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1 Introduction

The observational data available on the cosmic microwave background (CMB) [1–4], in-

cluding the latest PLANCK data [5, 6], baryon acoustic oscillations [7], redshift [8, 9] and

Hubble parameter measurements [10], portrays a universe very close to being spatially

flat, in which large-scale structure was generated from an almost scale-invariant power

spectrum of primordial density perturbations with Gaussian distribution. A major con-

temporary challenge in cosmology is to find a convincing, self-consistent, explanation for

this early state of the universe. The two most promising theories to date are a period

of single-field plateau-type inflation [6], and certain classes of two-field cyclic models of

the universe [11, 12]. Both theories fit the data well, subject to important assumptions:

in the inflationary case, one assumes for instance that the right initial conditions for in-

flation were present for its onset, and that, after regulating the infinities that eternally

inflating plateau models lead to, the naive predictions still hold (for contrasting views on

these issues, see [13] and [14]). It is also usually assumed that it is possible to reheat the

correct (standard model) fields after inflation [15]. In cyclic models, the most important

assumption is that a smooth, non-disruptive bounce from the contracting to the expanding

phase is possible. In the present paper, we will only look at the inflationary case, and we

will assume that the assumptions mentioned above are justified. Our concern will rather

be with the (classical) dynamics during the inflationary phase.
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In the absence of a UV-complete theory of quantum gravity, the dynamics of inflation

is usually treated using an effective field theory (EFT) approach. Any given theory of

inflation is then only valid up to some energy cut-off Λ, with the physics above this scale

being integrated out. The Lagrangian is organized into a series of kinetic and potential

terms with increasing numbers of fields and/or derivatives, in such a way that successive

terms are suppressed by increasing powers of the cut-off Λ/MP (expressed in Planck units).

For non-derivative interaction terms, it is well known that, despite this suppression, the

predictions of inflation are highly sensitive to certain higher-order terms in the series. For

instance, the underlying UV completion can lead to large corrections to the inflaton mass

via dimension 6 operators of the form O6

M2
P
∼ O4

M2
P
φ2, when O4 has a VEV of the order of

the inflationary energy density. This is known as the η problem and is a generic problem in

supergravity theories of inflation, see e.g. [16]. The underlying UV-complete theory can also

lead to important corrections to the kinetic terms, resulting in higher-order corrections such

as the square of the ordinary kinetic term, (∂φ)4 [17, 18]. These higher-derivative kinetic

terms1 can have dramatic effects and have been studied extensively, for instance in DBI

inflation [17, 21–25], in the context of the Horndeski action [26–28] or within the EFT of

inflationary perturbations [29–33].

Whether the correct UV-complete underlying theory of inflation is string theory or

some other high-energy theory is as yet unknown. Nevertheless, one may expect this the-

ory to be supersymmetric for various reasons including unification of the electroweak and

strong forces at high energies, the hierarchy problem [34, 35] and phenomenology [36, 37].

The proper low-energy setting for a theory of inflation is then supergravity, and the goal of

the present paper is to investigate a number of novel properties that the extension of the in-

flationary EFT framework to supergravity entails. An initial study of this extension was un-

dertaken by Baumann and Green in [38, 39], where they studied inflationary perturbations

and focussed on possible non-Gaussian observational signatures. In that context, Baumann

and Green argued that they could neglect the auxiliary fields. In the present paper, we will

focus on the inflationary background — in that situation, the auxiliary fields play a crucial

role. In fact, it is the interplay of the higher-derivative kinetic terms and the auxiliary

fields that leads to all of the new effects that we found, as we will briefly describe now.

The most important field in our study will be the auxiliary field F of a chiral superfield

Φ. Assuming that the auxiliary fields of the supergravity multiplet have already been

eliminated via their equations of motion, the formula for the potential reduces to the

expression

V = −eK/3K,AA?FF
? − e2K/3[F (DAW ) + F ?(DAW )?]− 3eKWW ?. (1.1)

Here K is the Kähler potential, W (A) is the superpotential and A = Φ |θ=θ̄=0 is a complex

scalar representing the lowest component of the chiral superfield Φ (with A containing the

1Here we use the term non-canonical to refer to kinetic terms of the form (∂φ)2n, rather than terms like

f(φ)(∂φ)2 or kinetic cross terms g(σ, φ)(∂σ)(∂φ), which can arise from corrections to the Kähler potential

- see for instance [19]. Terms of the form f(φ)(∂φ)2 can be transformed to the canonical form by an off-

sell field redefinition, which is not possible in the more general single field P (X,φ) case we consider here,

although an on-shell transformation may be possible in some cases [20].
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inflaton as one of its two real scalar field constituents); moreover, DAW = W,A + K,AW

is the Kähler covariant derivative. Now substituting the standard solution of the auxiliary

field equation

F = −eK/3K ,AA?(DAW )? (1.2)

leads to the famous formula [40]

V = eK
[
K ,AA?DAW (DAW )? − 3WW ?

]
. (1.3)

Thus the potential is given as the difference between two manifestly positive terms (as-

suming the standard sign for the kinetic term, i.e. a positive Kähler metric K,AA?), and

hence these terms are larger (and in some cases significantly larger) in magnitude than the

final potential. This simple observation turns out to have important consequences in our

present context: we will add the leading higher-derivative correction term to the standard

kinetic term for A — in supergravity this term is of the form [41, 42]

T (∂A)2(∂A?)2 − 2TeK/3∂A · ∂A?FF ? + Te2K/3(FF ?)2, (1.4)

where T has dimensions [M−4] and for now we take T to be a small constant (when

expressed in Planck units).2 As one can see from the above formula, adding a higher-

derivative kinetic term in supergravity brings with it corrections to the lower-order kinetic

terms (second term) as well as to the potential (third term). This is the first non-trivial

consequence of supersymmetry: one cannot simply build up an effective field theory term

by term, since each new term modifies some of the terms previously present! The second

consequence comes from estimating the leading corrections by simply plugging in the so-

lution for F that is valid in the absence of the higher-derivative terms, namely eq. (1.2),

into eq. (1.4) (with K,AA? = 1):

T (∂A)2(∂A?)2 − 2T∂A · ∂A?eKDAW (DAW )? + T [eKDAW (DAW )?]2, (1.5)

One would naively have expected that all corrections which the addition of the term (1.5)

leads to are of O(T ) and that therefore, for small T (say T = 1/100), they can safely

be ignored. However, as we can now see, the potential V gets corrected not by a term

TV 2, but rather by a term proportional to T [eKDAW (DAW )?]2, which is field dependent.

