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Introduction. Sensorimotor cortex is activated similarly during motor execution and motor imagery. The study of functional con-
nectivity networks (FCNs) aims at successfully modeling the dynamics of information flow between cortical areas. Materials and
Methods. Seven healthy subjects performed 4 motor tasks (real foot, imaginary foot, real hand, and imaginary hand movements),
while electroencephalography was recorded over the sensorimotor cortex. Event-Related Desynchronization/Synchronization
(ERD/ERS) of the mu-rhythm was used to evaluate MI performance. Source detection and FCNs were studied with eConnectome.
Results and Discussion. Four subjects produced similar ERD/ERS patterns between motor execution and imagery during both
hand and foot tasks, 2 subjects only during hand tasks, and 1 subject only during foot tasks. All subjects showed the expected
brain activation in well-performed MI tasks, facilitating cortical source estimation. Preliminary functional connectivity analysis
shows formation of networks on the sensorimotor cortex during motor imagery and execution. Conclusions. Cortex activation
maps depict sensorimotor cortex activation, while similar functional connectivity networks are formed in the sensorimotor cortex
both during actual and imaginary movements. eConnectome is demonstrated as an effective tool for the study of cortex activation
and FCN. The implementation of FCN in motor imagery could induce promising advancements in Brain Computer Interfaces.

1. Introduction

Motor imagery (MI) is described as the concept of imagining
a motor task without resulting in physical execution. It is the
visualization and rehearsal of an imaginary movement [1]
as opposed to the actual practice of the movement, which is
described by the term Motor Execution (ME). This concept is
widely applied in the development of Brain Computer Inter-
faces (BCIs). BCIs are systems that translate human volition
to control of external devices and exploit a person’s will to
move or to communicate, regardless if that person is able
to actually perform such a task due to severe impairments
(such as spinal cord injury (SCI), stroke, or amyotrophic
lateral sclerosis (ALS)) [2]. Cortical activation during motor

imagery can be recorded with a variety of methods, including
functional Magnetic Resonance Imaging (fMRI), which has
the optimal spatial accuracy [3], and electroencephalography
(EEG), which provides excellent temporal accuracy (on the
order of milliseconds) [2]. EEG in particular has been
extensively applied, as it is an inexpensive, widely available,
and relatively simple method that can be applied to real-life
scenarios [2].

The brainwaves can be extracted by the EEG easily and
in real time and play a crucial role in BCI applications.
The mu-rhythm has been identified as an EEG feature
that corresponds to movement volition and is usually
examined in motor imagery studies [4]. Its physiological
role is not yet clearly defined, though it is associated with
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the inhibition of the movement [5]. The amplitude of
the mu-rhythm typically decreases when the corresponding
motor areas are activated and is most accurately recorded
over the primary sensorimotor cortex [5]. Its exact range
is not firmly defined, but it generally overlaps with the
alpha rhythm (8–12 Hz) [6] and possibly with a part
of the lower beta band [4]. Mu-rhythm (also known as
sensorimotor rhythm (SMR)) is commonly studied using
Event-Related Desynchronization/Synchronization analysis
(ERD/ERS), where ERD usually denotes the activation of
cortical areas, while ERS denotes a decrease in excitability
and information processing [7].

BCIs continue to develop over the past five years be-
coming more user friendly, accurate, and efficient [8],
while they still carry certain drawbacks that need to be
addressed [9]. However, ERD/ERS of the EEG mu-rhythm
provides spatially static neuroelectric information of brain
regions that are activated during tasks. ERD/ERS analysis
does not convey the information of how these regions
communicate with each other [10]. Brain activity is dis-
tributed spatiotemporally, and brain functional networks
are formed through this distribution. The behavior of such
networks provides important physiological information for
understanding brain functions and dysfunctions [11]. The
relatively new concept of brain functional connectivity [11]
promises to play a key role in neurosciences, allowing
researchers to study the organized behavior of brain regions
beyond the standard cortical source estimation, mapping,
and localization of activity [12]. The estimation of func-
tional cortical connectivity aims at describing the interac-
tions between differently organized and specialized cortical
regions as patterns depicting dynamics of information flow
between those regions [10].

