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Abstract: We investigate the effect of non-canonical kinetic terms on inflation in

supergravity. We find that the biggest impact of such higher-derivative kinetic terms

is due to the corrections to the potential that they induce via their effect on the

auxiliary fields, which now have a cubic equation of motion. This is in contrast to

the usual (non-supersymmetric) effective field theory expansion which assumes that

mass-suppressed higher-derivative terms do not affect the lower-derivative terms al-

ready present. We demonstrate with several examples that such changes in the

potential can significantly modify the inflationary dynamics. Our results have im-

mediate implications for effective descriptions of inflation derived from string theory,

where higher-derivative kinetic terms are generally present. In addition we elucidate

the structure of the theory in the parameter range where there are three real solutions

to the auxiliary field’s equation of motion, studying the resulting three branches of

the theory, and finding that one of them suffers from a singularity in the speed of

propagation of fluctuations.
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1 Introduction

The observational data available on the cosmic microwave background (CMB) [1–4],

including the latest PLANCK data [5, 6], baryon acoustic oscillations [7], redshift

[8, 9] and Hubble parameter measurements [10], portrays a universe very close to

being spatially flat, in which large-scale structure was generated from an almost

scale-invariant power spectrum of primordial density perturbations with Gaussian

distribution. A major contemporary challenge in cosmology is to find a convinc-

ing, self-consistent, explanation for this early state of the universe. The two most

promising theories to date are a period of single-field plateau-type inflation [6], and

certain classes of two-field cyclic models of the universe [11, 12]. Both theories fit

the data well, subject to important assumptions: in the inflationary case, one as-

sumes for instance that the right initial conditions for inflation were present for its

onset, and that, after regulating the infinities that eternally inflating plateau models

lead to, the naive predictions still hold (for contrasting views on these issues, see

[13] and [14]). In cyclic models, the most important assumption is that a smooth,

non-disruptive bounce from the contracting to the expanding phase is possible. In
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the present paper, we will only look at the inflationary case, and we will assume that

the assumptions mentioned above are justified. Our concern will rather be with the

(classical) dynamics during the inflationary phase.

In the absence of a UV-complete theory of quantum gravity, the dynamics of

inflation is usually treated using an effective field theory (EFT) approach. Any given

theory of inflation is then only valid up to some energy cut-off Λ, with the physics

above this scale being integrated out. The Lagrangian is organized into a series of

kinetic and potential terms with increasing numbers of fields and/or derivatives, in

such a way that successive terms are suppressed by increasing powers of the cut-

off Λ/MP (expressed in Planck units). For non-derivative interaction terms, it is

well known that, despite this suppression, the predictions of inflation are highly

sensitive to certain higher-order terms in the series. For instance, the underlying

UV completion can lead to large corrections to the inflaton mass via dimension

6 operators of the form O6

M2
P
∼ O4

M2
P
φ2, when O4 has a VEV of the order of the

inflationary energy density. This is known as the η problem and is a generic problem

in supergravity theories of inflation, see e.g. [15]. The underlying UV-complete

theory can also lead to important corrections to the kinetic terms, resulting in higher-

order corrections such as the square of the ordinary kinetic term, (∂φ)4 [16, 17].

These higher-derivative kinetic terms can have dramatic effects and have been studied

extensively, for instance in DBI inflation [16, 18–22], in the context of the Horndeski

action [23–25] or within the EFT of inflationary perturbations [26–30].

Whether the correct UV-complete underlying theory of inflation is string theory

or some other high-energy theory is as yet unknown. Nevertheless, one may expect

this theory to be supersymmetric for various reasons including unification of the

electroweak and strong forces at high energies, the hierarchy problem [31, 32] and

phenomenology [33, 34]. The proper low-energy setting for a theory of inflation is

then supergravity, and the goal of the present paper is to investigate a number of

novel properties that the extension of the inflationary EFT framework to supergravity

entails. An initial study of this extension was undertaken by Baumann and Green in

[35, 36], where they studied inflationary perturbations and focussed on possible non-

Gaussian observational signatures. In that context, Baumann and Green argued that

they could neglect the auxiliary fields. In the present paper, we will focus on the

inflationary background – in that situation, the auxiliary fields play a crucial role. In

fact, it is the interplay of the higher-derivative kinetic terms and the auxiliary fields

that leads to all of the new effects that we found, as we will briefly describe now.

The most important field in our study will be the auxiliary field F of a chiral

superfield Φ. Assuming that the auxiliary fields of the supergravity multiplet have

already been eliminated via their equations of motion, the formula for the potential

reduces to the expression

V = −eK/3K,AA?FF
? − e2K/3[F (DAW ) + F ?(DAW )?]− 3eKWW ?. (1.1)
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Here K is the Kähler potential, W (A) is the superpotential and A = Φ |θ=θ̄=0 is a

complex scalar representing the lowest component of the chiral superfield Φ (with

A containing the inflaton as one of its two real scalar field constituents); moreover,

DAW = W,A + K,AW is the Kähler covariant derivative. Now substituting the

standard solution of the auxiliary field equation

F = −eK/3K ,AA?(DAW )? (1.2)

leads to the famous formula [37]

V = eK
[
K ,AA?DAW (DAW )? − 3WW ?

]
. (1.3)

Thus the potential is given as the difference between two manifestly positive terms

(assuming the standard sign for the kinetic term, i.e. a positive Kähler metric K,AA?),

and hence these terms are larger (and in some cases significantly larger) in magnitude

than the final potential. This simple observation turns out to have important conse-

quences in our present context: we will add the leading higher-derivative correction

term to the standard kinetic term for A – in supergravity this term is of the form

[38, 39]

T (∂A)2(∂A?)2 − 2TeK/3∂A · ∂A?FF ? + Te2K/3(FF ?)2, (1.4)

where T has dimensions [M−4] and for now we take T to be a small constant (when

expressed in Planck units) 1. As one can see from the above formula, adding a higher-

derivative kinetic term in supergravity brings with it corrections to the lower-order

kinetic terms (second term) as well as to the potential (third term). This is the first

non-trivial consequence of supersymmetry: one cannot simply build up an effective

field theory term by term, since each new term modifies some of the terms previously

present! The second consequence comes from estimating the leading corrections by

simply plugging in the solution for F that is valid in the absence of the higher-

derivative terms, namely Eq. (1.2), into Eq. (1.4) (with K,AA?=1):

T (∂A)2(∂A?)2 − 2T∂A · ∂A?eKDAW (DAW )? + T [eKDAW (DAW )?]2, (1.5)

One would naively have expected that all corrections which the addition of the term

(1.5) leads to are of O(T ) and that therefore, for small T (say T = 1/100), they can

safely be ignored. However, as we can now see, the potential V gets corrected not by

a term TV 2, but rather by a term proportional to T [eKDAW (DAW )?]2. As argued

below Eq. (1.3), this term can be significantly larger than TV 2 and thus the inclusion

of higher-derivative kinetic terms can, and does, lead to important modifications of

the potential. In the context of inflationary cosmology, this is evidently of importance,

since the potential needs to be very flat over a significant field range. As we will see

in more detail later on, such corrections have a crucial influence on the dynamics.

1Here we are suppressing spacetime indices, so for instance (∂A)2 ≡ ∂µA∂µA.
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In the present paper, we will develop the heuristic ideas above and present a

quantitative analysis of the effects of the leading higher-derivative kinetic correction

term in supergravity for several representative examples. In section 2 we will ana-

lyze the general structure of the theory, arguing analytically that the T -dependent

correction to the potential will dominate over the correction to the kinetic term.

We confirm this numerically by considering a number of explicit examples in section

3, where we study the (inflationary or not) dynamics and their dependence on T.