As argued below eq. (1.3), this term can be significantly larger than TV 2 and thus the

inclusion of higher-derivative kinetic terms can, and does, lead to important modifications

of the potential. In the context of inflationary cosmology, this is evidently of importance,

since the potential needs to be very flat over a significant field range. Furthermore, the

recent claim by BICEP2 of a large tensor-to-scalar ratio r [43] implies a large field range

1

MPl

dφ

dN
=

√
r

8
→ ∆Φ

MPl
≥ O(1)

√
r

0.01
,

making it important to understand large field excursions. As we will see in more detail

later on, such corrections have a crucial influence on the dynamics. Because the corrections

2Here we are suppressing spacetime indices, so for instance (∂A)2 ≡ ∂µA∂µA.
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to the dynamics are field dependent, this is even more relevant for the large-field models

implied by the preliminary BICEP2 result.

In the present paper, we will develop the heuristic ideas above and present a quan-

titative analysis of the effects of the leading higher-derivative kinetic correction term in

supergravity for several representative examples. In section 2 we will analyze the general

structure of the theory, arguing analytically that the T -dependent correction to the poten-

tial will dominate over the correction to the kinetic term. We confirm this numerically by

considering a number of explicit examples in section 3, where we study the (inflationary or

not) dynamics and their dependence on T. The relationship with the formalism for finding

inflationary attractor solutions is discussed in section 3.1. In section 4 we study the theory

for negative T where there can be three real solutions to the equation of motion for F . We

find a blowup in the speed of sound c2
s for the branch which is smoothly connected to the

T > 0 solution. We conclude with a discussion section. Appendix A contains the relevant

stability analysis for the single-field solutions that we describe in the paper.

2 Structure of the auxiliary field F

2.1 Setup

It was shown in [44] how to construct N = 1 supersymmetric actions involving higher-

order kinetic terms of chiral superfields in flat superspace. This was generalized to N =

1 supergravity, or curved superspace, in [41], where the general Lagrangian for higher-

derivative terms in supergravity was found to be:3

1

e
L =

1

2
R−KAA?∂A · ∂A? +KAA?e

K/3FF ? + e2K/3 [F (DAW ) + F ?(DAW )?]

+3eKWW ? + 16(∂A)2(∂A?)2TAA?AA? − 32eK/3FF ?(∂A · ∂A?)TAA?AA?
+16e2K/3F 2(F ?)2TAA?AA? , (2.1)

where TAA?AA? is the lowest component of the tensor superfield Tijk?l? [41] which con-

trols the higher-derivative kinetic terms. It is a function of A and can contain spacetime

derivatives of A as long as all spacetime indices are contracted. In this paper we will choose

TAA?AA? = T (K,AA?)
2,

with T being a constant. Given that the action is quartic in the auxiliary field F , one sees

immediately that this implies a cubic equation of motion for F. This can lead, in certain

regions of the parameter space, to there being three real solutions for F , which we explore

in the following. An initial study of the action (2.1) was undertaken in [41], in which the

solutions of the cubic for F and the behavior of a general system in the limiting cases where

T → 0 and T →∞ were considered. Here we expand this analysis significantly, considering

the details of the solutions for F for all values of T , examining the relative importance of

the kinetic and potential contributions, and exploring details of the theory numerically for

several explicit examples.

3For closely related work, see also [42, 45–54].

– 4 –



J
H
E
P
0
5
(
2
0
1
4
)
0
5
0

We start by writing out the equation of motion for F :

0 = KAA?F + eK/3(DAW )? + 32FTAA?AA?
(
eK/3FF ? − ∂A · ∂A?

)
. (2.2)

Multiplying (2.2) by F ? we see that (DAW )?F ? must be real, which implies

F ? =
DAW

(DAW )?
F. (2.3)

Then the Lagrangian and cubic become

1

e
L =

1

2
R−KAA?(∂A · ∂A∗) +KAA?e

K/3 DAW

(DAW )?
F 2 + 2e2K/3F (DAW )

+3eKWW ? + 16(∂A)2(∂A?)2TAA?AA? + 16e2K/3F 4

(
DAW

(DAW )?

)2

TAA?AA?

−32eK/3F 2 DAW

(DAW )?
(∂A · ∂A?)TAA?AA? (2.4)

0 = KAA?F + eK/3(DAW )? + 32

[
eK/3

DAW

(DAW )?
F 3 − ∂A · ∂A?F

]
TAA?AA? . (2.5)

In order to proceed, we must solve for the auxiliary field F and plug it back into the

Lagrangian above. The solutions are qualitatively different depending on whether T is

positive or negative, and hence we will deal with these two cases separately (the negative

T case will be dealt with in section 4).

2.2 Solving the cubic: T ≥ 0

The cubic can be rewritten in standard form as [41]

0 = F 3 + pF + q (2.6)

p = e−K/3KAA? (DAW )?

DAW

[
1

32T
−KAA?∂A · ∂A?

]
(2.7)

q =
1

32T

(KAA?)2(DAW )?2

DAW
(2.8)

We will often specialize to the case where we consider only one real scalar of A, e.g. we

write A = 1√
2
φ with φ being real and denoting the inflaton. In the cosmological context,

we will treat φ as being a function of time only and use the standard abbreviation

X ≡ 1

2
φ̇2.

