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Abstract 
 
Octopus is a software package for density-functional theory (DFT), and its time-dependent (TDDFT) variant. Linear Combination of the 
Atomic Orbitals (LCAO) is performed previous to the actual DFT run. LCAO is used to get an initial guess of densities, and therefore, to 
start with the Self Consistent Field (SCF) of the Ground-State (GS). System initialization and LCAO steps consume a large amount of 
memory and do not demonstrate good performance. In this study, extensive profiling has been performed, in order to identify large matrices 
and scaling behaviour of initialization and LCAO. Alternative implementations of LCAO in Octopus have been investigated in order to 
optimize memory usage and performance of LCAO approach. Use of ScaLAPACK library led to significant improvement of memory 
allocation and performance. Benchmark tests have been performed on MareNostrum III HPC system using various combinations of atomic 
systems’ sizes and numbers of CPU cores. 

 

 

 
Introduction 
 
In this project time-dependent density functional theory (TDDFT) formulation of quantum mechanics was used 
as implemented in the Octopus code. Octopus [1] is a scientific software package for the calculation of electronic 
properties of matter, released under the GPL license. Octopus is a very efficient code used to study by first 
principles the properties of the excited states of large biological molecules, complex nanostructures, and solids. 
 
One of the first steps in the calculation of the ground-state for a given system is the construction of an initial 
guess for the wave function and to build the Hamiltonian matrix previous to the SCF iterations. This process has 
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been implemented in the Octopus code by performing a Linear Combination of the Atomic Orbitals (LCAO). It 
was proved that this stage had not been efficiently implemented.  

This project focuses on optimization of the LCAO implementation to reduce memory cost and execution time. A 
memory allocation problem has also been observed during the initialization, previous to the Ground-State (GS) 
Self Consistent Field (SCF) cycle. LCAO consists in a diagonalization of a matrix of size NxN (N is equal to the 
number of orbitals of the atomic system). This is a small matrix for a small system, but with a quadratic 
scalability. Therefore, it becomes a huge matrix for systems with many states. 

We solved this problem with a parallel implementation of the LCAO using the external library ScaLAPACK. 
With this parallel library, large matrices have been distributed among all the MPI processes. Besides, alternative 
implementations have decreased the execution time of the LCAO step. 

Benchmark tests have been performed on Barcelona Supercomputing Center MareNostrum III supercomputer 
[2], which is based on Intel SandyBridge processors, iDataPlex Compute Racks, a Linux Operating System and 
an Infiniband interconnection.  

Porting of Octopus on MareNostrum III 

Octopus source code was checked out from SVN repository and was ported on MareNostrum III.  
 
MareNostrum III modules that were used: OpenMPI/1.8.1, INTEL/13.0.1, MKL/11.0.1 and GSL/1.15. 
 
Libraries that were compiled on MareNostrum III (using intel, mkl and cmake modules) in order to enable 
Octopus latest revision to run efficiently are the following:  
 

1. metis-5.1.0 (cc=icc cxx=icpc) 
2. parmetis-4.0.3 (cc=mpicc cxx=mpicxx) 
3. fftw-3.3.3 
4. pfft-1.0.7 
5. libxc-2.0.0 (--enable-shared CC=icc FC=ifort) 
6. lapack-3.5.0 
7. scalapack-2.0.1 

 
Slightly less memory is consumed during mesh partitioning when using ParMETIS package in comparison to the 
serial version of METIS. This, is more noticeable with larger numbers of MPI processes. [3] 
 
The following configuration was used for Octopus compilation on MareNostrum III. 
 
Configuration options  : max-dim=3 mpi sse2 avxC 
 
C compiler flags          : -I$HOME/local/parmetis/openmpi/include  -DENABLE_PARMETIS=1   -g -xHost -O3 -m64 -
prec-div -shared-intel -sox 
 
Fortran compiler flags : -I$HOME/local/parmetis/openmpi/include  -DENABLE_PARMETIS=1   -g -xHost -O3 -m64 -
prec-div -shared-intel -sox 
 
Parameters used to run the configuration script before compilation:  
 
--with-libxc-prefix --with-libxc-include --disable-gdlib --enable-mpi --enable-newuoa --with-gsl-prefix --with-parmetis --
with-pfft-prefix 
 
LIBS_FFT="-Wl,--start-group -L$PFFT_HOME/lib -L$FFTW_HOME/lib -lpfft -lfftw3 -lfftw3_mpi -lfftw3_threads -Wl,--
end-group" 
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In order to compile Octopus with ScaLAPACK, the following MKL libraries were used: 
 
