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Abstract: This paper illustrates the application of wavelet-based
functional mixed models to automatic quantification of differences
between tongue contours obtained through ultrasound imaging. The
reliability of this method is demonstrated through the analysis of
tongue positions recorded from a female and a male speaker at the
onset of the vowels /a/ and /i/ produced in the context of the conso-
nants /t/ and /k/. The proposed method allows detection of significant
differences between configurations of the articulators that are visible in
ultrasound images during the production of different speech gestures
and is compatible with statistical designs containing both fixed and
random terms.
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1. Introduction

Ultrasound imaging is commonly used to display the midsagittal surface contour of
the tongue during speech production. By placing an ultrasound (US) probe below the
speaker’s chin, images of the superior tongue contour can be obtained as a high-
intensity shape. Although this technique does not visualize the tip of the tongue, which
is concealed by the shadow cast by the jaw, US enables us to study the behavior of the
back of the tongue, which is not easily captured with electromagnetic articulography.
An important practical limitation of US imaging is related to the extraction of the
tongue contour from the noisy images: Automatic algorithms (e.g., that of Li et al.,
2005) are prone to errors, and their results therefore need to be corrected manually,
one image at a time. In this paper, we propose a fully automatic method of quantify-
ing differences between tongue shapes in recorded US images through the application
of wavelet based functional mixed models (WFMM; Morris et al., 2011). Importantly,
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this approach is compatible with complex statistical designs containing both fixed and
random factors.

2. Background

WFMM was introduced by Morris and Carroll (2006) to model the effects of one or
more factors on the shape of observed trajectories. This approach was extended by
Morris et al. (2011) to the modeling of grayscale images. The authors propose to repre-
sent each image as a vector of coefficients obtained by applying the two-dimensional
discrete wavelet transform (DWT) to the data. Because each image is represented by
several coefficients, the effects of the experimental factors are estimated through a mul-
tivariate mixed model the dependent variables of which are the wavelet coefficients.
Once the fixed effects are computed in the wavelet space, these can be back-
transformed into the data space (i.e., they can be transformed into differences between
intensity values) by means of the two-dimensional inverse discrete wavelet transform
(IDWT). The effects of the fixed factors are computed on wavelet coefficients because
the covariance matrices of the model in the wavelet space are diagonal, which is moti-
vated by the whitening property of wavelets. This captures local correlation between
pixels (Morris and Carroll, 2006) and yet drastically reduces the number of parameters
to be computed with respect to a model the dependent variables of which are the inten-
sity values of the images and thus guarantees computational feasibility. The two-
dimensional DWT permits modeling of the intensity values of the pixels within an
image as a linear combination of functions (or wavelets) located at different coordi-
nates, oriented toward different directions (horizontal, vertical, and diagonal) and
varying at different rates (the scales of the wavelets). The coefficients regulating
the behaviors of the functions are therefore triple-indexed by (a) wavelet scale (index
j), (b) location (index k), and (c) direction of change of the function (index l ¼ 1 if row
coefficients, ¼ 2 if column coefficients, and ¼ 3 if diagonal coefficients). The key bene-
fit of using wavelet bases instead of just fitting separate scalar functional mixed models
at each pixel position is that the wavelets are multi-scale representations that will allow
borrowing of strength from nearby locations in the images that are correlated with
each other—i.e., the prediction at a given pixel will also be informed by nearby pixels,
thus yielding more efficient estimates and inference.

The number of coefficients required to model a given image depends mainly
on the size of the image (cf. Walker, 1999). To further decrease the computation time,
the number of coefficients can be reduced by applying compression algorithms to
exclude coefficients which are close to 0 across all images while preserving a fixed
amount of energy. In the analyses presented below, we retained 99.5% of the image
energy, which reduced the number of coefficients by a factor of 12.6 (from 84 618 to
6687) in the model summarized in Fig. 1 and by a factor of 32 (from 84 618 to 2624)
in the model summarized in Fig. 2.

Given N observed images and Nc wavelet coefficients per image, the general
formulation of the multivariate mixed model in the wavelet space is

Y ¼ XBþ ZU þ E (1)

Equation (1) is the functional version of the basic mixed effects model that is often
adopted in speech research to test hypotheses about simple scalar data. Each row
within the (N �Nc) matrix Y contains the wavelet coefficients corresponding to one
image; X is the (N � p) fixed effects design matrix of p covariates’ values; B is
the (p�Nc) matrix of their effects; Z is the (M �m) random effects design matrix of
m random factors’ values; U is the (M �Nc) matrix of random effects, and E is
the (N �Nc) matrix of residual errors. U follows a matrix normal distribution with
M �M between-row covariance matrix P and Nc �Nc between-column diagonal
covariance matrix Q ¼ diagðqjlkÞ (with j; l; k indexing indexing the location, orienta-
tion, and scale of the coefficients, meaning that each coefficient has its own variance).
E follows a matrix normal distribution too, with between-row diagonal covariance
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function S ¼ diagðsjlkÞ. Because each coefficient has its variance component, the
strength of the covariance functions can vary across locations in the images.

