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Abstract
The recently proposedWigner function for a particle in an infinite lattice (HinarejosM, BañulsMC
and Pérez A 2012New J. Phys. 14 103009) is extended here to include an internal degree of freedom as
spin. This extension ismade by introducing aWignermatrix. The formalism is developed to account
for dynamical processes, with orwithout decoherence.We show explicit solutions for the case of
Hamiltonian evolution under a position-dependent potential, and for evolution governed by amaster
equation under some simplemodels of decoherence, forwhich theWignermatrix formalism is well
suited. Discrete processes are also discussed. Finally, we discuss the possibility of introducing a nega-
tivity concept for theWigner function in the casewhere the spin degree of freedom is included.

1. Introduction

Since its introduction, theWigner function (WF) [1] has played an important role in physics. Quantum
mechanics can be entirely formulated using this tool, thereby providing an alternative description of quantum
phenomena and their dynamics. Also, from amore experimental perspective, theWFhas proven instrumental
for tomographic reconstruction of the states prepared in the lab. Therefore theWF is completely equivalent to
the standard quantummechanical formalism.Nevertheless, the particular features of the phase space
descriptionmake it advantageous in some situations, such as recognizing the quantum features of states or
dealingwith decoherence scenarios. In theWF, interference effectsmanifest in a clear way [2–5]. Another
interesting property thatmanifests in the visualization of theWFof some states is the appearance of negative
values over the phase space. This fact has been considered as a directmanifestation of the quantumnature of
such states, and has been used to characterize their quantumness [6–8]. The relativistic extension of theWF [9]
has also found applications to awide variety of problems, including general relativistic kinetic theory and
statisticalmechanics [10, 11], nuclearmatter at high densities and temperatures [12], electrons inmagnetic
fields [13, 14], the quark-gluon plasma [15], and neutrino propagation in astrophysical or cosmological
scenarios [16, 17].

The applicationsmentioned abovemake use of aWFdefined in continuous space. It is nevertheless also
possible to introduce a sensibleWF for systems on a discrete space. The definition for the case of afinite
dimensionalHilbert space can be traced back to Stratonovich andAgarwal [18, 19] (see also [20]), who
introduced a spherical, continuous phase space for a spin particle. A possible generalizationwas proposed by
Wootters in 1987 [21] for prime dimensional systems, and later generalized to any power of primes in [22]. A
different constructionwas followed in [23–25] that could copewith any dimension of theHilbert space at the
expense of enlarging the size of the phase space grid (see [26, 27] for a review). The discreteWF for afinite-
dimensional system is furthermore related to quantum information problems [7, 25, 27–31].

If the discreteHilbert space is infinite dimensional, a different extension of theWF is required. In [32], we
proposed a definition of theWF that can be used for such systems, having the correctmarginal properties and
with the advantage that a closed form can be obtained in some cases, such as theGaussian states. Note that, in
contrast to the continuous case where the axiomatic definition of theWFuniquely determines its functional
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form [33], in the discrete case different definitions that respect themathematical conditions enumerated above
are possible. (See also [34, 35] for alternative, related definitions,motivated by the study of the angle and angular
momentumphase space.)

Many of the problemswhere the continuousWFhas been applied concern particles with spin, orwith spinor
descriptions of quantum fields. To use the phase space formalism in this scenario, a generalization has to be
introduced that combines the spin and spatial degrees of freedom (dof). One of themost commonprescriptions
in the literature is the use of amatrix-valuedWF [36], where the spinor or spin indices give rise to variousmatrix
elements. Indeed, other possibilities exist, such as introducing a phase space for the spin degrees of freedom,
which correspond to another discrete,finite-dimensionalHilbert space and construct a real valuedWF for the
Cartesian product of spin and space phase spaces. In thematrix-valuedWF, the treatment of space and spin dof
is not symmetric. The spatial part is described in terms of a phase space, while the spin is unchanged. Although
the treatment is asymmetric, this description has some advantages when dealingwith a particle subject to a spin-
dependent force, since some effects like the spin precession, ormotion that depends on the spin component, are
better visualizedwith respect to afixed spin basis. Examples of this description are the analysis of the Stern-
Gerlach experiment [37], the study of entangled vibronic quantum states of a trapped atom [36], or the
reconstruction of the full entangled quantum state for the cyclotron and spin degrees of freedomof an electron
in a Penning trap [38].

In this paper, we have extended the definition of theWF introduced in [32] to incorporate the spin of a
particle, using theWignermatrix (WM) formalism for the spin degrees of freedom, andwe illustrate the
consequences of this definition by analyzing some simple physical situations, such as states involving spatial and
spin entanglement or dynamical evolution, as they appear for a particle subject to a spin-dependent force.

The rest of this paper is organized as follows. In section 2, we introduce a definition for theWM that
incorporates the spin of the particle, andwe summarize themain properties that are satisfied by this object. To
illustrate the structure of this representation, we consider some simple cases in section 3. Section 4 contains the
main results of our paper, concerning the dynamics obeyed by theWMunder the influence of an interacting
Hamiltonian thatmay ormay not depend on the spin. First, we study the time evolution in continuous time by
deriving the equation ofmotion for theWMand solving this equation in some simple cases. The situation
without spin allows us to consider the special case of a particle on a lattice interacting with a linear potential.We
also investigate the interaction that appears for a spin-dependent force to visualize themain differences with the
spinless case. Finally, we study the effect of decoherence for the systemunder consideration. In section 4, we also
showhowone can use theWMto investigate the dynamics that appear in some discrete-time problems, andwe
consider the particular example of the quantumwalk. As before, we show the effect that decoherencemay have
on such problems.

One of the advantages of aWFdescription of continuous variable systems is the access to a negativity that
measures the nonclassicality of states. Although the relation of the negativity to nonclassicality is well
established, this quantity does not correspond to a physical observable.With amore general definition as the
WMand the occurrence of (nonclassical) spin degrees of freedom,wemaywonder if there is a generalized
negativity quantity andwhether it retains some physical information. This is discussed in section 5. Section 6
presents ourmain conclusions. The derivation of some formulae has been relegated to the appendix tomake our
presentationmore transparent.