The relationship with the formalism for finding inflationary attractor solutions is

discussed in section 3.1. In section 4 we study the theory for negative T where there

can be three real solutions to the equation of motion for F . We find a blowup in the

speed of sound c2
s for the branch which is smoothly connected to the T > 0 solution.

We conclude with a discussion section. Appendix A contains the relevant stability

analysis for the single-field solutions that we describe in the paper.

2 Structure of the auxiliary field F

2.1 Setup

It was shown in [40] how to constructN = 1 supersymmetric actions involving higher-

order kinetic terms of chiral superfields in flat superspace. This was generalized to

N = 1 supergravity, or curved superspace, in [38], where the general Lagrangian for

higher-derivative terms in supergravity was found to be2:

1

e
L =

1

2
R−KAA?∂A · ∂A? +KAA?e

K/3FF ? + e2K/3 [F (DAW ) + F ?(DAW )?]

+3eKWW ? + 16(∂A)2(∂A?)2TAA?AA? − 32eK/3FF ?(∂A · ∂A?)TAA?AA?
+16e2K/3F 2(F ?)2TAA?AA? , (2.1)

where TAA?AA? is the lowest component of the tensor superfield Tijk?l? [38] which

controls the higher-derivative kinetic terms. It is a function of A and can contain

spacetime derivatives of A as long as all spacetime indices are contracted. In this

paper we will choose

TAA?AA? = T (K,AA?)
2,

with T being a constant. Given that the action is quartic in the auxiliary field F , one

sees immediately that this implies a cubic equation of motion for F. This can lead,

in certain regions of the parameter space, to there being three real solutions for F ,

which we explore in the following. An initial study of the action (2.1) was undertaken

in [38], in which the solutions of the cubic for F and the behavior of a general system

in the limiting cases where T → 0 and T → ∞ were considered. Here we expand

this analysis significantly, considering the details of the solutions for F for all values

2For closely related work, see also [39, 41–50]
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of T , examining the relative importance of the kinetic and potential contributions,

and exploring details of the theory numerically for several explicit examples.

We start by writing out the equation of motion for F :

0 = KAA?F + eK/3(DAW )? + 32FTAA?AA?
(
eK/3FF ? − ∂A · ∂A?

)
. (2.2)

Multiplying (2.2) by F ? we see that (DAW )?F ? must be real, which implies

F ? =
DAW

(DAW )?
F. (2.3)

Then the Lagrangian and cubic become

1

e
L =

1

2
R−KAA?(∂A · ∂A∗) +KAA?e

K/3 DAW

(DAW )?
F 2 + 2e2K/3F (DAW )

+3eKWW ? + 16(∂A)2(∂A?)2TAA?AA? + 16e2K/3F 4

(
DAW

(DAW )?

)2

TAA?AA?

−32eK/3F 2 DAW

(DAW )?
(∂A · ∂A?)TAA?AA? (2.4)

0 = KAA?F + eK/3(DAW )? + 32

[
eK/3

DAW

(DAW )?
F 3 − ∂A · ∂A?F

]
TAA?AA? .

(2.5)

In order to proceed, we must solve for the auxiliary field F and plug it back into the

Lagrangian above. The solutions are qualitatively different depending on whether T

is positive or negative, and hence we will deal with these two cases separately (the

negative T case will be dealt with in section 4).

2.2 Solving the cubic: T ≥ 0

The cubic can be rewritten in standard form as [38]

0 = F 3 + pF + q (2.6)

p = e−K/3KAA? (DAW )?

DAW

[
1

32T
−KAA?∂A · ∂A?

]
(2.7)

q =
1

32T

(KAA?)2(DAW )?2

DAW
(2.8)

We will often specialize to the case where we consider only one real scalar of A, e.g.

we write A = 1√
2
φ with φ being real and denoting the inflaton. In the cosmological

context, we will treat φ as being a function of time only and use the standard

abbreviation

X ≡ 1

2
φ̇2.

In this case, with the superpotential being a so-called real holomorphic function of

A (i.e. a function of A where the series expansion contains only real coefficients),
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Eq. (2.3) implies that F must be real. For T ≥ 0 and p, q ∈ R there is generally

only one real solution to the cubic for F , given by [38]

F = (−q
2

+
√
D)1/3 + (−q

2
−
√
D)1/3, (2.9)

where D = q2

4
+ p3

27
is the discriminant. This can also be compared to the T = 0

solution for F , which is just

FT = 0 = −eK/3KAA?(DAW )?. (2.10)

Thus, for these cases, the consistency condition (2.3) reduces the number of permitted

branches of the theory to only one. (In section 4 we will study examples where more

branches are allowed.)

To study the dependence of F on X and T, note that the cubic is of the form

(momentarily setting KAA? = 1)

F 3 +
C1(φ)F

32T
(1 + 32TX) +

C2(φ)

32T
= 0, (2.11)

so that we can write

p =
C1(φ)

96T
(1 + 32XT ), (2.12)

q =
C2(φ)

32T
, (2.13)

where C1,2 are functions of φ only. Thus, for given values of C1,2, the X and T

dependence of F will be the same in each case; see Figure 1. As is evident from the

figure, F starts out at T = 0 at its standard value (2.10) and then approaches zero as

T and X increase. There is one immediate consequence of this fall-off towards zero,

namely that the potential becomes more and more negative with increasing T and X

(as should be evident from Eqs. (1.1) and (1.3)). An explicit example of this general

trend is provided by the supergravity embedding of DBI inflation, as described in

[51].

We will make this more precise now by calculating the perturbative corrections

induced when T is non-zero. By considering the action (2.4), we can see that the

higher-derivative terms, parametrized by T , enter the action in two distinct ways: via

the higher-power kinetic term 16TX2, and via the T -dependence of F , which leads

to corrections to the kinetic terms as well as significant corrections to the potential.

In [38] a small T expansion of F was given, using the approximation q � p3/2. In
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Figure 1. The auxiliary field F as a function of X and T , for T > 0 and with C1 = C2 =

0.1. We see that F is a negative function, which, starting from its standard T = 0 solution

(here arbitrarily set at the value F = −1), approaches zero asymptotically as X and T

increase.

this limit,

Fq�p3/2 ≈ −
q

p
+
q3

p4
− 3q5

p7
+ ... (2.14)

≈ −eK/3KAA?(DAW )?

+32TeK/3KAA?(DAW )?
(
KAA?eK |DAW |2 −KAA?∂A · ∂A?

)
−322T 2eK/3KAA?(DAW )?

(
3eKKAA?|DAW |2 − ∂A · ∂A?KAA?

)
×(

eKKAA?|DAW |2 − ∂A · ∂A?KAA?
)
.

This gives T -dependent corrections up to O(T 2) to the standard result for T = 0

(2.10). In order to determine when such corrections are significant, we must deter-

mine the conditions for q/p3/2 to be large:

q2

p3
=

32TeKKAA?DAW (DAW )?

(1− 32TKAA?∂A · ∂A?)3
. (2.15)

This expression can be large even when T is small, as long as 32eKKAA?|DAW |2 is

sufficiently big. We would like to point out that this can be the case even when the

original potential

VT=0 = eK(KAA?|DAW |2 − 3|W |2)

is small, since the potential is given by the difference of two potentially large terms.

Furthermore, the resulting corrections to the action will affect the kinetic and po-

tential term contributions in different ways. Writing the Lagrangian as

1

e
L =

1

2
R−KAA?∂A · ∂A?[1 + ∆K] + 16T (∂A)2(∂A?)2

−eK(KAA?|DAW |2 − 3|W |2)[1 + ∆V ], (2.16)
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to quadratic order in T , we obtain

∆V = −16T

V
eK(KAA?)2|DAW |4 +

322T 2

V
e2K(KAA?)3|DAW |6 (2.17)

∆K = 16T (−KAA?∂A · ∂A? + 2eKKAA? |DAW |2) (2.18)

−64T 2eKKAA?|DAW |2(−16KAA?∂A · ∂A? + eKKAA?|DAW |2).

