日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Control of quantum magnets by atomic exchange bias

MPS-Authors
/persons/resource/persons140796

Yan,  S.
Dynamics of Nanoelectronic Systems, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Max Planck Institute for Solid State Research;

/persons/resource/persons140800

Choi,  D.J.
Dynamics of Nanoelectronic Systems, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Max Planck Institute for Solid State Research;

/persons/resource/persons140803

Burgess,  J.A.J
Dynamics of Nanoelectronic Systems, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Max Planck Institute for Solid State Research;

/persons/resource/persons133864

Rolf-Pissarczyk,  Steffen
Dynamics of Nanoelectronic Systems, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Max Planck Institute for Solid State Research;

/persons/resource/persons133858

Loth,  S.
Dynamics of Nanoelectronic Systems, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Max Planck Institute for Solid State Research;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
引用

Yan, S., Choi, D., Burgess, J., Rolf-Pissarczyk, S., & Loth, S. (2015). Control of quantum magnets by atomic exchange bias. Nature Nanotechnology, 10(1), 40-45. doi:10.1038/nnano.2014.281.


引用: https://hdl.handle.net/11858/00-001M-0000-0024-BA00-F
要旨
Mixing of discretized states in quantum magnets has a radical impact on their properties. Managing this effect is key for spintronics in the quantum limit. Magnetic fields can modify state mixing and, for example, mitigate destabilizing effects in single-molecule magnets. The exchange bias field has been proposed as a mechanism for localized control of individual nanomagnets. Here, we demonstrate that exchange coupling with the magnetic tip of a scanning tunnelling microscope provides continuous tuning of spin state mixing in an individual nanomagnet. By directly measuring spin relaxation time with electronic pump–probe spectroscopy, we find that the exchange interaction acts analogously to a local magnetic field that can be applied to a specific atom. It can be tuned in strength by up to several tesla and cancel external magnetic fields, thereby demonstrating the feasibility of complete control over individual quantum magnets with atomically localized exchange coupling.