2. Particle with spin on a one-dimensional lattice

Weare interested in the phase space description of a spin 1/2 particle that is allowed tomove on an infinite one-
dimensional (1D) lattice. A paradigmatic example is the quantumwalk on the line, where a particlemoves along
the sites of a 1D lattice. In its discrete-time version [39], the direction ofmotion is dictated by the state of an extra
two-dimensionalHilbert space (the coin), that can correspond to the internal spin of themoving particle. In fact,
during the process, the spatial and internal states become entangled even if the initial state was separable, thus
clarifying the need for a joint description of both degrees of freedom.Another example is the study of spin-
dependent transport properties of single atoms in a 1Doptical lattice [40].

Wewill start with the definition of theWF for a (spinless) particle on a 1D lattice already introduced in [32].
We consider a lattice with sites ∈na n{ }, where a is the lattice spacing. To these sites, one can associate a basis

∣ 〉n{ }, with ∈n . By a Fourier transformation, we define a quasi-momentumbasis,∣ 〉 = ∑ ∣ 〉
π

q nea
n

qna
2

i ,

which can be restricted to thefirst Brillouin zone, ∈ −π πq [ , ]
a a

. The phase space is defined by points (m, k),

where ∈m , whereas k is continuous and periodic, taking values in π π−[ , ].With these notations, we define
theWF as

2
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∑ρ
π

ρ≡ = − − −W m k A m k n m n( , ) tr[ ( , )]
1

2
e , (1)

n

n m ki(2 )

where ρ is the density operator corresponding to the state of the system, and =A m k( , )
∑ ∣ − 〉〈 ∣

π
− −m n n en

n m k1

2
i(2 ) are the phase point operators for the lattice. It can be checked that the above

definition fulfills the necessary requirements to be considered a validWF.We refer the reader to the above
reference formore information about the properties obeyed by (1).

Wewill now incorporate the additional degree of freedom arising from the spin of the particle. As discussed
in the Introduction, there are different approaches in the literature to describe finite-dimensional Hilbert spaces,
such as the spin of a particle. One can combine both degrees of freedom (spin and lattice) by a tensor
multiplication of the corresponding point operators, as done in [41] for angularmomentum and spin states.

As discussed in the introduction, herewe opt for a prescriptionwith ample acceptance in the continuous
applications, namely amatrix-valuedWF. A similar choice has been used in relativistic and nonrelativistic setups
with continuous spatial dof. Among the latter, wemention the study of the Stern−Gerlach experiment [37], the
analysis of entangled vibronic quantum states of a trapped atom [36], or the reconstruction of the full entangled
quantum state for the cyclotron and spin degrees of freedomof an electron in a Penning trap [38]. TheWF
defined in this way combines the following properties:

- It keeps a close analogywith the definition of the relativisticWF [9–11], thus allowing one to describe the
transition from the relativistic to the non relativistic regime.

- It appears as a simple and convenient choice to describe the spinmotion in some particular cases, like the
Stern−Gerlach experiment in continuous space [37] or the dynamics of a spin 1/2 particle on a lattice under the
effect of a spin-dependent force, as described in section 4.

We consider theHilbert space,  = ⨂l s, wherel stands for themotion on the lattice ands

describes the spin states. The composedHilbert space is spanned by the basis α α∣ 〉 ≡ ∣ 〉 ⨂ ∣ 〉n n{ , },with ∈n
and α α∣ 〉 = 0, 1designating the eigenvectors of theσz Paulimatrix; these statesmight also correspond to the
computational basis of a qubit, or to the levels of a two-level system. According to the above discussion, we
propose the following definition for theWM

∑
π

α ρ β≡ −αβ
− −W m k n m n( , )

1

2
, , e . (2)

n

n m ki(2 )

We then have a set of four functions, αβW m k( , ),α β =, 0, 1, forming a 2 × 2matrix. Each function, as before, is
defined on the phase space of points (m, k), with ∈m , and k takes values in π π−[ , ]. A similar definition can be
made for any operator,, acting on:

 ∑
π

α β≡ −αβ
− −W m k n m n( , )

1

2
, , e . (3)

n

n m ki(2 )

Unlike the spatial variables, where the relationshipwith phase space points is nontrivial, there is a direct
correspondence between spin indices in the state of the system and indices in thematrixWF. This implies that
operations on the spin space, such as rotations, change of basis, or interactions with a spin-dependent force, as
studied below, becomemore transparent using thematrixWF than any other kind of representation for the spin.
Moreover, the definition equation (2) keeps a closer analogy, for pure states, to the relativisticWFused in
quantumfield theory. For such states, one has ρ Ψ Ψ= ∣ 〉 , andwe canwrite

∑
π

Ψ Ψ≡ −αβ α β
− −W m k n m n( , )

1

2
( ) ( )e (4)

n

n m k* i(2 )

withΨ α Ψ≡ 〈 ∣ 〉α n n( ) , . In the continuum limit, the functionsΨα n( ) can be interpreted as the components of a
Pauli spinor or aDirac spinor. In this case, equation (4) can be related to the relativisticWF alreadymentioned in
the Introduction.

Some of the properties discussed in [32] can be easily generalized for thematrixWF.

(1) Wehave

=βα αβW m k W m k( , ) ( , ), (5)*

which implies that thematrixWF isHermitian. The normalization condition becomes

∫∑∑ =
α π

π
αα

−

+
kW m kd ( , ) 1. (6)

m

3
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(2) Also,

π± = −αβ αβW m k W m k( , ) ( 1) ( , ). (7)m

(3) Given two operatorsC,D and their correspondingWignermatrices, αβW m k( , )C , αβW m k( , )D , one has

∫∑ ∑π =
α β π

π
αβ βα

=−∞

∞

−

+
kW m k W m k CD2 d ( , ) ( , ) tr( ). (8)

m

C D

,

(4) A complete knowledge of theWF can be used to reconstruct the density operator, ρ:

∫∑α ρ β π=
π

π
αβ

−

+
kW m k A m k2 d ( , ) ( , ). (9)

m

(5) Themarginal distributions of (2) are related tomatrix elements of the density operator

∑ α ρ β=αβ
=−∞

+∞

W m k( , ) , , , (10)
m

a

k

a

k

a

1

and

∫ ∑δ α ρ β=
π

π
αβ

−

+
kW m k n nd ( , ) , , . (11)

n

m n,2

As already discussed in [32], these equations reflect the distinction between the coordinates of the phase space
points, ∈m , π π∈ −k [ , ], and the position and quasimomentumbases,n, q. The k coordinate is adimensional
and does not directly represent amomentum value, but is connected to q= k/a. The spatial labelm in phase-space
is only connected to a discrete position, s, for even values =m s2 , while the odd values ofm are analogous to the
odd half-integer phase space grid points in [24, 25].

