and B Krishnan

7



Linear momentum P and angular momentum J for a single black hole are handled by
non-trivial choices for K͠ab, denoted by K͠P

ab and K͠J
ab [16]:

= + − −͠ ⎡⎣ ⎤⎦( )K
r

P n P n f n n P n
3

2
, (22)P

ab a b b a ab a b c
c

2

ϵ ϵ= +͠ ⎡⎣ ⎤⎦K
r

J n n J n n
3

. (23)J
ab acd

c d
b bcd

c d
a3

These are the well known Bowen–York solutions to the momentum constraints. Here we have
chosen standard spherical coordinates centered on the location of the black hole, with r as the
radial coordinate and na the unit three-vector orthogonal to the spheres of constant r.
Solutions with multiple black holes are obtained by superposing the different individual
extrinsic curvatures. The solution for the conformal factor is determined, however, by a
nonlinear combination of the extrinsic curvatures.

We study the effects of momentum, spin and presence of a binary companion on a black
hole by considering perturbative solutions to the conformal factor [48]:

ψ ψ= + u. (24)BL

This is the so-called puncture ansatz, where ψBL contains all the singularities in the conformal
factor and u is taken to be smooth everywhere and vanishing at spatial infinity. The equation
for the conformal factor becomes:

Δ ψ= − + ͠ ͠−( )u u K K˜ 1

8
. (25)ab

ab
BL

7

We shall keep terms up to  P( )2 ,  J( )2 and  PJ( ). It is easy to see that at this level of

accuracy (since ͠ ͠K Kab
ab contains only terms of this order), the conformal factor satisfies a

linear Poisson equation:

Δ ψ= − ͠ ͠−u K K˜ 1

8
. (26)ab

ab
BL

7

Even with this simplification, the right-hand side of this equation is fairly complicated and it
contains various cross terms between the spin and linear-momenta (of either black hole in the
case of a binary system). Still, given its linearity, we can treat it analytically. We would get a
linear equation if we keep terms linear in u on the right-hand side of equation (25). This case
would still be amenable to an analytic treatment and would allow us to go to higher orders in
P and J, but we shall restrict ourselves to dropping all u dependence within the source term.

4. A single spinning black hole

4.1. The conformal factor

The solution to the momentum constraint for a single spinning black hole at rest and placed at
the origin is given by equation (23). A simple calculation shows

θ=͠ ͠K K
J

r

18 sin
. (27)ab

ab
2 2

6

The angle θ is measured from J. Note again that the parameters m and J are the bare mass and
angular momentum respectively. The physical parameters (either at the horizon or at spatial
infinity) will be determined below. With the puncture ansatz of equation (24), the
Hamiltonian constraint becomes
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ψ θ

θ

= − = −
+ +

≈ −
+

−

͠ ͠
−



( )

u K K
rJ

m r ur

J r

m r
P

8

288 sin

( 2 2 )

192

( 2 )
1 (cos ) . (28)

ab
ab2

7 2 2

7

2

7 2

In the last step, as explained earlier, we have dropped the u dependent terms on the right-hand
side, and the resulting Poisson equation is thus only valid up to  J( )2 . We require that u is
regular and →u 0 when → ∞r . Since we are working in spherical coordinates, regularity at
the origin implies

∂
∂

=
=

u

r
0. (29)

r 0

The solution θu r( , ) will be of the form

θ θ θ= +u r u r P u r P( , ) ( ) (cos ) ( ) (cos ), (30)0 0 2 2

and the radial equations for u r( )0 and u r( )2 are:

″ + ′ = −
+

u
r

u
J r

m r

2 192

( 2 )
, (31)0 0

2

7

″ + ′ − =
+

u
r

u
r

u
J r

m r

2 6 192

( 2 )
. (32)2 2 2 2

2

7

The solutions which are regular at r = 0 and asymptotically flat are:

=
+

+ + + +( )u r
J

m m r
m m r m r mr r( )

2

5 ( 2 )
10 40 40 16 , (33)0

2

3 5
4 3 2 2 3 4

= −
+

u r
J r

m m r
( )