In this case, with the superpotential being a so-called real holomorphic function of A (i.e.

a function of A where the series expansion contains only real coefficients), eq. (2.3) implies

that F must be real. For T ≥ 0 and p, q ∈ R there is generally only one real solution to

the cubic for F , given by [41]

F =

(
− q

2
+
√
D

)1/3

+

(
− q

2
−
√
D

)1/3

, (2.9)
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F

Figure 1. The auxiliary field F as a function of X and T , for T > 0 and with C1 = C2 = 0.1. We

see that F is a negative function, which, starting from its standard T = 0 solution (here arbitrarily

set at the value F = −1), approaches zero asymptotically as X and T increase.

where D = q2

4 + p3

27 is the discriminant. This can also be compared to the T = 0 solution

for F , which is just

FT = 0 = −eK/3KAA?(DAW )?. (2.10)

Thus, for these cases, the consistency condition (2.3) reduces the number of permitted

branches of the theory to only one. (In section 4 we will study examples where more

branches are allowed.)

To study the dependence of F on X and T, note that the cubic is of the form (mo-

mentarily setting KAA? = 1)

F 3 +
C1(φ)F

32T
(1 + 32TX) +

C2(φ)

32T
= 0, (2.11)

so that we can write

p =
C1(φ)

96T
(1 + 32XT ), (2.12)

q =
C2(φ)

32T
, (2.13)

where C1,2 are functions of φ only. Thus, for given values of C1,2, the X and T dependence

of F will be the same in each case; see figure 1. As is evident from the figure, F starts out at

T = 0 at its standard value (2.10) and then approaches zero as T and X increase. There is

one immediate consequence of this fall-off towards zero, namely that the potential becomes

more and more negative with increasing T and X (as should be evident from eqs. (1.1)

and (1.3)). An explicit example of this general trend is provided by the supergravity

embedding of DBI inflation, as described in [55].

We will make this more precise now by calculating the perturbative corrections induced

when T is non-zero. By considering the action (2.4), we can see that the higher-derivative

terms, parametrized by T , enter the action in two distinct ways: via the higher-power

kinetic term 16TX2, and via the T -dependence of F , which leads to corrections to the

– 6 –
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kinetic terms as well as significant corrections to the potential. In [41] a small T expansion

of F was given, using the approximation q � p3/2. In this limit,

Fq�p3/2 ≈ −
q

p
+
q3

p4
− 3q5

p7
+ . . . (2.14)

≈ −eK/3KAA?(DAW )?

+32TeK/3KAA?(DAW )?
(
KAA?eK |DAW |2 −KAA?∂A · ∂A?

)
−322T 2eK/3KAA?(DAW )?

(
3eKKAA? |DAW |2 − ∂A · ∂A?KAA?

)
×(

eKKAA? |DAW |2 − ∂A · ∂A?KAA?

)
.

This gives T -dependent corrections up to O(T 2) to the standard result for T = 0 (2.10). In

order to determine when such corrections are significant, we must determine the conditions

for q/p3/2 to be large:

q2

p3
=

32TeKKAA?DAW (DAW )?

(1− 32TKAA?∂A · ∂A?)3
. (2.15)

This expression can be large even when T is small, as long as 32eKKAA? |DAW |2 is suffi-

ciently big. We would like to point out that this can be the case even when the original

potential

VT=0 = eK(KAA? |DAW |2 − 3|W |2)

is small, since the potential is given by the difference of two potentially large terms. Fur-

thermore, the resulting corrections to the action will affect the kinetic and potential term

contributions in different ways. Writing the Lagrangian as

1

e
L =

1

2
R−KAA?∂A · ∂A?[1 + ∆K]

−eK(KAA? |DAW |2 − 3|W |2)[1 + ∆V ], (2.16)

to quadratic order in T , we obtain

∆V = −16T

V
e2K(KAA?)2|DAW |4 +

322T 2

V
e3K(KAA?)3|DAW |6 (2.17)

∆K = 16T (−KAA?∂A · ∂A? + 2eKKAA? |DAW |2) (2.18)

−64T 2eKKAA? |DAW |2(−16KAA?∂A · ∂A? + eKKAA? |DAW |2).

The case of greatest interest to us is where eKKAA? |DAW |2 is significantly larger than V

- then, for small field velocities we have∣∣∣∣∆K∆V

∣∣∣∣ ≈ 2V

eKKAA? |DAW |2
. (2.19)

Thus, when the higher-derivative term modifies the lower-derivative terms significantly, it

tends to affect the potential much more than the (ordinary) kinetic term. We will explore

these effects for specific examples in detail in section 3, but one can immediately see the

effect on various potentials (which are defined below), by looking at figures 7 and 8. As is

already evident by eye, even for small T the potentials are dramatically altered in certain

field ranges.
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Canonical Kähler potential Quadratic Kähler potential

KCanK = A?A

WCanK = ecA

ACanK = 1√
2
(φ+ ıξ)

KAA? = 1

eK = e
(φ2+ξ2)

2

∂A · ∂A? = −(X + Y )

DAWCanK =
(
c+ 1√

2
(φ− ıξ)

)
e
c(φ+ıξ)√

2

KQuadK = −1
2(A−A?)2

WQuadK = ecA

AQuadK = 1√
2
(φ+ ıξ)

KAA? = 1

eK = eξ
2

∂A · ∂A? = −(X + Y )

DAWQuadK = (c−
√

2ıξ)e
c(φ+ıξ)√

2

Flat potential Linear superpotential

KFl = −4 ln(A+A?)

WFl = 2
√

V0
3 A

2
(
A
√

3 −A−
√

3
)

AFl = e
1√
2
φ

+ ı ξ√
2

KAA? = e−
√

2φ

eK = (2e
φ√
2 )−4

∂A · ∂A? = −(e
√

2φX + Y )

DAWFl = 4
√

V0
3 AQ−(1− e−φ/

√
2A)

+2
√
V0AQ+

Q± = A
√

3 ±A−
√

3

KLin = −1
2(A−A?)2

WLin = c
√

2A

ALin = 1√
2
(φ+ ıξ)

KAA? = 1

eK = eξ
2

∂A · ∂A? = −(X + Y )

DAWLin = c
√

2(1− ıξφ+ ξ2)

Table 1. Details for four explicit examples.