A conceptual definition of functional connectivity is
stated as a “temporal correlation between spatially remote
neurophysiological events” [10, 13]. Several approaches have
been proposed for the estimation of this correlation, known
as connectivity metrics. Latest approaches, such as the
Directed Transfer Function (DTF) and the Adaptive Directed
Transfer Function (ADTF), rely on the key concept of
Granger causality between time series [14]. The mathemati-
cal background of these methods lies beyond the scope of this
paper, but—on a very short account—the lack of reciprocity
between two times series, one of which results to the other,
provides the direction of the information flow between each
pair of elements [15].

In our work, a classic paradigm of cue-paced motor
imagery is deployed in healthy young volunteers. Our goal is
to investigate the implementation of functional connectivity
on Brain Computer Interfaces and Motor Imagery protocols
and to examine the possibility of classifying the motor voli-
tion accurately and fast by functional connectivity analysis.
For this purpose, we used the novel MATLAB toolbox,
eConnectome [16]. The solutions to the inverse problem
were provided by the toolbox together with the activation
maps on cortical level. We currently present the preliminary
results of implementing functional connectivity analysis on
motor imagery by exploiting the open eConnectome toolbox.

2. Materials and Methods

In the current study 7 healthy right-handed subjects par-
ticipated (4 male and 3 female); mean age of 28.1 (range
23–37). The procedure was accurately explained beforehand,
and all subjects gave their written consent prior to the
experimental procedure. None of the subjects had any
experience in the concept of motor imagery prior to their
participation. The setup of the experiment and part of the
analysis has been analytically described in our previous work
[17]. Each subject performed four motor tasks: (a) real hand
movement (biceps-flexion of the forearm), (b) imaginary
hand movement, (c) real foot movement (quadriceps—
stretch of the lower leg), and (d) imaginary foot movement.
Each task was repeated 95 times, divided into five sets of
19 trials each. There was 1-minute rest between sets and 5-
minute rest between tasks. During trials, the subjects were
presented with visual feedback on a computer screen (the
word “move”), which constituted the cue to perform the
relevant task. The cue of the visual feedback was recorded
with an optic fiber placed on the computer screen serving
as the trigger channel synchronous to the EEG recording.
A Nihon-Kohden (Japan) EEG and an active electrode cap
(EASYCAP, Germany) were used. EEG was recorded by 17
electrodes (CP3, CP1, CPz, CP2, Cp4, C5, C3, C1, Cz,
C2, C4, C6, FC3, FC1, FCz, FC2, and FC4), placed in
accordance with the 10-10 international electrode system.
The recording electrodes were referenced with LPA and RPA
mastoid electrodes. The impedance threshold was set below
5 kOhm. The electrode setup corresponds to the skull area
above the sensorimotor cortex.

Following signal extraction, further processing is descri-
bed in two parts. Initially, the extracted signals were pro-
cessed with an ERD/ERS of mu-rhythm EEG paradigm in
mind. This paradigm of cue-paced motor imagery [17], is
presented here as an intermediate step that serves to instigate
our research towards functional connectivity. The second
part, consisting of source depiction and functional connec-
tivity of the extracted signals, deploys different processing
methodology, as we describe accordingly. Signal preprocess-
ing and analysis was performed in MATLAB (Mathworks
Inc.), using EEGLAB toolbox [18] and eConnectome toolbox
[16].

For ERD/ERS analysis, we chose to focus on 7 electrodes
(CP1, CPz, CP2, C1, Cz, C2, FC1, FCz, and FC2), those more
relevant to the primary motor cortical areas of hand and
foot. Filtering was performed using EEGLAB [16] at 8–15 Hz
(mu-rhythm, possibly including a fraction of the lower beta
band) [4]. Independent Component Analysis (ICA) was used
to remove ocular artifacts. Epochs were set from 800 msec
prestimulus to 2200 msec poststimulus.

Following preprocessing, Event-Related Desynchro-niza-
tion/Synchronization (ERD/ERS) values of the mu-rhythm
were calculated. Each subject’s 95 epochs for each task were
first divided in five sets of 19 epochs and then were averaged
across sets. For each of the five sets, as well as for each of
the seven focus electrodes, ERD/ERS was computed at three
poststimuli intervals (100–400 msec, 400–700 sec, and 700–
1000 msec) towards −300–0 msec prestimulus, to account
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for different reflexes of the subjects. This resulted in matrices
of 7 × 5 × 3 size, containing the ERD/ERS values for each
subject. In order to test for similarities between the ERD/ERS
values during the real movements and ERD/ERS values
during the imaginary ones, Student’s t-tests were performed.
Moreover, the ERD/ERS values during the imaginary foot
movements were compared to their counterparts during the
imaginary hand movements to reveal any differentiation. For
all statistical tests, the level of significance was set to 0.05.