16

5 ( 2 )
. (34)2

2 2

5

We see that for large r, u2 falls off as r1 3 and

= +  ( )u r
J

m r
r( )

2

5

1

2
1 . (35)0

2

3
2

Thus, the ADM mass is, ignoring higher powers in J,

= +m m
J

m

2

5
. (36)ADM

2

3

The values of u0 and u2 at =r m 2 will be used later. These are:

= = −= =u
J

m
u

J

m

11

40
, and

1

40
. (37)

r m r m0 2

2

4 2 2

2

4

4.2. The location of the marginal surface

Let us now turn to the location of the marginal surface  . We need to find closed surface (s)
within Σ such that the outward null normal has vanishing expansion. If ra is the outward
spacelike unit-normal to  within Σ, and τa is the unit timelike normal to Σ, then all outward
null normals are parallel to τ= +ℓ ra a a. Thus,  is a marginally outer trapped surface if
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τ= − + = + − =∼  ( )q ℓ h r r r D r K K r r( ) 0. (38)ab
a b

ab a b
a b b a

a
ab

a b

The general solution is given by θ θ= − =f r r h( , ) ( ) 0. Cook and York have previously
studied the horizon location for a single spinning and boosted Bowen–York black hole [49]. It
is however useful for us to repeat some of the calculations for the zero-boost case.

The unit normal to  is

ψ=
+

∂ − ∂
θ

θ
θ

− ⎛
⎝⎜

⎞
⎠⎟h r

h

r
r

1
. (39)r

2

2 2 2

Here θh denotes the partial derivative θ∂ ∂h . It is easy to check that =K r r 0ab
a b . The horizon

is thus a minimal surface and, more explicitly, it is obtained by solving

ψ
θ θ

ψ θ∂
∂ +

= ∂
∂ +θ

θ

θ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟r

r

h r

h

h r1

1

sin

sin

1
. (40)

2 4

2 2

4

2 2

We can solve this order by order in J. If all terms in J are ignored, equation (40) becomes
ψ∂ =r( ) 0r

2
BL
4 whose solution is =r m 2 [20]. Now keep terms linear in θh (this can be, at

best, linear in J), and dropping all terms beyond  J( )2 , equation (40) becomes

ψ ψ
θ θ

θ
θ

+ =
θ θ= =

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )

r
r

r
r u

hd

d

d

d
4

16

sin

d

d
sin

d

d
. (41)

r h r h

2
BL
4

( )

2
BL
3

( )

In the second term on the left, the derivative can be evaluated at =r m 2 since u is already
 J( )2 . Using the solutions for u0 and u2 derived earlier, it turns out somewhat surprisingly
that this term vanishes. As for the first term:

ψ ψ ψ= + −

= −

θ= = =

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( ) ( )
r

r
r

r h
m

r
r

h
m

d

d

d

d 2

d

d

16
2

. (42)

r h r m r m

2
BL

( )

2
BL

2

2

2
2

BL
2

Putting it all together, it is easily seen that the solution to equation (41) is just =h m 2. A
similar calculation shows that this holds also at  J( )2 .

4.3. The area, angular momentum, and mass

With the location of the marginal surface  known, we can turn to its physical and geo-
metrical properties. The first is simply its area. The induced metric on a surface given by

θ=r h ( ) is

ψ θ θ ϕ= + +θ∼ ( )( )s r h rd d sin d . (43)q
2 4 2 2 2 2 2 2

The invariant volume measure is

ψ θ= +∼
θq r h rdet sin 1 . (44)2 4 2 2

Specializing to the marginal surface =r m 2 found earlier, and keeping terms up to  J( )2 ,
we get

ψ θ θ≈ + ≈ +∼
=

=( ) ( )q
m

u m udet
4

sin 4 1 2 sin . (45)
r m

r m

2

BL
4

2

2
2
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The area is thus

∫ ∫π θ π θ θ= ≈ +∼π π
=( )A q m u2 det d 8 1 2 sin d (46)r m

0

2

0
2

π π= + = +=

⎛
⎝⎜

⎞
⎠⎟( )m u m

J

m
16 1 2 16 1

11

20
, (47)

r m
2

0 2
2

2

4

and the corresponding area radius is

π
= = + ≈ +

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟R

A
m

J

m
m

J

m4
2 1

11

20
2 1

11

40
. (48)