3 Examples

We will now consider several explicit examples in order to illustrate the general effects

described above. Specifically, we will look at the representative cases listed in table 1. We

are using the notation that X = 1
2 φ̇

2, Y = 1
2 ξ̇

2 and we are taking c to be a positive real

number. Note that in the flat potential case PFl, the superpotential WFl is chosen such

that the uncorrected (T = 0) potential is equal to a constant V0 along the ξ = 0 line [56].

For the four examples, the corresponding Lagrangians are easily obtained by plugging

the potentials listed in the table into eq. (2.1). In our numerical studies, we will focus on

the case where only the inflaton field φ is dynamical, and the second scalar ξ remains fixed

at ξ = 0. In that case, the auxiliary field takes only real values, and the respective matter

Lagrangians simplify to the following expressions:

PCanK(X,φ) = X + 16X2T + 32eφ
2/6F 2XT + 16eφ

2/3F 4T (3.1)

+eφ
2/6F 2 + 2eφ

2/3F

(
c+

φ√
2

)
e
cφ√
2 + 3eφ

2/2e
√

2cφ,

PQuadK(X,φ) = X + 16X2T + 32F 2XT + F 2 + 16F 4T + 2cFe
cφ√
2 (3.2)

+3e
√

2cφ,

– 8 –
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PFl(X,φ) = X + 16X2T + 32|F |2XT (2e
φ√
2 )−4/3(eφ/

√
2)−2 (3.3)

+4|F |2(2eφ/
√

2)−10/3 +
V0

4
Q−(φ)2 + 16(|F |2)2T (2eφ/

√
2)−8/3(eφ/

√
2)−4

+2F (2eφ/
√

2)−5/3
√
V0Q+(φ),

PLin(X,φ) = X + F 2 + 3c2φ2 + 2
√

2cF + 16X2T + 32F 2XT (3.4)

+16F 2F ?2T.

The stability of the potentials around the ξ = 0 line is studied in appendix A.

3.1 Attractor solution and numerical trajectories

A general formalism for inflation in the case of Lagrangians of the form P (X,φ) was given

in [18]. It was shown there that when inflation takes place (i.e. when a set of generalized

slow-roll coordinates is much smaller than one), it is an attractor in (φ,Π) phase space.

Since these results apply in our case as well, we will briefly review the conditions for such

a non-canonical inflationary attractor to exist.

The scalar field equation of motion arising from a Lagrangian L = a3(t)P (X,φ) can

be written in the compact form

Π̇ = −3HΠ + Pφ, (3.5)

where Π = φ̇PX =
√

2XPX is the canonical momentum. We can rewrite this in terms of

the generalized slow-roll parameters [18]

ε =
3X

ρ
PX ;

ηX = ε− Ẋ

2HX
;

ηΠ = ε− Π̇

HΠ
,

finding

Π =
Pφ
3H

(
1 +

ε+ ηΠ

3

)−1

(3.6)

⇒ Πinf =
Pφ
3H

. (3.7)

Note that there is no approximation in the expression for Π. However, in the case that ε

and ηΠ are both small, or at least ε−ηΠ � 1, we obtain the inflationary solution Π ≈ Πinf .

To see that it is an attractor precisely when the inflationary parameters are small, we follow

the analysis of [18]: for

Π = Πinf (1 + δΠ),

and autonomous equations

φ′ =
Π

PXH
; (3.8)

Π′ = −3

[
Π−

Pφ
3H

]
, (3.9)

– 9 –
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P

Figure 2. The blue line indicates the inflationary attractor (3.7) for PFl(X,φ) with V0 = 10, T =

10−4 (left). The line is solid until ηX and ηΠ become greater than 0.5, and dashed from then on.

The figure on the right shows the behavior of the generalized slow-roll parameters, evaluated along

the blue solid/dashed line (3.7).

we have

δΠ′

δΠ
= −3

[
1 +

ε− ηΠ

3
− c2

s

√
2X

3H

PXφ
PX

+
Pφ
√

2X

6ρH

]
(3.10)

= −3

[
1 +

1

3
(ηΠ − ε)c2

s +
1

3
(ε− ηX) +

ε

3
+
ε− ηΠ

3

]
(3.11)

= −3 +O(ε, ηX , ηΠ). (3.12)

Note that the last two terms in the first line have the opposite sign compared to the

corresponding terms in [18]; this is because of the sign chosen for φ̇ = ±
√

2X, where here

we have chosen the plus sign. From the final expression, we see that for small inflationary

parameters, the perturbations δΠ from Πinf decay as δΠ ∼ e−3N . This is a localized

attractor, in the sense that it is an attractor only in the region of phase space where the

inflationary parameters are small.

The attractor behavior of the inflationary solution (3.7) is demonstrated for PFl(X,φ)

in the case where V0 = 10, T = 10−4. The red lines are a set of trajectories spanning a range

of initial conditions (the initial conditions can be inferred from the starting points of the

red lines). The blue line is the solution to (3.7); it is solid up to φ ≈ 0.612 where ηX and ηΠ

become greater than 0.5, and dashed otherwise. As is evident from the figure, all trajecto-

ries that start in the vicinity of the attractor approach it quickly and then follow it until the

slow-roll conditions are no longer satisfied. The behavior of the generalized slow-roll param-

eters, evaluated along (3.7), is shown on the right. For this specific example, we find that

inflation lasts for a number of e-folds Ne ≈ 40− 100 for trajectories beginning at small φ.

