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abstract: Gene combinations conferring local fitness may be de-
stroyed by mating with individuals that are adapted to a different
environment. This form of outbreeding depression provides an evo-
lutionary incentive for self-fertilization. We show that the yeast Sac-
charomyces paradoxus tends to self-fertilize when it is well adapted
to its local environment but tends to outcross when it is poorly
adapted. This behavior could preserve combinations of genes when
they are beneficial and break them up when they are not, thereby
helping adaptation. Haploid spores must germinate before mating,
and we found that fitter spores had higher rates of germination across
a 24-hour period, increasing the probability that they mate with
germinated spores from the same meiotic tetrad. The ability of yeast
spores to detect local conditions before germinating and mating sug-
gests the novel possibility that these gametes directly sense their own
adaptation and plastically adjust their breeding strategy accordingly.

Keywords: local adaptation, inbreeding, outcrossing depression, ger-
mination, fitness.

Introduction

An organism’s success depends on its genotype and its
environment. Because environments vary, genotypes ex-
perience different selection in different places (Kalisz
1986). If the effect of selection is not overwhelmed by drift
or migration, then local adaptation can occur (Williams
1966; Lande and Schemske 1985; Kawecki and Ebert 2004).
Local adaptation has been demonstrated many times in a
wide range of organisms, including plants (e.g., Schemske
1984), animals (e.g., in salmonid fishes; Fraser et al. 2011),
and microbes (Belotte et al. 2003), by reciprocal-transplant
experiments, which show that the fitnesses of genotypes
at their original sites are higher than the fitnesses of ge-
notypes imported from other sites (Hereford 2009).

Local adaptation requires local genetic differentiation
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(Linhart and Grant 1996). In plants, genetic differentiation
among populations is greater for selfing species than for
outcrossing species (Hamrick and Godt 1996), and selfing
is thought to promote speciation by increasing reproduc-
tive isolation between sympatric populations, both in
plants (Wendt et al. 2002; Martin and Willis 2007) and in
animals (Puritz et al. 2012). Although genetic differenti-
ation may occur as an unselected side effect of selfing,
selfing can be directly selected because it reinforces re-
productive isolation (e.g., Fishman and Wyatt 1999). Sim-
ilarly, selfing is expected to be selected in locally adapted
populations because it maintains adaptation, reducing the
outbreeding depression that would be caused by mating
with individuals from other locally adapted populations
(Antonovics 1968; Jain 1976; Epinat and Lenormand
2009). This strategy is exemplified by the touch-me-not,
Impatiens capensis, which not only produces a mixture of
chasmogamous (outcrossing) and cleistogamous (selfing)
flowers but also sends outcrossed seeds farther, by ballistic
dispersal, than selfed seeds (Schmitt et al. 1985). An elegant
experiment showed that the fitness of seedlings derived
from selfed seeds, relative to that of those derived from
outcrossed seeds, decreased as they were moved away from
the parental site (Schmitt and Gamble 1990). While there
is no generally recognized association between dispersal
and outcrossing, it is also observed in amphicarpic plants,
which produce subterranean, nondispersing seeds that are
selfed and aerial, dispersing seeds that are outcrossed
(Cheplick 1987), and in budding yeast, which outcrosses
more in response to dispersal by an insect vector (Reuter
et al. 2007).

Here we investigate how the rate of inbreeding in yeast
is affected by adaptation to the local environment. Sac-
charomyces cerevisiae is widely used for winemaking and
as a laboratory model organism, but there is also increasing
interest in the natural history, ecology, and evolution of
this species and its wild relatives in the genus Saccharo-
myces sensu stricto (Replansky et al. 2008; Greig and Leu
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2009). Saccharomyces spp. reproduce mainly by diploid
mitosis, but when nutrients become scarce, a diploid cell
can enter meiosis and produce a tetrad of four equally
sized haploid spores (two of each mating type, MATa and
MATa) enclosed within an ascus and joined by interspore
bridges (Coluccio and Neiman 2004). Spores are resistant
and dormant, but when a spore detects nutrients, it can
germinate into a metabolically active haploid cell, mate by
fusing with another haploid of the opposite mating type,
and produce a new diploid zygote that can begin mitotic
growth again. Selfing can occur between haploids from the
same meiotic tetrad (equivalent to sporophytic selfing; for
clarity, we call this “within-tetrad mating” hereafter), or
outcrossing can occur between haploids from different tet-
rads (hereafter “between-tetrad mating”). Any unmated
haploids can divide by haploid mitosis until they find mat-
ing partners, but a haploid that has already divided can
also switch mating type at the following mitotic division,
thus allowing it to mate with its previous clonal daughter
cell to produce a homozygous diploid in an extreme form
of inbreeding (equivalent to gametophytic selfing; here-
after “autodiploidization”).