MKL_LIBS="-L$MKL_HOME -lmkl_scalapack_lp64 -lmkl_intel_lp64 -lmkl_sequential -lmkl_core -
lmkl_blacs_openmpi_lp64 -lpthread -lm" 
 
Alternatively, the following configuration parameters were used to employ libraries that were compiled locally: 
 
--with-blas=$HOME/SRC/LIBS/BLAS/libblas.a       --with-lapack=$HOME/SRC/LIBS/LAPACK/liblapack.a  
--with-blacs=$HOME/SRC/LIBS/scalapack/libscalapack.a --with-scalapack=$HOME/SRC/LIBS/scalapack/libscalapack.a 
 

 

Implementations of LCAO 

A set of initial Kohn-Sham orbitals are needed as an initial guess, since the solution of the ground-state problem 
is calculated iteratively. The Linear Combination of Atomic Orbitals (LCAO) approach is used to obtain an 
initial guess of the wave-functions and densities before the SCF cycle takes place.  

a. LAPACK native implementation of LCAO 
 
LCAO is performed by each MPI process using LAPACK library routines for the computations in a replicated 
way. For small atomic systems, this approach is relatively fast. However, when applied to larger systems, it  
leads to increased memory requirements in general, as it forces all the processes to allocate Kohn-Sham 
Hamiltonian and Overlap matrices, each of size NxN, as well as additional matrices. Therefore, this technique 
does not demonstrate good performance for larger systems due to the quadratic manner in which the size of the 
matrices increase. 

 

b. LAPACK alternative implementation of LCAO 
 
Only the root MPI process allocates memory for Hamiltonian and Overlap matrices and performs LCAO 
computations. 

 
if (mpi_grp_is_root(mpi_world)) then 

      SAFE_ALLOCATE(hamiltonian(1:this%norbs, 1:this%norbs)) 

      SAFE_ALLOCATE(overlap(1:this%norbs, 1:this%norbs)) 

end if 

 
After the computation is finished, the computed eigenvalues are distributed to all the MPI processes using 
MPI_Bcast: 

 
call MPI_Bcast(eval(1), size(eval), R_MPITYPE, 0, gr%mesh%mpi_grp%comm, 
mpi_err) 
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c. ScaLAPACK alternative implementation of LCAO 
 

Scalapack parallel library has been used to perform LCAO computations. Kohn-Sham Hamiltonian and Overlap 
matrices are distributed among the MPI processes.  

 
 ! The size of the distributed matrix in each node 

this%lsize(1) = max(1, numroc(this%norbs, nbl, st%dom_st_proc_grid%myrow, 
0, st%dom_st_proc_grid%nprow)) 

this%lsize(2) = max(1, numroc(this%norbs, nbl, st%dom_st_proc_grid%mycol, 
0, st%dom_st_proc_grid%npcol)) 

-- 

SAFE_ALLOCATE(hamiltonian(1:this%lsize(1), 1:this%lsize(2))) 

SAFE_ALLOCATE(overlap(1:this%lsize(1), 1:this%lsize(2))) 

 
The Call Graph in Figure 1 has been acquired using the Valgrind profiling tool Callgrind, which records the call 
history among functions, and has been visualized using KCachegrind tool. The graph demonstrates calls to 
ScaLAPACK routines  by root MPI process, when the ScaLAPACK alternative LCAO implementation is 
applied. 

 
Figure 1: Call Graph produced using Valgrind Callgrind tool and KCachegrind for visualization.  
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Use cases  
In this study, in order to acquire useful information on memory usage and performance of LCAO 
implementations, benchmark tests were performed on different numbers of chlorophyll molecules (Figure 2). 
The following test cases were used: 

 
a. 1 chlorophyll molecule - 149 atoms 

which corresponds to 374 orbitals 
 

b. 2 chlorophyll molecules - 247 atoms 
which correspond to 643 orbitals 
 

c. 4 chlorophyll molecules - 460 atoms 
which correspond to 1213 orbitals 
 

d. 3 chlorophyll molecules - 569 atoms 
which correspond to 1382 orbitals 
 

e. 14 chlorophyll molecules - 2025 atoms 
which correspond to 5121 orbitals 

                                                                                        
Figure 2: Visualization of 2 chlorophyll molecules with  

Chimera UCSF tool.  

These use cases are real systems that could be studied in another context. Moreover, these systems were chosen 
to give an idea of the memory usage from medium to large sizes. Clearly, memory is not an issue in smaller 
systems than those presented here, as long as they can fit in any commodity PC. 
 