Source imaging and functional connectivity on the
source level were applied taking into account all 17 elec-
trodes. The area covered by the electrodes can be anatom-
ically corresponded to the primary motor area, primary
somatosensory area, and premotor cortex of the brain. In
order to append those signals recorded at the surface of the
skull to specific Brodmann areas of the cortex though, the
solutions to the “inverse problem” have to be calculated.
eConnectome handles this part using the Cortical Current
Density (CCD) source model [19]. The toolbox provides
a high-resolution cortical surface model segmented and
reconstructed for visualization from MRI images of the
Montreal Neurological Institute and a scalp surface that
forms the sensor space. These are generic realistic head
models designed to provide improved accuracy in cortical
source estimation [20]. Cortical regions of interest (ROIs),
corresponding to Brodmann areas, are predefined (by the
eConnectome software) and available to compute estimated
cortical sources. The user has also the choice to define custom
regions of interest, a feature that we explored in our study.

Preprocessing involved filtering at 8–15 hz, and ICA
using EEGLAB [16] and epochs were set from 800 msec
prestimulus to 2200 msec poststimulus. At this point, one
further step was decided, in order to compute the average of
all (95) epochs for each subject—rather than in sets of 19 (as
was done for the ERD/ERS analysis). This produced a dataset
of four EEG sets for each of the seven subjects. Each of these
four sets consisted of the average of 95 trials during each task:
Foot Motor Execution (FME), Foot Motor Imagery (FMI),
Hand Motor Execution (HME), and Hand Motor Imagery
(HMI). Using the EEG module of eConnectome [21], for
each subject, we compared ROI activation of FME versus
FMI, HME versus HMI, as well as FME versus HME, and
FMI versus HMI. The average of each task trials for each
subject was chosen over individual epoch analysis, in order
to minimize the effect of random occurrences and artifacts
to the imaging of cortical activation. Similarly, it is suggested
that the causality relations between cortical networks appear
to be independent from the frequency band analyzed [10].
Thus, we opted to estimate source activation for the narrow
frequency band that we used for mu-rhythm ERD/ERS
analysis and connectivity was computed for the band of mu-
rhythm (8–12 hz), aiming for better comparability of results
and reduction of computational workload.

Directed Transfer Function (DTF) was used for the esti-
mation of functional connectivity relationships between
cortical areas of the human brain [16]. DTF is a con-
nectivity metric based on the multivariate autoregressive
(MVAR) modeling [22]. It was applied on the whole −800
to 2200 msec interval for the range of 8–12 Hz (mu or

Table 1: Real/imaginary statistical similarity and hand/foot dis-
crimination percentages of subjects using t-test comparisons (P >
0.05) of ERD/ERS values: our subjects showed high performance in
Foot and Hand Motor Imagery but low source discrimination.

Real/imaginary similarity

Hand 85.71%

Foot 71.41%

Hand/foot discrimination

Real 28.57%

Imaginary 14.28%

alpha rhythm). For a single representative subject, the
functional connectivity of the sensorimotor cortex during
motor execution and imagery for both foot and hand
movements was analyzed and further compared. During this
investigation, we custom defined ROIs on the sensorimotor
cortex, correlating to primary hand and foot motor areas
(M1), hand and foot sensory areas (S1), and supplementary
motor areas (SMAs). The selected subject was the one
with the highest performance in both FMI and HMI, as
defined by no differentiation between imaginary and real
ERD/ERS patterns in the majority of focus electrodes and
time intervals. Connectivity patterns were visualized at both
the cortical surface and the EEG sensor level, on a model
using the standard 10-10 electrode system [23].

3. Results

3.1. Event-Related Desynchronization/Synchronization (ERD/
ERS) Analysis. Regarding the ability to perform motor ima-
gery, four out of seven subjects performed equally well in
both FMI and HMI, activating their cortex during imaginary
movements in the same patterns as in real movements (P >
0.05) in all of the three time intervals as reported previously
by our group [17].