Measurements of the frequencies of these different
forms of mating vary greatly. Tsai et al. (2008) examined
the genetic variation within a wild population of Sac-
charomyces paradoxus and calculated 94% within-tetrad
mating, 1% between-tetrad mating, and 5% autodiploid-
ization, consistent with the high rate of inbreeding in S.
cerevisiae estimated from phylogenetic analysis (Ruderfer
et al. 2006). In contrast, Goddard et al. (2010) estimated
that wild S. cerevisiae in New Zealand vineyards outcross
in 20% of matings. When inbreeding was measured di-
rectly in the laboratory, the frequency of between-tetrad
mating was only 0.2%, but this was increased tenfold when
tetrad ascospores were fed to Drosophila melanogaster
(Reuter et al. 2007). This dispersal vector digested the asci
and interspore bridges, releasing the resistant spores from
their tetrads and increasing outcrossing. Another recent
laboratory study measured surprisingly high frequencies
of between-tetrad mating of up to 25%, even though the
tetrads used were intact and undigested (Murphy and Zeyl
2010).

We suspected that the variation in measurements of
within-tetrad mating rates was likely to be affected by the
local environment, because mating in yeast occurs after
spore germination and spore germination depends on
sensing local conditions (Palleroni 1961; Savarese 1974).
Spores that germinate at different times are unlikely to
mate: indeed, differences in germination timing between
yeast species contribute to reproductive isolation between
species (Maclean and Greig 2008; Murphy and Zeyl 2012).
Similarly, hybridization between plant species can be pre-
vented if they have different flowering times (e.g., Young

1996; Pascarella 2007), and locally adapted races can be
maintained within a population by differences in their
flowering times, most notably in natural Anthoxanthum
odoratum (McNeilly and Antonovics 1968) as well as in
the Park Grass Experiment (Snaydon and Davies 1976;
Silvertown et al. 2005). If the four spores within a Sac-
charomyces tetrad germinate at the same time, they can
form two mating pairs and mate entirely within the tetrad
(as modeled in Tazzyman et al. 2012). But if the spores
within a tetrad germinate at different times, then they are
less likely to mate together and more likely, therefore, to
mate with an available haploid from another tetrad or to
autodiploidize if no mates are available. We hypothesized
that high-fitness environments would increase the prob-
ability of spore germination per unit time, so that spores
in the same tetrad would be more likely to germinate at
the same time and mate together. In contrast, if low-fitness
environments reduce the probability of spore germination
per unit time, then the variance in spore germination tim-
ing would be greater and germinated spores would be less
likely to find mates from the same tetrad, either because
potential partners would not yet have germinated or be-
cause they would have already germinated and mated. The
higher variance in germination timing would reduce
within-tetrad mating and increase opportunities for be-
tween-tetrad mating. Thus, we expected more within-tet-
rad mating when a genotype was in an environment to
which it was well adapted. Such a mechanism could itself
be adaptive, because it would tend to preserve allele com-
binations that confer high fitness in the local environment
but would generate new allele combinations that may allow
adaptation to low-fitness environments.

Therefore, we tested five different wild yeast strains to
confirm the predicted relationship between adaptation and
inbreeding. We measured each strain’s competitive fitness
and within-tetrad mating rate, relative to a standard lab-
oratory strain, on three different types of media. To in-
vestigate whether spore germination could mediate the
response of the mating system to the local environment,
we measured the overall spore germination rates for each
strain on each medium, and we assayed the time course
of germination for one of the strains on the three media.

Material and Methods

Strains and Media

We used three Saccharomyces paradoxus strains isolated
from oak trees in Plön, Germany (SpPlön1, SpPlön2, and
SpPlön3); two S. paradoxus strains isolated from oak trees
in Pennsylvania (Sp1 and Sp2), which were used in a pre-
vious inbreeding study (as YPS664 and YPS646, respec-
tively; Murphy and Zeyl 2010); and one Saccharomyces
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cerevisiae laboratory strain, Y55, as a standard. All six dip-
loid strains were originally derived from single haploid
cells that autodiploidized, thereby making homozygous
diploids.