2

4

1 2 2

4

The angular momentum turns out to be just the parameter J appearing in the extrinsic
curvature. To see this, consider any surface θ=r h ( ) ( θh ( ) could be arbitrary, subject only to
the condition that the surface is smooth and of spherical topology). Then, taking all the factors
of ψ into account, we get

φ ψ θ= −
+ θ

−
K r

J

r h r

3 sin

1
. (49)ab

a b
4 2

2 2 2

Using equation (1) and the volume element given by equation (44), it can be shown that the
angular momentum associated with the marginal surface is just J. Similarly, this shows that
the angular momentum associated with the sphere at spatial infinity is also J. This fact can
also be seen by the balance law for angular momentum discussed in [50], obtained by
integrating the momentum constraint over Σ after a contraction with φa. Using the fact that φa

is a symmetry of hab then shows that the angular momentum for any closed spherical two-
surface is J.

Using equations (2) and (48), the mass of the horizon is

≈ + = + + ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )M

R J

R
m

J

m
J

2
1

2
1

2

5
. (50)

2

4

2

4
4

We have dropped the subscript  on M for simplicity. Henceforth, we shall usually use M for
the horizon mass to distinguish it from the bare mass m. It is interesting to note that the value
obtained here is the same as the ADM mass given in equation (36). We are now ready to turn
to the higher multipole moments.

4.4. Higher multipole moments

In order to calculate the multipole moments  ( , )n n we first need to find the preferred
coordinate system ζ ϕ( , ) compatible with the axial symmetry. Starting with equation (43),
keeping terms up to  J( )2 , we see that the metric ∼sd q

2 can be put in the form of equation (4)
with

ψ θ ζ ψ θ θ= =f
r

R

r

R
sin and d sin d . (51)

2 4

2
2

2 4

2

It is useful to again note that at =r m 2, ψ ≈ +r m u4 (1 2 )2 4 2 . Setting =r m 2, using the
values of u0 and u2 at =r m 2, and the result for R, it is not difficult to show that
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ζ θ θ= + + ⎛
⎝⎜

⎞
⎠⎟ ( )J

m
Jcos 1

sin

40
. (52)

2 2

4
4

As expected, ζ = 1 and −1 at the north and south poles respectively. It is also easy to check
that the condition of equation (5) is indeed satisfied. We use equation (6) to calculate the
scalar curvature ͠. We begin with:

ζ θ
θ
ζ

θ θ θ
θ

θ θ= =
+ +

+
≈ +θ

θ
f f u u

u
u

d

d

d

d

d

d

(1 2 )2 sin cos 2 sin

(1 2 ) sin
2 cos 2 sin . (53)

2

A similar further short calculation, utilizing also equation (37), yields the intrinsic scalar
curvature of the horizon:

ζ
ζ= − = − +͠  ( )

R

f

R

J

M
P J

1 d

d

2

20
( ) . (54)

2

2

2 2

2

6 2
4

This finally allows us to calculate the mass multipole moments. At the approximation that we
are working in, the mass quadrupole moment is

= − +  ( )J

M
J

2

25
. (55)2

2
4

All higher moments n vanish. Similarly, it turns out that the only non-vanishing angular
momentum multipole n within our approximation is the angular momentum 1. All other n

vanish up to  J( )2 .
It is interesting to compare these results with the corresponding moments for the Kerr

black hole horizon. The only one we can compare is the mass-quadrupole 2. Comparing
equations (55) and (15), we see that the Kerr value is exactly ten times larger; thus the
Bowen–York black hole is in fact closer to the Schwarzschild black hole (with the same
mass). This observation might shed some light on the initial junk radiation observed in
numerical relativity studies involving Bowen–York data (see e.g. [51]). We are led to
speculate that when we try to make a spinning black hole conformally flat, its mass quad-
rupole moment ends up closer to Schwarzschild than it should be. It would be useful to
accurately monitor the multipole moments of the individual black holes in a binary black hole
simulation during the initial junk radiation phase.

