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Abstract

Models of neutrino mixing involving one or more sterile neutrinos have resurrected their im-

portance in the light of recent cosmological data. In this case, reactor antineutrino experiments

offer an ideal place to look for signatures of sterile neutrinos due to their impact on neutrino fla-

vor transitions. In this work, we show that the high-precision data of the Daya Bay experiment

constrain the 3+1 neutrino scenario imposing upper bounds on the relevant active-sterile mixing

angle sin2 2θ14 . 0.06 at 3σ confidence level for the mass-squared difference ∆m2
41 in the range

(10−3, 10−1) eV2. The latter bound can be improved by six years of running of the JUNO exper-

iment, sin2 2θ14 . 0.016, although in the smaller mass range ∆m2
41 ∈ (10−4, 10−3) eV2. We have

also investigated the impact of sterile neutrinos on precision measurements of the standard neutrino

oscillation parameters θ13 and ∆m2
31 (at Daya Bay and JUNO), θ12 and ∆m2

21 (at JUNO), and

most importantly, the neutrino mass hierarchy (at JUNO). We find that, except for the obvious

situation where ∆m2
41 ∼ ∆m2

31, sterile states do not affect these measurements substantially.
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I. INTRODUCTION

Neutrino physics has entered the phase of precision measurements. With the upcoming

data in the future, the focus is now to determine the missing fundamental parameters such

as the neutrino mass hierarchy, the leptonic Dirac CP-violating phase, and the absolute

neutrino mass scale. In addition to the standard neutrino parameters, theoretical and phe-

nomenological investigations of beyond-the-Standard-Model scenarios as sub-leading effects

have therefore full attention. Such scenarios include non-standard neutrino interactions, uni-

tarity violation, CPT and Lorentz invariance violation, and models with sterile neutrinos.

In this work, we will investigate the impact of sterile neutrinos on the fundamental neutrino

parameters and how to constrain sterile neutrinos using reactor neutrino experiments such

as the ongoing Daya Bay and upcoming JUNO experiments.

Sterile neutrinos, or strictly speaking fermionic SM singlets, are even more elusive than

ordinary active neutrinos, since they are supposed to interact through the gravitational

force only, and not through the weak force as active neutrinos. However, sterile neutrinos

could mix with active neutrinos, which calls for physics beyond the Standard Model. At

the moment, there are three experimental results from neutrino oscillation experiments,

which give hints that sterile neutrinos could exist. These three results, usually referred to

as anomalies, are the LSND (and MiniBooNE) anomaly [1–3], the Gallium anomaly [4–6],

and the reactor anomaly [7], which all point to sterile neutrinos with mass of the order of

1 eV and small mixing. It should be noted that if such sterile neutrinos exist, they could

be produced in the early Universe, and have played an important role in the cosmological

evolution. Global fits to data from short-baseline neutrino oscillation experiments suggest

that the data can be described by either three active and one sterile (3+1) neutrinos or

three active and two sterile (3+2) neutrinos [8]. However significant constraints come from

experiments which would appear to disfavor these anomalies [9, 10]. Even in the case in

which these anomalies will be explained not by the presence of sterile neutrinos, there are

strong indications on the possibility of the existence of sterile neutrinos with masses lower

than 1 eV. Moreover, in viewing of the recent detection of B mode polarization from

the BICEP2 experiment [11], an analysis of the combined CMB data in the framework of

LCDM+r models gives Neff = 4.00±0.41 [12], in favor of the existence of extra radiation. In

this work, we will concentrate on the scenario with 3+1 neutrinos analyzing the constraints

2



from reactor neutrino experiments in a wide range of sterile neutrino masses.

From a theoretical point of view, a lot of novel models have been constructed with the aim

of embedding sterile neutrinos in a more fundamental framework. Such possibilities include

models of extra dimensions with exponentially suppressed sterile neutrino masses, see for

instance Ref. [13, 14]. A slightly-breaking flavor symmetry model may generate a neutrino

with much smaller mass than the other two, whose masses are allowed by the symmetry.

This has been proposed to generate seesaw neutrinos of keV scale in Refs. [15, 16], see also

Ref. [17]. While the commonly studied flavor models with non-Abelian discrete symmetries

cannot easily produce a non-trivial hierarchy between fermion masses, the Froggatt–Nielsen

mechanism is capable of such a production [18]. This has been proposed to generate seesaw

neutrinos of eV–keV scales in Refs. [19–21]. Extensions or variants of the canonical type-I

seesaw mechanism often contain additional mass scales, which can be arranged to generate

light sterile neutrinos [21–24].

The latest measurements of the small mixing angle θ13 have been established by several

neutrino oscillation experiments, but it was the Daya Bay experiment that first found a

statistical significance of more than 5σ confidence level, and therefore, won the hunt for

this mixing angle [25]. Apart from the standard oscillation picture, the reactor antineutrino

experiments could also help us to probe new physics as non-standard effects in neutrino

oscillations [26–31]. In this work, we will use the existing data of the Daya Bay experiment as

well as the sensitivity of the future JUNO experiment to put constraints on sterile neutrinos

using scenarios with 3+1 neutrinos [32–34].