From each strain, we constructed two isogenic diploid
lines that were homozygous for different dominant anti-
biotic-resistance markers inserted into the HO locus. We
used primers HO_SParaF (AAT TTT TTA TCA GTA ACC
GTA ACT GAG ACT ATT ACT CAA TCA TTC AAG TAA
AGA GAT CAC CAA atc gat gaa ttc gag ctc g) and
HO_SParaR (ATA AGC AGC AAT CAA TTT CAT CTA
ACT TCA ACA TGC TTT CTG AGA ACA CAA CTA TTC
TGA cgt acg ctg cag gtc gac) to amplify either the
KANMX4 cassette or the HYGMX4 cassette, which confer
antibiotic resistance to G418 and hygromycin, respectively
(Goldstein and McCusker 1999). We transformed both of
these into all five S. paradoxus strains, using a lithium
acetate/single-stranded carrier DNA/50% polyethylene
glycol transformation (Gietz and Woods 2002), to con-
struct two diploid lines, homozygous for different anti-
biotic-resistance markers, derived from each strain. We
used the same protocol for S. cerevisiae strain Y55, but
with primers HO_SCereF (ATT AAA TTT TAC TTT TAT
TAC ATA CAA CTT TTT AAA CTA ATA TAC ACA TT
atc gat gaa ttc gag ctc g) and HO_SCereR (TCT AAA TCC
ATA TCC TCA TAA GCA GCA ATC AAT TC cgt acg ctg
cag gtc gac). For all primers, lowercase letters indicate
overlap with the gene cassette and uppercase letters in-
dicate overlap with the HO locus. This procedure elimi-
nated positions 2041–3911 in S. paradoxus (strain CBS432
numbering) and positions 155–1932 in S. cerevisiae (strain
S288c numbering) from the HO locus and replaced them
with the antibiotic-resistance cassette. Disrupting the HO
gene prevented mating-type switching and autodiploidi-
zation, so that only within-tetrad mating and between-
tetrad mating were possible.

Unless otherwise stated, we grew cultures in 5 mL YPD
(2% dextrose, 2% bactopeptone, 1% yeast extract), and
we incubated at 30�C. We shook liquid cultures at 225
rpm, or we added 2.5% agar to make solid plates. We
transferred approximately 6 # 107 cells from overnight
YPD cultures into 2 mL sporulation medium (2% potas-
sium acetate, 0.22% yeast extract, 0.05% glucose, 0.087%
complete amino acid mix) and incubated at room tem-
perature for 2 days, which was sufficient to induce more
than 90% sporulation in all strains.

Fitness Assays

We measured the diploid fitnesses of each of the five wild
S. paradoxus strains relative to Y55 in paired direct com-
petitions (Wu et al. 2006). One antibiotic-resistance-
marked line from each of the wild strains (the ho::

HYGMX4/ho::HYGMX4 homozygous diploid line of each
wild strain) was mixed with the Y55 line carrying a dif-
ferent marker (i.e., the ho::KANMX4/ho::KANMX4 ho-
mozygous diploid line of Y55), and each mixture was
propagated asexually in three different media: YPD, 10%
YPD (10% of each component of YPD), and SOE (1%
sucrose, 0.5% dextrose, 0.5% fructose, 0.15% bactopep-
tone, 0.1% yeast extract), which approximates oak tree sap
in saccharide and nitrogen content. We inoculated 5 mL
of liquid medium with approximately 1.5 # 106 cells of
the mixture. Every 24 hours, a fraction of the culture was
diluted into 5 mL of fresh medium, and the frequency of
the two competing lines was determined by diluting and
plating onto YPD agar plates to yield single colonies and
replica plating these onto G418 (200 mg/L) and hygro-
mycin (300 mg/L) agar plates to determine their genotype.
We used the different antibiotic-resistance markers to de-
termine the numbers of the two strains in each fitness
assay at the beginning and end of the growth period, and
we calculated relative asexual fitness by using the least
squares slope between the dilution rate and the frequency
of hygromycin-resistant colonies (Wu et al. 2006). Because
fitnesses varied considerably, depending on strain and me-
dium, we optimized the initial frequencies of strains and
the daily dilution rate (1 : 10 or 1 : 100), so that the fre-
quency of the tested strain could be accurately determined.
All 15 combinations of strain and medium combinations
were tested in least three replicate fitness assays.

Mating Assays

The two different antibiotic-resistance-marked lines
(i.e., ho::HYGMX4/ho::HYGMX4 and ho::KANMX4/ho::
KANMX4) of each strain were sporulated. We mixed intact
tetrad asci from both lines together in equal volumes. We
concentrated the cells by centrifugation, washed them, and
resuspended them in 100 mL of water. We placed a 5-mL
spot of each mixture of intact tetrads onto YPD, 10% YPD,
and SOE agar plates. After 24 hours of incubation at 30�C
to allow spore germination and mating, a sample from
each strain’s mixture was then tested to determine the
ploidy and antibiotic resistance of the individuals in it. We
cut out each growth patch from its plate, washed the yeast
cells off into 5 mL of water, and diluted and plated each
cell suspension separately onto YPD and double-antibiotic
(200 mg/L G418 and 300 mg/L hygromycin) agar plates
to yield single colonies, which were counted to determine
the frequency of double-antibiotic-resistant colonies (i.e.,
those diploids that resulted from between-tetrad mating).
To determine the frequency of unmated haploids, we rep-
licated the YPD agar plates onto sporulation agar plates
and incubated them for 1 week at room temperature. We
had previously verified that under these conditions and
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for all of these strains, haploid colonies (i.e., those that
could mate but not sporulate) were whiter and were clearly
distinguishable from diploid colonies (i.e., those that could
sporulate). We therefore scored all plates using this cri-
terion in order to calculate the frequency of mated, diploid
cells.