Estimation is performed within the Bayesian framework, and the posterior dis-
tribution of the model’s parameters given a sample of data in the wavelet space is
obtained through Markov chain Monte Carlo sampling. Estimates obtained in the
wavelet space are back-transformed into the data space coordinates to compute the
estimated intensity values and reconstruct the estimated images. Spike-slab priors
(Ishwaran and Rao, 2005) are assumed for the fixed effects’ wavelet coefficients Bijlk.
Priors of this kind (having a spike at zero and medium to heavy tails) help to smooth

Fig. 1. (Color online) Posterior mean estimates for the cell means (upper panels) correspond to the mean tongue
contours in the various conditions as estimated by the model applied to data from the female speaker. The con-
trast coefficients (lower panels) depict the differences between estimated tongue contours. Marked regions close
to the tongue contour indicate portions of images where significant differences in the position of the tongue are
observed.

Fig. 2. (Color online) Posterior mean estimates for the cell means (upper panel) and contrast coefficients (lower
panel) obtained by applying the model to data from the male speaker (hyoid bone shadow not visible).
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the resulting images by adaptively shrinking small coefficients toward zero. Indexing
the priors with respect to covariate, scale, location, and orientation permits different
degrees of smoothing across predictors, scales, locations, and orientations. Unique to
this approach, the smoothing power of the DWT is driven by the hierarchical structure
of Bayesian modeling. Finally, vague proper priors are defined for the variance compo-
nents (the reader is referred to Morris et al., 2011 for details about the automatic
choice of the hyper-parameters shaping the prior distributions).

Once the posterior samples of the effects Bajlk with a ¼ f1;…; pg have been
estimated, they are submitted to IDWT, giving the posterior samples for the parame-
ters Baðt1; t2Þ, where t1; t2 vary along the vertical and horizontal directions in the image
coordinates system. For each location in t1; t2, the probability that the effect of covari-
ate Xa is higher than d is computed as pd

a ¼ ProbfjBaðt1; t2Þj > dg. Regions of the
image where the effect of the covariate Xa is considered significant are defined as
regions where pd

aðt1; t2Þ exceeds a threshold h. For a given d, the values 1� pd
aðt1; t2Þ

correspond to false discovery rates because they express the probability of erroneously
labeling a location as significant when an effect size d is selected. Practical considera-
tions can be taken into account to optimize the value of d and, with that value
selected, a threshold h can be set as the value at which the ratio between the falsely
discovered regions and the significant regions is smaller than an arbitrary value.
Importantly, due to the continuity of the high intensity regions showing portions of the
tongue contour, increasing the values of these parameters does not result in failing to
detect significant movements but mainly in a reduction of the extension of the regions
that display significant differences.

3. Experiment

We asked one male and one female German speaker to repeatedly utter the following
syllables: /ka, ta, ki, ti/. Each syllable was repeated without interruption over 10 s,
yielding between 20 and 30 repetitions per speaker and syllable. These syllables were
chosen because the production of the composing segments has been extensively studied
with various methods including x rays, electromagnetic articulography, and magnetic
resonance. Different tongue contour shapes are commonly observed in the production
of /i/ and /a/ with the back of the tongue varying mainly along the front-back dimen-
sion. The comparison of tongue contours during the production of /t/ and /k/ reveals
variation mainly along the top-down dimension. This allows us to formulate solid
expectations on the differences across vowels but also on the differences conditioned
by coarticulation. We can therefore evaluate the performance of the proposed method
by comparing the results of our analyses to the expectations built on previous studies
(e.g., Maeda, 1990; Stone et al., 2001). The US probe was fixed to the speakers’ chin
by means of an Articulate Instruments fixation helmet with an inclination of approxi-
mately 30�. Ultrasound video and the corresponding acoustic signal were recorded
using a Terason T3000 system and the ULTRASPEECH software (Hueber et al., 2008) at
60 fps.

