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Abstract

The presence of high-Z impurities, such as tungsten (W), can lead to non-uniform

SXR radiation on flux surfaces due to centrifugal forces in rotating plasmas. The

goal of the presented work is to characterize the effects of such rotation-induced ra-

diation asymmetries on FFT-based SXR mode analysis. Therefore, a synthetic SXR

diagnostic has been implemented, which takes into account the full 3D geometry

of the detectors - resulting in a volume integration rather than the more simplify-

ing line integration. We have focused on resistive (1,1) kink modes, where we have

implemented a model for the flux surfaces perturbed by the mode and the W dis-

tribution within. In a rotation scan, which leads to a variation of the asymmetry, a

strong dependence of the FFT phase profile on the asymmetry strength is found. A

comparison with experimental data shows good agreement, which verifies the used

models.

1. Introduction

Controlling of magnetohydrodynamic (MHD) modes and understanding their behavior is
an important premise for building a fusion reactor. A widely used method to investigate
MHD modes is based on the measurement of Soft-X-Ray (SXR) radiation. It consists
mainly of bremsstrahlung from electrons and ions, recombination radiation from low-Z
impurities, which both can be assumed to be constant on flux surfaces, and line radia-
tion from heavy impurities (e.g. tungsten). In ASDEX Upgrade (AUG), it is observed by
pinhole cameras with diodes and a beryllium filter and is commonly analyzed assuming a
line integration measurement [1, 2]. To better understand the signals from SXR measure-
ments, a synthetic SXR diagnostics has been developed at ASDEX Upgrade taking into
account the full 3D geometry of the diagnostics. This results in the simulation of a volume
of sight (VOS) for each detector diode. A comparison with the line of sight approach is
performed and deviations between both are discussed.

The ASDEX Upgrade first wall is fully coated with tungsten (W), as this is a promising
plasma facing component material for a future reactor. In terms of SXR data analysis,
W plays a double role: At concentrations of 10−5 - 10−4, tungsten can contribute a large
part to the SXR radiation or even dominate it. In rotating plasmas, the W density is not
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constant on flux surfaces due to centrifugal forces, which can influence W transport [3] and
leads to asymmetric SXR emissivities. In combination with the helical structure of MHD
modes, fully three dimensional SXR emissivity distributions can occur. On the one hand,
this makes the detection of MHD modes using SXR diagnostics more challenging. On the
other hand, the SXR diagnostics also allows studying the tungsten impurity distribution
and its correlation with MHD instabilities [4, 5].

To investigate the effect of tungsten on the SXR signals in the presence of MHD modes,
a model to describe the 3D W-related SXR emissivities is developed and combined with
the synthetic SXR diagnostic. The impurities, and hence the SXR emissivity described
by this model, tend to accumulate on the low field side of each mode flux surface. A
measure for the strength of this 3D effect is the rotation frequency. By varying it in
the simulation, the effect of the asymmetry strength on the SXR signals is investigated.
For the verification of the presented models, a comparison with experimental data in the
presence of a stationary (1,1) kink mode is performed.

The paper is structured as follows: In section 2, the sources of SXR radiation and
their modeling are briefly discussed. In section 3, the virtual diagnostic using the VOS
approach is presented and compared to the simplifying LOS approach. In section 4, we
describe our model for resistive (1,1) kink modes and in section 5 the model for the 3D W
distribution inside this mode. The effect of the emissivity asymmetry on the SXR signals
is characterized in section 6 and in section 7 the comparison with experimental data is
presented.

2. Modeling of soft X-ray sources

In fusion plasmas, soft X-rays in the range between 1 to 20 keV emerge from bremsstrahlung
as well as from recombination and line radiation. The spectrum I(E) of bremsstrahlung
between free electrons and ions is given by:

I(E) = n2
e Z gff(Te, E)

exp
(
− E

Te

)
√
Te/keV

· 4.8566 · 10−37 Wm3/keV (1)

Here, E is the energy of the emitted photon, Z is the charge of the considered ion species
and gff is the Gaunt factor, which describes deviations due to quantum mechanical effects.
In the SXR range, gff lies close to 1 and can be computed according to [6]. The sum of
recombination (free-bound) and line radiation (bound-bound) for any impurity element
with charge Z is proportional to its density nZ and the electron density ne,

I(E) ∝ nenZfZ(E, Te) (2)

where fZ(E, Te) contains the specific spectrum for that element and a given electron
temperature Te.

The ratio between these creation channels depends largely on Z and Te. Under typical
tokamak conditions in the core plasma, light elements are fully stripped, and therefore
hardly emit line and recombination radiation. Hence, bremsstrahlung dominates for low-
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Z elements and high temperatures. High-Z impurities, like W, in contrast are not fully
stripped, which is why they dominantly emit line radiation. The boundary between these
cases is typically marked by oxygen (Z=8), for which the two creation channels match
each other at Te ≈ 2.2 keV. The most common low-Z impurities at ASDEX Upgrade are
boron (due to regular boronizations) and carbon, and thereby lie all below this boundary.
Thus, their line and recombination radiation contribute only a small part to the total SXR
radiation, which is favorable, since the densities of the different impurities are not routinely
measured on AUG. To model it approximately, we calculate the impurity densities from
Zeff measurements, assuming that only B and C impurities contribute to the value of Zeff

(with equal concentrations).
For the high-Z impurities, tungsten is the most important element in normal AUG

discharge scenarios. Due to the fully W-coated first wall, its concentration can reach up
to 10−4 and therefore contribute a significant part of the SXR radiation, or even dominate
it [7, 8]. Still, the influence of tungsten on Zeff can be neglected at these concentrations.