Memory usage  
 
Valgrind Massif heap profiler [4] has been used for memory profiling and the results have been visualized using 
Massif Visualizer. Figure 3 demonstrates heap memory usage for 64 MPI processes and 1382 orbitals. The 
greatest amount of memory is allocated during execution of states_allocate_wfns subroutine for dpsi pointer to 
wavefunctions or states.  
 

SAFE_ALLOCATE(st%dpsi(1:np_part, 1:st%d%dim, st1:st2, k1:k2)) 
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Figure 3: Visualization of Valgrind Massif heap profiler results, using Massif Visualizer. Results were obtained from 

Octopus execution with 64 processes on 1382 orbitals use case using LCAO native implementation. (Peak of 550.5 MiB) 

Extensive profiling of Octopus memory allocation has been performed using the Octopus ad-hoc profiler, which 
proved to be a very useful tool, due to its capability to provide very detailed information on memory usage and 
performance [5].  
We can demonstrate that the ad-hoc profiler is good enough at estimating the memory usage. Assuming that the 
result of the Valgrind Massif profiler is acceptable, Octopus shows only a small discrepancy (which can also be 
justified). This time, the studied use case is only one chlorophyll molecule (a). It consists of 603,076 grid points 
(spacing 0.2Å, radius 4Å) and 188 atomic states. Every mesh point is represented with 16 bytes complex 
number, resulting to a size of 9.2 MiB (9,649,216 bytes). In total, 1.69 GiB (1814052608 bytes) are needed to 
store all 188 states. The simulation mesh is split in 4 domains (for MPI > 4). Runs with power of 2 MPI 
processes are performed (no OpenMP parallelization is used). The actual measurement is applied in a time-
dependent run, iterating 30 times and restarting from a previous ground-state run. The results are shown in 
Figure 4: 

 

Figure 4: Memory usage of Octopus code measured by its ad-hoc tool and with Massif profiler. Octopus measures only the 
usage in the root MPI process, while Massif measures in all process. Both results are in agreement. 
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Massif: the bars of the graphic show the peak memory usage detected by the Massif tool for each of the 
processes. Despite a small variation, all the processes use the same amount of memory. Octopus: the code prints 
the maximum memory usage for the main process. These results (circle sphere plots) agree with the peak usage 
detected by Massif, with a tiny underestimation because the ad-hoc profiler cannot take into consideration 
memory allocated by the external libraries. Multiplying the maximum memory usage detected by Octopus times 
the number of used processes (red triangles), the results agree with the sum of the individual Massif memory 
allocation. 
 
The Diagrams in Figures 5-7 and 9-11 demonstrate results from analysis performed using the Octopus ad-hoc 
profiler. It has been observed for all use cases that the largest memory allocation occurs on states variable (dpsi) 
when a few MPI processes are used. However, as it is displayed in Figure 5, this specific matrix is efficiently 
distributed when the number of MPI processes increases, due to a proper states parallelization. The result is that 
the memory allocated per process for dpsi decreases and becomes even lower than memory allocated for other 
matrices, as it can be observed in Figure 6. 

 
Figure 5: Memory allocation for  dpsi pointer to wave functions with varying number of orbitals and number of MPI 

processes (logarithmic scale) 

It has to be noted that MareNostrum III provides 2896 nodes with 1800 MB of RAM per task. Due to this 
limitation we were not able to run the native LCAO implementation for the 5121 orbitals use case with 128 
processes, as a larger amount of memory was needed. However, MareNostrum recently upgraded the memory 
installed in a number of nodes, providing 128 nodes (2048 cores) which offer 3812 MB per task and (64 nodes) 
1024 cores which offer 7812 MB per task. These upgraded nodes allow analyses of use cases that require a 
larger amount of memory. 

An overview of the largest variables in terms of memory allocation is displayed in Figure 6, and Table 1. The 
results refer to tests that were performed using 2048 MPI processes for all use cases. When large systems are 
analyzed, it can be shown that increasing the number of MPI processes leads to a decrease of memory allocated 
for the dpsi matrix, while the Hamiltonian and Overlap matrices now allocate the largest amount of memory. 
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Figure 6: Largest allocated variables overview for varying number of orbitals, using 2048 MPI processes. 