This work is organized as follows: In Sec. II, we will analyze neutrino oscillation prob-

abilities with three active neutrinos and one sterile neutrino both (i) analytically and (ii)

numerically. Especially, we will consider three cases for the probabilities based on different

regimes of the neutrino mass-squared differences, and the effects of sterile neutrinos on the

determination of neutrino mass hierarchy. Then, in Sec. III, we will investigate the impact

and signature of one sterile neutrino using the existing data from the Daya Bay experiment

[35]. Next, in Sec. IV, we will study the sensitivity to sterile neutrino parameters as well as

the impact of one sterile neutrino on the precision measurement of the standard neutrino

parameters at the JUNO experiment. Finally, in Sec. V, we will summarize the results and

present our conclusions.
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II. NEUTRINO OSCILLATION PROBABILITIES

In the presence of n sterile neutrinos, the neutrino mass matrix is an (n + 3) × (n + 3)

matrix, which can be diagonalized by means of an (n + 3)× (n + 3) unitary matrix U . In

general, one has (n + 3)(n + 2)/2 mixing angles and (n + 2)(n + 1)/2 Dirac phases. In the

case of only one sterile neutrino, U is typically parameterized by

U = R34R̃24R̃14R23R̃13R12P , (1)

where the matrix Rij is a rotation by the angle θij in the corresponding ij space, e.g.

R34 =















1 0 0 0

0 1 0 0

0 0 c34 s34

0 0 −s34 c34















or R̃14 =















c14 0 0 s14e
−iδ14

0 1 0 0

0 0 1 0

−s14e
iδ14 0 0 c14















(2)

with sij = sin θij and cij = cos θij . The diagonal matrix P contains three Majorana phases,

which are irrelevant to our discussion. In this parametrization, one can figure out that

|Ue1| = c14c13c12 , |Ue2| = c14c13s12 , |Ue3| = c14s13 , |Ue4| = s14 , (3)

indicating that only the mixing angle θ14 enters reactor electron antineutrino oscillations.

The survival probability of electron antineutrinos from nuclear reactors can be written as

Pēē ≡ Pee = 1− 4
∑

i<j

|Uei|
2|Uej|

2 sin2∆ji , (4)

where ∆ji ≡ ∆m2
jiL/(4E) denote the oscillation phases, L the baseline length, E the neu-

trino energy, and ∆m2
ji ≡ m2

j −m2
i the mass-squared difference of two neutrino mass eigen-

states i and j. Using Eq. (3), we can rewrite the survival probability (4) as

Pee = 1− c414s
2
12 sin

2 2θ13 sin
2∆32 − c414c

2
12 sin

2 2θ13 sin
2∆31 − c414c

4
13 sin

2 2θ12 sin
2 ∆21

−s213 sin
2 2θ14 sin

2∆43 − c213s
2
12 sin

2 2θ14 sin
2∆42 − c213c

2
12 sin

2 2θ14 sin
2∆41 , (5)

where the oscillation terms are cast into two rows. The first row collects the contributions

from active neutrinos, while the second row from sterile neutrinos. In what follows, we will

concentrate on the oscillation probability at the Daya Bay and JUNO setups, in which one

of the standard oscillation modes in the first row of Eq. (5) dominates the probability. In
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addition, the ∆43 mode is further suppressed by both θ13 and θ14, and can therefore be safely

neglected. Thus, the oscillation probability (5), in the limit c213 = c214 = 1, approximates to

Pee ≃ 1− s212 sin
2 2θ13 sin

2∆32 − c212 sin
2 2θ13 sin

2∆31 − sin2 2θ12 sin
2∆21

−s212 sin
2 2θ14 sin

2∆42 − c212 sin
2 2θ14 sin

2∆41 . (6)

A. The Electron Antineutrino Survival Probability at Daya Bay

Since the baseline length of the Daya Bay detectors is relatively short, the ∆21 related

modes are strongly suppressed by L, and it is a good approximation to use ∆32 ≃ ∆31 and

∆42 ≃ ∆41. Hence, the oscillation probability (6) is simplified to

Pee ≃ 1− sin2 2θ13 sin
2∆31 − sin2 2θ14 sin

2 ∆41 , (7)

where terms like s213s
2
14 have been dropped. The last term appears in short-baseline reactor

neutrino experiments when |∆m2
41| & 10−3 eV2, and may play an important role in explaining

the reactor neutrino anomaly. Furthermore, the sterile neutrino contributions would make

significant modifications to the electron antineutrino spectrum. In case of a larger active-

sterile mass-squared difference, the second term leads to fast oscillations, which result in a

shift of the total observed events.

In the interesting situation that ∆m2
31 ≃ ∆m2

41, the two terms in the oscillation prob-

ability can be combined, and one can define an effective mixing angle as sin2 2θ̃13 =

sin2 2θ13 + sin2 2θ14. In this case, sterile neutrinos induce mimicking effects that add a

correction to the observed mixing angle θ13. Accordingly, Daya Bay loses its sensitivity to

sterile neutrinos.