Two spores mating within the tetrad could produce only
a homozygous diploid of the parental genotype, resistant
to only one antibiotic. Mating between two spores from
different tetrads could produce a diploid that was hetero-
zygous for the antibiotic-resistance alleles inserted at the
HO locus and thus resistant to both antibiotics. We ex-
pected m(2fmfn) double-antibiotic-resistant colonies, where
fm and fn are the initial frequencies of single-resistant col-
ony-forming units and m is the frequency of between-
tetrad mating. We corrected for unmated cells by adjusting
the expected number of double-antibiotic-resistant colo-
nies by the diploid frequency after mating, fd, and we
calculated the inbreeding frequency (1 � m) from

m(2f f )f p f ,m n d mn

where fmn is the frequency of double-antibiotic-resistant
colonies. We can rearrange this equation to

f 1mnm p # ,
2f f fm n d

to find the between-tetrad mating frequency, or subtract
the between-tetrad mating frequency from 1 to calculate
the within-tetrad mating frequency:

within-tetrad mating frequency p (1 � m)

f 1mnp 1 � # .( )2f f fm n d

We measured the within-tetrad mating frequency three
times for each strain # medium combination.

Spore Germination Frequency Assays

Within-tetrad mating can occur only if spores of opposite
mating type in the same tetrad are available to mate at
the same time. We hypothesized that higher frequencies
of spore germination would cause higher within-tetrad
mating. We used the five wild homozygous diploid strains
lacking any drug-resistance markers for this experiment.
We streaked each from a YPD agar plate onto sporulation
agar. After 2 days of incubation at room temperature, we
digested a sample of the resulting tetrads from each strain
in 10 mL of 10-U/mL zymolyase for 30 minutes before
adding 500 mL sterile water and dissecting the 80 spores
from 20 tetrads onto the three media, using a microma-
nipulator. After 24 hours of incubation at 30�C, we used

the microscope to determine whether every spore had ger-
minated or not. We used the spore germination frequency
of each set of 80 spores to calculate the expected propor-
tion of tetrads with potential for within-tetrad mating, for
all 15 combinations of strain and medium. We calculated
the proportion of tetrads with potential within-tetrad mat-
ing as the expected frequency of tetrads with three or four
germinated spores plus two-thirds of the expected fre-
quency of tetrads with two germinated spores, as one-third
of tetrads with exactly two germinated spores will contain
only one mating type.

It is formally possible that the germination probability
of a spore correlates to that of the other spores in the same
tetrad: for example, a single strain might produce some
tetrads whose spores all have high germination probabil-
ities and other tetrads whose spores all have low germi-
nation probabilities, even though all are genetically iden-
tical. This would mean that the overall germination rate
would not accurately predict the proportion of tetrads with
potential for within-tetrad mating. To eliminate this con-
cern, we examined the distribution of tetrads with no, one,
two, three, or four germinated spores, and we compared
this to the expected distribution if all spores had the same
germination probability for a given strain and environ-
ment. We found no evidence that the germination prob-
ability of spores varied within each combination of strain
and environment (P 1 .18 for all strain and environment
combinations; x2 test after categories that had fewer than
three observed cases were eliminated).

Spore Germination Time Course Assays

In order to investigate the time course of spore germi-
nation, we sporulated both antibiotic-resistance-marked
lines of SpPlön3 and mixed equal volumes of the tetrads,
placing a 5-mL spot of the mixture into the center of agar
plates of each of the three media, as with the mating assays.
Instead of assaying after 24 hours, we cut out the spots
from three replicate plates of each medium at 0-, 1-, 3-,
6-, 9-, and 12-hour time points and resuspended them in
5 mL of water, as for the mating assays. We spun down
1,000 mL from each sample, resuspended the cells in 1,000
mL 1% NaOH, and incubated at 30�C, with 1,000-rpm
shaking for 10 minutes. Then we added 1,000 mL 1M HCl
to neutralize, inverted the tubes to mix, spun down the
cells, and removed 1,500 mL of the solution in order to
resuspend the cells in the remaining 500 mL. Previous ex-
periments determined that this treatment kills 0% (95%
confidence interval: 6.88%–0%) of spores and more than
99.94%, 99.99%, and 99.99% of log-phase diploid cells in
10% YPD, YPD, and SOE, respectively. We serially diluted
and plated these spores to yield single colonies on YPD
plates, and we counted the colonies to determine the num-
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Figure 1: Effect of mating medium on relative fitness (a) and within-tetrad mating frequency (b). We measured the fitness of G418-resistant
lines of five wild Saccharomyces paradoxus strains on three media relative to hygromycin-resistant Saccharomyces cerevisiae strain Y55;
separately, the two antibiotic-resistant derivatives of the six strains were allowed to mate for 24 hours on three different media in order to
measure within-tetrad mating frequencies. Error bars show the standard error across three independent assays. Media: YPD p 2% dextrose,
2% bactopeptone, 1% yeast extract; 10% YPD p 10% of each component of YPD; SOE p 1% sucrose, 0.5% dextrose, 0.5% fructose,
0.15% bactopeptone, 0.1% yeast extract.

ber of spores that remained ungerminated at each time
point. We did not use a 24-hour time point because by
this time the cultures were entering stationary phase, dur-
ing which vegetative diploids become more resistant to
NaOH.