The Lagrangians given above in eqs. (3.2)–(3.5), while very complicated to analyze

analytically, can be studied numerically. For an FRW background, with ds2 = −dt2 +

a(t)2dx2 and the field φ = φ(t) homogeneous in space, we have to solve the coupled system

of equations

0 = φ̈(t)(PX + 2XPXX) + 2XPXφ + 3H(t)φ̇(t)PX − Pφ, (3.13)

0 = Ḣ(t) +XPX , (3.14)
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Figure 3. Trajectories in (Π, φ) phase space for c = 3 and T = 0.01 with PCanK(X,φ) (left) and

PQuadK(X,φ) (right). The blue line is the slow-roll approximation, which is a solid line until one

of the generalized slow-roll trajectories reaches 1.

where we use the standard notation that a subscript indicates a derivative w.r.t. the corre-

sponding quantity. We choose c or V0 and a fixed value of T in each case with the hope of

finding a noncanonical inflationary solution. Note that because of the X dependence in F ,

the coefficient of the canonical kinetic term X in the action is not in general canonically

normalized.4

The plots for three of the examples considered in the previous section are given in

figures 3 and 4 for the Lagrangians PCanK , PQuadK and PFl respectively. In each case,

we plot the trajectories in the field amplitude/field momentum plane for a range of initial

conditions that can be read off from the starting points of the red lines on the graphs. Also

indicated on the graphs is the slow-roll attractor solution eq. (3.7) - it is drawn as a solid

blue line when the slow-roll conditions are satisfied and a dotted line otherwise. As expected

from the analysis above, this is an attractor when the slow-roll parameters are small, and

the focussing of the trajectories around the solid blue line confirms this expectation. For

the parameters shown, the potentials are stable around ξ = 0 until φ ∼ 0.6 for PCanK and

PQuadK , while PFL is generally unstable around ξ = 0 for small φ - see appendix A.

We should point out that the linear superpotential leads to a very steep and generally

negative potential, and is not particularly interesting for the study of inflationary trajec-

tories. This example however illustrates one important facet of the present setting: if a

potential is already unstable, the higher-derivative T -dependent corrections generally tend

to make it even more unstable. This feature may be interesting in ekpyrotic models, where

a steep negative potential is required [57, 58]. However, in the inflationary context, the

higher-derivative terms play a more welcome role when the potential curves upwards too

steeply (i.e. when V,φφ > 0). As we will discuss next, in those cases the higher-derivative

terms have two benefits: the potential is usually lowered, and the higher-derivative kinetic

term tends to slow the field down.

4Although it is possible to transform to the canonically normalized variable numerically, it cannot

generally be done analytically, and as it does not affect the overall trends being studied and compared in

the examples we consider here, we leave the normalization as is.
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Figure 4. Trajectories in (Π, φ) phase space for PFl(X,φ) with V0 = 10 and T = 0.0001.
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Figure 5. Trajectories in (Π, φ) (left) and (φ̇, φ) (right) phase space for PQuadK(X,φ) with c = 3

and T = 0.01. The same trajectories for PQuadK(X,φ) with non-canonical kinetic terms switched

off are in blue.

3.2 Effect of the noncanonical kinetic terms on the dynamics and on the

potential

To study the effect of the noncanonical kinetic terms on the dynamics, we can compare

the trajectories above to those for the action with canonical kinetic term, but where we

keep the T -dependent potential. In other words, we compare PNC(X,φ) with PC(X,φ) =

X + PNC(0, φ). Comparing the trajectories that we obtain in each case will tell us what

the effect of the noncanonical kinetic terms is. Looking at the resulting trajectories, we

see that the canonical trajectories in (X,φ) are steeper, while the trajectories in (Π, φ)

are less steep because of the effect of PX . This is clearly seen in the representative plots

for the Quadratic Kähler potential, figure 5. Thus, as expected from the intuition gained

by studies of DBI inflation, we can see that the higher-derivative kinetic term slows the

inflaton down. Correspondingly, in each case the slow-roll parameters are reduced, as

shown in figure 6 (the other cases are very similar).

All these plots demonstrate that the higher-derivative kinetic term has a noticeable

effect on the dynamics. However, the most dramatic effect is on the shape of the potential
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Figure 7. Effect of increasing T > 0 for an originally flat potential −PFl(0, φ) for V0 = 0.1 (left)

and for an unstable potential −PLin(0, φ) for c = 10 (right).

itself, as already discussed in section 2.2. For our examples, given the solutions for the

auxiliary field F , we can plot the respective potentials by setting X to zero, i.e. we are

interested in V = −P (X = 0, φ). In each case, this is found to be highly sensitive to

increases in T , with the potential rapidly flattening or changing in gradient until it becomes

negative and steep. Obtaining a flat or almost flat potential is thus a matter of fine-tuning

T , as is evident from the plots below in figures 7 and 8. Moreover, it is generally not possible

to tune the potential to be flat over a large field range, which, given past experience with

the search for inflationary potentials in supergravity, is not so surprising. Nevertheless,

in certain cases the lowering of the potential described here may help in extending the

inflationary phase.

4 Negative T

Up to now, we have been imposing T > 0, which corresponds to the standard expected sign

for the first non-trivial correction X2 to the standard kinetic term X [59]. This had the

consequence of reducing the number of possible solutions for the auxiliary field to only one,

by virtue of the consistency condition (2.3). However, in order to understand the structure

of the theory better, it is interesting to also consider the T < 0 case, where, as we will see,

three branches of the theory can co-exist.
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4.1 Three branches

From table 1 above, it is easy to see that the cubic for F in each of the examples considered

here is of the form (2.11) (for ξ = 0)

0 = F 3 + pF + q, (4.1)

0 = F 3 +
C1(φ)F

32T
(1 + 32XT ) +

C2(φ)

32T
. (4.2)

Assuming as before that c, V,DAW,KAA? > 0, so that C1(φ) and C2(φ) are non-negative,

allows us to examine the solutions to the cubic equation for the auxiliary field F in detail.

There are three solutions, given explicitly below, and they are not always all real. Which

solution is real depends on the relative values of C1(φ), C2(φ), X and T .

Defining the discriminant D = q2

4 + p3

27 as above, the three regions to consider are:

• Region 1: p < 0;D < 0: This region is defined by the interval 0 < X < − 1
32T −(

27
4

C2(φ)2

C1(φ)3322T 2

) 1
3

for fixed T < 0.

• Region 2: p < 0;D > 0: This region is given by X > − 1
32T −

(
27
4

C2(φ)2

C1(φ)3322T 2

) 1
3

and

X < − 1
32T for fixed T < 0.