In Fig. 1, we illustrate the oscillation probability at the Daya Bay far detector with

baseline length L = 2 km and mixing sin2 2θ14 = 0.1 [cf. Eq. (12) for the other standard

oscillation parameters]. As one can read off from the plot, in the limit |∆m2
41| ≪ |∆m2

32|, the

black solid and green dotted curves almost overlap, and hence, Daya Bay has no sensitivity

to sterile neutrinos in this mass regime. In the limit ∆m2
41 ∼ ∆m2

31, the sterile polluted

curve differs from the standard one. However, this difference can be compensated by taking

a smaller value for θ13. A combined analysis of reactor and long-baseline experiments are

therefore needed to discriminate this ambiguity. In the regime |∆m2
41| ≫ |∆m2

32|, the fast
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FIG. 1: The oscillation probability Pee at Daya Bay as a function of neutrino energy E for L = 2 km

and sin2 2θ14 = 0.1 (left plot) as well as sin2 2θ14 = 0.01 (right plot). SD refers to the standard

oscillation probability.

oscillations induced by sterile neutrinos lead to a clear distinction to the standard oscillation

behavior, and can be well constrained using the current Daya Bay data.

B. The Electron Antineutrino Survival Probability at JUNO

Different from the Daya Bay setup, the JUNO detector will be located around 50 km

away from the nuclear power plant, indicating that the ∆21 oscillation mode is dominating,

whereas the ∆31 and ∆32 related oscillation modes become fast oscillations. The sterile

neutrino related oscillation modes ∆4i induce corrections to the neutrino spectrum. Since the

JUNO energy resolution is optimized for the determination of the neutrino mass hierarchy,

the JUNO detector turns out to be sensitive to mass-squared differences between 10−5 eV2

and 10−2 eV2. Above this mass range, the oscillation frequency is too fast to be distinguished,

whereas, below this range, the oscillation behavior does not manifest due to the suppression

of baseline length and neutrino energy. Therefore, one may consider the following three

cases:

1. The sterile neutrino is nearly degenerate with one of the three active neutrinos,

i.e. |∆m2
4i| < 10−5 eV2 (for i = 1, 2, or 3). The active-sterile mass-squared differ-
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FIG. 2: The oscillation probability Pee at JUNO as a function of neutrino energy E for L = 52.5 km

and sin2 2θ14 = 0.1 (left plot) as well as sin2 2θ14 = 0.01 (right plot). Here the normal mass

hierarchy is assumed. SD refers to the standard oscillation probability.

ences can be ignored in this case, and the ∆42 and ∆41 terms in Eq. (6) can always be

absorbed into the standard oscillation terms. The role of sterile neutrinos is simply

to correct the standard neutrino mixing angles, implying loss of sensitivity to sterile

neutrinos.

2. In the case of a much larger active-sterile mass-squared difference, i.e. |∆m2
4i| >

10−2 eV2, the fast active-sterile oscillations are actually beyond the resolution limit of

JUNO. In this regime, the Daya Bay setup performs a better probe of sterile neutri-

nos. The reason is that the baseline length of Daya Bay is much shorter than that of

JUNO (the Daya Bay baseline is only about 2 % of the JUNO baseline), and hence,

the fast oscillations at Daya Bay is milder, which provides us with a better chance to

distinguish the sterile neutrino induced oscillations from the standard ones.

3. In the range 10−5 eV2 < |∆m2
4i| < 10−2 eV2, the observed neutrino spectrum obtains

corrections from sterile neutrinos and one would expect a better sensitivity at JUNO.

In Fig. 2, the sterile neutrino corrections are illustrated for the JUNO setup. When the

active-sterile mixing is sizable, the effects of sterile neutrinos become more significant in the

large energy regime, in particular for the cases ∆m2
41 = 10−3 eV2 and ∆m2

41 = 10−4 eV2. The
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shift of the energy spectrum provides us with the possibility to search for sterile neutrinos.

For the case of a small value for θ14, the deviation from the standard oscillations is less

pronounced, and one needs in principle a challenging experimental setup with a very high

precision to detect sterile neutrinos.

Since the major purpose of JUNO is to settle the neutrino mass hierarchy, one may

wonder if the presence of sterile neutrinos may affect the determination of the neutrino

mass hierarchy at JUNO. To this end, we present the probability difference between the

normal and inverted mass hierarchy cases:

∆P = PNH
ee − P IH

ee

≃ 2 sin 2∆21

(

s212 sin
2 2θ13 cos∆31 sin∆31 − c212 sin

2 2θ14 cos∆42 sin∆42

)

, (8)

where NH stands for the normal mass hierarchy (m3 > m1) and IH the inverted mass hier-

archy (m3 < m1). One can clearly observe from Eq. (8) that there exists a very interesting

situation that in the limit

∆42 ≃ ∆31 , (9)

s212 sin
2 2θ13 ≃ c212 sin

2 2θ14 , (10)

the probability difference is equal to zero, i.e. ∆P = 0. In this special case, both normal

and inverted mass hierarchy fits would give the same minimal χ2, and the JUNO setup

loses its ability to determine the neutrino mass hierarchy. In other words, if JUNO cannot

discriminate between its normal and inverted mass hierarchy analyses, a light sterile neutrino

with mass of the order ∆m2
41 ≃ ∆m2

32 and mixing sin2 2θ14 ≃ 0.04 could then be the

underlying reason.