The case of greatest interest to us is where eKKAA?|DAW |2 is significantly larger

than V - then, for small field velocities we have∣∣∣∣∆K∆V

∣∣∣∣ ≈ 2V

eKKAA?|DAW |2
. (2.19)

Thus, when the higher-derivative term modifies the lower-derivative terms signifi-

cantly, it tends to affect the potential much more than the (ordinary) kinetic term.

We will explore these effects for specific examples in detail in section 3, but one can

immediately see the effect on various potentials (which are defined below), by looking

at Figs. 7 and 8. As is already evident by eye, even for small T the potentials are

dramatically altered in certain field ranges.

3 Examples

We will now consider several explicit examples in order to illustrate the general effects

described above. Specifically, we will look at the representative cases listed in table 1

below. We are using the notation that X = 1
2
φ̇2, Y = 1

2
ξ̇2 and we are taking c to be

a positive real number. Note that in the flat potential case PFl, the superpotential

WFl is chosen such that the uncorrected (T = 0) potential is equal to a constant V0

along the ξ = 0 line [52].

For the four examples, the corresponding Lagrangians are easily obtained by

plugging the potentials listed in the table into Eq. (2.1). In our numerical studies,

we will focus on the case where only the inflaton field φ is dynamical, and the second

scalar ξ remains fixed at ξ = 0. In that case, the auxiliary field takes only real values,
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Table 1. Details for four explicit examples.

Canonical Kähler potential Quadratic Kähler potential

KCanK = A?A

WCanK = ecA

ACanK = 1√
2
(φ+ ıξ)

KAA? = 1

eK = e
(φ2+ξ2)

2

∂A · ∂A? = −(X + Y )

DAWCanK =
(
c+ 1√

2
(φ− ıξ)

)
e
c(φ+ıξ)√

2

KQuadK = −1
2
(A− A?)2

WQuadK = ecA

AQuadK = 1√
2
(φ+ ıξ)

KAA? = 1

eK = eξ
2

∂A · ∂A? = −(X + Y )

DAWQuadK = (c−
√

2ıξ)e
c(φ+ıξ)√

2

Flat potential Linear superpotential

KFl = −4 ln(A+ A?)

WFl = 2
√

V0
3
A2
(
A
√

3 − A−
√

3
)

AFl = e
1√
2
φ

+ ı ξ√
2

KAA? = e−
√

2φ

eK = (2e
φ√
2 )−4

∂A · ∂A? = −(e
√

2φX + Y )

DAWFl = 4
√

V0
3
AQ−(1− e−φ/

√
2A)

+2
√
V0AQ+

Q± = A
√

3 ± A−
√

3

KLin = −1
2
(A− A?)2

WLin = c
√

2A

ALin = 1√
2
(φ+ ıξ)

KAA? = 1

eK = eξ
2

∂A · ∂A? = −(X + Y )

DAWLin = c
√

2(1− ıξφ+ ξ2)

and the respective matter Lagrangians simplify to the following expressions:

PCanK(X,φ) = X + 16X2T + 32eφ
2/6F 2XT + 16eφ

2/3F 4T (3.1)

+eφ
2/6F 2 + 2eφ

2/3F

(
c+

φ√
2

)
e
cφ√
2 + 3eφ

2/2e
√

2cφ,

PQuadK(X,φ) = X + 16X2T + 32F 2XT + F 2 + 16F 4T + 2cFe
cφ√
2 (3.2)

+3e
√

2cφ,

PFl(X,φ) = X + 16X2T + 32|F |2XT (2e
φ√
2 )−4/3(eφ/

√
2)−2 (3.3)

+4|F |2(2eφ/
√

2)−10/3 +
V0

4
Q−(φ)2 + 16(|F |2)2T (2eφ/

√
2)−8/3(eφ/

√
2)−4

+2F (2eφ/
√

2)−5/3
√
V0Q+(φ),

PLin(X,φ) = X + F 2 + 3c2φ2 + 2
√

2cF + 16X2T + 32F 2XT (3.4)

+16F 2F ?2T.
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The stability of the potentials around the ξ = 0 line is studied in Appendix A.

3.1 Attractor Solution and Numerical Trajectories

A general formalism for inflation in the case of Lagrangians of the form P (X,φ) was

given in [17]. It was shown there that when inflation takes place (i.e. when a set

of generalized slow-roll coordinates is much smaller than one), it is an attractor in

(φ,Π) phase space. Since these results apply in our case as well, we will briefly review

the conditions for such a non-canonical inflationary attractor to exist.

The scalar field equation of motion arising from a Lagrangian L = a3(t)P (X,φ)

can be written in the compact form

Π̇ = −3HΠ + Pφ, (3.5)

where Π = φ̇PX =
√

2XPX is the canonical momentum. We can rewrite this in

terms of the generalized slow-roll parameters [17]

ε =
3X

ρ
PX ;

ηX = ε− Ẋ

2HX
;

ηΠ = ε− Π̇

HΠ
,

finding

Π =
Pφ
3H

(
1 +

ε+ ηΠ

3

)−1

(3.6)

⇒ Πinf =
Pφ
3H

. (3.7)

Note that there is no approximation in the expression for Π. However, in the case

that ε and ηΠ are both small, or at least ε − ηΠ � 1, we obtain the inflationary

solution Π ≈ Πinf . To see that it is an attractor precisely when the inflationary

parameters are small, we follow the analysis of [17]: for

Π = Πinf (1 + δΠ),

and autonomous equations

φ′ =
Π

PXH
; (3.8)

Π′ = −3

[
Π− Pφ

3H

]
, (3.9)
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we have

δΠ′

δΠ
= −3

[
1 +

ε− ηΠ

3
− c2

s

√
2X

3H

PXφ
PX

+
Pφ
√

2X

6ρH

]
(3.10)

= −3

[
1 +

1

3
(ηΠ − ε)c2

s +
1

3
(ε− ηX) +

ε

3
+
ε− ηΠ

3

]
(3.11)

= −3 +O(ε, ηX , ηΠ). (3.12)

Note that the last two terms in the first line have the opposite sign compared to the

corresponding terms in [17]; this is because of the sign chosen for φ̇ = ±
√

2X, where

here we have chosen the plus sign. From the final expression, we see that for small

inflationary parameters, the perturbations δΠ from Πinf decay as δΠ ∼ e−3N . This

is a localized attractor, in the sense that it is an attractor only in the region of phase

space where the inflationary parameters are small.

The attractor behavior of the inflationary solution (3.7) is demonstrated below

for PFl(X,φ) in the case where V0 = 10, T = 10−3, see Fig. 2. The red lines are a

set of trajectories spanning a range of initial conditions (the initial conditions can

be inferred from the starting points of the red lines). The blue line is the solution to

(3.7); it is solid up to φ ≈ 0.612 where ηX and ηΠ become greater than 0.5, and dashed

otherwise. As is evident from the figure, all trajectories that start in the vicinity of

the attractor approach it quickly and then follow it until the slow-roll conditions are

no longer satisfied. The behavior of the generalized slow-roll parameters, evaluated

along (3.7), is shown on the right. For this specific example, we find that inflation

lasts for a number of e-folds Ne ≈ 40− 100 for trajectories beginning at small φ.

Out[339]=

0.2 0.4 0.6 0.8 1.0
Φ

-1.0

-0.5

0.0

0.5

1.0
P

Figure 2. The blue line indicates the inflationary attractor (3.7) for PFl(X,φ) with

V0 = 10, T = 10−3 (left). The line is solid until ηX and ηΠ become greater than 0.5,

and dashed from then on. The figure on the right shows the behavior of the generalized

slow-roll parameters, evaluated along the blue solid/dashed line (3.7).