• Region 3: p > 0;D > 0: This region is given by X > − 1
32T for fixed T < 0.

These regions are clearly seen in the plots below, for C1(φ) = 1, C2(φ) = 0.1. The figure

corresponds to the Linear case, but, keeping in mind that F obeys an algebraic and not

a differential equation, it is clear that the structure will be the same in general. We plot

the three solutions for F , FB, FM and FG, colored in blue, magenta and green respectively.

All three are real in Region 1 (where the labels should be read as FB1, FM1 and FG1), but

only FM is real in Region 2, and only FG is real in Region 3.

As expected, either one or all of the solutions are real in a given region. Here we have

one real solution in regions 2 and 3, denoted by FM and FG respectively, and three real

solutions in region 1. FB is only real in Region 1. Note that q < 0 ∀ T < 0. The explicit
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Figure 9. The solutions to the cubic for F as a function of X for φ = 0.1, T = −0.1. Note that

for small X all three solutions are real, and their imaginary parts thus overlap at 0.
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Figure 10. The solutions to the cubic for F as a function of T for φ = 0.1, X = 0.1.

expressions, valid in the regions when the respective solutions are real, are 5

FB1(X,T ) = 2

√
−p
3

cos

[
1

3
arccos

(
−9q

2
√

3(−p)3/2

)
− 2π

3

]
(4.3)

FM1(X,T ) = 2

√
−p
3

cos

[
1

3
arccos

(
−9q

2
√

3(−p)3/2

)]
(4.4)

FG1(X,T ) = 2

√
−p
3

cos

[
1

3
arccos

(
−9q

2
√

3(−p)3/2

)
+

2π

3

]
(4.5)

FM2(X,T ) = −p
3

(
−D1/2 − q

2

)−1/3

−
(
−D1/2 − q

2

)1/3

(4.6)

FG3(X,T ) =
p

3

(
D1/2 +

q

2

)−1/3

−
(
D1/2 +

q

2

)1/3

(4.7)

We can also plot the structure of the solutions as a function of T , keeping X fixed —

see figure 10. From the figure, we can see that FG is the solution that is real when T > 0

(for real p).

We note a few features that the graphs above reveal: even though there are three real

solutions for small X in the case where T < 0, only one of them remains real as the field

5Note that the full solutions to the cubic, found in Mathematica and plotted in figures 9 and 10, are

more complicated and show branch cuts as Mathematica always chooses the principal root for a given nth

root (of which there are several in the full expressions).

– 15 –



J
H
E
P
0
5
(
2
0
1
4
)
0
5
0

!0.10 !0.08 !0.06 !0.04 !0.02 0.00 T

1

2

3

4

5
cs2

0.00 0.02 0.04 0.06 0.08 0.10 X

1

2

3

4

5
cs2

cs2!FB1"
cs2!FM1"
cs2!FG1"

Figure 11. c2s for c = 0.1, φ = 0.1 as a function of T (left), with X = 0.1, and as a function of X
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velocity X increases. Also, seen as a function of T , that solution (the one that is real for

all negative T , i.e. the top line on the far left in figure 10) does not match onto the solution

that is real when T becomes positive. Another interesting feature is the branching of the

blue and green solutions occurring at negative T. This makes one wonder whether, evolving

from the ordinary (green) branch at small positive T, one can actually keep evolving past

the branching point at T < 0. We will now show that this is impossible, as a singularity is

encountered before the branching point is reached.

4.2 A singularity in the speed of sound

The preceding discussion provides motivation to study the behavior of the FB1 branch

(which is smoothly connected to the ordinary branch at T > 0) in more detail in the

negative T region. The fact that this solution for F becomes imaginary when the field

velocity increases sufficiently suggests that there may be some pathology associated with

this branch in the negative T region. We will now show that this is indeed the case, and

that there occurs a blowup in the square of the speed of sound c2
s. In fact, we can show

that this blowup always takes place in Region 1: The general form of the Lagrangian and

cubic is

P (Z) = Z + 16TZ2 + 2C2C
−2
1 F + C−1

1 F 2(1 + 32TZ) + 16TC−2
1 F 4 + 3eK |W |2,

0 = F 3 +
C1F

32T
(1 + 32TZ) +

C2

32T
(4.8)

C1 = e−K/3
K ,AA?(DAW )?

DAW
(4.9)

C2 =
[K ,AA?(DAW )?]2

DAW
(4.10)

where Z = −KAA?∂A · ∂A?. Then

PZ = 1 + 32TZ + 32TC−1
1 F 2, (4.11)

– 16 –



J
H
E
P
0
5
(
2
0
1
4
)
0
5
0

where we have used the cubic for F to cancel the FZ terms. Using these we can evaluate

ρ and ρZ :

ρ = 2ZPZ − P (4.12)

= Z + 48TZ2 + 32TZC−1
1 F 2 − C−1

1 F 2 − 2FC−2
1 (C2 + 8TF 3)− 3eK |W |2

ρZ = 1 + 96TZ + 32TC−1
1 F 2 + 128TC−1

1 FFZZ. (4.13)

We can rewrite the FZ term by using the derivative of the cubic to get

FZ = − 32TC1F

(C1 + 32TC1Z + 96TF 2)
(4.14)

and write

ρZ = 1 + 96TZ + 32TC−1
1 F 2 − (64T )2F 2Z

(C1 + 32TC1Z + 96TF 2)
. (4.15)

Zeroes of ρZ correspond to blowups in the squared speed of sound c2
s = PZ

ρZ
. In order to

find the zeroes, we would like to solve the equation

(64T )2C−1
1 F 2Z = (1 + 96TZ + 32TC−1

1 F 2)(1 + 32TZ + 96TC−1
1 F 2) (4.16)

Let Q = 1 + 32TZ + 32TC−1
1 F 2. Then this equation becomes

0 = Q(Q+ 64TZ + 64TC−1
1 F 2). (4.17)

Solutions are given by Q = 0 and Q = −64TZ − 64TC−1
1 F 2. Both are only possible when