In Fig. 3, the impact of sterile neutrinos on the mass hierarchy determination is shown.

One can observe from the left plot that when the conditions given in Eq. (10) are fulfilled,

normal and inverted mass hierarchy fits will give equally good or equally bad fits to exper-

imental data. In contrast, in the general case, the wrong-hierarchy oscillation probability

gives a worse fit, which is clearly seen in the right plot of Fig. 3.

III. FIT TO DAYA BAY DATA

In this section, we present the relevant features of the Daya Bay experiment and some

of the details of our statistical analysis. The Daya Bay experimental setup that we take
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FIG. 3: The probability differences (P SD
ee )NH−Pee (solid curves) and (P SD

ee )IH−Pee (dotted curves)

as functions of neutrino energy E for sin2 2θ14 = 0.04 and ∆m2
42 = ∆m2

31 (left plot) as well as

∆m2
42 = 10−4 eV2 (right plot), where P SD

ee is the standard neutrino oscillation probability. Here

the normal mass hierarchy for Pee is assumed.

into account consists of six reactors [35], emitting antineutrinos ν̄e whose spectra have been

recently estimated in Refs. [36, 37]. The total flux of arriving ν̄e at the six antineutrino

detectors has been estimated using the convenient parametrization discussed in Ref. [36] and

taking into account all the distances between the detectors and the reactors (summarised

in Tab. 2 of Ref. [35]). For this analysis we use the data set accumulated during 217 days,

which are extracted from Fig. 2 of Ref. [38]. The antineutrino energy E is reconstructed by

the prompt energy deposited by the positron Eprompt using the approximated relation [35]

E ≃ Eprompt+0.8 MeV. The energy resolution function is a Gaussian function, parametrized

according to

σ(E)[MeV] =











γ
√

E/MeV − 0.8 , for E > 1.8 MeV ,

γ , for E ≤ 1.8 MeV ,
(11)

with γ = 0.08 MeV. The antineutrino cross section for the inverse beta decay process has

been taken from Ref. [39].

The statistical analysis is performed using a modified version of the GLoBES software

[40–42] and a χ2 function which takes into account several sources of systematic errors and
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retrace the one used by the Daya Bay collaboration. Details can be found in Ref. [30]. We

analyze the sensitivity of the Daya Bay experiment on the sterile parameters and the effect

of θ14 and ∆m2
41 on the determination of θ13 and ∆m2

31. Fit results have been obtained after

a marginalization over the parameters that are not shown in the figures.

In particular, we use Gaussian priors defined through the mean value and the 1σ error

as follows:

sin2 θ12 = 0.306(1± 5 %) ,

sin2 θ13 = 0.021(1± 20 %) ,

∆m2
21 = [7.58(1± 5 %)]× 10−5 eV2 ,

∣

∣∆m2
31

∣

∣ = [(2.35(1± 20 %)]× 10−3 eV2 . (12)

The central values in Eq. (12) have been obtained from Ref. [43], although with 1σ errors

slightly larger to account for possible (unevaluated) effects due to the presence of sterile

neutrinos. The new parameters θ14 and ∆m2
41 are considered as free parameters: the mass-

squared difference is completely unconstrained in the range (10−6, 1) eV2, while for the

mixing angle we only considered the upper bound θ14 < 20◦. In all figures the green dotted-

dashed, yellow dotted, and red solid curves refer to 1σ, 2σ, and 3σ regions in 2 degrees

of freedom (dof), respectively. The results in the (sin2 2θ14,∆m2
41)-plane is shown in the

left plot of Fig. 4 after a marginalization over all the standard oscillation parameters using

the priors defined in Eq. (12), in which we can clearly see that at the smallest confidence

level a best fit point emerges at (sin2 2θ14,∆m2
41) = (0.012, 0.039 eV2). However, since a

relatively large part of the parameter space is still allowed at 2σ, it is interesting to analyze

the impact of the presence of a third independent mass-squared difference ∆m2
41 on the

measurement of θ13. This is shown in the right plot of Fig. 4, obtained after marginalizing

over the undisplayed θ14 (limited by θ14 < 20◦) and the other standard parameters with

priors as in Eq. (12). We can easily recognize the presence of two distinct regions. One for

∆m2
41 . 10−3 eV2 and ∆m2

41 & 5× 10−3 eV2 (at 3σ) where, as also outlined in Ref. [32], the

measurement of θ13 is quite robust and almost unaffected by sterile neutrinos. The other for

10−3 eV2 . ∆m2
41 . 5×10−3 eV2 in which, given the strong interplay between θ13 and θ14 for