Regarding the ability to statistically discriminate between
hand and foot movements, in two out of seven subjects,
ERD/ERS of the mu-rhythm was unable to provide hand-
foot discrimination in either MI or ME. For two subjects,
hand-foot discrimination (for both MI and ME) was poor,
both spatially (7 electrodes) and temporally (3 time inter-
vals). For further two subjects, the discrimination between
foot and hand ME was possible across most electrodes
and time intervals. Finally, one subject produced distinctive
ERD/ERS patterns for foot and hand MI, while this was not
the case for ME.

The results of ERD/ERS statistical analysis, published in
a previous paper [17] and presented here in a summary
(Table 1), encouraged us to further investigate MI move-
ments in terms of functional connectivity.

3.2. Cortical Source Imaging. The distinction between dif-
ferent cortical sources’ activation is facilitated with the
visualization of the inverse problem solutions (computed
with Current Cortical Density) that provide the correspond-
ing cortical activation maps. In all subjects, as expected,
visual discrimination between foot and hand activation
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(b) FMI

Figure 1: Cortical source activation maps produced by eCon-
nectome after solving the inverse problem using Current Cortical
Density. Poststimuli instances for 5 subjects during (a) Hand Motor
Imagery (HMI) and (b) Foot Motor Imagery (FMI). Different
activation patterns can be observed for different subjects, but in all
of them, the hand and foot imagery are discriminated.

in real movements is apparent. Moreover, in five out of
seven subjects, the discrimination becomes possible between
imaginary foot and hand movements as well (Figure 1).
As also shown in Figure 1, not all subjects activate the
relevant cortical sources in the same pattern, especially
during imaginary movement. It can be observed that during
imaginary movements, there is greater involvement of the
ipsilateral hemisphere. Moreover, activation patterns are not
static during the whole epoch (the average of 95 epochs of
each task), but different instances produce different patterns
for each subject in both MI and ME tasks (Figure 2).
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Figure 2: Cortical source activation maps for one subject during
(a) Hand Motor Imagery (HMI) and (b) Hand Motor Execution
(HME). Each row represents a different poststimulus instance, and
the variance in activation patterns can be observed.

Although activation is similar during MI and ME, generally
imagery produces lower levels of activation, at both scalp
and cortical area (Figure 3). Finally, it can be observed that
activation of supplementary motor areas (SMAs) varies and
is more intense during foot motor for all subjects. This is
demonstrated at Figure 4 for subject 1, but similar patterns
stand for the rest of the subjects.

3.3. Functional Connectivity. For this part of our analy-
sis, one representative subject was chosen, as described
in Section 2. All figures hereafter concern this particular
subject. Functional connectivity can be studied either at
the scalp surface (electrode plane) or at the cortical surface
(regions of interest plane). Figure 5 depicts connectivity at
the electrode plane, at different instances for one subject.
Different connectivity patterns can be recognized at different
temporal instances, but there are some that prevail across
the whole task as shown in the second and the third rows
of Figure 5. In HME, a strong outflow current is produced
from electrode C1 towards electrodes corresponding to both
hemispheres of the sensorimotor cortex (Figure 5(a)). eCon-
nectome provides the option to portray information flow
between all channels or the single highest outflow, inflow,
or information exchange. This outflow is maximal towards
CP4 and FC2 in most examined instances. On the contrary,
in HMI, this strong outflow is not as obvious, although when
each electrode is examined, the same prevalence of C1 can be
found. In HMI, information flow is portrayed to be maximal
from electrode C1 towards electrode FC2 and from electrode
FC1 towards electrode C4 (Figure 5(b)).
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Figure 3: First row: cortical source activation maps for (a) Hand
Motor Imagery (HMI) and (b) Hand Motor Execution (HME).
Second row: scalp area activation maps for (c) HMI and (d) HME.
All images are from a single subject, and a lower level of activation
can be observed in imagery as compared to the corresponding
instance during execution.