The Lagrangians given above in Eqs. (3.2) - (3.5), while very complicated to

analyze analytically, can be studied numerically. For an FRW background, with

ds2 = −dt2 +a(t)2dx2 and the field φ = φ(t) homogeneous in space, we have to solve
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the coupled system of equations

0 = φ̈(t)(PX + 2XPXX) + 2XPXφ + 3H(t)φ̇(t)PX − Pφ, (3.13)

0 = Ḣ(t) +XPX , (3.14)

where we use the standard notation that a subscript indicates a derivative w.r.t. the

corresponding quantity. We choose c or V0 and a fixed value of T in each case with

the hope of finding a noncanonical inflationary solution. Note that because of the X

dependence in F , the coefficient of the canonical kinetic term X in the action is not

in general canonically normalized.3

The plots for three of the examples considered in the previous section are given in

Figs. 3 and 4 for the Lagrangians PCanK , PQuadK and PFl respectively. In each case,

we plot the trajectories in the field amplitude/field momentum plane for a range of

initial conditions that can be read off from the starting points of the red lines on the

graphs. Also indicated on the graphs is the slow-roll attractor solution Eq. (3.7) - it

is drawn as a solid blue line when the slow-roll conditions are satisfied and a dotted

line otherwise. As expected from the analysis above, this is an attractor when the

slow-roll parameters are small, and the focussing of the trajectories around the solid

blue line confirms this expectation. For the parameters shown, the potentials are

stable around ξ = 0 until φ ∼ 0.6 for PCanK and PQuadK , while PFL is generally

unstable around ξ = 0 for small φ - see Appendix A.

We should point out that the linear superpotential leads to a very steep and

generally negative potential, and is not particularly interesting for the study of in-

flationary trajectories. This example however illustrates one important facet of the

present setting: if a potential is already unstable, the higher-derivative T -dependent

corrections generally tend to make it even more unstable. This feature may be in-

teresting in ekpyrotic models, where a steep negative potential is required [53, 54].

However, in the inflationary context, the higher-derivative terms play a more wel-

come role when the potential curves upwards too steeply (i.e. when V,φφ > 0). As we

will discuss next, in those cases the higher-derivative terms have two benefits: the

potential is usually lowered, and the higher-derivative kinetic term tends to slow the

field down.

3Although it is possible to transform to the canonically normalized variable numerically, it

cannot generally be done analytically, and as it does not affect the overall trends being studied and

compared in the examples we consider here, we leave the normalization as is.
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Figure 3. Trajectories in (Π, φ) phase space for c = 3 and T = 0.01 with PCanK(X,φ)

(left) and PQuadK(X,φ) (right). The blue line is the slow-roll approximation, which is a

solid line until one of the generalized slow-roll trajectories reaches 1.

0.2 0.4 0.6 0.8 1.0
Φ

-1.0

-0.5

0.0

0.5

1.0
P

Figure 4. Trajectories in (Π, φ) phase space for PFl(X,φ) with V0 = 10 and T = 0.0001.

3.2 Effect of the noncanonical kinetic terms on the dynamics and on the

potential

To study the effect of the noncanonical kinetic terms on the dynamics, we can com-

pare the trajectories above to those for the action with canonical kinetic term, but

where we keep the T -dependent potential. In other words, we compare PNC(X,φ)

with PC(X,φ) = X + PNC(0, φ). Comparing the trajectories that we obtain in each

case will tell us what the effect of the noncanonical kinetic terms is. Looking at the

resulting trajectories, we see that the canonical trajectories in (X,φ) are steeper,

while the trajectories in (Π, φ) are less steep because of the effect of PX . This is

clearly seen in the representative plots for the Quadratic Kähler potential, Figure 5.

Thus, as expected from the intuition gained by studies of DBI inflation, we can see

that the higher-derivative kinetic term slows the inflaton down. Correspondingly, in

each case the slow-roll parameters are reduced, as shown in Figure 6 (the other cases

are very similar).
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Figure 5. Trajectories in (Π, φ) (left) and (φ̇, φ) (right) phase space for PQuadK(X,φ) with

c = 3 and T = 0.01. The same trajectories for PQuadK(X,φ) with non-canonical kinetic

terms switched off are in blue.
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Ε

Figure 6. ε(φ) for PQuadK(X,φ) with c = 3 and T = 0.01 for a single trajectory. The

same trajectories for PQuadK(X,φ) with non-canonical kinetic terms switched off are in

blue.

All these plots demonstrate that the higher-derivative kinetic term has a notice-

able effect on the dynamics. However, the most dramatic effect is on the shape of

the potential itself, as already discussed in section 2.2. For our examples, given the

solutions for the auxiliary field F , we can plot the respective potentials by setting X

to zero, i.e. we are interested in V = −P (X = 0, φ). In each case, this is found to be

highly sensitive to increases in T , with the potential rapidly flattening or changing in

gradient until it becomes negative and steep. Obtaining a flat or almost flat potential

is thus a matter of fine-tuning T , as is evident from the plots below in Figs. 7 and

8. Moreover, it is generally not possible to tune the potential to be flat over a large

field range, which, given past experience with the search for inflationary potentials

in supergravity, is not so surprising. Nevertheless, in certain cases the lowering of

the potential described here may help in extending the inflationary phase.
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Figure 7. Effect of increasing T > 0 for an originally flat potential −PFl(0, φ) for V0 = 0.1

(left) and for an unstable potential −PLin(0, φ) for c = 10 (right).
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Figure 8. Effect of increasing T > 0 for the exponential potentials −PCanK(0, φ) for c = 3

(left) and on −PQuadK(0, φ) for c = 10 (right).

4 Negative T

Up to now, we have been imposing T > 0, which corresponds to the standard ex-

pected sign for the first non-trivial correction X2 to the standard kinetic term X

[55]. This had the consequence of reducing the number of possible solutions for the

auxiliary field to only one, by virtue of the consistency condition (2.3). However,

in order to understand the structure of the theory better, it is interesting to also

consider the T < 0 case, where, as we will see, three branches of the theory can

co-exist.

4.1 Three branches

From Table 1 above, it is easy to see that the cubic for F in each of the examples

considered here is of the form (2.11) (for ξ = 0)

0 = F 3 + pF + q, (4.1)

0 = F 3 +
C1(φ)F

32T
(1 + 32XT ) +

C2(φ)

32T
. (4.2)
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Assuming as before that c, V,DAW,KAA? > 0, so that C1(φ) and C2(φ) are non-

negative, allows us to examine the solutions to the cubic equation for the auxiliary

field F in detail. There are three solutions, given explicitly below, and they are not al-

ways all real. Which solution is real depends on the relative values of C1(φ), C2(φ), X

and T .

Defining the discriminant D = q2

4
+ p3

27
as above, the three regions to consider

are:

• Region 1: p < 0;D < 0: This region is defined by the interval 0 < X <

− 1
32T
−
(

27
4

C2(φ)2

C1(φ)3322T 2

) 1
3

for fixed T < 0.

• Region 2: p < 0;D > 0: This region is given by X > − 1
32T
−
(

27
4

C2(φ)2

C1(φ)3322T 2

) 1
3

and X < − 1
32T

for fixed T < 0.

• Region 3: p > 0;D > 0: This region is given by X > − 1
32T

for fixed T < 0.

These regions are clearly seen in the plots below, for C1(φ) = 1, C2(φ) = 0.1. The

figure corresponds to the Linear case, but, keeping in mind that F obeys an algebraic

and not a differential equation, it is clear that the structure will be the same in

general. We plot the three solutions for F , FB, FM and FG, colored in blue, magenta

and green respectively. All three are real in Region 1 (where the labels should be

read as FB1, FM1 and FG1), but only FM is real in Region 2, and only FG is real in

Region 3.