3. Particular cases

To obtain some insight into the characteristics of thematrixWF in equation (2), wewill give the explicit form it
takes for some particular cases.

• Product state
We start by considering a product state of spatial and spin degrees of freedom

ρ ρ ρ= ⨂ , (12)L S

where ρL represents a general state on the lattice and ρS is an arbitrary spin state. In this case, we readily obtain

α ρ β=αβW m k W m k( , ) ( , ) , (13)L S

with

∑
π

ρ≡ − − −W m k n m n( , )
1

2
e . (14)L

n
L

n m ki(2 )

• Superposition of two deltas
Let us consider theWMfor the state formed by a superposition of two localized states at lattice sites∣ 〉n1 and
∣ 〉n2 with ≠ ∈n n1 2

Ψ
α

α∣ =
+ ∣ ∣

∣ + ∣δ ( )n n
1

1
0 1 , (15)2

2
1 2

where α is an arbitrary complex number that represents the relative weight of the state,∣ 〉n2 . Forα = 1, we
obtain a Schrodinger-cat state. The correspondingWF can be easily calculated.Written inmatrix form in the
above spin basis,

4
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⎛

⎝
⎜⎜

⎞

⎠
⎟⎟π α

δ α δ

α δ α δ
=

+ ∣ ∣ ∣ ∣

− −
+

−
+( )

W m k( , )
1

2 1

*e

e
(16)

m n
k n n

m n n

k n n
m n n m n

2

,2
i ( )

,

i ( )
,

2
,2

1
1 2

1 2

1 2
1 2 2

In this case, theWM is zero everywhere except for three particular values of the space-like phase coordinate,
= +m n n n n2 , 2 ,1 2 1 2. It is interesting to compare the structure provided by equation (16)with the

corresponding superposition of two localized states without spin [32], given by

Ψ
α

α∣ =
+ ∣ ∣

+δ ( )n n
1

1
. (17)2

no spin

2
1 2

In that case, theWF is a scalar function

π α
δ α δ

α δ Δ ϕ

=
+

+

+ +

δ

+

{

}
( )

W m k

n k

( , )
1

2 1

2 cos [ ] , (18)

m n m n

m n n

2
no spin

2
,2

2
,2

,

1 2

1 2

whereϕ is the phase of the complex coefficient, α, and Δ = −n n n2 1. One observes that the different terms in
(18) appear distributed on differentmatrix positions in equation (16). In particular, the out-of-diagonal term
in (16) corresponds to the interference, oscillating term in (18). This termplays an interesting role related to
the nonpositivity of theWF.Wewill return to this point later.

• Superposition of twoGaussian states

The superposition of two discretized pureGaussian states with orthogonal spin components is another
interesting state for which theWMdefined in this work can be computed analytically. Such a state is defined as

⎧⎨⎩
⎫⎬⎭ ∑Ψ = ∣ + ∣− −

σ σ
− −

n
1

2
e 0 e 1 , (19)G

n

2
n a n b( )2

2 2
( )2

2 2

for arbitrary ∈a b, , σ ∈ +. For this state, theWF can be expressed as amatrix in the same ∣ 〉 ∣ 〉{ 0 , 1 }basis

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟=W m k

W m k W m k

W m k W m k
( , )

1

2

( , ) ( , )

( , ) ( , )
(20)

a ab

ab b*

where

⎜ ⎟⎛
⎝

⎞
⎠π

θ
σ

= + =− −
σ σ

+ −
W m k k

m
l a b( , )

1

2
e e

i

2
, e , , (21)l

km
2

i
3 2

l m l2 ( )2

2 2
1
2

⎛
⎝⎜

⎞
⎠⎟π

θ
σ

= + − +− −
σ σ

+ −
W m k k

m b a
( , )

1

2
e e

i( )

2
, e (22)ab

km
2

i
3 2

a m b2 ( )2

2 2
1
2

with θ= −
σ(0, e )3
1
2 as the normalization constant. The Jacobi theta function,θ z q( , )3 , is defined as

θ ≡ ∑z q q( , ) en
n zn

3
2i2

for complex arguments q, z, with∣ ∣ <q 1 [42]. As in the previous example, wefind an
important difference with theWF for the casewithout spin [32], since the components in the scalar function
appear to be distributed here as the components of thematrixWF. In the limit σ= − ≫a b withσ → 0, we
recover the result for the two deltas (16) corresponding to the case = − =n n a1 2 andα = 1.

Figure 1 shows the four components of theWM for a two-Gaussian state, as given by equations (20)–(22).
One can immediately observe on each component the presence of a secondary image that reflects the property of
equation (7). In [32], we discussedwith some detail, for the spinless case, the peculiarities related to this
duplicate.

4.Dynamics

TheWF formalism can be used not only to allow for a description of a given state, but also to analyze its dynamics
and to visualize it in phase space.Our purpose is to study themotion of a particle on a lattice in terms of the
correspondingWF.We start from the simplest case, which corresponds to the spinless particle, and thenmove
to amore general situationwhere the particle interacts with a spin-dependent term. The time evolutionwill be
first consideredwithin continuous time, a situation that can be applied tomost problems in physics, and can be
described by the Schrodinger equation.

5
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4.1. Continuous time
4.1.1. Particle without spin
Let us consider a spinless particlemoving on a lattice under the influence of a potential,V, that depends on the
lattice site.We concentrate on the followingHamiltonian

= + ++ −( )H J T T V , (23)

which appears as a consequence of the tight-binding approximation in crystals, where the parameter, J, is a
characteristic of the system that is related to the hoping probability of an electron to the nearest neighbor, and
the displacement operators, ±T , are defined by ∣ 〉 = ∣ ± 〉±T n n 1 . Notice that theHamiltonian (23) can also be
considered as a discretized version of

= − +
H

M
V x

2
( ) (24)cont

2

(withM being themass of the particle) if one defines = −J
Ma

1

2 2
.

Thewave function can bewritten asψ n t( , ), with t begin the time, so that the Schrodinger equation3 reads

ψ ψ ψ ψ ψ∂
∂

= + + − − +i
t

n t J n t n t n t V n t( , ) [ ( 1, ) ( 1, ) 2 ( , )] ( , ), (25)n

with ≡ ∣ ∣V n V nn . The last term inside the brackets in equation (1) can be easily reabsorbed into the definition
of the coefficients,Vn. (It can be also understood as a termproportional to the identity in theHamiltonian, thus
contributing only as a position-independent phase as time evolves.) Therefore, we omit that term.