The quantity, which can be observed by a SXR diagnostic at a position ~x is an integral
of the spectral power density I over the photon energy E, weighted with the spectral
response function of the detector setup. We will call it emissivity ε in the following:

ε(~x) =

∫
response(E) · I(E, ~x)dE (3)

The quantities that enter in the equations for low-Z elements are ne, Te, Zeff, which
can be considered to be constant on flux surfaces. However, for the tungsten density
this is not necessarily true. In rotating plasmas, ions undergo a centrifugal force. Due
to the high atomic mass of W, this can lead to significant W density asymmetries on a
flux surface. Therefore, we will model the SXR emissivity as a sum of the low-Z contri-
bution ε0(ne, Te, Zeff), which is assumed to be a flux function, and the W contribution
εW (ne, nW(R), Te), which can be asymmetric on flux surfaces (written as dependence on
the major radius R). The former is fully determined by the experimentally measured
profiles, while for the latter, the flux-surface averaged tungsten density profile 〈nW〉 re-
mains as free parameter. The shape of the W distribution on a flux surface is modeled as
described in section 5.

3. The SXR diagnostic at ASDEX Upgrade and its synthetic

counterpart

The Soft-X-Ray diagnostic at ASDEX Upgrade has a total number of 208 lines of sight,
arranged at seven different poloidal camera positions (see fig. 1) [9]. Each camera has the
same setup, consisting of a pinhole and a planar, linear array of Si-diodes. Photons with
energies roughly below 1 keV are filtered by a 75 µm beryllium foil.

The pinhole-diode geometry results in a volume of sight (VOS) for each diode. This
volume is relatively narrow in the poloidal direction, but largely spread in the toroidal
direction. In order to take these effects into account, a synthetic diagnostic has been
developed including the full 3D geometry of the VOS. To this end, an integration grid
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Figure 1: Poloidal cross-section of ASDEX Upgrade with all SXR lines of sight. The emis-
sivity profile, which was used for the comparison between VOS and LOS calculations, is
shown as contour plot.

with lattice planes parallel to the diode surface is used. The grid points inside one lattice
plane are aligned in accordance to the mid point rule. The signal of one diode is then
given by the volume integration:

Sdiode =

∫
~x∈VOS

ε(~x)
Ω(~x)

4π
dV Unit: [W] (4)

Ω(~x) is the solid angle with which the point ~x sees the diode. It is spanned by the four
vectors in fig. 2 and can be calculated as described in [10].

The VOS approach is compared to the simplifying line of sight approach, assuming
a typical, monotonically peaked SXR emissivity profile in the plasma (see fig. 3). For a
horizontal view, only small differences are found: the more realistic VOS calculation gives
2-3% higher signal than the LOS approach. However, for vertical views, large differences
in both directions occur, ranging from -3% to +10%.

By changing the pinhole dimensions in the synthetic diagnostics, it could be shown, that
this deviation originates almost solely from the toroidal spreading of the VOS, whereas the
poloidal spreading has a negligible effect. The resulting differences can be understood from
fig. 4(a): Here, a top down view of the modeled emissivity in the mid-plane together with
a cut of three example VOS is shown. In the VOS simulation, the signal of K 050, which
looks through the HFS of the plasma, is about 7% higher as for the LOS integration. This
is due to the toroidal curvature of the plasma, while the VOS has a rectangular shape.
Therefore, K 050 sees higher emissivity in the edges of its VOS (originating from a more
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Figure 2: (a) Geometrical layout of the integration grid for the volume integration. (b)
For each grid point, the solid angle Ω has to be calculated, with which the point views the
detector diode. The diode can be partially shadowed by the pinhole. Ω is spanned by the
four vectors ~a, ~b, ~c and ~d, which form a skewed pyramid. [11]
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(a) Horizontal view (camera I)
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(b) Vertical view (camera K)

Figure 3: Comparison between simulated signals using the VOS and the approximate LOS
approach. To see the difference more clearly, the ratio between the VOS and LOS signals is
plotted in the lower part of the figures. The x-axis refers to the square root of the normalized
poloidal flux ρpol tangential to the LOS, where LOSs which have their tangential point in
the upper part or the high field side of the plasma are assigned with negative values.
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central part of the plasma) than in the central part of the VOS, where one assumes its line
of sight. Hence, one underestimates the signal when using the simplified LOS approach.
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Figure 4: (a) Top down view at the mid-plane. The full volumes of sight of one horizontal
(blue) and two vertical signals (white) are shown. For the latter, the corresponding lines
of sight are marked with a cross. (b) Poloidal projection of the VOS contribution function
cont(R, z) of K 050 and K 053 in comparison to the corresponding LOS. It is defined in
such a way, that the signal of a VOS (in W/m2) is equal to

∫
cont(R, z) ε(R, z) dRdz, and it

has been calculated by making a R-z histogram of the 3D integration grid. For both cases,
the projection of the VOS is slightly shifted to the right (relative to the LOS).