On the cortical surface, after solving the inverse prob-
lem, functional connectivity can be studied either using
the predefined regions of interest (cortical ROIs defined
by eConnectome, corresponding to Brodmann areas) or
using custom-defined ROIs on the dynamic activation maps
produced by source imaging. Initially, the primary hand
motor areas were defined in both hemispheres, and then
Directed Transfer Function (DTF) was computed. Figure 6
depicts a strong information flow between primary hand
motor areas, directed from the contralateral (to the moving
hand) towards the ipsilateral area. This flow is almost
identical in power amplitude in both motor execution and
motor imagery. To test whether that was a result of defining
only primary motor areas, another ROI corresponding to
primary right foot sensory cortex (the purple-colored area
in Figure 6(b)) was defined, but no information flow was
detected. In Figure 7, the cortical network produced by Hand
Motor Imagery consists, additionally, of the SMAs and the
primary hand sensory areas. In this case, information flow
is stronger from the SMAs towards the ipsilateral primary
hand motor area, showing the important regulative role
of those cortical sources in the imagination (preparation)
of a movement [10]. The activation time series of the
ROIs of this small cortical network, consisting of primary
hand motor and sensory areas and SMAs, is presented in
Figure 8. Finally, another small cortical network was tested,
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Figure 4: Cortical source activation maps for one representative
subject during (a) Foot Motor Imagery (FMI) and (b) Foot Motor
Execution (FME). The activation of supplementary motor areas
(SMAs) varies in different poststimulus instances (rows) and can
be observed to be more intense during FMI.

this time consisting of primary foot motor areas and SMAs.
The information flow from the SMAs is present in this
network too, directed to the contralateral primary foot
motor area. In addition, there is a high output information
exchange between the SMAs of both hemispheres as shown in
Figure 9.

4. Discussion

The sensorimotor cortex, during the practice of motor
imagery tasks, has been proven to produce similar patterns
of activation with actual motor execution tasks [4, 6],
something our work also confirms [17]. Cortex activation
is found to be less intense during motor imagery as
compared to motor execution, which is shown by ERD/ERS
amplitude as well as by source activation maps produced by
eConnectome. Mu-rhythm detection and ERD/ERS analysis
achieve high performance (over 85% for Hand Motor
Imagery in our experiment) and are considered to be
a suitable modality for accurate and fast classification of
human motor volition. However, ERD/ERS analysis does
not facilitate the discrimination between different sources’
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Figure 5: Functional connectivity patterns at the electrode plane for
one representative subject during (a) Hand Motor Imagery (HMI)
and (b) Hand Motor Execution (HME). First row: information
exchange between all channels. Second and third rows: maximal
information exchange.

activation. On the contrary, the production of cortical source
activation maps, such as those produced by eConnectome,
can be greatly effective in source discrimination. As has
been proposed by BCI experts, design of motor restoration
systems should be based on a self-paced (asynchronous)
approach [24]. Our results agree with this viewpoint, as
each subject tended to produce unique patterns of brain
activity, regarding electrodes and time intervals of activation
[17]. The study of functional connectivity at both the scalp
and the source level can help further understanding of
each subject’s unique patterns, providing information on
“communication” exchange between electrodes and cortical
sources.

The mu-specific approach was induced by certain rea-
sons. Concerning sensorimotor-related rhythms, it is pro-
posed that mu- and beta-rhythms are couple-phased and
should not be combined as independent control features
[25]. Also, it is suggested that causality relation between
cortical networks is not maximally present in any specific
frequency band [10]. Taking those viewpoints into account

allowed us to focus on a narrow band of brain activity, reduc-
ing computational workload, while at the same time without
resulting in sacrifice of information. Our brain connectivity
findings tend to confirm novel studies in the area [10,
15, 21] regarding the highly dynamic nature of functional
connectivity networks [15]. Such studies report small-world
topologies [11] in brain networks, a characteristic that
seems to play a crucial role regarding neurophysiological
organization and behavior of the cortex [26, 27] during
motor execution and imagery. Furthermore, in the current
study, eConnectome revealed the SMAs as a clearly defined
nested network exchanging information with primary motor
regions, a finding we appreciate to be coherent with the
regulative role of SMAs during the planning of a movement
[10]. Through the use of eConnectome, we were able to study
specific cortical regions of interest and the way they interact
in motor execution and motor imagery tasks of the hand and
the foot.