It is straightforward to derive an evolution equation satisfied by theWF for the above problem.We begin
with the vonNeumann equation for the density operator

Figure 1.Matrix components of theWMfor twoGaussians, as given by equations (20)–(22). Panel (a) represents m kW ( , )a , panel (b)
is the real part ofW m k( , )ab , while the imaginary part is plotted on panel (c). Finally, panel (d) shows theW m k( , )b component. In
these plots, = − =a b 6 andσ = 1.5.

3
Wework in units such that = 1.

6
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ρ ρ∂
∂

= −
t

t H t( ) i[ , ( )]. (26)

Making use of (1), one arrives at

∑
π

ρ

∂
∂

= + − − − −

× −

− −
−( )

t
W m k t J k W m k t W m k t V V

l t m l

( , , ) 2 sin [ ( 1, , ) ( 1, , )]
i

2
e

( ) , (27)
l

l m k
l m l

i(2 )

wherewe have explicitly shown the time dependence of ρ andW m k( , ) for the sake of clarity.
Let us considerV(x) to be is a continuous and infinitely derivable function. In this case, one can obtain a

closed formof the above expression for theWF, as shown in the appendix. As a result, one arrives at the
following expression

∑

∂
∂

= + − −

+ −
+

∂
∂=

∞ + +

+
=

+

+

t
W m k t J k W m k t W m k t

a

s

V x

x

W m k t

k

( , , ) 2 sin [ ( 1, , ) ( 1, , )]

( 1)

2 (2 1)!

d ( )

d

( , , )
. (28)

s

s s

s

s

s
x ma

s

s
0

2 1

2

2 1

2 1
2

2 1

2 1

Note that equation (28) also holds for theWM(2) if we introduce the spin of the particle by simply replacing
⟶ αβW m k t W m k t( , , ) ( , , ), since none of the spatial operations in this equation can affect the spin indices.

Before we go on, wewill consider the continuous limit ( →a 0) of equation (28). In this limit, ourWFhas to
be replaced by the corresponding function,W x q t( , , )c , following the prescription [32]

⎛
⎝⎜

⎞
⎠⎟= =→

⎯ →⎯⎯⎯⎯⎯⎯⎯⎯W m k t W x
ma

q
k

a
t( , , )

1

2 2
, , . (29)

a 0 c

By replacing = −J
Ma

1

2 2
and substituting (29) into (28), and taking the limit ( →a 0), one obtains the equation

∑∂
∂

+ ∂
∂

= −
+

∂
∂=

∞ +

+
=

+

+t
W x q t

q

M x
W x q t

s

V x

x

W x q t

q
( , , ) ( , , )

( 1)

2 (2 1)!

d ( )

d

( , , )
. (30)c c

s

s

s

s

s
x ma

s
c

s
0

2

2 1

2 1
2

2 1

2 1

Equation (30) is the equation ofmotion for theWFunder the effect of an external potential,V(x), in continuous
space, where q represents themomentumof the particle (ranging from −∞ to∞). (See, for example [4].)

As an interesting particular case, wewill study the case of a linear potential (i.e., λ=V x x( ) ), with λ a real
constant. Equation (28) adopts a simple form

λ∂
∂

= + − − + ∂
∂

[ ]
t

W m k t J k W m k t W m k t a
k

W m k t( , , ) 2 sin ( 1, , ) ( 1, , ) ( , , ). (31)

To solve this equation, we perform a Fourier transformation on the variablem by introducing the function

∑
π

≡W q k t W m k t˜ ( , , )
1

2
e ( , , ), (32)

m

qmi

with the new variable, q, taking values on the interval, π π−[ , ].With the help of this function, we can rewrite
equation (32) as

λ∂
∂

= − + ∂
∂t

W q k t J k qW q k t a
k

W q k t˜ ( , , ) 4i sin sin ˜ ( , , ) ˜ ( , , ). (33)

The change of function

≡ − λW q k t f q k t˜ ( , , ) e ( , , ) (34)
J k q

a
4i cos sin

leads to the following equation for f q k t( , , ):

λ∂
∂

= ∂
∂t

f q k t a
k

f q k t( , , ) ( , , ), (35)

which implies that f q k t( , , )must be of the form λ= +f q k t g q k at( , , ) ( , ),with g q k( , )being an unknown
function that can be determined by the initial (t=0) condition in equation (34), giving

= λg q k W q k( , ) e ˜ ( , , 0). (36)
J k q

a
4i cos sin
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Wefinally obtain, after some algebra

⎜ ⎟ ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥λ

λ λ λ= − + +W q k t
J

a
k

at at
q W q k at˜ ( , , ) exp 8i sin

2
sin

2
sin ˜ ( , , 0). (37)

Toderive an expression for theWF,we need the inverse relation of equation (32), given by

∫π
=

π

π

−
−W m k t q W q k t( , , )

1

2
d e ˜ ( , , ), (38)qmi

andwemake use of the formula [43]

∫π
=

π

π

−
−J z q( )

1

2
d e e , (39)n

nq z qi i sin

where ∈n , ∈z , and Jn(z) are the Bessel functions of the first kind. After substituting equation (37) into
(38), we arrive at the final expression

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥∑

λ
λ λ λ= − + +−W m k t J

J

a
k

at at
W l k at( , , ) 8 sin

2
sin

2
( , , 0). (40)

l

m l

Note that in the latter equation, the argument λ+k at is to be understood asmodulo π2 . Using this fact, one can
readily obtain that the above solution exhibits a time periodicity

⎜ ⎟⎛
⎝

⎞
⎠

π
λ

+ =W m k t
a

W m k t, ,
2

( , , ), (41)

which corresponds to thewell-knownphenomenon of Bloch oscillations that can be observed for electrons
confined in a periodic potential (the lattice) subject to a constant force, such as a constant electric field. The
corresponding frequency,ω λ= aB , is precisely what is expected for our linear potential, λ=V x x( ) .

Directly related to the above treatment, it appears quite natural to attempt a parallelismwith a situation that
describes the dynamics of a particle under the effect of a constant gravitational field, =V x m gx( ) g , wheremg is
the gravitationalmass and g, the acceleration of gravity. Note that for the following discussion tomake sense, one
should design a physical system that is described by this potential, and that equation (25) can be considered as a
discretized approximation to (24), with = −J

Ma

1

2 2
.Wewill return to this discussion later.