4.5. A single boosted and spinning black hole

Let us now consider a single Bowen–York black hole with non-vanishing boost, i.e. including
the solution K͠P

ab of the momentum constraint given in equation (22). For the moment, let us
set the angular momentum to zero and consider a non-spinning boosted black hole. Let us
align the z-axis with the linear momentum P and, for an arbitrary point P away from the
puncture r = 0, let θ be the angle between the position vector r of P and the z-axis. Then, it is
easy to show that

θ= +͠ ͠ ⎜ ⎟⎛
⎝

⎞
⎠K K

P

r

9 1

2
cos . (56)ab

ab
2

4
2

A perturbative solution to the Hamiltonian constraint for small P has been obtained
previously [49, 52]. The calculations are very similar to what we have seen for the spinning
case earlier and we shall not repeat all the steps here. As shown in [52], with the puncture
ansatz, the correction term for the conformal factor is
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θ ϵ θ θ ϵ= + +  ( )( )u r u r P u r P( , ) ( ) (cos ) ( ) (cos ) . (57)P P
2

0 0 2 2
4

Here ϵ = P m:P . The solutions for the radial functions u0 and u2 which are regular everywhere
and asymptotically flat are given in equations (A8) and (A9) of [52]. The marginally trapped
surface is located in equation (24) of [52]:

θ θ ϵ= = − +  ( )r h
m P

( )
2 16

cos . (58)P
2

We can easily calculate the multipole moments of this horizon. The horizon mass, which in
this case is just the irreducible mass, has already been calculated in [52]:

= + + ⎛
⎝⎜

⎞
⎠⎟ ( )M m

P

m
P1

8
. (59)

2

2
4

The angular momentum multipoles all vanish, and the mass quadrupole moment turns out to
be:

= − +  ( )MP
P

200
(1871 2688 ln [2]) . (60)2

2
4

Let us now combine these results with the results of the previous sections on the single
spinning black hole. We shall restrict ourselves to the axisymmetric situation with P and J
parallel to each other. Then, from the form of the spin and momentum contributions to the
extrinsic curvature, a short calculation shows that

θ θ= + +͠ ͠ ⎜ ⎟⎛
⎝

⎞
⎠K K

P

r r
J

9 1

2
cos

18
sin . (61)ab

ab
2

4
2

6
2 2

There are no cross terms between the angular and linear momenta; this would cease to hold if
P and J were not aligned. We again look for solutions of the form given in equation (30).
Solutions to the two radial equations which are regular and asymptotically flat are obtained by
linearly superposition of equations (33)–(35) with the corresponding solutions given in [52].
The location of the horizon is still given by equation (58). The only non-vanishing multipole
moment apart from the mass and the spin (at the approximation we are working in) is the
mass quadrupole moment, which is the sum of the pure spin and boost values given in
equations (55) and (60).

5. A spinning black hole with a non-spinning binary companion

We now place our spinning black hole in a binary system. We shall simplify our calculation
in three ways. First, we shall ignore the effects of linear momentum. Second, we shall take the
companion black hole to be non-spinning and finally, we shall take the separation vector
between the two black holes to be parallel to the angular momentum vector J; see figure 1.
With these restrictions, the initial data is guaranteed to be axisymmetric. While not trivial, it is
in fact not hard to relax these assumptions since we have a flat background metric available to
us. However, breaking axial symmetry introduces complications in the definitions of the
multipole moments and calls for a separate discussion. We shall address this in a forthcoming
paper. Moreover, as in the earlier sections, we shall work in the limit of small angular
momentum (including terms accurate to  J( )2 ); this restriction is however difficult to avoid
in an analytic treatment and numerical calculations will be required for more accuracy.