For K 053, the situation is exactly opposite: Since it looks at the low field side, the
toroidal curvature of the plasma acts in the different direction, leading to lower emissivity
in the edges of the VOS than in its center. This is the reason why the LOS approach
overestimates this signal by 3%.

An alternative view on this feature is shown in figure 4(b), which shows the poloidal
projection of the two VOS in comparison to their LOS. It can be seen, that the LOS does
not lie centrally in the volume, but the volume is shifted towards the LFS. The shift is
a consequence of projecting the toroidal spreading of the VOS into the poloidal plane.
Together with the monotonically increasing emissivity profile which we have assumed, this
results directly in a VOS/LOS ratio > 1 on the HFS, and < 1 on the LFS - in line with
our previous findings. This radial shift is also important for tomographic reconstruction,
because neglecting it leads to a systematic shift of the reconstruction and consequently
to systematic errors if, for example, the magnetic axis should be determined from the
tomography. This can be taken into account, by using a radially shifted LOS Rc(z) instead
of the geometrical LOS Rlos(z). A good analytical approximation of Rc is presented in the
appendix A.
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It has to be noted, that even stronger deviations could be expected for the G camera
at the bottom of the machine, since it has an even more vertical orientation and a longer
distance from the camera to the plasma center. However, on AUG, this camera looks
through narrow slits in the divertor, which decrease the toroidal spreading of the VOS,
compared to the K camera. If the G camera would have the same design as the K and I
camera, our calculations predict roughly two times higher deviations (ranging from -5%
to +20%).

The simulation result for the horizontal view can be explained by the same argumenta-
tion as above: On the low field side of the VOS the LOS approach yields too high signals,
and on the HFS it yields too low signals. However, because of this horizontal arrangement,
these deviations can cancel each other to a certain point. This explains, why the amplitude
of the difference is much lower than for the vertical cameras. In the end, the contribution
of the high field side is stronger, because there, the torus curvature is stronger and the
VOS is spread more widely. Hence, one can explain, that the LOS simulation is overall
lower than the VOS results for all signals of the horizontal view.

We can conclude for SXR diagnostics with similar design as the system on ASDEX
Upgrade, that using the standard line of sight approach for SXR data analysis can lead to
significant errors. Especially for vertical views, these errors can occur in both direction,
ranging from -5% to 20%. This is for example important for tomography, where a precise
relative calibration is needed. These toroidal effects can be taken into account by using a
broad contribution function cont(R, z) as shown in fig. 4(b) instead of narrow lines of sight.
A good approximation of cont(R, z) can be calculated, if the effect of the toroidal spreading
is considered by shifting the LOSs according to equation 13 and by adding the poloidal
spreading afterwards. Within this paper, we will use this approach for the tomography
presented in section 7 and we will use the full VOS approach for all calculations of the
synthetic diagnostic.

4. Modeling of a resistive (1,1) mode

In resistive MHD, the finite resistivity of the plasma is considered, which allows the
reconnection of magnetic field lines to islands. For the description of these resistive events,
we use a model for the helical flux Ψ∗, which was published by Porcelli in [12] and which
is based on the Kadomtsev sawtooth model [13]. In [12], a circular plasma cross-section is
considered. To include a realistic, elongated plasma shaping, we apply this circular model
in flux coordinates, with the square root of the normalized poloidal flux ρ as radius and
the straight field line angle θ∗ [14, 15] as angular coordinate in the poloidal plane. The
mapping between flux and real space coordinates (ρ, θ∗)↔ (R, z) is carried out based on
CLISTE equilibrium reconstructions [16]. In the model, the plasma is divided into three
areas (see fig. 5):

• Area I is the former center of the plasma. Due to the resistive (1,1) kink mode, it
is shifted with a constant displacement ξ. In flux coordinates, the flux surfaces are
modeled as concentric circles, whose origin is shifted by ξ. The maximal radius of
these circles is ρ1.
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Figure 5: Modeled flux surfaces for a resistive (1,1) kink mode, with the parameters ρ2 =
0.5 and ξ = 0.12. The contour lines correspond to the introduced coordinate ρmod, which
describes the mode flux surfaces.

• Area II is the outer plasma, which is unperturbed by the mode. Hence, the flux
surfaces form concentric circles (in flux coordinates) with a minimal radius ρ2, with
ρ1 = ρ2 − ξ.

• Area III defines the part, where magnetic reconnection has occurred and an island
has formed. The resulting croissant shaped flux surfaces are described by the contour
lines of a Hamiltonian H (which means Ψ∗ = Ψ∗(H)). H is defined by:

H =
(ρ2 + ξ2 − 2ξρ cos(α)− ρ2

1)(ρ2
2 − ρ2)

ρ2 + ξ2 − 2ρξ cos(α)
(5)

with: α = θ∗ − ϕ+ ωmt+ const (6)

Herein, θ∗ is the straight field line angle, ϕ the toroidal angle, and ωm the angular
mode frequency. The contour of H = 0 corresponds to the island separatrix. Inside
the island H is positive and reaches its maximum at the O-point of the island.