Wefind it convenient to use the symbolmi instead ofM to represent the inertial mass and to recover the
Planck constant.We observe that the argument of the Bessel functions in equation (40) depends upon the
combination

λ
− = ≡

( )
J

a m m ga k a2

1
, (42)

i g g

2

3 3

where ≡


k ( )g
m m g2 1 3i g

2 is a characteristic wave vector thatmodulates the spatial dependence of energy eigenstates

in a gravitational field in continuous space [44]. As the authors of this work discuss, this is one of the possible
effects for quantumparticles under the effect of gravity, where various combinations of (powers of)mg andmi

may appear depending on the problemunder consideration, thus enabling us tomeasure these two quantities
independently.

The dynamics on the lattice we just considered offers a similar perspective. The time evolution in
equation (40) is governed by the productk ag , which involves the lattice spacing as a newparameter, thus
allowing an extra degree of freedom in the design of experiments, if they are performed on a lattice instead of in
continuous space.However, one has to be careful about this point: only if the design of the experiment is such
that J andV(x) correspond to the above hypothesis the previous discussionmake sense.

To illustrate the behavior of theWF, infigure 2we plotted several snapshots obtained by evolving an initial
Gaussian state of the form (21). The time evolution is governed by equation (40).One observes several features
on this plot. First, the position of themaximum shows oscillations for the variablem, as corresponding to the
Bloch oscillations discussed above, while variable k evolves linearly and periodically with time. During the
evolution, theWF also experiences a distortion that is similar to the one observed in continuous space [44]. One
also observes the presence of a secondary image, whichmanifests as vertical strips.

4.1.2. Particle with spin
We return to the description of a particle with spin 1/2. Our purpose is to analyze the dynamics for such a system
and compare it with the spinless case. To do so, we need to introduce some spin-dependent potential, or the
different components in theWMwill evolve in exactly the sameway, and the results of the previous subsection
apply. Tomake this comparison as close as possible, wewill consider the time evolution under the effect of a
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Hamiltonian of the form

σ= + ++ −( )H J T T V , (43)z

whereV is, as before, a site-dependent scalar potential. It is possible to obtain an evolution equation, similar to
(28), when the particle is subject to the aboveHamiltonian in the lattice. This derivation ismade in the appendix,
themain difference with the spinless case being that the diagonal and off-diagonal components of theWM
evolve differently. Inwhat follows, we concentrate on the particular example of a discretized linear potential,

λ=V ann , with λ being a real constant. Then, equation (A.6) particularizes to

⎡⎣ ⎤⎦ λ∂
∂

= + − − + − ∂
∂αα αα αα

α
αα

t
W m k t J k W m k t W m k t a

k
W m k t( , , ) 2 sin ( 1, , ) ( 1, , ) ( 1) ( , , ), (44)

and

⎡⎣ ⎤⎦ λ∂
∂

= + − − − −αβ αβ αβ
α

αβ
t

W m k t J k W m k t W m k t amW m k t( , , ) 2 sin ( 1, , ) ( 1, , ) i( 1) ( , , ) (45)

(valid forα β≠ ).
Thefirst equation can be easily solved by comparison to (31).We only have to perform the replacement,

λ λ⟶ − α( 1) . Therefore, we canwrite the solution using the same procedure as in the case with no spin, to
obtain

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥∑

λ
λ λ λ= − + − + −αα

α
αα

α
− ( )W m k t J

J

a
k

at at
W l k at( , , ) 8 sin ( 1)

2
sin

2
, ( 1) , 0 . (46)

l

m l

The same commentsmade in the previous section hold here: ααW m k t( , , ) is periodic in time, with the frequency
given byω λ= aB . Equation (45) can be solved by introducing a Fourier transform, asmadewith (31).We
arrive, after some algebra, at

⎡
⎣⎢

⎤
⎦⎥∑

λ
λ= −αβ αβ

− −
−

α λ α λ
W m k t J

J

a
k

at
W l k( , , ) e e 8 sin sin

2
( , , 0) (47)m

l

l
m l

( 1) i ( 1) iat at
2 2

(validwhenα β≠ ).
To illustrate the evolution of theWMelements under the effect of theHamiltonian (43)with a linear

potential, we followed this evolution for an initial separable state of the form (13), with ρS defined by the pure

state, ∣ 〉 + ∣ 〉( 0 1 )1

2
, andW m k( , )L corresponding to aGaussian state, given by (cf equation (21))

⎜ ⎟⎛
⎝

⎞
⎠π

θ
σ

= +− −
σ σ

+ −
W m k k

m
( , )

1

2
e e

i

2
, e (48)L

km
2

i
3 2

a m a2 ( )2

2 2
1
2

and θ= −
σ(0, e )3
1
2 being the normalization constant. The results are presented infigure 3, which shows

different snapshots of the diagonal components,W m k t( , , )00 andW m k t( , , )11 of theWM.Weobserve that
both components present similar features to the case without spin, as plotted infigure 2.However, they evolve
differently on them axis: Initially, theW m k t( , , )00 componentmoves to the left, while theW m k t( , , )11

Figure 2. Snapshots corresponding to the time evolution of theWF, as given by equation (40)with an initial Gaussian state of the form
(21)with a=3 andσ = 2. The parameters of theHamiltonian are J=1 and λ =a 1. The labels indicate different values of time.
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componentmoves to the right, as a consequence of the different time dependence, λ− α at( 1) , in (46), a
phenomenon that is reminiscent of the splitting into two beams in the Stern-Gerlach experiment, where the
basic piece of the interaction is analogous to (43).

4.1.3. Decoherence
Another dynamical scenario of great relevance to the study of quantum systems is the presence of decoherence,
which can be caused by interactionwith the environment. In the following, we showhow theWF formalismwe
are discussing also accommodates this situation. In particular, we explore some typical cases, inwhich the spin
structure of theWMallows a simple visualization of the decoherence effects.

We consider the case where the interactionwith the environment can be described by a Lindblad-type
equation [45]

⎜ ⎟⎛
⎝

⎞
⎠∑ρ ρ γ ρ ρ ρ∂

∂
= − + − −

t
H A A A A A Ai[ , ]

1

2

1

2
, (49)

k
k k k k k k k

† † †

whereAk are the Lindblad operators and γk represent the corresponding coupling constants.
If these operators act only on the spin space, the Lindblad (noise) term equation (49) immediate translates

into an analogous equation for theWM. In other words, under this hypothesis, we canwrite for theWM

⎜ ⎟⎛
⎝

⎞
⎠∑γ

∂
∂

= ∂
∂

+ − −

t
W m k t

t
W m k t A W m k t A A A W m k t W m k t A A

( , , )

( , , ) ( , , )
1

2
( , , )

1

2
( , , ) . (50)H

k
k k k k k k k

† † †

In the latter equation, ∣∂
∂ W m k t( , , )

t H denotes the contribution of theHamiltonian to the dynamics (without
decoherence), andwe used amatrix notation so that spin indices were omitted.