When the spins vanish identically and we have time symmetry, the exact solution to the
Hamiltonian constraint is given by the Brill–Lindquist solution (equation (21)):
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ψ
α

= = + +
m

r

m

r
r( ) :

1
1

2 2
. (62)BL

1

1

2

2

With the puncture ansatz of equation (24), again ignoring u in the source term, we obtain:

Δ α= − ͠ ͠u K K˜ 1

8
. (63)ab

ab7

We take the second black hole to be non-spinning so that it does not have any contribution to
the extrinsic curvature and all the dependence on m2 and d is through α in the above equation.
From the Bowen–York extrinsic curvature we get explicitly:

Δ α θ= − +  ( )u
r

J J˜ 9

4
sin . (64)

6
7 2 2 4

We could, in principle, choose to keep terms up to any order in d1 that we wish. Since tidal
effects (in the absence of spin) are proportional to m d2

3, we shall keep our calculations
accurate to  d(1 )3 . We start by expanding α in terms of Legendre polynomials:

∑

α θ

θ

= + +
+ −

= + +
=

∞
⎜ ⎟
⎛
⎝

⎞
⎠

m

r

m

r d r

m

r

m

d
P

r

d

1
1

2 2 2d cos

1
2 2

(cos ) . (65)
n

n

n

1 2

2 2

1 2

0

We have chosen to expand in powers of d1 because we are interested in the region near the
first black hole, i.e. near the origin where r can be small. We should not expect the solutions
we obtain using this approximation to be uniformly accurate for large r.

If we keep terms up to  d(1 )3 , we see that α will include Legendre polynomials up to
θP (cos )2 . Since α7 is multiplied by θsin2 in equation (64), it is clear that the source term in

that equation will include terms up to θP (cos )4 . We thus look for a solution of the form

∑θ θ=
=

u r u r P( , ) ( ) (cos ). (66)
n

n n

0

4

Substituting this in equation (64) then leads to five linear ODEs for each of the five radial
functions un(r). We display explicitly the five differential equations (each equation is accurate
up to correction terms, which are  J( )4 and  d(1 )4 , and we define β = +m r: 21 ):

β β β β
β= − − + + −

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥( )

r
r

u

r

J r m r

d

m r

d

m r

d
m

d

d

d

d

192
1

7 28 7

5
60 , (67)2 0

2 3

7

2 2
2 2

2 2

2
3

3 3
2

2
2

β β
− = −

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥r

r
u

r
u

J m r

d

m r

d

d

d

d

d
2

4032

5

1 8
, (68)2 1

1

2
2

5

8 2

2

3

β β β β
β− = − + + −

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥( )

r
r

u

r
u

J r m r

d

m r

d

m r

d
m

d

d

d

d
6

192
1

7 28
5 84 , (69)2 2

2

2 3

7

2 2
2 2

2 2

2
3

3 3
2

2
2

β β
− = − −

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥r

r
u

r
u

J m r

d

m r

d

d

d

d

d
12

4032

5

1 8
, (70)2 3

3

2
2

5

8 2

2

3
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β
− = −

⎛
⎝⎜

⎞
⎠⎟r

r
u

r
u

J m r

d

d

d

d

d
20

3456

5
. (71)2 4

4

2
2

6

8 3

The solutions which are regular at the origin are given in appendix.

5.1. The marginal surface and multipole moments

The procedure for calculating the multipole moments is the same as before. First we locate the
marginal surface, find the axially-symmetric geometry (i.e. the coordinate ζ), expand the
scalar curvature and ω∼a in terms of the Legendre polynomials and read off the multipole
moments. Since the methods employed for each of these steps are technically very similar to
what was done in the previous section, we shall skip most of the intermediate details and
mostly provide results. We shall start with the non-spinning case and include spin effects
subsequently.

5.1.1. Non-spinning black holes. For two non-spinning black holes, the conformal factor is
known exactly and is just the Brill–Lindquist resultΨBL given in equation (62). As before, we
expand this in powers of d1 given in equation (65) and keep terms up to  d(1 )3 . The
marginal surface is again found by solving equation (40). This time we proceed order-by-
order in d1 ; details are provided in appendix B of [53]. The location of the horizon is:

θ θ

θ θ

= = − + −

− − + + ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ ( )

( )r h
m m

d

m

d
m m P

m

d
m m m P m P d

( )
2

1
2 4

(cos )

8
3 (cos )

5

7
(cos ) 1/ . (72)

1 2 2

2 2 1 1

2

3 2
2

1 2 1 1
2

2
4

The angular dependence starts only from d1 2 onwards. In order to find the area of the
marginal surface and its geometric properties, we need to evaluate ψr2 4 at the horizon