Within this model, we have two free parameters: ξ and ρ2. These need to be fitted to
experimental data, while the island width is then given by W = 2ξ. It is convenient to
describe all three areas with a unique flux label coordinate ρmod from 0 to 1, which we
define as:

ρmod :=


√

(ρ · cosα− ξ)2 + (ρ · sinα)2 for area I (ρmod ∈ [0; ρ1])

ρ1 + H
max(H)

· (ρ2 − ρ1) for area III (ρmod ∈ [ρ1; ρ2])

ρ for area II (ρmod ∈ [ρ2; 1])

(7)
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The definition in area I resembles the shifted circles, and in area III, the Hamiltonian
H is scaled to match values between ρ1 and ρ2. It has to be noted, that ρmod has a
discontinuity due to the topology change caused by the magnetic island, as for ε→ 0 with
ε > 0, ρmod = ρ2 − ε describes the O-point of the island, while ρmod = ρ2 + ε is defined as
the innermost flux surface of the unperturbed outer plasma.

5. Modeling of the 3D tungsten distribution inside the mode

structure

In order to describe the W SXR emissivity εW, we need a model for the W density
distribution nW in the (1,1) mode structure, since εW on a mode flux surface is proportional
to nW. The W density distribution can be asymmetric on (mode) flux surfaces due to
centrifugal forces, which are induced by the toroidal plasma rotation (with an angular
frequency ωrot). The distribution of high-Z trace impurities in an axisymmetric flux surface
has been derived in [17, 18]. In [18], the force balance for the impurity ions parallel to
the magnetic field is evaluated: The centrifugal force is balanced by the pressure gradient
force and the electric field force, which arises because the much lighter electrons remain
unaffected by the centrifugal force. In [17], a derivation based on neoclassical theory is
performed. Both approaches yield the same result, where the nW distribution on a flux
surface with label ρ is given by:

nW(ρ,R) = nW,ref(ρ) · eλ(ρ) · (R2−R2
ref) = 〈nW〉(ρ) · eλ(ρ) ·R2

〈eλ(ρ) ·R2〉

with: λ(ρ) =

(
1− Te

Ti + Te

ZW
mi

mW

)
mWω

2
rot

2TW

(8)

Te, Ti, TW are the electron, ion and tungsten temperatures, while mi and mW are the
corresponding atomic masses. ZW is the average charge of the tungsten ions, which we
calculate from Te assuming an ionization equilibrium, as described in [7]. There is no
direct measurement of TW, so we will assume TW = Ti, due to the high collisionality
between W and the main ions. Since all these quantities entering in the prefactor λ can
be assumed to be constant on flux surfaces, λ itself is a function of any flux coordinate.
The asymmetry in the distribution originates from the major radius R, with Rref being
an arbitrarily chosen reference point with the density nW,ref. The latter is however not
a good choice for an input parameter, because the total tungsten abundance on a given
flux surface changes if λ changes (e.g. in a rotation scan as in section 6), if nW,ref is kept
constant. Therefore, we have introduced a normalization with the flux surface average <>
in the second step. The brackets <> are defined as:

〈x〉 =

∫ 2π

0

∫ 2π

0

x · J dθ∗dϕ
/∫ 2π

0

∫ 2π

0

J dθ∗dϕ (9)
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with J being the Jacobian of the (ρ, ϕ, θ∗) coordinate system. Hence, 〈nW 〉 is the flux
surface averaged tungsten density, which can be used as an input parameter. By this
formulation, the equation becomes independent of the reference point Rref.

We now want to apply this equation to non-axisymmetric mode flux surfaces. Therefore,
we have to assume, that the tungsten distribution reaches a quasi-stationary equilibrium
inside the mode structure: First, the growth rate of the mode has to be small, compared
to the time scale τW,eq under which the tungsten distribution reaches its equilibrium
inside a flux surface, parallel to the field lines. It can be assessed by the ratio of the
half tokamak circumference and the average thermal velocity of W. For typical ASDEX

Upgrade discharges (TW = 3 keV, R0 = 1.65 m) this gives τW,eq ≈ πR0 /
√

8kBTW
πmW

= 82 µs,

which is usually of the order of magnitude of the (1,1) mode period, and well below
the growth times. Second, the tungsten has to rotate with the same velocity as the mode
structure, such that the relative rotation between both is zero. This is more critical, as the
measured mode frequencies often differ by some 10% from the toroidal rotation frequency
of light ions in the plasma center, obtained by charge exchange spectroscopy. However, it
is not clear if this is also true for the tungsten rotation, which is not directly measurable
by present-day diagnostics.

For the presented model, a compromise was made: Mode frequency and plasma rotation
frequency are allowed to have (slightly) different values, such that the former can be set
to the measured mode frequency, while the latter can be taken from the measured CXRS
ion rotation profile. Effects from a possibly resulting rotation difference between the mode
and tungsten are neglected.

We can describe the tungsten density distribution on mode flux surfaces then by apply-
ing equation 8 to the mode flux surfaces, which are defined by ρmod = const . Consequently,
all profiles (temperatues, 〈nW〉, rotation etc.) become functions of ρmod. The surface aver-
aging refers then to an average on the three-dimensional mode flux surface. The Jacobian
of our mode flux surface coordinate system cannot be described analytically anymore.
Therefore, we have implemented a numerical calculation of the volume elements.