T < 0. Q = 0→ C2(φ) = 0 upon using the cubic, so we discard it. The other solution is

96T

(
F 2

C1(φ)
+ Z

)
= −1 (4.18)

⇒ F = −3C2(φ)

2C1(φ)
= −3

2
K ,AA?(DAW )?; (4.19)

⇒ Z = − 1

96T
− 9C2

2

4C3
1

. (4.20)

Let Z = X i.e. Y = 0. Now consider that Region 1 (where there are three real roots of the

cubic) is bounded by X = 0 and D = 0 where

D =

(
C2

64T

)2

+

(
C1(1 + 32TX)

96T

)3

. (4.21)

At the point where ρX = 0 (at that point we write X = X0, given by (4.20)),

D = −3

4
C2

2X
2
0 −

8

27
C3

1X
3
0 < 0, (4.22)

so we find that the blowup always occurs in Region 1. There remains the question of which

branch it occurs on. This is answered by noting first that F0 < 0, so it cannot be on the

FM1 branch. Secondly, evaluating FX at the blow-up point one finds FX = F
2X0

< 0, which
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the nonsingular branch.

implies that it must be on the FB1 branch (see figure 9). This is exactly the branch that

meets the T > 0 solution at T = 0, as we found from the plots above, figure 11.

Superluminality of the propagation of fluctuations was pointed out in [59] as resulting

from the presence of higher-derivative corrections with negative sign. The sign of these

terms is given here by the sign of T , so that one might expect such problems, but it is

interesting to see that c2
s is immediately greater than 1, and that the blow-up to infinity

happens so soon when T becomes negative. We expect the theory in this regime to have

problems with causality and locality. Because this theory is an attempt at a full supergrav-

ity embedding of theories with higher-power kinetic terms, and has no inherent constraint

on T , we expect that there is an additional constraint at the string theory level which

should be inherited by the low-energy theory.

On the other hand if one begins on the FM or FG solution in Region 1, one can

approach c2
s = 1 without problems as T → 0−. The real branch for c2

s is given by FG in

Region 3 and FM in Region 2, and this is smoothly connected to the FM solution in Region

1. However, it is clear from the plot that this solution is not smoothly connected to the

T ≥ 0 solution, so it is not possible to move smoothly between these solutions by varying

T . This situation is shown in figure 12.

5 Discussion

In this work we have studied the effective field theory approach to cosmology in N = 1

4-dimensional supergravity, focussing on the effects of the leading higher-derivative kinetic

term corrections. We would like to emphasise that from a string-theoretic perspective such

terms are expected to be present on general grounds. Moreover, the cosmic microwave

background data from the PLANCK satellite still leaves considerable room for the pres-

ence of such terms, as the experimental error on the associated equilateral and orthogonal

non-Gaussianity parameters fequilNL = −42 ± 75 and forthoNL = −25 ± 39 (at 2σ) [6] are still

quite large.
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In supergravity, the leading and simplest higher-derivative terms are of the form [41]

T (∂A)2(∂A?)2 − 2TeK/3∂A · ∂A?FF ? + Te2K/3(FF ?)2. (5.1)

The role of the auxiliary field F is crucial in this context, as it leads to corrections to

both the ordinary kinetic term and, most importantly, to the potential. Even in the

regime where the coefficient of the square of the ordinary kinetic term is small, there

can be dramatic changes occurring in the potential, which drastically modify any possible

inflationary dynamics. We have restricted our analysis to the case where T is a constant.

The general formalism [41] would allow T to also contain derivatives of the fields, e.g. T

could contain a factor (−∂A · ∂A?)n ⊃ Xn with n > 0. As is evident from the expression

above, such a term would then also yield corrections to the Xn+1 and Xn terms — however,

it would not modify the form of the potential term (except of course for the change it induces

in the solution for F ). In an inflationary context, the non-derivative T corrections are thus

the most important ones.

For T ≥ 0, we gave the general solution for F . We showed that the corrections can be

large even when T is small — in particular, the corrections cannot be ignored when

32TeKKAA? |DAW |2 & 1. (5.2)

We then compared the T -dependent kinetic and potential term contributions, finding that

the T-dependent contribution to the potential will be more significant than the T-dependent

contribution to the kinetic part of the action. We have also verified that the attractor

formalism developed in [18] remains valid for these supergravity P (X,φ) actions. We

considered several explicit examples in detail, confirming that for these even very small

increases in T can result in significant changes to the potential and to the inflationary

dynamics.

Our findings suggest that it is essential to take into account the full supergravity de-

scription of higher-derivative terms, rather than assuming that a small parameter expansion

is possible in which the only relevant terms are Xn etc. This is particularly true for large

field models. If a potential is already unstable, the higher-derivative T -dependent correc-

tions tend to make it even more unstable. In the inflationary context, the higher-derivative

terms play a more welcome role when the potential curves upwards too steeply (i.e. when

V,φφ > 0), since in such a situation they can lower and flatten the potential. In addition the

higher-derivative kinetic term slows the field down, as expected in non-canonical inflation-

ary scenarios. On the other hand the effect of higher-derivative corrections on the potential

may be useful in ekpyrotic models also, where a steep negative potential is required [57, 58]

— we leave such an investigation for future work.

For T < 0, we gave general expressions for the three solutions to the cubic for F in

section 4, and determined which is real for the three relevant T < 0 regions defined by the

relative values of T and X. However, the system seems to be blocked from the region with

three real solutions for T < 0 by a blow-up of c2
s, the speed of propagation of perturbations,

which should have cs = 1 as an upper limit.

This study represents an important step forward in the understanding of how higher-

order kinetic terms should be embedded in a consistent (cosmological) supergravity context.
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It will be interesting to look for set-ups in which these effects lead to a useful model of

inflationary or ekpyrotic cosmology, consistent with the available data but not suffering

from excessive fine tuning. We hope to be able to return to this question in the future.
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A Stability of our examples

In the present paper we are interested in solutions to the equations of motion implied by the

Lagrangians (3.1)–(3.4) in the case ξ = 0. For this to be a sensible undertaking, we must

analyze whether or not the systems are stable around ξ = 0. Below, we find the conditions

under which we have stability, but find that for the “Flat” case, perhaps unsurprisingly,

the potential for the second scalar ξ is always unstable.