∆m2
41 ∼ ∆m2

31 in the oscillation probability, θ13 can also become vanishingly small. For our

purposes, it is enough to study three different cases, shown in Fig. 5 (obtained marginalizing

over the other standard parameters and on θ14): (sin
2 2θ14,∆m2

41) = (10−2, 10−4 eV2) (upper

10
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FIG. 4: Confidence level regions at 1σ, 2σ, and 3σ for 2 dof, after performing a fit to the Daya

Bay data, in the (sin2 2θ14,∆m2
41) and (sin2 θ13,∆m2

41)-planes presented in the left and right plots,

respectively.

left plot), (sin2 2θ14,∆m2
41) = (0.012, 0.039 eV2) (upper right plot, corresponding to the

best-fit point shown in the left plot of Fig. 4) and ∆m2
41 = 2.5 × 10−3 eV2 with free θ14

(lower plot). As can be observed from the left and the right upper plots of Fig. 5, the

presence of sterile neutrinos does not affect significantly the determination of the standard

oscillation parameters θ13 and ∆m2
31 for mass-squared differences away from the region

10−3 eV2 . ∆m2
41 . 5× 10−3 eV2. On the other hand, for a mass-squared difference within

this range we observe in the lower plot a much larger spread of the allowed values of θ13

and ∆m2
31, as a consequence of ∆m2

41 ≈ ∆m2
31. As we have mentioned below Eq. (7), the

existence of a sterile neutrino could mimick the effects of a large θ13 in this case. The best-

fit θ13 and ∆m2
31 are however in consistent with their true values. Concretely, we have the

best-fit values (sin2 θ13, ∆m2
31)= (0.022, 2.7×10−3 eV2), (0.020, 2.7×10−3 eV2) and (0.021,

2.7× 10−3 eV2) for the upper left, upper right and lower plots, respectively.

IV. SENSITIVITY AT JUNO

The JUNO experiment [44] has been designed to determine the neutrino mass hierarchy,

i.e., the sign of ∆m2
31, by observing the disappearance of reactor electron antineutrinos at
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FIG. 5: Confidence level regions at 1σ, 2σ, and 3σ for 2 dof in the (sin2 θ13,∆m2
41)-plane af-

ter performing a fit to the Daya Bay data. For the left and the right upper plots, the sterile

oscillation parameters are fixed to (sin2 2θ14,∆m2
41) = (10−2, 10−4 eV2) and (sin2 2θ14,∆m2

41) =

(0.012, 0.039 eV2), respectively. The lower plot has been obtained fixing ∆m2
41 = 2.5×10−3 eV2 and

varying freely θ14.

a distance of 52.5 km. With high statistics of one hundred thousand ν̄e events in six years

and an excellent energy resolution γ = 0.03 MeV, the JUNO setup will also have a very

good sensitivity to the other standard neutrino oscillation parameters, in particular to θ12

and ∆m2
21. In this section, we explore the impact of sterile neutrinos with a mass-squared
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difference ∆m2
41 ranging from 10−6 eV2 to 10−1 eV2 on precision measurements of (θ12,

∆m2
21) and (θ13, ∆m2

31), and the determination of the neutrino mass hierarchy at JUNO.

Moreover, the JUNO sensitivity to sterile neutrinos will be studied and compared with the

constraint from the Daya Bay data presented in Sec. III.

Following the approach in Ref. [45], we perform our simulations for the JUNO setup by

using the GLoBES software [40–42]. The true values of the relevant standard parameters

are taken from the latest global-fit analysis of neutrino oscillation experiments [46]:

sin2 θ12 = 0.308± 0.017 ,

sin2 θ13 = 0.0234± 0.002 ,

∆m2
21 = (7.54± 0.26)× 10−5 eV2 ,

∣

∣∆m2
31

∣

∣ = (2.43± 0.06)× 10−3 eV2 , (13)

where 1σ errors are assumed to be Gaussian and will be incorporated into our simulations

as priors for the corresponding parameters. It is worth mentioning that the true values and

uncertainties in Eq. (13) have been obtained by including the Daya Bay data [46], in contrast

to those in Eq. (12). Since JUNO is very sensitive to (θ12,∆m2
21), the priors on these are not

relevant here. However, the prior knowledge on (θ13,∆m2
31) from existing reactor neutrino

experiments, such as Daya Bay, is important and will be taken into account.

A. The Parameters θ12 and ∆m2
21

In order to illustrate how sterile neutrinos affect the precision measurement of

(θ12,∆m2
21), we generate neutrino data at JUNO by assuming a light sterile neutrino

with (sin2 2θ14,∆m2
41) = (0.01, 1.0 × 10−4 eV2). In addition, the true values of the rel-

evant standard parameters are given in Eq. (13). Then, the generated data are fitted

by the standard parameters, with θ13 and ∆m2
31 being marginalized over. As shown in

the left plot of Fig. 6, the best-fit values in this case turn out to be (sin2 θ12,∆m2
21) =

(0.309, 7.56× 10−5 eV2) denoted by “×”, which are significantly different from the best-fit

values (sin2 θ12,∆m2
21) = (0.308, 7.54 × 10−5) denoted by “+” in the standard case. The

purple dotted-dashed, blue dotted, and cyan solid curves stand for the 1σ, 2σ, and 3σ con-

tour curves, respectively. The difference between best-fit and true values of θ12 can be well

understood from Eq. (6), where ∆42 and ∆41 are of the same order of ∆21 and lead to ex-
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FIG. 6: Illustration for the impact of sterile neutrinos on the experimental sensitivities to

(sin2 θ12,∆m2
21) at JUNO. In our simulations, the true values in Eq. (13) have been used. The red

(dark-gray), orange (gray), and yellow (light-gray) areas stand respectively for the 1σ, 2σ, and 3σ

regions for 2 dof in the case of no sterile neutrinos, while the fit results in the presence of sterile

neutrinos are represented by the purple (dotted-dashed), blue (dotted), and cyan (solid) curves.