Figure 6 shows an example of the resulting W distribution on an island flux surface.
It can be seen, that the tungsten avoids the part of the helical island flux surface, which
is located on the high field side, while accumulating in the toroidal fraction of the flux
surface, which is located on the low field side. Thus, this model results in both a poloidal
and toroidal tungsten redistribution, leading to a fully three-dimensional distribution.

The SXR emissivity due to tungsten εW is proportional to ne ·nW. Hence, we can
describe it by exchanging nW by εW in equation (8):

εW(ρ,R) = 〈εW〉(ρ) · eλ(ρ) ·R2

〈eλ(ρ) ·R2〉
(10)

Consequently, 〈εW〉(ρ) is the mode surface averaged W emissivity profile, which we use as
input parameter for our modeling.
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Figure 6: 3D-visualization of the modeled W density distribution on an island flux surface
ρmod = 0.45 at a toroidal rotation frequency of frot = 8 kHz. The parameters of the modeled
kink mode are ξ = 0.12, ρ2 = 0.5. The surface averaged W density on the island flux surface
is set to 〈nW〉 = 1. Without rotation (frot = 0), the W density would be constant on this
island flux surface within our model.

6. Characterization of SXR signals during a peaked W emissivity

profile

In the following section, we want to characterize the influence of the rotation-induced 3D
W distribution on SXR signals in the presence of a resistive (1,1) mode. Therefore, an
emissivity profile peaked in the plasma center was assumed, which is typical in ASDEX
Upgrade discharges with the full-W wall. To see the pure effect, the emissivity was set to
originate 100% from W for this case. The influence of the asymmetry was determined with
a plasma rotation scan over four steps with frot =[0; 6; 10; 12] kHz, which corresponds
to tungsten Mach numbers MW = 2πR0frot/

√
2TikB/mW in the plasma center of MW =

[0; 1.26; 2.10; 2.52]. frot = MW = 0 represents the case without any asymmetries. The
input profiles are shown in figure 7. The resulting SXR emissivity distribution is shown
in fig. 8 in the poloidal cross-section in three phases of the mode and for two frot values.
For frot = 12 kHz the effects of the rotation are clearly visible. In phase Φ = 180◦, where
the plasma center is shifted to the HFS, the total emissivity is lower than in the opposite
phase Φ = 0◦, which is due to the toroidal redistribution in our model. Apart from that,
the effect of the rotation is also visible in each phase alone, as the radiation maximum
is not located on the shifted magnetic axis, but deviated towards larger R values. For
frot = 6 kHz the same observations are made - yet much less distinct, since ωrot enters
quadratically in the exponential term in equation 8.

We want to study now the SXR signals resulting from this emissivity distribution, in
particular the effects on the time averaged signal profiles, and the amplitude and phase
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modeled with ρ2 = 0.5 and ξ = 0.12. The toroidal plasma rotation profile is assumed to be
flat, and its value is varied within four steps frot =[0; 6; 10; 12] kHz.
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Figure 8: Contour plot of the modeled emissivity in the poloidal cross-section for two
different toroidal rotation frequencies and in three different phases Φ. Upper row: frot =
12 kHz. Lower row: frot = 6 kHz. For comparison, the mode flux surfaces are plotted in
white. In the case with no rotation, frot = 0 kHz, the emissivity contour lines are identical
with the flux surfaces.
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profiles of a FFT analysis at the mode frequency. To see all effects clearly in the simulation,
the spatial resolution of the diagnostic was increased by adding virtual LOS in between
the real ones.
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Figure 9: Forward modeled SXR signal profiles of the horizontal camera I for four toroidal
rotation frequencies frot = [0, 6, 10, 12] kHz. a) Time-averaged signals. b+c): Amplitude and
phase profile from a FFT analysis of the simulated signals. The phase profile is plotted 2π
periodic. The symbols correspond to the actual LOS setup, while the full curve has been
calculated by adding virtual LOS in between existing ones.

In figure 9 the calculated profiles are plotted for a horizontal SXR camera (I). The time-
averaged signals change hardly with the rotation frequency - which can be expected, since
the rotation causes mainly a radial shift of the radiation, which cannot be resolved by a
horizontal view. In contrast, the amplitude profile increases strongly in the plasma center.
While for symmetric radiation (i.e. no rotation), the amplitude minimum is expected to be
zero [19, 20], for strong rotation, the minimum is less pronounced and raised significantly.
Since the horizontal view cannot resolve HFS-LFS asymmetries, this has to be caused by
the toroidal radiation asymmetry. The rise of the central minimum is hence a measure
for the strength of the toroidal tungsten redistribution. However, due to finite spatial
resolution, the minimum cannot always be determined from experimental data.