As a simple example, let us consider the case wherewe only have a Lindblad operator, σ=A z1 with γ γ≡1 .
We then have

⎛
⎝⎜

⎞
⎠⎟

γ
γ

∂
∂

= ∂
∂

+
−

−t
W m k t

t
W m k t

W m k t

W m k t
( , , ) ( , , )

0 2 ( , , )

2 ( , , ) 0
, (51)H

01

10

whose solution can be readily obtained and expressed as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟=

γ

γ

−

−
W m k t

W m k t W m k t

W m k t W m k t
( , , )

( , , ) e ( , , )

e ( , , ) ( , , )
. (52)

H
t

H

t
H H

00
2

01

2
10 11

In otherwords, in this example, decoherence leaves the diagonal terms unaltered, while the off-diagonal terms
are exponentially dampedwith time.

Our second example is provided by the Lindblad operator, σ=A x1 with γ γ≡1 . In this case, equation (50)
becomes

Figure 3.The two panels show the diagonal components of theWMat four different times (labeled by the corresponding t) for a
particle subject to the interactionHamiltonian (43) in a lattice. The left panel corresponds toW m k t( , , )00 , whereas the right panel
showsW m k t( , , )11 . The initial state is a separable state (see themain text for explanation) with a=3,σ = 2. The parameters of the
interactionHamiltonian are λ= =J a 1.
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⎛
⎝⎜

⎞
⎠⎟γ∂

∂
= ∂

∂
+

− −
− −t

W m k t
t

W m k t
W m k t W m k t W m k t W m k t

W m k t W m k t W m k t W m k t
( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , )
. (53)H

11 00 10 01

01 10 00 11

This set of equations can be solved by elementary operations.We concentrate on the diagonal terms, for which
thefinal solution reads

= + + −γ γ− −( ) ( )W m k t W m k t W m k t( , , )
1

2
1 e ( , , )

1

2
1 e ( , , ) , (54)t

H
t

H00
2

00
2

11

= − + +γ γ− −( ) ( )W m k t W m k t W m k t( , , )
1

2
1 e ( , , )

1

2
1 e ( , , ) . (55)t

H
t

H11
2

00
2

11

Similar equations can be obtained involvingW m k t( , , )01 andW m k t( , , )10 . As a result, in the limit ⟶ ∞t ,
bothW m k t( , , )00 andW m k t( , , )11 become an equally weightedmixture; the same happenswith the off-
diagonal terms.

4.2.Discrete time
4.2.1. Quantumwalk
The examples studied in the previous section arise as a consequence of the continuous interaction of a particle
with an external potential acting on the lattice. However, we can envision some situations inwhichwe act on the
particle with subsequent short pulses, or via some actions that appear suddenly but regularly in time. A
paradigmatic example of this kind is provided by the quantumwalk (QW) [39, 46], which has generated a lot of
interest in recent years. In the discrete quantumwalk, a quantumparticlemoves on a 1D lattice subject to the
periodic influence of a displacement operator, which propagates the particle to the right or to the left, according
to the state of a two-level system (the coin). The totalHilbert space has precisely the structure  = ⨂l s,
defined in section 2; in fact, we can associate the states of the coin to the spin of the particle without loss of
generality. It is customary to use the basis states∣ 〉L and∣ 〉R ins (instead of ∣ 〉0 and ∣ 〉1 ) and associate them to the
left and right propagation, respectively.We consider the successive application of the unitary transformation

θ θ= ⨂ + ⨂ ⨂− +{ }U T L L T R R C( ) ( ), (56)

where θ σ= ⨂ θσ−C I( ) ez
i y ,θ π∈ [0, 2] is a parameter defining the bias of the coin toss, I is the identity

operator inl, andσy andσz are Paulimatrices acting ons. TheQWdynamics can be described entirely in
terms of theWM[47], via a recursion formula that relates +W m k t( , , 1) to other components of this function
at time t. Using equation (56), one obtains, after some algebra:

+ = − +

+ + +

−W m k t M W m k t M M W m k t M

M W m k t M M W m k t M

( , , 1) ( 2, , ) e ( , , )

e ( , , ) ( 2, , ) , (57)

R R
k

R L

k
L R L L

† 2i †

2i † †

where θ= ∣ 〉〈 ∣M L L C( ) ( )L and θ= ∣ 〉〈 ∣M R R C( ) ( )L . A complete analysis of the time evolution in phase space
with the help of theWF can be found in [47].Note that a different definition of theWFwas used in [48] for the
reduced densitymatrix of thewalker (after tracing the coin) to study the evolution and the effects of decoherence
for the quantumwalk.

4.2.2. Decoherence in discrete time
TheWF formalism can easily accommodate the description of the general transformation of the quantum state
via a completely positivemap. In particular, we consider here trace-preservingmaps. Thesemaps could, for
instance, represent a decoherentQWprocess, withKraus operatorsmodeling the interaction of the systemwith
the environment. The discrete evolution is represented by

∑ρ ρ+ =t E t E( 1) ( ) , (58)
i

i i
†

where Ei are Kraus operators with the property∑ =E E Ii i i
† . As an example, we analyze two simplemodels of

decoherence, which are applied as projectivemeasurements in the different degrees of freedomof the system.
Thefirstmodel is defined as projectors in spin space, while the secondmodel is defined by projecting in the
lattice sites.We use the notationΠi to designate the different projectors, which satisfyΠ Π=i i

† and
Π Π δ Π= .i j ij i With probability p, the system is projected onto the spin (or space) basis, so that equation (58)will
be rewritten as

∑ρ ρ Π ρ Π+ = − +t p t p t( 1) (1 ) ( ) ( ) . (59)
i

i i

By iteration of the above equation andmaking use of the properties of projectors, one can derive the following
formula relating the final and initial density operators of the system,
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⎡⎣ ⎤⎦∑ρ ρ Π ρ Π= − + − −t p p t( ) (1 ) (0) 1 (1 ) ( ) . (60)t t

i

i i

We start from a state consisting of the superposition of two deltas with orthogonal spin components:
equation (15) withα = 1. For thefirst projectivemodel, we apply the spin projectorsΠ = ∣ 〉i ii , i=0,1, while
for the site projection they are given by Π = ∣ 〉 ∈n n n,n . The iterated density operator, ρ t( ), that is
obtained from equation (60) is the same in both cases because of the spin and position entanglement structure in
equation (15). The result is