Left plot: For (sin2 2θ14,∆m2
41) = (0.01, 1.0 × 10−4 eV2), the best-fit values are (sin2 θ12,∆m2

21) =

(0.309, 7.56 × 10−5 eV2). Right plot: For (sin2 2θ14,∆m2
41) = (0.012, 3.9 × 10−2 eV2), the best-fit

values coincide with those in the case of no sterile neutrinos.

cessive disappearance of reactor antineutrinos. The latter can also be explained by a larger

value of θ12, but without sterile neutrinos. On the other hand, for the chosen true values,

|∆41| > |∆21| > |∆42| and cos2 θ12 > sin2 θ12 indicate that sterile neutrinos introduce an

additional term of faster oscillations, which can be mimicked by a larger ∆m2
21. However,

if the 1σ errors of the priors of θ13 and ∆m2
31 are taken of the order of 20%, the difference

between the standard and the nonstandard fits becomes insignificant. For comparison, we

present an analysis of JUNO sensitivity in the standard case without sterile neutrinos, and

the shaded areas correspond to the 1σ, 2σ, and 3σ regions, respectively. Given the true

values (sin2 2θ14,∆m2
41) = (0.01, 1.0 × 10−4 eV2), it is obvious from Fig. 6 that the JUNO

sensitivity to (θ12,∆m2
21) is essentially not changed, although the best-fit values may deviate

from the true values.

14



If the best-fit values (sin2 2θ14,∆m2
41) = (0.012, 3.9 × 10−2 eV2) from Daya Bay data

are taken as true values in our simulations, the JUNO sensitivities to θ12 and ∆m2
21 are

almost unchanged, as shown in the right plot of Fig. 6. According to Eq. (6), ∆m2
41 >

∆m2
31 ≫ ∆m2

21 implies that the contributions from sterile neutrinos can be hidden by the

uncertainties of (θ13,∆m2
31), in particular for sin2 2θ14 ≪ sin2 2θ13 in our case. For this set

of parameters, JUNO is not sensitive enough to place a restrictive constraint.

It is worthwhile to make a comparison between the sensitivity to (sin2 θ12,∆m2
21) from our

simulations and that given by the JUNO Collaboration. In Fig. 6, the 1σ error on sin2 θ12

is 0.0015 and that on ∆m2
21 is 0.014× 10−5 eV2, corresponding to a precision of 0.49% and

0.19%, respectively. In our simulations, only one reactor with thermal power of 35.8 GW and

a flux normalization uncertainty of 3% are considered, and we have ignored the background

and other systematics. For the nominal setup and systematic uncertainties considered in

Ref. [44], the estimates of the sensitivity to (sin2 θ12,∆m2
21) from the JUNO Collaboration

are 0.54% and 0.24%, which are in reasonably good agreement with ours. However, when the

bin-to-bin energy uncorrelated uncertainty (1%), the energy linear scale uncertainty (1%),

the energy nonlinear uncertainty (1%), and the background (1%) are taken into account,

the precisions will be 0.67% and 0.59% [47]. Therefore, our simulated sensitivity will be

reduced if the background and the above systematic uncertainties are included.

B. The Parameters θ13 and ∆m2
31

In a similar way, we now consider the impact of sterile neutrinos on the measurement

of (θ13,∆m2
31) at JUNO. In Fig. 7, we show the fit of standard parameters to the data

generated by oscillation probabilities in the presence of sterile neutrinos. The fit to the data

generated with (sin2 2θ14,∆m2
41) = (0.01, 1.0× 10−4 eV2) is given in the left plot, while that

with (sin2 2θ14,∆m2
41) = (0.012, 3.9× 10−2 eV2) in the right plot.