0.1 0.2 0.3 0.4 0.5 X

-0.4

-0.2

0.2

0.4

0.6

ReHFL

0.1 0.2 0.3 0.4 0.5 X

-0.4

-0.2

0.2

0.4

ImHFL

FB

FM

FG

Figure 9. The solutions to the cubic for F as a function of X for φ = 0.1, T = −0.1. Note

that for small X all three solutions are real, and their imaginary parts thus overlap at 0.

As expected, either one or all of the solutions are real in a given region. Here we

have one real solution in regions 2 and 3, denoted by FM and FG respectively, and

three real solutions in region 1. FB is only real in Region 1. Note that q < 0 ∀ T < 0.

The explicit expressions, valid in the regions when the respective solutions are real,
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Figure 10. The solutions to the cubic for F as a function of T for φ = 0.1, X = 0.1.

are 4

FB1(X,T ) = 2

√
−p
3

cos

[
1

3
arccos

(
−9q

2
√

3(−p)3/2

)
− 2π

3

]
(4.3)

FM1(X,T ) = 2

√
−p
3

cos

[
1

3
arccos

(
−9q

2
√

3(−p)3/2

)]
(4.4)

FG1(X,T ) = 2

√
−p
3

cos

[
1

3
arccos

(
−9q

2
√

3(−p)3/2

)
+

2π

3

]
(4.5)

FM2(X,T ) = −p
3

(−D1/2 − q

2
)−1/3 − (−D1/2 − q

2
)1/3 (4.6)

FG3(X,T ) =
p

3
(D1/2 +

q

2
)−1/3 − (D1/2 +

q

2
)1/3 (4.7)

We can also plot the structure of the solutions as a function of T , keeping X

fixed – see Fig. 10. From the figure, we can see that FG is the solution that is real

when T > 0 (for real p).

We note a few features that the graphs above reveal: even though there are three

real solutions for small X in the case where T < 0, only one of them remains real as

the field velocity X increases. Also, seen as a function of T , that solution (the one

that is real for all negative T , i.e. the top line on the far left in Fig. 10) does not

match onto the solution that is real when T becomes positive. Another interesting

feature is the branching of the blue and green solutions occurring at negative T.

This makes one wonder whether, evolving from the ordinary (green) branch at small

positive T, one can actually keep evolving past the branching point at T < 0. We will

now show that this is impossible, as a singularity is encountered before the branching

point is reached.

4Note that the full solutions to the cubic, found in Mathematica and plotted in figures 9 and

10, are more complicated and show branch cuts as Mathematica always chooses the principal root

for a given nth root (of which there are several in the full expressions).
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4.2 A singularity in the speed of sound

The preceding discussion provides motivation to study the behavior of the FB1 branch

(which is smoothly connected to the ordinary branch at T > 0) in more detail in

the negative T region. The fact that this solution for F becomes imaginary when

the field velocity increases sufficiently suggests that there may be some pathology

associated with this branch in the negative T region. We will now show that this is

indeed the case, and that there occurs a blowup in the square of the speed of sound

c2
s. In fact, we can show that this blowup always takes place in Region 1: The general

Figure 11. c2
s for c = 0.1, φ = 0.1 as a function of T (left), with X = 0.1, and as a function

of X (right), with T = −0.1. Note that the range of Region 1 is different for X and T .

form of the Lagrangian and cubic is

P (Z) = Z + 16TZ2 + 2C2C
−2
1 F + C−1

1 F 2(1 + 32TZ) + 16TC−2
1 F 4 + 3eK |W |2,

0 = F 3 +
C1F

32T
(1 + 32TZ) +

C2

32T
(4.8)

C1 = e−K/3
K ,AA?(DAW )?

DAW
(4.9)

C2 =
[K ,AA?(DAW )?]2

DAW
(4.10)

where Z = −KAA?∂A · ∂A?. Then

PZ = 1 + 32TZ + 32TC−1
1 F 2, (4.11)

where we have used the cubic for F to cancel the FZ terms. Using these we can

evaluate ρ and ρZ :

ρ = 2ZPZ − P (4.12)

= Z + 48TZ2 + 32TZC−1
1 F 2 − C−1

1 F 2 − 2FC−2
1 (C2 + 8TF 3)− 3eK |W |2

ρZ = 1 + 96TZ + 32TC−1
1 F 2 + 128TC−1

1 FFZZ. (4.13)

We can rewrite the FZ term by using the derivative of the cubic to get

FZ = − 32TC1F

(C1 + 32TC1Z + 96TF 2)
(4.14)
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and write

ρZ = 1 + 96TZ + 32TC−1
1 F 2 − (64T )2F 2Z

(C1 + 32TC1Z + 96TF 2)
. (4.15)

Zeroes of ρZ correspond to blowups in the squared speed of sound c2
s = PZ

ρZ
. In order

to find the zeroes, we would like to solve the equation

(64T )2C−1
1 F 2Z = (1 + 96TZ + 32TC−1

1 F 2)(1 + 32TZ + 96TC−1
1 F 2) (4.16)

Let Q = 1 + 32TZ + 32TC−1
1 F 2. Then this equation becomes

0 = Q(Q+ 64TZ + 64TC−1
1 F 2). (4.17)

Solutions are given by Q = 0 and Q = −64TZ − 64TC−1
1 F 2. Both are only possible

when T < 0. Q = 0→ C2(φ) = 0 upon using the cubic, so we discard it. The other

solution is

96T (
F 2

C1(φ)
+ Z) = −1 (4.18)

⇒ F = −3C2(φ)

2C1(φ)
= −3

2
K ,AA?(DAW )?; (4.19)

⇒ Z = − 1

96T
− 9C2

2

4C3
1

. (4.20)

Let Z = X i.e. Y = 0. Now consider that Region 1 (where there are three real roots

of the cubic) is bounded by X = 0 and D = 0 where

D =

(
C2

64T

)2

+

(
C1(1 + 32TX)

96T

)3

. (4.21)

At the point where ρX = 0 (at that point we write X = X0, given by (4.20)),

D = −3

4
C2

2X
2
0 −

8

27
C3

1X
3
0 < 0, (4.22)

so we find that the blowup always occurs in Region 1. There remains the question

of which branch it occurs on. This is answered by noting first that F0 < 0, so it

cannot be on the FM1 branch. Secondly, evaluating FX at the blow-up point one

finds FX = F
2X0

< 0, which implies that it must be on the FB1 branch (see Figure

9). This is exactly the branch that meets the T > 0 solution at T = 0, as we found

from the plots above, Figure 4.2.

Superluminality of the propagation of fluctuations was pointed out in [55] as

resulting from the presence of higher-derivative corrections with negative sign. The

sign of these terms is given here by the sign of T , so that one might expect such

problems, but it is interesting to see that c2
s is immediately greater than 1, and
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that the blow-up to infinity happens so soon when T becomes negative. We expect

the theory in this regime to have problems with causality and locality. Because

this theory is an attempt at a full supergravity embedding of theories with higher-

power kinetic terms, and has no inherent constraint on T , we expect that there is

an additional constraint at the string theory level which should be inherited by the

low-energy theory.

On the other hand if one begins on the FM or FG solution in Region 1, one can

approach c2
s = 1 without problems as T → 0−. The real branch for c2

s is given by FG
in Region 3 and FM in Region 2, and this is smoothly connected to the FM solution

in Region 1. However, it is clear from the plot that this solution is not smoothly

connected to the T ≥ 0 solution, so it is not possible to move smoothly between

these solutions by varying T . This situation is shown in Figure 4.2.