Figure 1. A depiction of the binary system. The first black hole is placed at the origin
and itʼs angular momentum J is aligned with the z-axis. The second black hole is
placed at a distance d on the z-axis. The distances of an arbitrary point P from the two
black holes are r1 and r2, and the angular coordinates θ ϕ( , ) of P are defined in the
usual way.
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accurate to  d(1 )3 :

ψ θ θ≈ + + +
θ=

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( )r m

m

d

m m

d
P

m m

d
P4 1

2 2
(cos )

4
(cos ) . (73)

r h
2 4

( ) 1
2 2

2
1 2

2 1
1
2

2

3 2

The area is then

∫ ∫ ∫θ θ ϕ ψ π ψ θ θ= + ≈
π π

θ
θ

π

θ= =( ) ( )A r h r rsin d d 1 2 sin d . (74)
r h r h0 0

2
2 4 2 2

( ) 0

2 4
( )

Thus we obtain the area and the horizon mass

π= + + ⇒ = + + ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( )A m

m

d
d M m

m

d
d16 1

2
1 1

2
1 . (75)1

2 2
2

4
1 1

2 4

The corresponding expression for M2 is obtained by interchanging m1 and m2.
The intrinsic metric on the marginal surface is of the form given in equation (4) with f

and the coordinate ζ given as in equation (51). A straightforward calculation then leads to

ζ
ζ= − = + +͠  ( )

R

f

M

M

d
P d

1 d

d

1

2 4
( ) 1 . (76)

2

2

2
1
2

2

3 2
4

We have expressed the result in terms of the physical horizon masses M1 and M2 rather than
the bare parameters m1 and m2.

It is then interesting to compare this with the work of Damour and Lecian [8]. This result
is to be compared with equation (32) of [8] which can be written in our notation as

ζ= + + …͠
M

M

d
P

1

2

4
( ) . (77)

1
2

2

3 2

This disagrees with the corresponding term of equation (76) containing ζP ( )2 ; the Brill–
Lindquist black hole is less distorted. As discussed at towards the end of the introduction, a
disagreement is not entirely surprising since the Brill–Lindquist data can be different from the
Weyl ansatz used in [8]. Recent work by Landry and Poisson [9] reproduces the results of
Damour and Lecian. However it uses a different formalism, and we have not carried out a
detailed comparison just yet.

5.1.2. Incorporating spin effects. For the case of a spinning black hole with a binary
companion, new terms appear in the higher orders of J and d1 starting with  J d( )2 2 . We
write θ θ θ= + ∼

h h h( ) ( ) ( )BL , where hBL denotes the Brill–Lindquist result of equation (72).
Then, it can be shown that

θ θ θ

θ θ

θ

θ

= − − −

− − +
−

+
−

−
−

+ +

∼

 

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( )

h
m J

m d
P P

m J

m d

m m
P

m
P

m
P

m
P J

d

( )
3

200
(cos )

(4657 6720 ln [2])

13
(cos )

16

47

70

21

25
(cos )

(32567 47040 ln [2])

343
(cos )

21(4657 6720 ln [2])

325
(cos )

3(391259 564480 ln [2])

3430
(cos )

1
. (78)

2
2

1
2 2 1 3

2
2

1
2 3

1 2
1

1
2

2
3

1
4

4
4
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Thus, unlike the case of a single spinning Bowen–York black hole studied earlier, the horizon
is no longer reflection symmetric, and the location is not independent of J.

We can finally compute the physical quantities of the horizon. As before, we start with
the area:

π= + + − + +

+
−

+ + 

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

( ) ( )

A m
J

m

m

d

J

m

m

d

J

m

m

d

J m m

m
J

d

16 1
11

20
1

11

20

1

4

33

80

39 55

200

1
. (79)

1
2

2

1
4

2
2

1
4

2
2

2

2

1
4

2

3

2
1
2

2
2

1
4

4
4

The angular momentum is just J and we can thus easily compute the horizon mass:

= + + − + − +
⎡
⎣⎢

⎤
⎦⎥M m

m

d

J

m

m J

m d

m J

m d

m J

m d

m J

m d
1

2

2

5

3

5

3

5

1

2

39

400
. (80)1 1

2
2

1
4

2
2

1
4

2
2 2

1
4 2

2
3 2

1
4 3

2
2

1
2 3

It is easy to check that previous results are recovered for either a single spinning black hole
( = ∞d ), or for a non-spinning black hole with a binary companion (J = 0).