In the former case, the best-fit value of θ13 in the sterile neutrino case coincides exactly

with that in the standard case. Moreover, the 1σ, 2σ, and 3σ contour curves overlap

with the edges of shaded regions, which are obtained by generating neutrino data without

sterile neutrinos. The reason is two-fold. First, ∆41 ≈ ∆21 ≪ ∆31 and the corrections

to the standard oscillation probability of three active neutrinos can be absorbed into the

uncertainties of (θ12, sin
2∆21). Second, the JUNO setup itself has limited sensitivity to
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FIG. 7: Illustration for the impact of sterile neutrinos on the experimental sensitivities to

(sin2 θ13,∆m2
31) at JUNO. In our simulations, the true values in Eq. (13) have been used. The red

(dark-gray), orange (gray), and yellow (light-gray) areas stand respectively for the 1σ, 2σ, and 3σ

regions for 2 dof in the case of no sterile neutrinos, while the fit results in the presence of sterile

neutrinos are denoted by the purple (dotted-dashed), blue (dotted), and cyan (solid) curves. Left

plot: For (sin2 2θ14,∆m2
41) = (0.01, 1.0 × 10−4 eV2), the best-fit values coincide with those in the

case of no sterile neutrinos. Right plot: For (sin2 2θ14,∆m2
41) = (0.012, 3.9×10−2 eV2), the best-fit

values deviate slightly from those in the standard case.

(θ13,∆m2
31).

In the latter case, the deviation from the fit without sterile neutrinos is visible, but

insignificant. Due to ∆41 > ∆31, the best-fit point is now shifted to a larger value of ∆m2
31.

It is now evident that a light sterile neutrino does not affect the measurement of (θ13,∆m2
31)

at JUNO, which in any event is not very sensitive to these two parameters.

C. The Neutrino Mass Hierarchy

In Fig. 8, we show the JUNO sensitivity to the neutrino mass hierarchy in the presence

of sterile neutrinos. In our simulations, the neutrino data are generated in the NH case

and the true values of the standard parameters are given in Eq. (13). Additionally, the

true values of ∆m2
41 are specified in the plot, and the black solid, red dashed, blue double-
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FIG. 8: Impact on the determination of neutrino mass hierarchy at JUNO. In our simulations,

neutrino data are generated in the NH case. In the upper plot, thick curves refer to the fits with

IH, while the corresponding thin curves to those with NH. In the lower plot, the absolute values of

differences between the IH and NH fits ∆χ2
min ≡ |χ2

min(IH)−χ2
min(NH)| have been given for ∆m2

41 =

1.0× 10−4 eV2 (solid), 5.0× 10−4 eV2 (dashed), 2.49× 10−3 eV2 (double-dotted), 2.51× 10−3 eV2

(dotted-dashed), and 1.0× 10−2 eV2 (dotted).

dotted, green dotted-dashed, and brown dotted curves correspond to ∆m2
41 = 1.0×10−4 eV2,

5.0× 10−4 eV2, 2.49× 10−3 eV2, 2.51× 10−3 eV2, and 1.0× 10−2 eV2, respectively. The fit

to the generated neutrino data has been carried out both in the NH and IH cases. In the

upper plot, the values χ2
min of the IH fits are denoted by thick curves, while those of the NH

fits by thin curves of the same kind. The absolute values of the differences between the IH

and NH fits, namely ∆χ2
min ≡ |χ2

min(IH)−χ2
min(NH)|, are shown in the lower plot. The value
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of ∆χ2
min can be used to measure the capability of the JUNO setup to discriminate between

NH and IH.

It is interesting to observe from the lower plot of Fig. 8 that ∆χ2
min approximately vanishes

at sin2 2θ14 = 0.04 for ∆m2
41 = 2.51×10−3 eV2, which corresponds to the green dotted-dashed

curve. This can be perfectly understood with the help of Eqs. (8) and (10), where one can see

that the oscillation probabilities in the NH and IH cases are equal at this point in parameter

space. Therefore, JUNO is unable to pin down the neutrino mass hierarchy in this case.

Note that there will be another zero point for ∆χ2
min around sin2 2θ14 ≈ 0.1. However, now

both χ2
min(IH) and χ2

min(NH) are quite large, implying that three active neutrino oscillations

in both the NH and IH cases cannot fit the data well. This indicates that the JUNO setup

is sensitive enough to constrain or discover a light sterile neutrino with the corresponding

mixing parameters. Except for the mass region ∆m2
41 ≈ ∆m2

31, sterile neutrinos have little

impact on the determination of the neutrino mass hierarchy.

D. The Sensitivity at JUNO

Finally, let us proceed to explore the sensitivity of the JUNO setup to the mixing param-

eters of sterile neutrinos. In our simulations, neutrino data are generated by the standard

oscillation probabilities and the true values are given in Eq. (13). The data are fitted by the

general oscillation probability with sterile neutrinos, and all the relevant standard oscilla-

tion parameters (θ12,∆m2
21) and (θ13,∆m2

31) are marginalized over. Our results have been

depicted in Fig. 9, and compared with the fit to the Daya Bay data. The dark (light) shaded

area is excluded by Daya Bay at the 3σ (2σ) confidence level. At the 3σ confidence level,

compared to the JUNO setup, the Daya Bay experiment has a better sensitivity to sterile

neutrinos with ∆m2
41 & 4.0×10−3 eV2. In the low-mass region, i.e., ∆m2

41 < 4.0×10−3 eV2,

JUNO always dominates over Daya Bay in constraining light sterile neutrinos. In this sense,

it is therefore clear that reactor neutrino experiments at short and medium baselines are

complementary to each other.