-0.4 -0.3 -0.2 -0.1 0.0 0.1 T

0.5

1.0

1.5

cs
2

cs
2 HFB1L

cs
2 HFM1L, cs

2 HFML

cs
2 IFGM

Figure 12. c2
s for c = 0.1, φ,X = 0.1 as a function of T , showing the discontinuity at

T = 0 for the nonsingular branch.

5 Discussion

In this work we have studied the effective field theory approach to cosmology in

N = 1 4-dimensional supergravity, focussing on the effects of the leading higher-

derivative kinetic term corrections. We would like to emphasise that from a string-

theoretic perspective such terms are expected to be present on general grounds.

Moreover, the cosmic microwave background data from the PLANCK satellite still

leaves considerable room for the presence of such terms, as the experimental error

on the associated equilateral and orthogonal non-Gaussianity parameters f equilNL =

−42± 75 and f orthoNL = −25± 39 (at 2σ) [6] are still quite large.

In supergravity, the leading and simplest higher-derivative terms are of the form

[38]

T (∂A)2(∂A?)2 − 2TeK/3∂A · ∂A?FF ? + Te2K/3(FF ?)2. (5.1)
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The role of the auxiliary field F is crucial in this context, as it leads to corrections to

both the ordinary kinetic term and, most importantly, to the potential. Even in the

regime where the coefficient of the square of the ordinary kinetic term is small, there

can be dramatic changes occurring in the potential, which drastically modify any

possible inflationary dynamics. We have restricted our analysis to the case where T

is a constant. The general formalism [38] would allow T to also contain derivatives of

the fields, e.g. T could contain a factor (−∂A ·∂A?)n ⊃ Xn with n > 0. As is evident

from the expression above, such a term would then also yield corrections to the Xn+1

and Xn terms – however, it would not modify the form of the potential term (except

of course for the change it induces in the solution for F ). In an inflationary context,

the non-derivative T corrections are thus the most important ones.

For T ≥ 0, we gave the general solution for F . We showed that the corrections

can be large even when T is small – in particular, the corrections cannot be ignored

when

32TeKKAA?|DAW |2 & 1. (5.2)

We then compared the T -dependent kinetic and potential term contributions, finding

that the T-dependent contribution to the potential will be more significant than the

T-dependent contribution to the kinetic part of the action. We have also verified

that the attractor formalism developed in [17] remains valid for these supergravity

P (X,φ) actions. We considered several explicit examples in detail, confirming that

for these even very small increases in T can result in significant changes to the

potential and to the inflationary dynamics.

Our findings suggest that it is essential to take into account the full supergravity

description of higher-derivative terms, rather than assuming that a small parameter

expansion is possible in which the only relevant terms are Xn etc. If a potential is

already unstable, the higher-derivative T -dependent corrections tend to make it even

more unstable. In the inflationary context, the higher-derivative terms play a more

welcome role when the potential curves upwards too steeply (i.e. when V,φφ > 0),

since in such a situation they can lower and flatten the potential. In addition the

higher-derivative kinetic term slows the field down, as expected in non-canonical

inflationary scenarios. On the other hand the effect of higher-derivative corrections

on the potential may be useful in ekpyrotic models also, where a steep negative

potential is required [53, 54] – we leave such an investigation for future work.

For T < 0, we gave general expressions for the three solutions to the cubic for

F in section 4, and determined which is real for the three relevant T < 0 regions

defined by the relative values of T and X. However, the system seems to be blocked

from the region with three real solutions for T < 0 by a blow-up of c2
s, the speed of

propagation of perturbations, which should have cs = 1 as an upper limit.

This study represents an important step forward in the understanding of how

higher-order kinetic terms should be embedded in a consistent (cosmological) super-
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gravity context. It will be interesting to look for set-ups in which these effects lead to

a useful model of inflationary or ekpyrotic cosmology, consistent with the available

data but not suffering from excessive fine tuning. We hope to be able to return to

this question in the future.
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A Stability of our examples

In the present paper we are interested in solutions to the equations of motion implied

by the Lagrangians (3.1)-(3.4) in the case ξ = 0. For this to be a sensible undertaking,

we must analyze whether or not the systems are stable around ξ = 0. Below, we

find the conditions under which we have stability, but find that for the “Flat” case,

perhaps unsurprisingly, the potential for the second scalar ξ is always unstable.

When T 6= 0, F can be complex and it is not immediately clear which solution

to the cubic is correct. With the exception of section 4 where we consider all solu-

tions, we will always choose the ordinary branch, which is the solution that connects

smoothly to the T = 0 solution [38]. We will analyze our four examples in turn.

The Lagrangian for the Canonical Kähler potential is given in (3.1). For T = 0,

we find

PCanK(X, Y, φ, ξ) = X + Y + e(φ2+ξ2)/2e
√

2cφ

[
3−

((
c+

φ√
2

)2

+ ξ2

)]
(A.1)

≈ X + Y + e
√

2cφ+φ2

2 [3− (c+
φ√
2

)2] +
ξ2

2
e
√

2cφ+φ2

2 [2− (c+
φ√
2

)2]

+O(ξ3),

from which we see that the potential for ξ is positive and stable as long as (c +
φ√
2
)2 > 2. It is more complicated to evaluate the full potential for ξ explicitly in

the T 6= 0 case, because this involves substituting in a complicated expression for

a generally complex F . However, we can deal with this case both by expanding T,

and numerically. Expanding F = F0 + F1T, where F0 = −eK/3KAA?(DAW )? etc as

in (2.14), we find that for T � 1 the potential is given by

VCanK(φ, ξ) ≈ 1

2
e
√

2cφeφ
2/2(−6 + 2(c+

φ√
2

)2)− 16(e
√

2cφeφ
2/2)2(c+

φ√
2

)4T (A.2)

+

[
1

2
e
√

2cφeφ
2/2(−2 + (c+

φ√
2

)2)− 16e2
√

2cφeφ
2

(c+
φ√
2

)2((c+
φ√
2

)2 + 1)T

]
ξ2.

+O(T 2, ξ3)
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From this approximation, a good one at very small T , we see that the T -dependent

contributions to the potential have negative sign and will therefore make the potential

for ξ flatter and eventually unstable. We see this numerically as well; the potential

is extremely flat in the ξ direction compared to the φ direction - see Figure 13. As

T increases, the φ value at which the potential flips becomes smaller and smaller.

Figure 13. ξ potential from PCanK for T = 0 (left) and T = 0.01 (right), with c = 3.

Figure 14. ξ potential from PQuadK for T = 0 (left) and T = 0.01 (right), with c = 3.

The Lagrangian for the Quadratic Kähler potential is given in (3.2). For T = 0,

we find

VQuadK(φ, ξ)T=0 ≈ e
√

2cφ(c2 − 3) + ξ2e
√

2cφ(c2 − 1) +O(ξ3) (A.3)

from which we see again that the potential for ξ is positive as long as c is large

enough. For T 6= 0, and working to linear order in T in our expansion for F as

above, we find

VQuadK(φ, ξ) ≈ e
√

2cφ
[
c2 − 3− 16c4e

√
2cφT + (c2 − 1)ξ2 − 32e

√
2cφc2(c2 + 2)Tξ2

]
+O(T 2, ξ3). (A.4)
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In this case we see that the T -dependent terms are all negative. For c large enough

to give a positive mass term for ξ, the potential will be dominated by the third term,

−16c4e
√

2cφT . This is seen in the numerical results as well, where the potential is

flatter when T is switched on; see Figure 14. Note however that the potential is

deeper in the Quadratic Kähler potential case than the Canonical Kähler case, for

the same values of c and T . A full numerical analysis shows that, for a given value

of c, a large enough T will flip the potential for ξ. For c = 3 and T = 0.01, this flip

occurs at φ ∼ 0.6.