An even clearer effect can be seen in the phase profile. This is in particular important,
since the shape of the phase jump resulting from the (1,1) mode has been proven to be
very robust against any other parameter variation, such as changing the emissivity profiles
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or the mode displacement [11]. With increasing rotation, the shape of the phase profile
changes its direction around the phase jump. Hence, the shape of the phase profile is a
clear indicator of the radiation asymmetry strength, which is also easier to detect with
finite spatial resolution.
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Figure 10: Time traces of the innermost signals of the horizontal camera I for the two
extreme cases (frot = 0 (black) and frot = 12 kHz (red)). To allow comparison with fig. 8,
the x-axis is not labeled with the time, but with the mode phase Φ. The phase from the
FFT analysis of the time trace is plotted with vertical bars. It can be seen, that the time
traces are not purely sinusoidal in general. This means, that the FFT-analysis also yields
contributions from higher harmonics. For frot = 0, the innermost signal ρ = 0.02 oscillates
even dominantly at the 2nd harmonic of the mode frequency (f = 2fm), while the FFT
amplitude at the mode frequency is low (as seen in fig. 9).

The reason of this phase profile change can be explained by fig. 10, which shows the
time traces of the innermost signals of the camera for the two extreme cases (frot = 0
and frot = 12 kHz). For comparison, the x-axis is not labeled with the time, but with the
mode phase (same as in fig. 8). It can be seen, that for the most central channel, the time
trace corresponding to zero rotation has a double peak-shape. The peaks correspond to
the phases, where the emissivity maximum (located at the kink-shifted plasma center)
crosses the LOS. The peak at phase 180◦ corresponds to the phase, where the plasma
center is shifted towards the HFS. This peak is slightly higher, because the distances
between neighboring flux surfaces are broader on the HFS than on the LFS due to the
Shafranov-Shift. In the case with high rotation (frot = 12 kHz), the situation is different:
The peak at Φ = 0◦ is much larger, because the W emissivity is accumulated on the LFS.
This difference influences the phase, which we get from the FFT for the fundamental



7 Comparison to experimental data in the presence of a hollow emissivity profile 15

frequency, and explains the phase profile changes with increasing rotation in the plasma
center.
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Figure 11: Forward modeled SXR signal profiles of camera G for four toroidal rotation
frequencies frot = [0, 6, 10, 12] kHz. a): Time-averaged signals. b+c): Amplitude and phase
profile from a FFT analysis of the simulated signals. The phase profile is plotted 2π periodic.

Figure 11 shows the calculated profiles for a vertical view. Here, the poloidal redistri-
bution dominates the signal profiles: With increasing rotation, the time averaged signal
profile is shifted towards the LFS, and the amplitude profile is rising on the LFS and
lowering on the HFS. In contrast to the horizontal view, the uplift of the central mini-
mum is barely visible. The phase jump is also changing its direction, but the effect is less
pronounced than for the horizontal view.

In this section, we have characterized the influence of rotation-induced SXR asymme-
tries on the FFT-profiles in the presence of a resistive (1,1) kink mode. It can be argued,
that these results are also valid for an ideal kink mode, since we have assumed a flat (i.e.
feature-less) emissivity profile in the island, such that the island is not visible to the SXR
diagnostic.
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(a) Φ ≈ 0◦ (b) Φ ≈ 90◦ (c) Φ ≈ 180◦

Figure 12: Tomography of the experimental Soft-X-Ray data from discharge #26299 at
t = 3.648 s in three different phases Φ of the mode. The ellipses in the right corner of (c)
show lower and upper bounds of the spatial resolution: The larger ellipse corresponds to the
widths of the volumes of sight in the plasma center. The smaller ellipse corresponds to the
reconstruction of a point-like emissivity dot.

7. Comparison to experimental data in the presence of a hollow

emissivity profile

In the following section we want to check, if our model describes the tungsten distribution
well, and if the signal features depicted in the last section are in line with experimental
data. We have chosen the ASDEX Upgrade discharge #26299 between 3.648 and 3.649s.
The discharge was run with Bt = −2.474 T and a plasma current of 1 MA. The electron
density in the core is 8.2 · 10−19 m−3 and the plasma was heated with 7.5 MW NBI and
0.9 MW of ECRH. In the considered time interval, a saturated (1,1) mode occurs between
two sawtooth crashes. Figure 12 shows a tomographic reconstruction (based on [21]) of the
SXR emissivity at three different phases of the mode. The center of the plasma, rotating
because of the kink, can be identified as the blue spot in the middle. Thus, the emissivity
profile is strongly hollow (i.e. it has a local minimum at the plasma center). Since the
electron temperature and density are peaked, this hollow radiation profile can only be
explained by a strong contribution from tungsten located around the resonant q = 1
surface [22]. In phase (c) the reconstructed SXR radiation has its global maximum. Its
croissant-like shape suggests, that we see here an (1,1) island, whose O-point is located
on the LFS with a strong tungsten accumulation around it. In the opposite phase (a),
the X-point lies on the LFS. Indeed, we see there a local minimum of the radiation. A
croissant-like shape around the O-point on the HFS is not visible - which can be explained
by a toroidal redistribution of tungsten towards the more favorable phase, where the island
O-point is on the LFS.