Results

All raw data are deposited in the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.r0g9m (Miller and Greig
2014).

Relationship between Fitness and Within-Tetrad Mating

We measured the fitnesses and the within-tetrad mating
frequencies of the five wild strains in three different en-
vironments, relative to those of the standard laboratory
strain Y55 (fig. 1a). Two-way ANOVA on relative fitness
showed that strain (F4, 51 p 130.46, P ! .001), medium
(F2, 53 p 137.82, P ! .001), and their interaction (F8, 47 p
14.11, P ! .001) affected their relative fitnesses (fig. A1,
available online). Two-way ANOVA on within-tetrad mat-
ing showed that strain (F4, 40 p 7.76, P ! .001) and medium
(F2, 42 p 57.2, P ! .001), but not their interaction (F8, 36 p
1.79, P p .118), also had significant effects on the fre-

This content downloaded from 141.5.9.63 on Tue, 10 Feb 2015 05:58:45 AM
All use subject to JSTOR Terms and Conditions

http://dx.doi.org/10.5061/dryad.r0g9m
http://www.jstor.org/page/info/about/policies/terms.jsp


296 The American Naturalist

0.80 0.85 0.90 0.95 1.00 1.05

0.
35

0.
45

0.
55

0.
65

0.
75

0.
85

0.
95

1.
05

1.
15

1.
25

1.
35

1.
45

Relative Fitness

R
el

at
iv

e 
Fr

eq
ue

nc
y 

of
 W

ith
in

–T
et

ra
d 

M
at

in
g

10% YPD 
YPD 
SOE 

Figure 2: Relationship between fitness and within-tetrad mating fre-
quency for five wild strains, relative to those for a common laboratory
strain, in three environments. We measured the fitnesses of the G418-
resistant derivatives of the five wild Saccharomyces paradoxus strains
relative to those of the hygromycin-resistant common competitor
Y55 growing asexually on 10% YPD, YPD, and SOE. We plotted
these relative fitnesses against within-tetrad mating frequency relative
to that for Y55. Lines connect the values of each strain across the
three media. Error bars show the standard error across at least three
independent assays. Environments: YPD p 2% dextrose, 2% bac-
topeptone, 1% yeast extract; 10% YPD p 10% of each component
of YPD; SOE p 1% sucrose, 0.5% dextrose, 0.5% fructose, 0.15%
bactopeptone, 0.1% yeast extract.

quencies of within-tetrad mating frequency. Figure 1b
shows that the within-tetrad mating frequency in wild
strains was lowest on 10% YPD and highest on SOE. Y55
had significantly different inbreeding frequencies on SOE
and on 10% YPD, compared to the wild S. paradoxus strains
(P ! .001 for both comparisons; Student’s t-test corrected
for multiple comparisons), but not on YPD (P p .147;
Student’s t-test). Thus, in wild strains and in laboratory
strain Y55, inbreeding frequencies depended on strain
identity and the environment that they mated in.

As we predicted, there was a significant correlation be-
tween fitness and the frequency of within-tetrad mating,
both relative to Y55 (r15 p 0.585, P p .022; Student’s t-
test; fig. 2). To determine whether this was caused by plas-
ticity of the mating system in response to the environment
and not simply by strain effects, we examined linear re-
gressions between fitness and within-tetrad mating across
media for each strain separately. As expected, the slope of
the regression line for each strain was positive (although
not always significantly positive); these slopes from the
five wild strains as a group are significantly positive (P p
.005; Student’s t-test).

Spore Germination

We measured spore germination frequencies to test our
hypothesis that germination timing is the mechanism un-
derlying the response of the mating system to the envi-
ronment. For each strain # medium combination, we
measured the frequency of spores that germinated after
24 hours (table A1, available online) in order to estimate
the proportion of tetrads with potential for within-tetrad
mating (i.e., with at least two germinated spores of op-
posite mating type). The frequency of spores that ger-
minated within 24 hours was lowest on 10% YPD and
highest on SOE (P ! .001 for both comparisons; Fisher’s
exact test corrected for multiple comparisons). As pre-
dicted, the proportion of spores with the potential for
within-tetrad mating was significantly correlated with both
the measured frequency of within-tetrad mating (r13 p
0.797, P ! .001; fig. A1) and relative fitness (r13 p 0.516,
P p .049). Furthermore, the results of the germination
time course (fig. 3) give direct support for the hypothesis
that higher-fitness environments promote spore germi-
nation, as the NaOH treatment kills growing vegetative
cells but not spores. One-way ANOVA, with time point
as a blocking variable, showed that the medium that the
spores germinated on had a significant effect on the overall
number of resistant cells (i.e., spores) remaining across
time points (F2, 38 p 14.53, P ! .0001), with significantly
fewer resistant cells remaining on SOE than on either 10%
YPD (P ! .0001; Tukey’s honest significant difference test)
or YPD (P ! .001; Tukey’s honest significant difference

test), which did not differ significantly (P p .91) in this
assay.