Figure 15. ξ potential from PFl for T = 0 (left) and T = 0.001 (right), with V0 = 0.5.

Figure 16. ξ potential from PLin for T = 0 (left) and T = 0.01 (right), with c = 3. Note

that the potential becomes negative when T is switched on, with c left the same.

The Lagrangian for the Flat potential is given in (3.3). For T = 0, we find

VFl(X, Y, φ, ξ)T=0 ≈ V0 +
V0

24
e−(
√

2+
√

6)φ(1− 14e
√

6φ + e2
√

6φ)ξ2. (A.5)
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We see from this that the potential for ξ is unstable around ξ = 0 (until φ ∼ 2.63),

as is clear from Figure 15. In the small T approximation, we find

VFl(φ, ξ) ≈ V0 − V 2
0 e
−2
√

6φ(1 + e
√

6φ)4T +
V0

24
e
√

2φ(1−
√

3)(1− 14e
√

6φ + e2
√

6φ)ξ2(A.6)

−V
2

0 (1 + e
√

6φ)2

3
e−2
√

6φ−
√

2φ(7− 3
√

3 + 10e
√

6φ + (7 + 3
√

3)e2
√

6φ)Tξ2.

Clearly the T -dependent terms here tend to destabilize the ξ-potential further, as is

seen in Figure 15. For large enough φ the negative terms can be suppressed, but at

small φ and ξ the potential is unstable and becomes more so as T is switched on.

This is perhaps to be expected as PFl was chosen to give an exactly flat potential

when ξ = 0.

The Lagrangian for the Linear potential is given in (3.4). For T = 0, we find

VLin(X, Y, φ, ξ)T=0 ≈ c2(2− 3φ2) + c2ξ2(3− φ2), (A.7)

from which we find that the potential for ξ is stable around ξ = 0 for sufficiently

small φ. This result carries over to the T 6= 0 case only when c is sufficiently small,

as we see from the small T approximation:

VLin(φ, ξ) ≈ 2c2(1− 3

2
φ2 − 32c2T ) + c2(3− φ2 − 128c2T (3 + φ2))ξ2.

Again the T -dependent terms here tend to destabilize the ξ-potential, as is seen in

Figure 16.

References

[1] G. F. Smoot, C. Bennett, A. Kogut, E. Wright, J. Aymon, et. al., Structure in the

COBE differential microwave radiometer first year maps, Astrophys.J. 396 (1992)

L1–L5.

[2] WMAP Collaboration, E. Komatsu et. al., Seven-Year Wilkinson Microwave

Anisotropy Probe (WMAP) Observations: Cosmological Interpretation,

Astrophys.J.Suppl. 192 (2011) 18, [arXiv:1001.4538].

[3] J. Dunkley, R. Hlozek, J. Sievers, V. Acquaviva, P. Ade, et. al., The Atacama

Cosmology Telescope: Cosmological Parameters from the 2008 Power Spectra,

Astrophys.J. 739 (2011) 52, [arXiv:1009.0866].

[4] K. Story, C. Reichardt, Z. Hou, R. Keisler, K. Aird, et. al., A Measurement of the

Cosmic Microwave Background Damping Tail from the 2500-square-degree SPT-SZ

survey, Astrophys.J. 779 (2013) 86, [arXiv:1210.7231].

[5] Planck Collaboration, P. Ade et. al., Planck 2013 results. XVI. Cosmological

parameters, arXiv:1303.5076.

– 25 –

http://arxiv.org/abs/1001.4538
http://arxiv.org/abs/1009.0866
http://arxiv.org/abs/1210.7231
http://arxiv.org/abs/1303.5076


[6] Planck Collaboration, P. Ade et. al., Planck 2013 results. XXII. Constraints on

inflation, arXiv:1303.5082.

[7] SDSS Collaboration, W. J. Percival et. al., Baryon Acoustic Oscillations in the

Sloan Digital Sky Survey Data Release 7 Galaxy Sample, Mon.Not.Roy.Astron.Soc.

401 (2010) 2148–2168, [arXiv:0907.1660].

[8] Supernova Search Team Collaboration, A. G. Riess et. al., Observational

evidence from supernovae for an accelerating universe and a cosmological constant,

Astron.J. 116 (1998) 1009–1038, [astro-ph/9805201].

[9] Supernova Cosmology Project Collaboration, S. Perlmutter et. al.,

Measurements of Omega and Lambda from 42 high redshift supernovae, Astrophys.J.

517 (1999) 565–586, [astro-ph/9812133].

[10] A. G. Riess, L. Macri, S. Casertano, H. Lampeitl, H. C. Ferguson, et. al., A 3Hubble

Space Telescope and Wide Field Camera 3, Astrophys.J. 730 (2011) 119,

[arXiv:1103.2976].

[11] J.-L. Lehners and P. J. Steinhardt, Planck 2013 results support the cyclic universe,

Phys.Rev. D87 (2013) 123533, [arXiv:1304.3122].

[12] A. Fertig, J.-L. Lehners, and E. Mallwitz, Ekpyrotic Perturbations With Small

Non-Gaussian Corrections, arXiv:1310.8133.

[13] A. Ijjas, P. J. Steinhardt, and A. Loeb, Inflationary paradigm in trouble after

Planck2013, Phys.Lett. B723 (2013) 261–266, [arXiv:1304.2785].

[14] A. H. Guth, D. I. Kaiser, and Y. Nomura, Inflationary paradigm after Planck 2013,

arXiv:1312.7619.

[15] D. Baumann and L. McAllister, Advances in Inflation in String Theory,

Ann.Rev.Nucl.Part.Sci. 59 (2009) 67–94, [arXiv:0901.0265].

[16] E. Silverstein and D. Tong, Scalar speed limits and cosmology: Acceleration from

D-cceleration, Phys.Rev. D70 (2004) 103505, [hep-th/0310221].

[17] P. Franche, R. Gwyn, B. Underwood, and A. Wissanji, Attractive Lagrangians for

Non-Canonical Inflation, Phys.Rev. D81 (2010) 123526, [arXiv:0912.1857].

[18] M. Alishahiha, E. Silverstein, and D. Tong, DBI in the sky, Phys.Rev. D70 (2004)

123505, [hep-th/0404084].

[19] S. E. Shandera and S.-H. H. Tye, Observing brane inflation, JCAP 0605 (2006) 007,

[hep-th/0601099].

[20] X. Chen, Multi-throat brane inflation, Phys.Rev. D71 (2005) 063506,

[hep-th/0408084].

[21] X. Chen, Inflation from warped space, JHEP 0508 (2005) 045, [hep-th/0501184].

[22] S. Kecskemeti, J. Maiden, G. Shiu, and B. Underwood, DBI Inflation in the Tip

Region of a Warped Throat, JHEP 0609 (2006) 076, [hep-th/0605189].

– 26 –

http://arxiv.org/abs/1303.5082
http://arxiv.org/abs/0907.1660
http://arxiv.org/abs/astro-ph/9805201
http://arxiv.org/abs/astro-ph/9812133
http://arxiv.org/abs/1103.2976
http://arxiv.org/abs/1304.3122
http://arxiv.org/abs/1310.8133
http://arxiv.org/abs/1304.2785
http://arxiv.org/abs/1312.7619
http://arxiv.org/abs/0901.0265
http://arxiv.org/abs/hep-th/0310221
http://arxiv.org/abs/0912.1857
http://arxiv.org/abs/hep-th/0404084
http://arxiv.org/abs/hep-th/0601099
http://arxiv.org/abs/hep-th/0408084
http://arxiv.org/abs/hep-th/0501184
http://arxiv.org/abs/hep-th/0605189


[23] G. W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional

space, Int.J.Theor.Phys. 10 (1974) 363–384.