The strong asymmetry makes this a challenging test candidate for our model. Further-
more, we want to assess if the interpretation mentioned above matches the measured SXR
signals quantitatively. Figure 13 shows the input profiles for our forward model. The ki-
netic profiles (ne, Te, Ti, vrot, Zeff) are taken directly from the experimentally obtained
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Figure 13: Input profiles for the forward-model. The parameters for the resistive kink are
ξ = 0.09, ρ2 = 0.34. The mode frequency is fm = 10.23 kHz. The Zeff-profile is assumed
to be constant with Zeff = 1.86, which is evaluated from spectroscopic bremsstrahlung
measurements in the visible range. The profiles are plotted as a function of the mode co-
ordinate ρmod (see definition in section 4). Area III marks the inside of the island, with
ρmod = 0.25 being the island separatrix and ρmod = 0.34 being the island O-point. The
emissivity is continuous, since the right-sided limit (coming from area II) at ρmod = 0.34 is
equal to the value at ρmod = 0.25. In addition to the rotation frequency, the Mach numbers
Mi,W = 2πRfrot/

√
2kBTi,W/mi,W for D and W are shown. The mode flux surface averaged

W concentration 〈cW〉 = 〈nW〉/ne is calculated from the fit result 〈εW〉.

mode-averaged profiles. They were adapted for our modeling of the mode structure in such
a way, that all profiles were set to be constant inside the island. The resulting low-Z SXR
emissivity ε0 is calculated based on these profiles, as described in section 2 and is constant
on the mode flux surfaces. The remaining free parameters of our model are: the displace-
ment of the (1,1) mode, the radial extension of the mode ρ2 and the mode flux averaged
tungsten SXR emissivity 〈εW〉 profile. They were manually fitted to the experimental SXR
signal profiles for the I camera, shown in figure 14. For 〈εW〉, a piecewise set of continuous,
linear functions is chosen for the sake of simplicity. ρ2 can be determined more or less
directly from the width of the FFT amplitude profile (ρ2 = 0.34). 〈εW〉 and ξ have then
to be fitted to match the mode-averaged signal profile and the FFT-amplitude profile.
Especially the amplitude profile is influenced by both, because the amplitude grows with
increasing ξ, but also with increasing emissivity inside the mode. The shape of the phase
profile is mostly unaffected by this fitting procedure, because the shape is determined by
the strength of the asymmetry, which is given by the measured kinetic plasma profiles.

Figure 14 shows the result of the fit in comparison to the experimental data profile of the
horizontal camera I, where we expect the strongest effect on the phase profile. Clearly,
a good agreement between experiment and simulation can be observed. The shape of
the phase jump is very well described by our model. For comparison, we have turned
off the rotation in the simulation (plotted with a dashed line), which corresponds to a
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Figure 14: The comparison between experimental and forward-modeled profiles of a hor-
izontal view (camera I) shows good agreement. (a): Time-averaged signals. (b)+(c): Am-
plitude and phase profile from a FFT analysis. In contrast, a forward-model neglecting the
asymmetry in the SXR radiation (i.e. frot = 0 kHz) cannot reproduce the measured phase
profile.
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(c) Φ = 180◦

Figure 15: Contour plot of the modeled emissivity distribution (corresponding to the input
profiles in figure 13) in three different mode phases Φ. The helical mode flux surfaces are
drawn with white lines, the cross indicates the displaced plasma center.
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flux-surface symmetric emissivity. In that case, the phase profile evolves in the opposite
direction around the phase jump. Hence, we can conclude, that the shape of the phase
profile can only be obtained correctly by including the asymmetry effects induced by
rotation. Furthermore, the raising of the central minimum in the amplitude profile is also
seen in the experimental data. As explained in the previous section, this is a confirmation
that tungsten is also redistributed toroidally inside the mode structure.

The modeled emissivity resulting from the fit is shown in fig. 15 in the same three
phases as the tomography (fig. 12). It can be seen, that the model-emissivity agrees with
the tomography in the phases Φ = 90◦ and Φ = 180◦. In phase Φ = 0◦, there is a
deviation in the narrow region around the island X-point, which may be explained by the
finite spatial resolution of the tomography.

The simulation results for a vertical and an intermediate view are shown in figure 16.
Again, we find a very good agreement with the experimental data, although the input
parameters were only fitted to the horizontal camera I. As predicted, the effect on the
phase profile is weaker than for the horizontal view. The poloidal asymmetry between HFS
and LFS, which can be seen in the time averaged profile and in the amplitude profile, is
described very well.
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Figure 16: Comparison between experimental and forward-modeled profiles for a vertical
view (camera K) and a intermediate view (camera J, down). (a): Time-averaged signals.
(b)+(c): Amplitude and phase profile from a FFT analysis.
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8. Summary

A novel synthetic SXR diagnostic has been developed, which takes into account the full
3D geometry of the volumes of sight resulting from the detector-pinhole arrangement. A
comparison with the more common approach of using lines of sight shows a significant
difference in the simulated signals, which is due to the toroidal spreading of the VOS and
the curvature of the plasma torus. The strength and sign of this difference also depends on
the viewing direction. This must be taken into account in cases, where a precise calibration
of the SXR diagnostics is needed - e.g. when doing a tomographic reconstruction.