Discussion

These results support our prediction that the environment
in which yeast spores germinate and mate affects the fre-
quency of within-tetrad mating (i.e., selfing; fig. 1). The
underlying mechanism determining mating-system plas-
ticity is spore germination (fig. 3). Further, we find that
the direction in which inbreeding changes in response to
environmental differences should help maintain adapta-
tion to the environment in which mating occurs: that is,
the modulation of inbreeding is consistent with it being
an adaptation itself. We predicted that within-tetrad mat-
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Figure 3: Spore germination time course for strain SpPlön3. Vege-
tatively growing cells are killed by 1% NaOH, but spores are resistant.
This graph shows how the number of resistant cells decreases as
spores germinate into vegetative cells in the three different media.
Average fitnesses relative to strain Y55 (rel. fit.) in the three envi-
ronments are also shown. Error bars show the standard error across
three independent assays. Environments: YPD p 2% dextrose, 2%
bactopeptone, 1% yeast extract; 10% YPD p 10% of each component
of YPD; SOE p 1% sucrose, 0.5% dextrose, 0.5% fructose, 0.15%
bactopeptone, 0.1% yeast extract.

ing frequencies should be highest under conditions of high
fitness, so that the combinations of genes conferring local
adaptation are preserved, and this is what we observe (fig.
2).

There are evolutionary and ecological costs and benefits
to both selfing and outcrossing, which have been well stud-
ied in plants that can do both. Theoretically, an allele that
increases self-fertilization should spread because it is trans-
mitted to all the plant’s own seeds by selfing as well as to
the seeds of other plants by cross-pollination (Fisher 1941);
in other words, it pays a reduced cost of meiosis (Maynard
Smith 1971). However, if pollen is limited so that the
pollen that is used for selfing is not available for out-
crossing, then the transmission advantage of a selfing allele
is reduced (i.e., “pollen discounting”; Lloyd 1979). Unlike

plants, Saccharomyces yeast species produce equal numbers
of equally sized haploid gametes of both mating types, so
they are not expected to pay the cost of meiosis (Maynard
Smith 1978). Therefore, the high level of within-tetrad
mating in yeast cannot be explained simply by an intrinsic
transmission advantage of selfing, because an allele that
increased selfing in yeast would suffer a corresponding
decrease in its transmission by outcrossing (Charlesworth
1980). Another potential benefit of selfing is mating as-
surance (Lloyd 1979; reviewed in Busch and Delph 2012),
but, unlike plants, yeast have mating assurance indepen-
dent of within-tetrad mating because of their ability to
autodiploidize. The most likely benefit of within-tetrad
mating over between-tetrad mating is therefore the pres-
ervation of beneficial combinations of alleles, that is, the
avoidance of outbreeding depression. Both theory (Lynch
1991; Schierup and Christiansen 1996) and experiments
(Moll et al. 1965; Price and Waser 1979; Willi and Van
Buskirk 2005) in plants show that mating between indi-
viduals from geographically and genetically distant pop-
ulations can result in outbreeding depression. Like plants,
yeast populations adapt to their local environment, with
life-history trade-offs promoting phenotypic divergence
(Spor et al. 2008), and, as in plants, genetic differentiation
between subpopulations increases with physical distance
(Koufopanou et al. 2006). Crosses between individuals
from different continents show such strong outbreeding
depression that they appear to be diverging into different
species (Greig et al. 2003; Kuehne et al. 2007). We therefore
consider that the disruption of combinations of alleles
conferring high fitness in a certain environment is the
major factor selecting for inbreeding in yeast.

Conversely, the major genetic force opposing the evo-
lution of selfing in general is thought to be inbreeding
depression due to the unmasking of recessive deleterious
mutations in homozygous self-fertilized progeny (reviewed
in Charlesworth and Charlesworth 1987). It is likely that
Saccharomyces grows as a diploid for most of its life cycle
(Greig and Leu 2009), allowing it to accumulate recessive
deleterious mutations that are masked in the heterozygous
state. Within-tetrad mating can make such mutations ho-
mozygous, exposing them to selection but causing costly
inbreeding depression. Recent theory has examined how
inbreeding depression due to within-tetrad mating is af-
fected by within-tetrad mate choice (Tazzyman et al. 2012)
and how heterozygosity is maintained by genetic linkage
to the mating-type locus despite inbreeding (Knop 2006).
Although inbreeding depression has not been measured
in natural yeast populations, we consider that it is probably
the major factor opposing the evolution of pure selfing
(i.e., within-tetrad mating).