Table 1: Largest allocated variables overview for varying number of orbitals, using 2048 MPI processes. For each variable the 
corresponding source file is displayed where the memory allocation function has been called. 

largest variables 
allocated 

 
source file 

643 
orbitals 

(MB) 

1213 
orbitals 

(MB) 

1382  
orbitals 

(MB) 

5121  
orbitals 

(MB) 

cf%X(rs) cube_function_inc.F90 14.592 47.258 71.571 147.073 
this%X(buff) lcao_inc.F90 0.431 1.756 2.109 26.427 
hamilt lcao_inc.F90 3.154 11.226 14.572 200.078 
overlap lcao_inc.F90 3.154 11.226 14.572 200.078 
mesh%idx%lxyz mesh_init.F90 10.997 22.267 23.861 74.595 
mesh%idx%lxyz_inv mesh_init.F90 8.81 26.907 40.029 80.478 
gmf cube_function_inc.F90 5.984 12.188 13.16 42.789 
v_tmp par_vec_inc.F90 5.984 12.188 13.16 42.789 
vp%ghost par_vec.F90 13.297 19.603 20.506 40.975 
mesh%vp%part_vec mesh_init.F90 3.666 7.422 7.954 24.865 
gotit mesh_partition.F90 3.666 7.422 7.954 24.865 
st%dpsi states.F90 6.336 16.538 20.467 166.169 

The important increase of memory allocation for Hamiltonian and Overlap matrices, as larger systems are 
studied is displayed in Figure 7. It is clear that increasing the number of processes when employing native 
LCAO implementation does not affect the matrices' size. Memory allocation increases in quadratic manner as the 
number of orbitals of the system increases.  
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Figure 7 : Size of memory allocated for Hamiltonian and Overlap matrices for different numbers of cores and orbitals. 

Memory allocation for Hamiltonian and Overlap matrices is significantly decreased when employing LCAO 
ScaLAPACK alternative implementation. Matrices are distributed over MPI processes, eliminating the memory 
allocation problem which was introduced with the increase of orbitals. As an example, memory allocation for 
Hamiltonian and Overlap matrices for 5121 orbitals use case and 128 processes has dropped down to 
approximately 1.87 MB per process. 

Heap memory usage for 64 MPI processes and 1382 orbitals when employing LCAO ScaLAPACK 
implementation is displayed in Figure 8. Total memory consumption per process has been decreased in 
comparison to native LCAO implementation. LCAO implementations are compared in terms of memory 
consumption in Figure 9.  
 

 
Figure 8: Visualization of Valgrind Massif heap profiler results, using Massif Visualizer. Results were obtained from an Octopus 

execution with 64 processes on 1382 orbitals use case using LCAO ScaLAPACK implementation. (Peak of 520.3 MiB) 
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Regarding LCAO native and LCAO ScaLAPACK implementations the memory consumption is measured per 
process. However, it should be noted that when applying LCAO LAPACK alternative implementation, only the 
root MPI process stores the Hamiltonian and Overlap matrices. Therefore, considering this specific 
implementation, the maximum memory allocation is displayed in Figure 9, which refers only to the root process. 
It is observed that, although LCAO LAPACK alternative differs from native implementation and allocates less 
amount of memory when applied in larger systems, this approach is also severely limited by maximum memory 
per task, due to Hamiltonian and Overlap matrices memory allocation by the root process. On the contrary, the 
LCAO ScaLAPACK implementation achieved a decrease in memory allocation per process and, as a result, it 
has been proved to allow the study of larger systems. 
 
 

 
Figure 9: Memory consumption per process for LCAO implementations with varying number of processes and number of 

orbitals.  
 
As this project aims at optimizing the memory usage in order to make possible running Octopus for many states 
systems on HPC infrastructures, many of the benchmark tests that were performed used few nodes to extract 
conclusions from the behaviour of the code when the memory provided is not large enough. This practice 
intended to simulate the memory allocation effect on bigger use cases in terms of the number of orbitals. 
 
Scaling of the application 
 
Results presented in Table 2 have been acquired from benchmark tests performed on 5121 orbitals use case. 
Octopus initialization and LCAO steps do not demonstrate good scaling behaviour. 
 

Table 2 : Wall time and speed-up from benchmark tests performed on 5121 orbitals use case. 
 