With the synthetic diagnostic, the effect of three-dimensional SXR emissivity structures
on the SXR signals is investigated. The 3D structure results from the tungsten density
asymmetries in rotating plasmas together with the helical structure of MHD modes. Here,
we have focused on the resistive (1,1) kink, which is modeled with a helical flux model
similar to [12]. This results in helical mode flux surfaces, for which we define a new
radial coordinate ρmod. The SXR emissivity is then modeled in two parts: One part is
constant on these surfaces, and resembles the SXR radiation from bremsstrahlung and
light-Z impurity contributions. The second part is the SXR emissivity due to tungsten.
In rotating plasmas, its density has a LFS-HFS asymmetry due to centrifugal forces. The
W density distribution is then described by a force balance parallel to the flux surface
[17, 18]. We have assumed, that this force balance is still given inside the helically wound
mode flux surfaces, which means that W can redistribute both poloidally and toroidally
in the same manner. In order that such an equilibrium can build up, we had to assume
that W rotates with the same velocity as the mode structure.

A measure for the strength of the SXR asymmetry is the toroidal rotation. By doing a
rotation scan in our forward model, we could estimate the effect of asymmetries on the
SXR signals in the presence of a (1,1) mode and their FFT amplitude and phase profiles.
The strongest effect is seen in the phase profile of horizontal views, which changes its slope
sign around the phase jump with increasing strength of the asymmetry. Furthermore, a
rise of the central amplitude minimum is observed in horizontal views due to the assumed
toroidal redistribution.

Finally, our model is compared to experimental data from ASDEX Upgrade. We find
a good agreement between forward modeling and the measured SXR signals, and the
resulting FFT profiles. In particular, the shape of the phase profile is reproduced very well
by our model, while it has the opposite shape when neglecting the tungsten asymmetry.
This gives a good indication, that the tungsten distribution in helical mode structures can
be well described by the force balance calculated in [18] for axisymmetric flux surfaces.
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A. Derivation of an analytical estimate for Rc

An analytical estimate of the shift of the poloidal projection of the VOS with respect to
the LOS Rlos at a given z-position can be calculated by evaluating the center of mass Rc:

Rc(z) =

∫
R(u, v)Ω(u, v, z)dudv∫

Ω(u, v, z)dudv
≈
∫
R(u,Rlos)Ω(u,Rlos, z)du∫

Ω(u,Rlos, z)du
(11)

u and v are coordinates along the toroidal and poloidal direction of the VOS in the z-plane
(as shown in fig. 4(a)). In the second step, we have neglected the poloidal spreading of
the VOS and assumed, that the center of the VOS goes through the torus axis (i.e. it
lies in the poloidal plane). If the pinhole is centered over the diode in toroidal direction,
Ω(u) has the shape of a symmetric trapezoid. Therefore, we parametrize it as (see also
fig. 17(a) for the definition of the quantities):
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Figure 17: (a) The instrumental profile Ω is parametrized in the toroidal direction u as a
symmetrical trapezoid with the parameters a and b. The full toroidal width of the VOS is
∆t = 2b, and we write the ratio between a and b as δ = a

b . (b) The radial shift Rc - Rlos as
a function of z along the line of sight H 050. The black dotted line refers to the numerical
VOS calculation, and the dashed red line corresponds to the approximate formula 13.

Ω(u) =


1 |u| ∈ [0; a]
|u|−b
a−b = |u|−b

(δ−1)b
|u| ∈ [a; b]

0 else

(12)

Then, the integral in the denominator gives:∫
Ω(u)du = b(1 + δ)
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For the integral in the nominator, we do a Taylor-approximation of the square root:∫
Ω(u)Rdu =

∫
Ω(u)

√
R2

los + u2du ≈
∫

Ω(u)Rlos

(
1 +

u2

2R2
los

)
du

Then, the integral can be solved straight-forward and we get:

RC = Rlos +
∆2

t

48Rlos

(
1 + δ2

)
(13)

Herein, ∆t = 2b is the full toroidal width of the VOS in the z-plane, and δ = a/b with
0 ≤ δ ≤ 1. δ = 0 corresponds to a triangular Ω(u), and δ = 1 corresponds to the case,
that Ω(u) is a box function.

Now, we can calculate δ and ∆t for a point on the LOS with distance l from the pinhole
by geometric considerations. In the limit, that l � d with d being the distance between
diode and pinhole, δ can be calculated from the toroidal pinhole and diode width (Pt and
Dt):

δ =
arctan |Dt−Pt|

2d

arctan Dt+Pt

2d

(14)

Hereby, γ = 2 arctan Dt+Pt

2d
is the full opening angle of the VOS. ∆t can be calculated by:

∆t = 2 tan
γ

2
·
(
l + d

Pt

Dt + Pt

)
· cosαp (15)

where αp is the poloidal angle between the diode surface normal and the LOS.
For the ASDEX Upgrade SXR cameras (Dt = 4.6 mm, Pt = 5.0 mm, d = 14.0 mm) we

find δ = 0.043, i.e. Ω(u) is almost triangular. In fig. 17(b), the radial shift Rc − Rlos is
shown for signal H 050 (see fig 4(b)) as a function of z, calculated with equation 13. The
comparison with the numerical VOS simulation shows a good agreement, which can also
be seen as a proof, that the deviations between LOS and VOS calculations discussed in
section 3 are indeed dominantly caused by the toroidal spreading of the VOS.
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