When T 6= 0, F can be complex and it is not immediately clear which solution to the

cubic is correct. With the exception of section 4 where we consider all solutions, we will

always choose the ordinary branch, which is the solution that connects smoothly to the

T = 0 solution [41]. We will analyze our four examples in turn.

The Lagrangian for the Canonical Kähler potential is given in (3.1). For T = 0, we find

PCanK(X,Y, φ, ξ) = X + Y + e(φ2+ξ2)/2e
√

2cφ

[
3−

((
c+

φ√
2

)2

+ ξ2

)]
(A.1)

≈ X + Y + e
√

2cφ+φ2

2

[
3−

(
c+

φ√
2

)2]
+
ξ2

2
e
√

2cφ+φ2

2

[
2−

(
c+

φ√
2

)2]
+O(ξ3),

from which we see that the potential for ξ is positive and stable as long as (c+ φ√
2
)2 > 2.

It is more complicated to evaluate the full potential for ξ explicitly in the T 6= 0 case,

because this involves substituting in a complicated expression for a generally complex F .

However, we can deal with this case both by expanding T, and numerically. Expanding

F = F0 + F1T, where F0 = −eK/3KAA?(DAW )? etc as in (2.14), we find that for T � 1

the potential is given by

VCanK(φ, ξ) ≈ 1

2
e
√

2cφeφ
2/2

(
− 6 + 2

(
c+

φ√
2

)2)
− 16(e

√
2cφeφ

2/2)2

(
c+

φ√
2

)4

T (A.2)

+

[
1

2
e
√

2cφeφ
2/2

(
−2+

(
c+

φ√
2

)2)
−16e2

√
2cφeφ

2

(
c+

φ√
2

)2((
c+

φ√
2

)2

+1

)
T

]
ξ2.

+O(T 2, ξ3)

From this approximation, a good one at very small T , we see that the T -dependent con-

tributions to the potential have negative sign and will therefore make the potential for ξ
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Figure 13. ξ potential from PCanK for T = 0 (left) and T = 0.01 (right), with c = 3.
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Figure 14. ξ potential from PQuadK for T = 0 (left) and T = 0.01 (right), with c = 3.

flatter and eventually unstable. We see this numerically as well; the potential is extremely

flat in the ξ direction compared to the φ direction - see figure 13. As T increases, the φ

value at which the potential flips becomes smaller and smaller.

The Lagrangian for the Quadratic Kähler potential is given in (3.2). For T = 0, we find

VQuadK(φ, ξ)T=0 ≈ e
√

2cφ(c2 − 3) + ξ2e
√

2cφ(c2 − 1) +O(ξ3) (A.3)

from which we see again that the potential for ξ is positive as long as c is large enough.

For T 6= 0, and working to linear order in T in our expansion for F as above, we find

VQuadK(φ, ξ) ≈ e
√

2cφ
[
c2 − 3− 16c4e

√
2cφT + (c2 − 1)ξ2 − 32e

√
2cφc2(c2 + 2)Tξ2

]
+O(T 2, ξ3). (A.4)

In this case we see that the T -dependent terms are all negative. For c large enough to give a

positive mass term for ξ, the potential will be dominated by the third term, −16c4e
√

2cφT .

This is seen in the numerical results as well, where the potential is flatter when T is

switched on; see figure 14. Note however that the potential is deeper in the Quadratic

Kähler potential case than the Canonical Kähler case, for the same values of c and T . A

full numerical analysis shows that, for a given value of c, a large enough T will flip the

potential for ξ. For c = 3 and T = 0.01, this flip occurs at φ ∼ 0.6.
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Figure 15. ξ potential from PFl for T = 0 (left) and T = 0.001 (right), with V0 = 0.5.
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Figure 16. ξ potential from PLin for T = 0 (left) and T = 0.01 (right), with c = 3. Note that the

potential becomes negative when T is switched on, with c left the same.

The Lagrangian for the Flat potential is given in (3.3). For T = 0, we find

VFl(X,Y, φ, ξ)T=0 ≈ V0 +
V0

24
e−(
√

2+
√

6)φ(1− 14e
√

6φ + e2
√

6φ)ξ2. (A.5)

We see from this that the potential for ξ is unstable around ξ = 0 (until φ ∼ 2.63), as is

clear from figure 15. In the small T approximation, we find

VFl(φ, ξ) ≈ V0 − V 2
0 e
−2
√

6φ(1 + e
√

6φ)4T +
V0

24
e
√

2φ(1−
√

3)(1− 14e
√

6φ + e2
√

6φ)ξ2 (A.6)

−V
2

0 (1 + e
√

6φ)2

3
e−2
√

6φ−
√

2φ(7− 3
√

3 + 10e
√

6φ + (7 + 3
√

3)e2
√

6φ)Tξ2.

Clearly the T -dependent terms here tend to destabilize the ξ-potential further, as is seen

in figure 15. For large enough φ the negative terms can be suppressed, but at small φ and

ξ the potential is unstable and becomes more so as T is switched on. This is perhaps to

be expected as PFl was chosen to give an exactly flat potential when ξ = 0.

The Lagrangian for the Linear potential is given in (3.4). For T = 0, we find

VLin(X,Y, φ, ξ)T=0 ≈ c2(2− 3φ2) + c2ξ2(3− φ2), (A.7)

– 22 –



J
H
E
P
0
5
(
2
0
1
4
)
0
5
0

from which we find that the potential for ξ is stable around ξ = 0 for sufficiently small φ.

This result carries over to the T 6= 0 case only when c is sufficiently small, as we see from

the small T approximation:

VLin(φ, ξ) ≈ 2c2

(
1− 3

2
φ2 − 32c2T

)
+ c2(3− φ2 − 128c2T (3 + φ2))ξ2.

Again the T -dependent terms here tend to destabilize the ξ-potential, as is seen in figure 16.
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