Number  
of  

cores 

Hamiltonian 
/ Overlap 

matrix size 
(MB) 

dpsi matrix 
size 

(MB) 

Wall clock 
time 
(sec) 

Speed-up vs 
the first one 

Number of 
MareNostrum III 

Nodes 

256 
LAPACK 

200.078 854.85 5216.277 1.000 16 

512 
LAPACK 

200.078 482.655 4938.483 1.056 32 

1024 
LAPACK 

200.078 285.983 4098.483 1.272 64 

2048 
LAPACK 

200.078 166.169 4351.960 1.198 128 
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alternative implementations 

128 
ScaLAPACK 

 1.875 1472.730 467.293 11.162 8 

256 
ScaLAPACK 

< 1.8  854.85 553.208 9.429 16 

256 
LAPACK 

only root MPI 
process 

200.078 
(allocated 

only by root 
process) 

854.85 564.02 9.248 16 

 
 

Significant performance improvement is observed when applying alternative LCAO in comparison to native 
implementation. The Diagram in Figure 10 demonstrates the scaling behaviour of the native LCAO 
implementation in comparison to the parallel implementation using the ScaLAPACK library when the number of 
orbitals is increased.  
 

 
Figure 10: Performance improvement of LCAO ScaLAPACK in comparison to native LCAO implementation. 

This study mainly focused on the first steps of Octopus execution: initialization and LCAO. SCF iterations were 
not extensively performed. The diagrams in Figure 11 aim to demonstrate how wall time is shared between the 
LCAO step and the system initialization, when Octopus is only executed up to the LCAO step completion. It is 
clear that the percentage of wall time for these two steps is affected by the number of orbitals of the system and 
the number of MPI processes. System initialization consumes higher percentage of total wall time when more 
MPI processes are used. In large systems, however, the LCAO step dominates over the total wall time. As it has 
been already mentioned, 5121 orbitals use case did not run on MareNostrum III due to larger memory 
requirements than provided by the system . 
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Figure 11: Percentage over total wall time dedicated for LCAO_RUN and SYSTEM_INIT with varying number of orbitals 
and processes for LCAO implementation. 

This behaviour changes when LCAO ScaLAPACK alternative is applied (Figure 12). System initialization step 
consumes the same amount of time as in LCAO native implementation, while wall time for LCAO step 
decreases significantly, leading to an important decrease of total wall time. 
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Figure 12: Percentage over total wall time dedicated for LCAO_RUN and SYSTEM_INIT with varying number of orbitals 
and processes for ScaLAPACK alternative LCAO implementation. 

Even though this initialization time is not negligible, this is is only a small percentage in a real run, which could 
easily last few days. 
 
Remaining time spent, missing from percentages in Figures 11 and 12 is used for calculation of total forces on 
the ions created by the electrons. SCFCalculateForces variable controls whether the forces on the ions are 
calculated at the end of a self-consistent iteration. The default value of SCFCalculateForces variable is true, 
unless the system has only user-defined species. Many initialization steps have to be performed, such as the grid 
creation and its distribution, creation of a stencil, the selection of the best FFT strategy, and so on, even though 
these steps do not consume a great amount of time. 

Future work 

Sparse matrix storage techniques might be considered in the future as an alternative solution in order to study 
large systems. LAPACK and ScaLAPACK libraries do not provide routines for sparse matrices. As a result a 
different implementation may be considered. For example, ARPACK library, which provides routines for large 
sparse matrices computations, could be used. 
 
Table 3 demonstrates the densities of the matrices with varying numbers of orbitals. When number of orbitals or 
the atomic system is increased, Hamiltonian and Overlap matrices become less dense. 
 

Table 3: Hamiltonian and Overlap matrices densities for 643 and 5121 orbitals 
 

 
Number 

of 
orbitals 

Number of 
stored 

elements  
in triangular 

matrices 

Number of 
non-zero  

elements :  
Hamiltonian 

matrix 

 
Hamiltonian 

matrix  
Density (%) 

Number of non-
zero  

elements :  
Overlap  
matrix 

 
Overlap 
matrix 

Density (%) 

643 207046 192933 93.18 169536 81.88 

5121 13114881 2776861 21.17 1941723 14.80 
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Conclusions 

We have shown that storage requirements on native LCAO implementation for Hamiltonian and Overlap 
matrices become a problem as the number of orbitals of the system increases. Even greater amount of memory 
per process is allocated for dpsi states pointer to wave functions matrix. However, benchmark tests have shown 
that this particular matrix is partitioned properly over the MPI processes. Therefore, the size of allocated 
memory per process drops down when the number of MPI processes is increased. 
 
The memory allocation obstacle, as it has been demonstrated through the benchmark tests presented in this 
study, can be overcome when using the parallel alternative implementation of LCAO, enabling Octopus to run 
for larger systems. Performance optimization has also been achieved. Developments in this project will allow to 
run bigger simulations and, therefore, more interesting systems. 
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