4. Data preparation and model specification

For each vowel, we collected only the image that was closest in time to the vowel onset
(corresponding to the onset of voicing in the acoustic signal) to maximize coarticula-
tion effects. Before modeling the collected images with the WFMM (109 images for
the female speaker and 83 images for the male speaker), pixel intensities were normal-
ized for each image with respect to the image-specific mean and standard deviation.
The following covariates were tested: Vowel (/a/ vs /i/, reference level: /i/), surrounding
consonant (/t/ vs /k/, reference level: /t/), and the interaction between the two.
Although this modeling technique allows the inclusion of random factors, this was
unnecessary in our case as speakers were modeled separately (due to morphological
differences between their vocal tracts). For the DWT, we used Daubechies 4 wavelets
(Walker, 1999). Regions were flagged as significantly different across levels if the

Lancia et al.: JASA Express Letters [http://dx.doi.org/10.1121/1.4905881] Published Online 2 February 2015

J. Acoust. Soc. Am. 137 (2), February 2015 Lancia et al.: Automatic quantification of tongue contours EL181

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  194.94.96.194 On: Tue, 10 Feb 2015 14:28:42

http://dx.doi.org/10.1121/1.4905881


probability of finding differences equal to or higher than 1 (the standard deviation of
the intensity in each normalized image) was at least 0.95.

5. Results

Figure 1 displays the results for the female speaker. The top panels show the model
estimates of the articulatory configurations corresponding to the production of the two
vowels in the context of the two consonants. The lower panels depict the differences
between the levels of the predictors, i.e., the fixed effects images; the leftmost panel
shows the difference between the two vowels in the context of the consonant /t/; the
middle panel presents the differences in tongue positions observed in the production of
the vowel /i/ in the two consonantal contexts; the rightmost panel depicts the adjust-
ment required to account for the changes conditioned by differences in the consonants
in the production of /a/. The contours in the lower panels indicate the boundaries of
the regions significantly different between levels of the predictors. The red contours
mark the regions where significant differences are observed near to the tongue contour
and in areas where the shadow of the hyoid bone is found (i.e., the regions for which
we have principled expectations). Green contours indicate regions where significant dif-
ferences are observed inside the tongue body or outside the tongue contour. Due to
the coding scheme adopted for the model covariates, the bright regions close to the
tongue contour and marked in red indicate areas of the image containing parts of the
tongue contour in the non-reference level of the relative covariate but not in the refer-
ence level; conversely, the dark regions marked in red indicate areas of the image con-
taining parts of the tongue only in the reference level of the covariate. For example, in
the panel showing the differences between levels of the vowel covariate, bright regions
indicate portions of the image containing parts of tongue contour only in the produc-
tion of vowel /a/, while dark regions indicate portions of the image containing parts of
the tongue contour only in the production of the vowel /i/.

We observe that the tongue is more retracted and lower in the production of
the vowel /a/ than in the production of /i/. Furthermore, during the production of the
vowel /i/ in the context of /k/, the back of the tongue is higher than in the production
of the same vowel in the context of /t/. There are clear interactions between vowel
quality and consonant context: The back of the tongue is more elevated when /a/ is
produced in the context of /k/. Finally, the difference in orientation of the shadow cast
by the hyoid bone indicates that this bone either is more elevated or more fronted in
the production of the open vowel. This difference, however, is observed only in the
context of the coronal consonant. As shown in Fig. 2, the same qualitative differences
in tongue contour shape can be observed in both speakers. Importantly, the estimated
tongue contours closely match those reported in the literature for comparable articula-
tions (e.g., Stone et al., 2001).

6. Discussion and conclusion

In this paper, we reported the use of the WFMM to estimate significant differences
between tongue contours when different articulatory maneuvers are performed. The
method proved capable of identifying the expected differences across different vowels
and across vowels uttered in the context of different consonants without any manual
intervention in tongue contour detection. Moreover, it provides estimates of statistical
significance of the results not provided by other fully automatic methods based on
whole image analysis (e.g., Fasel and Berry, 2010).

Although in the present papers we analyzed snapshots of the tongue contour
recorded at vowel onsets, further possibilities offered by this approach include model-
ing the evolution of the tongue contour shape over time. In principle, a sequence of
images corresponding to a tongue movement can be considered as a three-dimensional
(3-D) pattern and submitted to 3-D wavelet transform. The obtained coefficients can
then be modeled with the proposed approach. If, due to the limited temporal resolu-
tion of most ultrasound recording devices, the 3-D transform cannot be applied, the
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temporal dimension can be projected onto an ordered categorical factor. Consecutive
images can be sorted into consecutive levels of the factor which can be coded through
a successive difference contrast (Venables and Ripley, 2002). This approach allows in-
dependent modeling of changes between consecutive images. Therefore the energy at a
given location in the images can increase or decrease when moving from one time step
to the next, but then it can change in the opposite direction when moving further in
time.

The method is currently being extended to use other basis functions, including
principal components and innovative combinations of wavelets and principal compo-
nents, so it is possible for this modeling framework to also incorporate other feature
extraction methods such as Eigentongues (Hueber et al., 2007).
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