In organisms that can both self and outcross, the evo-
lution of the mating system should be affected by the
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balance between inbreeding depression (due to homozy-
gous deleterious mutations) and outbreeding depression
(due to disrupting locally adapted or coadapted gene com-
plexes). Plant mating-system models that balance these
opposing factors typically predict that heterogeneous se-
lection pressures will select for intermediate (but constant)
rates of selfing (for reviews, see Goodwillie et al. 2005 and
Karron et al. 2012), rather than for plastic strategies such
as increasing outbreeding in response to dispersal (Reuter
et al. 2007). While the touch-me-not apparently optimizes
its mixed mating system further by dispersing outcrossed
seeds more than selfed seeds (Schmitt et al. 1985; Cheplick
1987; Schmitt and Gamble 1990), the effect of phenotypic
plasticity in the ratio of outcrossed and selfed seeds is not
considered. But there is considerable plasticity in the in-
breeding rates of amphicarpic grasses (Campbell et al.
1983), with selfing typically increasing under stress (Chep-
lick 2007), and there are similar examples in insect-pol-
linated plants. For example, a plastic decrease in the ratio
of chasmogamous (outcrossing) and cleistogamous (self-
ing) flowers of Viola praemorsa allows that species to com-
pensate for a lack of pollinators (Jones et al. 2013). Re-
duction of herkogamy (i.e., stigma-anther separation) and
increased pollen self-compatibility in response to stress
appear to aid colonization of new habitats by promoting
selfing (Levin 2010), which is likely to be important when
humans disturb plant habitats (Eckert et al. 2010). Such
cases are expected to decrease offspring variation and re-
duce outcrossing depression; mating with unknown gam-
etes might lead to the offspring losing the ability to thrive
in the challenging environment.

However, a key difference between these examples of mat-
ing-system plasticity in plants and the yeast system we have
described here is that yeast gametes sense their local envi-
ronment directly before mating. This makes modulation of
the mating system according to local genotype # environ-
ment (G # E) interaction an intriguing possibility, because
haploid yeast gametes express their genomes and interact
with the environment in nearly the same way that yeast
diploids do. Thus, by increasing inbreeding among gam-
etes with high fitness, this mechanism could potentially
help keep adaptive combinations of genes together and
help break up low-fitness combinations that do not work
well together, responding dynamically as environmental
conditions vary in space or time. Similar systems may exist
in animals and plants, such as whether expression and
modification of self-incompatible S-alleles in pollen (re-
viewed in Takayama and Isogai 2005) are influenced by
G # E interactions (as has been proposed in Levin 1996,
2010; Good-Avila et al. 2008).

While mating-system plasticity can, in principle, be an
adaptation to dynamically balance inbreeding depression
and outbreeding depression, alternative explanations are

possible (van Kleunen and Fischer 2005). We consider
three alternative adaptive explanations for the mating-sys-
tem plasticity we have identified in yeast. First, the primary
cue for spore germination is a fermentable carbon source
(Savarese 1974), and it is likely that the germination system
evolved to stimulate spores to germinate when there are
enough nutrients present to reestablish the growth phase
of the life cycle. We note, however, that carbon availability
is not the only factor that influences within-tetrad mating
frequencies. SOE has the same amount of fermentable
carbon and less nitrogen than YPD, yet SOE stimulates
more germination and more inbreeding than YPD in wild
strains (figs. 1b, 2; table A1). It is interesting that the
mating system of the S. cerevisiae laboratory strain Y55
responds very differently, compared to that of wild strains,
perhaps because it has adapted to the rich media of the
laboratory. The effects of strain and medium on the yeast
mating system can explain the apparent disparities in dif-
ferent experimental measurements of yeast inbreeding
(e.g., Reuter et al. 2007; Murphy and Zeyl 2010), and
specific nutrient availability clearly influences spore ger-
mination (on YPD vs. that on 10% YPD; table A1). Second,
certain levels of nutrients may provide enough energy to
allow germination but may not reliably indicate that
enough nutrients are present to allow diploid asexual
growth. Under such circumstances, it may be beneficial to
allow some spores to germinate to exploit the available
(but poor) resource but others to remain dormant so that
they are available to exploit a future, potentially better,
resource (Philippi 1993; Danforth 1999; Clauss and Ven-
able 2000), that is, “bet hedging” in poor-quality envi-
ronments (Cohen 1966). The correlation between a strain’s
fitness and its inbreeding frequency might not be an ad-
aptation to optimize the mating system but could instead
be the indirect result of selection for bet hedging. Third,
sexual selection could cause strains with lower fitness to
be less attractive and therefore less likely to mate imme-
diately within the tetrad; this then increases the possibility
that they will mate later with a partner from another tetrad
(Smith and Greig 2010). These different forms of selection
are not mutually exclusive, and all may contribute to the
evolution of the organism.