[24] S. Renaux-Petel, On the redundancy of operators and the bispectrum in the most

general second-order scalar-tensor theory, JCAP 1202 (2012) 020,

[arXiv:1107.5020].

[25] R. H. Ribeiro, Inflationary signatures of single-field models beyond slow-roll, JCAP

1205 (2012) 037, [arXiv:1202.4453].

[26] C. Cheung, P. Creminelli, A. L. Fitzpatrick, J. Kaplan, and L. Senatore, The

Effective Field Theory of Inflation, JHEP 0803 (2008) 014, [arXiv:0709.0293].

[27] L. Senatore, K. M. Smith, and M. Zaldarriaga, Non-Gaussianities in Single Field

Inflation and their Optimal Limits from the WMAP 5-year Data, JCAP 1001

(2010) 028, [arXiv:0905.3746].

[28] P. Creminelli, G. D’Amico, M. Musso, J. Norena, and E. Trincherini, Galilean

symmetry in the effective theory of inflation: new shapes of non-Gaussianity, JCAP

1102 (2011) 006, [arXiv:1011.3004].

[29] D. Baumann and D. Green, Equilateral Non-Gaussianity and New Physics on the

Horizon, JCAP 1109 (2011) 014, [arXiv:1102.5343].

[30] A. Achucarro, J.-O. Gong, S. Hardeman, G. A. Palma, and S. P. Patil, Effective

theories of single field inflation when heavy fields matter, JHEP 1205 (2012) 066,

[arXiv:1201.6342].

[31] S. Dimopoulos and H. Georgi, Softly Broken Supersymmetry and SU(5), Nucl.Phys.

B193 (1981) 150.

[32] S. Dimopoulos, S. Raby, and F. Wilczek, Supersymmetry and the Scale of

Unification, Phys.Rev. D24 (1981) 1681–1683.

[33] A. Lukas, B. A. Ovrut, K. Stelle, and D. Waldram, The Universe as a domain wall,

Phys.Rev. D59 (1999) 086001, [hep-th/9803235].

[34] V. Braun, Y.-H. He, B. A. Ovrut, and T. Pantev, The Exact MSSM spectrum from

string theory, JHEP 0605 (2006) 043, [hep-th/0512177].

[35] D. Baumann and D. Green, Supergravity for Effective Theories, JHEP 1203 (2012)

001, [arXiv:1109.0293].

[36] D. Baumann and D. Green, A Field Range Bound for General Single-Field Inflation,

JCAP 1205 (2012) 017, [arXiv:1111.3040].

[37] E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello, et. al., Spontaneous

Symmetry Breaking and Higgs Effect in Supergravity Without Cosmological

Constant, Nucl.Phys. B147 (1979) 105.

[38] M. Koehn, J.-L. Lehners, and B. A. Ovrut, Higher-Derivative Chiral Superfield

Actions Coupled to N=1 Supergravity, Phys.Rev. D86 (2012) 085019,

[arXiv:1207.3798].

– 27 –

http://arxiv.org/abs/1107.5020
http://arxiv.org/abs/1202.4453
http://arxiv.org/abs/0709.0293
http://arxiv.org/abs/0905.3746
http://arxiv.org/abs/1011.3004
http://arxiv.org/abs/1102.5343
http://arxiv.org/abs/1201.6342
http://arxiv.org/abs/hep-th/9803235
http://arxiv.org/abs/hep-th/0512177
http://arxiv.org/abs/1109.0293
http://arxiv.org/abs/1111.3040
http://arxiv.org/abs/1207.3798


[39] F. Farakos and A. Kehagias, Emerging Potentials in Higher-Derivative Gauged

Chiral Models Coupled to N=1 Supergravity, JHEP 1211 (2012) 077,

[arXiv:1207.4767].

[40] J. Khoury, J.-L. Lehners, and B. Ovrut, Supersymmetric P(X,φ) and the Ghost

Condensate, Phys.Rev. D83 (2011) 125031, [arXiv:1012.3748].

[41] I. Buchbinder and S. Kuzenko, Nonlocal action for super trace anomalies in

superspace of N=1 supergravity, Phys.Lett. B202 (1988) 233–237.

[42] I. Buchbinder, S. Kuzenko, and Z. Yarevskaya, Supersymmetric effective potential:

Superfield approach, Nucl.Phys. B411 (1994) 665–692.

[43] A. Banin, I. Buchbinder, and N. Pletnev, On quantum properties of the

four-dimensional generic chiral superfield model, Phys.Rev. D74 (2006) 045010,

[hep-th/0606242].

[44] F. Brandt, Anomaly candidates and invariants of D = 4, N=1 supergravity theories,

Class.Quant.Grav. 11 (1994) 849–864, [hep-th/9306054].

[45] F. Brandt, Local BRST cohomology in minimal D = 4, N=1 supergravity, Annals

Phys. 259 (1997) 253–312, [hep-th/9609192].

[46] I. Antoniadis, E. Dudas, and D. Ghilencea, Supersymmetric Models with Higher

Dimensional Operators, JHEP 0803 (2008) 045, [arXiv:0708.0383].

[47] J. Khoury, J.-L. Lehners, and B. A. Ovrut, Supersymmetric Galileons, Phys.Rev.

D84 (2011) 043521, [arXiv:1103.0003].

[48] M. Koehn, J.-L. Lehners, and B. Ovrut, The Ghost Condensate in N=1

Supergravity, Phys.Rev. D87 (2013) 065022, [arXiv:1212.2185].

[49] M. Koehn, J.-L. Lehners, and B. Ovrut, Supersymmetric Galileons Have Ghosts,

Phys.Rev. D88 (2013) 023528, [arXiv:1302.0840].

[50] M. Koehn, J.-L. Lehners, and B. A. Ovrut, A Cosmological Super-Bounce,

arXiv:1310.7577.

[51] M. Koehn, J.-L. Lehners, and B. A. Ovrut, DBI Inflation in N=1 Supergravity,

Phys.Rev. D86 (2012) 123510, [arXiv:1208.0752].

[52] J.-L. Lehners and K. Stelle, D=5 M theory radion supermultiplet dynamics,

Nucl.Phys. B661 (2003) 273–288, [hep-th/0210228].

[53] J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, The Ekpyrotic universe:

Colliding branes and the origin of the hot big bang, Phys.Rev. D64 (2001) 123522,

[hep-th/0103239].

[54] J.-L. Lehners, Ekpyrotic and Cyclic Cosmology, Phys.Rept. 465 (2008) 223–263,

[arXiv:0806.1245].

[55] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis, and R. Rattazzi, Causality,

analyticity and an IR obstruction to UV completion, JHEP 0610 (2006) 014,

[hep-th/0602178].

– 28 –

http://arxiv.org/abs/1207.4767
http://arxiv.org/abs/1012.3748
http://arxiv.org/abs/hep-th/0606242
http://arxiv.org/abs/hep-th/9306054
http://arxiv.org/abs/hep-th/9609192
http://arxiv.org/abs/0708.0383
http://arxiv.org/abs/1103.0003
http://arxiv.org/abs/1212.2185
http://arxiv.org/abs/1302.0840
http://arxiv.org/abs/1310.7577
http://arxiv.org/abs/1208.0752
http://arxiv.org/abs/hep-th/0210228
http://arxiv.org/abs/hep-th/0103239
http://arxiv.org/abs/0806.1245
http://arxiv.org/abs/hep-th/0602178

	1 Introduction
	2 Structure of the auxiliary field F
	2.1 Setup
	2.2 Solving the cubic: T0

	3 Examples
	3.1 Attractor Solution and Numerical Trajectories
	3.2 Effect of the noncanonical kinetic terms on the dynamics and on the potential

	4 Negative T
	4.1 Three branches
	4.2 A singularity in the speed of sound

	5 Discussion
	A Stability of our examples