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ρ =

∣ ∣ − ∣ ∣
− ∣ ∣ ∣ ∣

t
n n p n n

p n n n n
( )

1

2

(1 )

(1 )
. (61)

t

t

1 1 1 2

2 1 2 2

The correspondingWMbecomes

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟π

δ δ

δ δ
=

−

−

+
− −

+
−

W m k t
p

p
( , , )

1

4

(1 ) e

(1 ) e
. (62)

m n
t

m n n
k n n

t
m n n

k n n
m n

,2 ,
i ( 1 2)

,
i ( 1 2)

,2

1 1 2

1 2 2

Thus, as a consequence of the projectivemeasurements, the nondiagonal components in theWM(62) tend to
zerowith time. This was expected from the intuitive idea that these components appear from interference
between the two spin states in equation (15) or, correspondingly, between the two occupied positions. Once
decoherence acts, this kind of interference is reduced and the responsible terms are consequently diminished.
Qualitatively similar results are found if one starts from the superposition of twoGaussian states (19) and
introduces projectivemeasurements on the lattice states. Interestingly, these interference terms are nonpositive
and tend to disappear as decoherence is acting. In the next section, wewill discuss the consequences of this idea
inmore detail.

5.Negativity

In the context of continuous variables, it is well known that theWFmay present some zones in phase space
where it is negative. This is interpreted as an indication of quantumness, in the sense that the state would not
have a classical analogue. To quantify this quantum feature, the negative volume of theWFhas been defined as a
measure on nonclassicality [6] and has been applied to distinguish quantum states from classical ones [8]. The
only pure states with non-negativeWFs areGaussian states [49], but the classification is not complete formixed
states.

For the continuous phase space, the negativity of a state, ρ, becomes

⎡⎣ ⎤⎦∫ ∫ ∫ ∫η ρ = ∣ ∣ − = ∣ ∣ −
−∞

∞

−∞

∞

−∞

∞

−∞

∞
W x p W x p p x W x p p x( ) ( , ) ( , ) d d ( , ) d d 1. (63)c c c

The positive character of theWFhas also been studied for discrete systems. In the finite-dimensional case
and for odd dimensions, Gross showed [50] that the only pure states with positiveWFs are stabilizer states. The
presence of negative values in theWFhas been, in this case, connected to a quantum resource related to a
possible quantum speedup [28, 51] or the nonsimulability of certain quantum computations involving states
with nonpositiveWFs [7, 31].

In the case of spin 1

2
, theWFdefined byWooters [21] has been used to establish a separability criterion for a

systemof two particles [52]. A connection between entanglement and negativeWFswas also established in [8]
for two particles in a continuous spacewhen the state is a hyperradial s-wave.

Evenwithout the additional degree of freedom, the discreteness of theHilbert space causes the appearance of
spurious negative terms in theWf, which do not correspond directly to nonclassical features of the state, but
rather are due to the structure of the discrete phase space itself. Nevertheless, for the case of a spinless particle, we
showed in [32] that it is possible to introduce amodified negativitymeasure that excludes such negative
contributions and contains information about the quantumness of the states, consistent with the continuum
limit.

Not being a true quantumobservable, themeaning of such a negativitymeasurewill depend strongly on the
definition used for theWf and on the characteristics of the particular system, as the discussion above illustrates.
It is then reasonable to askwhat natural extension corresponds to the systemwe are discussing, andwhat
information itmaintains about the characteristics of the states.

It is possible to think of several extensions of theWF. If we start with our definition (2) and trace out the spin,
we are left with a scalarWF representing the state of the spatial degree of freedom,which in general will be
mixed. To this function, we can immediately apply the definition of negativity discussed in [32]. Itmight be
more interesting to think of a negativity definition, η ρ( ), that preserves some spin information.
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One possibility is to define a negativity for theWMas in [47],

⎡⎣ ⎤⎦∫ ∫∑ ∑η ρ ≡ ∣∣ ∣∣ − = ∣∣ ∣∣ −
π

π

π

π

− −
W m k Tr W m k k W m k k( ) ( , ) ( ( , )) d ( , ) d 1, (64)

m m

1 1

where∣∣ ∣∣ ≡A Tr A A1
† is the trace normofmatrixA and the second equality follows fromnormalization.We

can easily check that this quantity fulfills the following desirable properties:

1. It reduces to equation (63) for product states in the continuum limit, withW x p( , )c obtained fromW m k( , )L

(see equation (13));

2. It is invariant under rotations in spin space.

Thefirst property is also satisfied by the negativity computed after tracing out the spin. The second property,
on the other hand, can be illustratedwith the following example.We consider an electron, subject to an external
magnetic field. To simplify, the electron is confined to a site on the lattice, so that its state is factorizable. The
effect of themagnetic fieldmanifests on the precession of the spin, which continuously changes the spin state of
the electron. This property ensures that the value of the negativity is not influenced by the precession. In other
words, simply changing the spin directionwill not alter the negativity properties of theWM.Note that for some
alternative definitions of theWF for a particle with spin [21], the function can contain negative values in the
phase space for some states, while being completely positive for other states.

We can further explore the significance of definition (64) by considering different examples.Wemay then
investigate, as in [52], whether this quantity holds information about the entanglement in the state.