It is also possible that the mating-system plasticity we
have identified is not an adaptation at all. Our simplified
experimental system cannot fully capture the complexity
of a wild yeast population in its natural environment. Sim-
plification was necessary to allow us to make the mea-
surements we wanted, but we should be careful not to
overinterpret our results. In our experiment, the two lines
derived from each strain were identical except for the
antibiotic-resistance markers they carried, so there was no
actual difference in the genotypes produced from within-
tetrad and between-tetrad matings; both types of matings
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produced diploids identical to their parents, apart from
their markers. Thus, there could be no inbreeding de-
pression or outbreeding depression in our experiments. In
nature, however, we would expect opportunities for mat-
ing between tetrads from genetically distinct lineages to
occur (Tsai et al. 2008), and the mechanism we have un-
covered could optimize the probability of these matings.
In our experiments, all haploid spores within a tetrad were
also genetically identical, except for their mating-type al-
leles. But spores within natural tetrads are expected to
differ, especially for recessive deleterious mutations, which
may have accumulated in the heterozygous state during
the previous diploid clonal expansion. The modulation of
outcrossing we have proposed could also, in principle, act
within a single tetrad to allow a pair of spores with high
fitness to germinate at the same time and mate together.
Potentially, the remaining two low-fitness spores in the
same tetrad could germinate later at different times and
outcross. A similar mechanism of assortative mating be-
tween the fittest pair of spores within a tetrad, mediated
by honest pheromone signaling, has recently been pro-
posed (Tazzyman et al. 2012). Mating systems like these
that allow high-fitness alleles to preferentially assort, even
within a single meiotic tetrad, could potentially add a new
dimension to the evolutionary enigma of sex (Otto 2009).

Another way that our system was simplified was that
our strains were unable to autodiploidize because we de-
leted their HO genes. This modification was necessary to
allow us to determine within-tetrad mating frequencies: if
unmated haploids could have autodiploidized, the result-
ing diploids would have been indistinguishable from the
diploids resulting from within-tetrad mating. The ability
to autodiploidize would have affected not the within-tetrad
mating frequencies that we report here but only our ability
to measure them. It would, however, have reduced the
between-tetrad mating frequencies, because any unmated
haploids that divided could have autodiploidized instead
of continuing to divide until they found mates from other
tetrads. A consequence of modulating the within-tetrad
mating frequencies by reducing the germination of less
adapted spores is that newly germinated haploids may find
no available mates in extremely low fitness environments,
although the ability to switch mating type and autodip-
loidize provides mating assurance. This leads to the in-
teresting prediction that within-tetrad mating (i.e., spo-
rophytic selfing) should predominate in environments
conferring very high fitness, between-tetrad mating (i.e.,
outcrossing) should predominate in intermediate envi-
ronments, and autodiploidization (i.e., gametophytic self-
ing) should predominate in very low fitness environments.

In this article, we have focused on how local adaptation
might contribute to the balance between two mating strat-
egies, within-tetrad mating and between-tetrad mating.

But these are just two possibilities in a broader range of
reproductive strategies available to yeast, which also in-
cludes autodiploidization and asexual reproduction, both
in diploids and haploids. We presume that each of these
different reproductive strategies will have different effects
on local adaptation and that local adaptation is just one
of several possible benefits that will vary among the dif-
ferent strategies. Understanding all the benefits and costs
of sexual and asexual reproduction is one of the most
elusive problems in evolutionary biology (Otto 2009), but
it is reasonable to expect that natural selection will max-
imize fitness by optimizing the balance between sexual and
asexual strategies. The existence of “intermediate” strat-
egies, such as autodiploidization and within-tetrad mating,
which combine some features of both sexual and asexual
reproduction, could be evidence of that optimization, as
could plastic changes in reproductive systems in response
to environmental and ecological cues.

Conclusion

We show that the environment in which yeast spores ger-
minate has a strong effect on their inbreeding rate, such
that genotypes that are well adapted are more likely to
inbreed. This is consistent with the hypothesis that the
plasticity of the yeast mating system evolved to promote
local adaptation. Such plasticity could also be beneficial
in environments that change in time as well as in space,
and indeed it could help preserve gene combinations that
are adapted to each other (i.e., coadapted gene complexes).
The lack of understanding of yeast natural history makes
it difficult to determine the contribution of these mating
strategies to yeast evolution, but the advantages of yeast
for genetic manipulation and experimental evolution make
it an excellent organism to complement the plant and
animal models that are traditionally used by ecologists.
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