The JUNO setup is most sensitive to the mass region from ∆m2
41 = 10−4 eV2 to ∆m2

41 =

10−3 eV2, where the limit sin2 2θ14 < 10−2 can be reached. The sensitivity is significantly

diminished for ∆m2
41 ≈ ∆m2

21. In this case, the oscillation probability in Eq. (5) is reduced to

the standard one with two independent neutrino mass-squared differences, where the spectral
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FIG. 9: Experimental sensitivity to sterile neutrinos at JUNO. The green (dotted-dashed), yellow

(dotted), and red (solid) curves correspond to the 1σ, 2σ, and 3σ contours for 2 dof, respectively.

For comparison, the fit to Daya Bay data in Fig. 4 has been reproduced, where the dark (light)

shaded area is excluded by Daya Bay at the 3σ (2σ) confidence level.

information is not useful in constraining sterile neutrinos. In the limit of a vanishing ∆m2
41,

we obtain sin2∆43 ≈ sin2∆31 and sin2∆42 ≈ sin2∆21, implying that the standard neutrino

oscillation terms in Eq. (5) receive corrections from sterile neutrinos if θ14 is not vanishingly

small. Since JUNO has an excellent sensitivity to θ12, it will be able to set an upper bound

on sin2 2θ14.

It is worthwhile to mention that the experimental constraints on sterile neutrinos exist

in the disappearance channel ν̄e → ν̄e at reactor neutrino experiments and νe → νe for solar

neutrino experiments. In Ref. [8], for ∆m2
41 ≫ 10−2 eV2, the upper bounds sin2 2θ14 < 0.215

and sin2 2θ14 < 0.28 at 95 % confidence level have been derived from long-baseline reactor

experiments and from solar plus KamLAND data, respectively. Therefore, our results from

the Daya Bay experiment and the future JUNO experiment in Fig. 9 improve the existing

bounds in the high-mass region, and provide new constraints in the low-mass region.

19



V. SUMMARY AND CONCLUSIONS

One goal of reactor neutrino experiments is to probe new physics beyond the standard-

oscillation paradigm as sub-leading effects in neutrino flavor transitions. Due to high statis-

tical precision and good measurements with the Daya Bay experiment, one can obtain some

insight into the hypothesis of sterile neutrinos and put limits on light sterile neutrinos when

the active-sterile mass-squared difference is located between 10−3 and 10−1 eV2. Restricted

by the baseline and energy resolution, the Daya Bay experiment has poor sensitivity to ster-

ile neutrinos with a mass-squared difference below 10−3 eV2. In contrast, the future JUNO

setup features a higher resolution on the neutrino spectrum and has a longer baseline com-

pared to Daya Bay, and hence plays a complementarity role to the current measurements

especially in the small mass-squared difference regime. This is particularly relevant for solar

neutrinos, since the MSW solution suggests a low energy of the spectra of events at Super-

Kamiokande and SNO, which is however not shown in the data. A light sterile neutrino with

a mass-squared difference of the order of 10−5 eV2 and a weak mixing with active neutrinos

could explain this suppression [48, 49]. Furthermore, when the recent detection of B mode

polarization from the BICEP2 experiment [11] is considered, an analysis of the combined

CMB data in the framework of LCDM+r models gives Neff = 4.00 ± 0.41 [12], which also

prefers the existence of extra radiation.

In this work, we have therefore focused on the 3+1 neutrino scenario with only one

sterile neutrino and investigated the impact of light sterile neutrinos on short and medium-

baseline reactor antineutrino experiments. In particular, we have performed a detail study

of antineutrino oscillations and determined the sensitive mass regimes of sterile neutrinos for

Daya Bay and JUNO. For both setups, active-sterile neutrino oscillations could in principle

mimic the standard oscillations when the active-sterile mass-squared difference is close to

one of the standard neutrino mass-squared differences, and hence, one looses sensitivity to

sterile neutrinos. Our numerical analysis indicates that the public Daya Bay data suggests

an upper limit on the sterile neutrino mixing angle sin2 2θ14 . 0.06 at 3σ level for the

mass-squared difference between 10−3 and 10−1 eV2. In addition, for fixed sterile neutrino

oscillation parameters, the effects of sterile neutrinos on the determination of θ13 and ∆m2
31

are rather tiny and can be neglected in extracting the standard parameters. Regarding the

JUNO setup, the high-energy resolution improves the sensitivity to sin2 2θ14 . 0.016 for
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∆m2
41 ∈ (10−4, 10−3) eV2 and six years of running. However, for a relatively large mass-

squared difference, the JUNO sensitivity is not comparable to the one of Daya Bay, due

to the longer baseline. When the active-sterile mass-squared difference is around 10−4 eV2,

the measured θ12 and ∆m2
21 deviate from their true values, whereas θ13 and ∆m2

31 are not

affected by the sterile neutrino pollution. We have also found a special parameter region

that, when sin2 2θ14 ≃ 0.04 and ∆m2
42 ≃ ∆m2

31, the sterile neutrino polluted oscillation

probability would be almost the same for both NH and IH, indicating that the JUNO setup

completely loses its power to discriminate the active neutrino mass hierarchy.
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