We start by analyzing the cat state, ψ σ β σ∣ 〉 = ∣ 〉∣ 〉 + ∣ 〉∣ 〉
β+ ∣ ∣

a b( )1

1
1 22

, where ∈a b, label two different

sites on the lattice, β ∈ is a constant, and σ σ∣ 〉 ∣ 〉{ , }1 2 are two arbitrary, orthogonal spin states. The negativity

of this state takes the formη = β
β

∣ ∣
+ ∣ ∣
2

1 2
. It is easy to check that in this case, the entanglement and the negativity

have the same behavior.
However, this is not the generic behavior, as illustrated byWerner states [53], ρ ψ ψ= + ∣ 〉〈 ∣− I zz1

4
, where

ψ∣ 〉 = ∣ 〉∣ 〉 + ∣ 〉∣ 〉a b( 0 1 )1

2
and ∈a b, label two different sites on the lattice. This state is entangledwhenever

⩾z 1

3
. TheWM for this state takes the form

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
=

+ + −

− + +W m k

z
W m k

z
W m k

z
W m k

z
W m k

z
W m k

z
W m k

( , )

1

4
( , )

1

4
( , )

2
( , )

2
( , )

1

4
( , )

1

4
( , )

, (65)
aa bb ab

ab aa bb

with the definition δ=
π +

− −W m k( , ) eln m l n
ik l n1

2 ,
( ) and ∈l n a b, { , }. The corresponding negativity is simply

η ρ = z( ) . This result implies that for these states, entanglement and negativity are not correlated.
Another scenariowhere the emergence of classical behavior is often discussed is that of decoherent

dynamics. It is thus reasonable to study how this quantity, η, changes under decoherence. To do so, we consider a
very simple situation, inwhich the initial state subject to decoherence is the double delta considered in section 3.
To simplify, we restrict ourselves to the discrete time dynamics already studied in section 4, with decoherence
arising fromprojections on spin or lattice sites. Similar qualitative conclusions can be drawn if we allow for
continuous time dynamics or if we consider a doubleGaussian state (19), although the calculations aremore
involved. A simple application of (64) to equation (62) leads to the result

η = −t p( ) (1 ) (66)t

for the negativity as a function of time. This simple result can be interpreted as the damping of the out-of-
diagonal terms in (62). As time goes on, these interference terms tend to fade away, and one is left with an
incoherent state with a positiveWF. This transition from a coherent superposition to an incoherent one is, of
course, a well-knownphenomenon in the theory of open quantum systems, which shows a change in the nature
of theWigner function that ismonitored by our definition of the corresponding negativity.

Although it is obvious from this discussion that in the presence of spin the negativity does not have the clear
unique physicalmeaning it had in the purely spatial case (either continuous or discrete), the quantity, η,
introduced heremay be useful to characterize some features of the quantum state or the dynamics when the
study is restricted to particular families of states. The topic is nevertheless far frombeing closed, and could be the
subject of further debate.
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6. Conclusions

In this paper, we have elaborated on the previously introducedWigner formalism for a particle in an infinite 1D
lattice to account for dynamics and for the presence of an additional, finite-dimensional degree of freedom.Our
goal was to describe the dynamics on the phase space associatedwith this problem. Althoughwe have
concentrated, for simplicity, on the casewhere such an additional degree of freedom corresponds to a spin 1/2,
one can envisionmore general situationswhere higher spins or different properties, such as the polarization of a
photon, are considered. Aswe have shown, thematrix formalism is especially well suited to describe the
interaction of the particle with a spin-dependentHamiltonian on afixed basis, and it keeps a close resemblance
to the relativisticWF formalism [9, 11], a fact thatmight be useful in the investigation of the nonrelativistic limit
of a given problem.Wehave illustrated the construction of theWFbyfirst analyzing some simple static
examples, like the ‘Schrodinger cat’ double delta or two-Gaussian states. For these states, the position and spin
variables are entangled, and this entanglementmanifests in a particular structure of theWM.

Wehave studied the time evolution of theWMfor some simple cases.We have explicitly shown the equation
governing the evolution of theWF for a general space-dependent potential. This equation, however, can only be
exactly solved for some special cases, as we have done for the case of a linear potential, where one recovers the
well-knownphenomenon of Bloch oscillations. A similar statement is valid for aHamiltonian that can be
factored as a scalar part and a spin operator.We have obtained the equation ofmotion for a general scalar term,
and solved it in the linear case, which allows us to compare it with the dynamics in the spinless case. The presence
of a ‘spin-dependent force’ introduces new features on the dynamics thatmanifest in phase space. To complete
the above description, we have incorporated the role of decoherence which, for some simple examples, can be
implemented for theWM in a closed form.

In some physical situations, the interaction appears as short pulses acting on the particle, a paradigmatic
example being the quantumwalk. It is also possible to analyze the role of decoherence in this case, andwe have
analyzed a simple example for the double delta state, when decoherence appears as projections either on the
spatial or in the original spin basis.We have showed that bothmechanisms produce the same effect, which
translates into a damping of the off-diagonalmatrix components.

Finally, we have explored a possible extension of the concept of negativity, as defined for the scalarWF, to the
spin 1/2 case.While it is not evident what the physicalmeaning of such negativitymight be once the spin is
incorporated into the particle, we have proposed theminimum requirements that, in our opinion, this
magnitude should obey, andwe have suggested a definition of negativity that fulfills these requirements.
Following this proposal, we analyzed howdecoherence translates into a decreasing of negativity in the above
decoherencemodel.We also showed that our definition of negativity does has not have trivial correspondence
with entanglement, as clearly indicated by an analysis of theWerner state.We think, however, that it is worth
further study of the relationship of theWigner description to the quantumproperties of general states in a
lattice.
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Appendix. Dynamics of theWigner function on a lattice for a particle subject to a
potential

Wewill derive the differential equation that is obeyed by theWM in two cases: I) a particle interactingwith a
position-dependent potentialV(x), and II) a spin 1/2 particle under the effect of a spin-positionHamiltonian of
the form (43).

I)We start with theHamiltonian defined in (23). The interaction in this case only affects the phase space
variables (m, k); therefore, spin indices can be omitted for themoment, but can be recovered in the final
expression by replacing ⟶ αβW m k t W m k t( , , ) ( , , ). Of course, for a spinless particle no replacement is
necessary.

The evolution equation is obtained from the vonNeumann equation for the density operator (26). Using the
properties of the ±T operators, one obtains
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∂
∂

= + − − +
t
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With the help of theWFdefinition, equation (2), one arrives at
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Note that even values of p do not contribute in the above sum, sowe restrict ourselves to odd values, = +p s2 1
with ∈s . After simplifying, wefinally obtain
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II)We nowdevelop an equation ofmotion for a spin 1/2 particle, which is subject to a spin position-
dependent interaction given by equation (43). Following similar steps to the previous case andmaking use of
σ α α∣ 〉 = − ∣ 〉α( 1)z ,α = 0, 1, one gets
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= + − − +αβ αβ αβ αβ
t
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After expandingVl and −Vm l around the point am

2
as before, we arrive at
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In terms of theWM,
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In order to determine the values of p that contribute to the above sum, one has to consider two different cases.
Ifα β= , only odd values = +p s2 1with ∈s have to be considered, and one is lead to
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whereas for the off-diagonal elementsα β≠ , we nowhave only the contribution from even values of =p s2 ,
andwe can easily obtain
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