There are several limitations that have to be mentioned,
including some that are not specific to our study. Primarily,
the low number of subjects along with the absence of patients
does not allow us to safely generalize our findings and
conclude an effective BCI approach for mobility restoration.
Moreover, regarding connectivity analysis, we have to men-
tion again that in the view of the feasibility analysis aimed
at in this paper, only exploratory results are reported herein,
based on the investigation of ME and MI performance for
one subject. However, we reiterate that this study dealt
with the feasibility and usefulness of BCI and connectivity
integration rather than with specific neurophysiological
findings. There are many changes in brain activation and
functional connectivity that come with severe impairment
[8, 10]. As such, the inclusion of patients in such research
is crucial in order to produce useful conclusions.

Regarding our method, the absence of electromyographic
(EMG) signal recording is crucial to further analysis,
since the trials were not accurately time locked, and the
contamination because of muscular artifacts could not be
eliminated. Also, a higher number of EEG sensors would
have resulted to better spatial resolution, and in order to
efficiently study connectivity, we ought to have a recording of
higher spatial resolution (more electrodes, possibly placed in
accordance with 10–5 international system [23]). However,
an increased number of EEG sensors have been identified to
produce unwanted (false) small-world topologies [11], since
uncorrelated electrodes would be more easily influenced
by strong focal signals. Practicality reasons also demand
that a possible BCI-FCN integration should deploy a rather
small number of electrodes in order to facilitate portability
and usage in real-life scenarios. The optimal compromise
between portability and spatial resolution is something that
has yet to be researched.

Finally, the selection of the connectivity metric is proven
to be critical for the formation of the brain functional
networks [28], and a more reliable interpretation of mea-
sured activations and information flow could be obtained
by comparing results from different connectivity metrics.
Furthermore, eConnectome includes specific multivariate
metrics (DTF and ADTF) that are not proven to be
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Figure 6: Identical high Information outflow from the cortical ROI corresponding to hand area of motor cortex contralateral to movement
towards the same ipsilateral area during (a) Hand Motor Execution (HME) and (b) Hand Motor Imagery (HMI).
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Figure 7: FCN during Hand Motor Imagery (HMI) of one representative subject. (a) Information exchange between primary hand motor
areas, (b) information outflow from the same areas, (c) information outflow from SMAs, and (d) the highest information exchange was
shown to occur between the two SMAs and the ipsilateral primary hand motor area. The size of the spheres is proportional to the outflow,
which is also obvious from the chromatic scale.
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Figure 8: Regions of interest activation time series of a small functional cortical network (FCN) of one representative subject during Hand
Motor Imagery (HMI).
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Figure 9: FCNs of one representative subject during foot motor tasks. Information outflow from SMAs and primary foot motor areas during
(a) Foot Motor Execution (FME) and (b) Foot Motor Imagery (FMI). (c) Information exchange of those areas during Foot Motor Imagery
(zoom in).

specifically more suitable for BCI approaches than other
connectivity metrics. The integration of connectivity in
Brain Computer Interfaces seems far from being immediately
feasible. It has to be stressed that DTF cannot yet be per-
formed in real time. The prospect of real-time application of
a connectivity metric in a BCI application would also require
a time-adaptive metric, such as the ADTF, which seems
more suitable for such a use. However, ADTF needs even
more computational workload and time to be performed
than the DTF. The real-time environment that is crucial
for rehabilitation or commercial BCI approaches cannot yet
benefit from connectivity analysis, though this is a limitation
that time and technological progress is expected to eventually
solve [29].

In conclusion, it is our conviction that the study of func-
tional connectivity in the context of Brain Computer Inter-
faces applications, although not yet a mature solution, has
a lot to offer in terms of neurophysiological integration and
understanding and the design of intuitive high-performance
self-paced systems. eConnectome is an appropriate toolbox
to be used in order to test and enhance the effectiveness
of Motor Imagery protocols and Brain Computer Interface
systems in a research environment. In our study, this toolbox
enabled us to extensively study and detect expected similar-
ities and differences in cortical activation, as well as depict
simple FCNs between a small number of highly important
cortical regions of interest. eConnectome is demonstrated
to be able to facilitate the study of functional connectivity,
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providing easy-to-use tools and graphical interpretations
of cortical activity and information exchanges. Further
evaluation and experiments involving healthy and patient
subjects need to be performed in order to fully implement
FCN findings in typical BCIs. We cannot emphasize enough
the breakthroughs that can occur in the field of motor
restoration; however, we can only capture the need towards
the design of appropriate software and tools to precipitate the
integration of the two fields of research.
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