Using the solution above for the conformal factor and the horizon location, as before, we
follow the procedure of computing the preferred coordinate ζ and the scalar curvature ͠. We
shall not show the intermediate results, but rather just move on to the main quantities of
interest, i.e. the multipole moments.

Apart from the mass and angular momentum, the non-vanishing multipole moments are
(as usual, all results ignore terms of  d(1 )4 or  J( )3 or higher):
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One might suspect that these results would simplify by using the physical horizon masses
instead of the bare masses m1, m2. This is indeed the case. For 2 we get

χ χ≈ − + + M
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d
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Here, as defined earlier, χ = J M: 1
2 and

= − + − ≈k
5294 7680 ln [2]

100

2

25
0.2137. (86)

The first two terms of 2 have been calculated earlier and the first effect of spin appears
through the coefficient k. Viewing this as a perturbation of 2:
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Thus, we conclude that the tidal coefficients (defined in equation (17)) α = 2 5210
(2) and

α = k212
(2) characterize the perturbations of the mass quadrupole moment.

Consider now the third mass moment 3. This is rewritten as:
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where = − ≈h : 110 160 ln (2) 0.0965. This determines the tidal coefficients α112
(3) , α122

(3) and
α212

(3) .
Finally, turning to the angular momentum moments:
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This determines the tidal coefficients

β β β β= − = = = −6
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211
(2)
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These coefficients describe the distortion of the spinning black hole horizon to linear order in
the perturbation and up to order J2.

6. Conclusions

In this paper we have computed the tidal deformations of the horizon of a spinning black hole
in a binary system using the Bowen–York initial data. We have defined a set of dimensionless
numbers, the tidal coefficients, which characterize the deformations. We have seen that the
effect of the tidal deformations appears already at  d(1 ) for a spinning black hole. A number
of immediate generalizations are possible even just for the Bowen–York data for small
angular momentum as considered here. The first is the deviation from axisymmetry. This
includes the case when the spin and the separation vector are not parallel, including linear
momenta for both black holes, and finally, including spin in the second black hole. Since we
have a flat background metric available to us, all of these cases can be dealt with. This will
enable us to, for example, determine circular orbits, find the minimum energy circular orbit,
and compare these results with expectations from post-Newtonian theory.

It would be interesting to compute the tidal coefficients during the course of a binary
black hole numerical simulation. Assuming that the horizon geometry can be tracked with
sufficient accuracy, this would give us a more accurate value of the tidal coefficients for the
physical situation that we are interested in, namely two Kerr black holes orbiting each other
and each being distorted by the gravitational field of the other.

Most importantly, an important missing piece in the literature on isolated horizons is the
relation between the horizon multipole moments and the usual field moments at infinity.
There should similarly be a relation between the tidal coefficients at the horizon and at
infinity. From the viewpoint of isolated horizons, this is expected because the horizon

Class. Quantum Grav. 32 (2015) 045009 M Cabero and B Krishnan

18



geometry (plus the transverse radiation Ψ4) determines the spacetime in the neighborhood of
an isolated horizon [23]. Thus, we can expect that a knowledge of the tidal coefficients at the
horizon should determine the tidal coefficients for the field moments. This is well known in
Newtonian theory where the two sets of Love numbers are simply related to each other.
Landry and Poisson [9] have determined this relationship in general relativity for non-spin-
ning neutron stars and black holes, but similar results for horizons with general multipole
moments and spins are still lacking.
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Appendix. Radial functions for the binary system

We give here the radial functions …u u0 4 of equation (66) obtained by solving equations (67)–
(71):
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We note that u1 does not vanish at spatial infinity. This is connected to the fact that the
approximation of expanding in powers of d1 is valid only near the first black hole and should
not be expected to be valid away from it.
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