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1 Introduction

Chiral anomalies are well understood algebraically [1, 2]. Their general form can be ob-

tained by considering the theory in d = 2n as a boundary of a d+ 1 dimensional manifold.

The action in d + 1 dimensions is the local Chern-Simons action and since this action is

gauge invariant only up to a boundary term the correct anomaly is reproduced by this

boundary term. In a sense this could be considered as a manifestation of “holography”.

When the chiral symmetry is spontaneously broken Goldstone bosons are present.

Since the Goldstone bosons have to reproduce the chiral anomalies, specific features of

their action (“sigma-model” in the following) follow from the aforementioned structure:

besides a local term in d = 2n dimensions which realizes nonlinearly the symmetry there

is a second term [3, 4] (“WZW term” in the following) which lives in d+ 1 dimensions and

reproduces the anomaly through the above mechanism.

In the present note we want to study in detail the analogous problems for trace anoma-

lies. Following the explicit calculation of the trace anomalies in the AdS/CFT duality [5]

it was realized [6] that a mechanism rather analogous to the one described above for chiral

anomalies is at work: the gravitational action in d + 1 dimension plays the role of the

Chern-Simons action and a particular subgroup of the d + 1-dimensional diffeomorphism

acts as the analogue of the gauge transformations producing the anomalies at the boundary.

When the conformal symmetry is spontaneously broken the Goldstone boson (in the

following “the dilaton”) should reproduce the trace anomalies [7–9]. The effective action

with this property can be constructed and a WZW term appears. Compared with the

general properties of the chiral Goldstone bosons action outlined above the dilaton action

has strange features: the WZW term is local directly in d = 2n and does not seem to have

any higher dimensional origin.

In order to understand this feature we rely on the basic distinguishing property of the

dilaton: even though the spontaneous breaking of the conformal symmetry in Euclidean

signature is the breaking of the SO(d+1, 1) group to SO(d)×Td there is only one Goldstone
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boson, the dilaton [10–12]. This is of course a consequence of the fact that all the conformal

currents can be constructed in terms of the energy momentum tensor, their conservation

being the consequence of tracelessness. The gauging of the SO(d+1, 1) currents is replaced

by diffeomorphism invariance and by the Weyl symmetry.

In the broken phase one would start naively with a sigma-model on the SO(d +

1, 1)/[SO(d)×Td] coset. We propose that the reduction from the d+1 fields parametrizing

the coset to the single dilaton is achieved by a special new, characteristic feature of the

sigma-model: diffeomorphism invariance in d = 2n dimensions for the invariant term and in

d+1 dimensions for the WZW term, respectively. By choosing a particular parametrization

the coset coordinates are reduced to a single field and the WZW term becomes explicitly

local.

We will formulate the sigma-model in a general metric background. Since the input

d-dimensional metric should give rise in the sigma-model to a metric depending on d + 1

coordinates — the Goldstone boson fields — we are led from the beginning to consider

a “holographic” setup. Moreover, the metric in the sigma-model action should admit the

action of a group isomorphic to the Weyl group which makes the connection to holography

even stronger. In spite of that the freedom for dilaton actions constrained by the algebraic

approach is much larger than the one which follows from a strict application of holography.

In particular, as we will discuss in detail, there is no relation between the d+1 dimensional

actions and solutions we are using in the construction.

Applying the above mentioned procedure both for the invariant terms of the dilaton

action and the one reproducing the trace anomalies (the “WZW” part) we get an interesting

connection between the two once one imposes the condition that there is no potential for

the dilaton, a necessary condition for the spontaneous breaking of conformal invariance.

Our conclusion is that the special action proposed for the dilaton in a holographic setup

in [13] has a general algebraic origin being normalized by the “a” trace anomaly whenever

conformal invariance is spontaneously broken.

The paper is organized as follows:

In section 2 we construct the d dimensional part of the reparametrization invariant

sigma-model and we show how it reduces to the Weyl invariant part of the dilaton action.

In section 3 we construct the d+1 dimensional reparametrization invariant WZW term and

we reduce it to the dilaton WZW term. We discuss the relation between invariant terms

and the WZW terms following from the requirement of vanishing potential for the dilaton.

The relations between WZW terms corresponding to different even dimensions is made

explicit. In the last section we discuss various applications of the formalism developed and

possible generalizations. In appendix A we review the holographic calculations of trace

anomalies and the realization of Weyl symmetry in holography which motivate the choices

of the explicit metric backgrounds in sections 2 and 3.

Related and complementary discussions of some of the aspects addressed here can be

found in [14–18]. While these references rely on supersymmetry, this is not assumed here.
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2 The Weyl invariant part of the dilaton sigma-model

We will follow here an algebraic approach though, as we will see, the results have an

immediate holographic interpretation.

Consider in d dimensions the breaking of the conformal group SO(d + 1, 1) to the

Poincaré group SO(d)× Td. The coset of Goldstone bosons can be parametrized by d+ 1

fields Xµ(xi) where µ = 1, . . . , d + 1 and i = 1, . . . , d. The metric on the space of the X

fields is AdSd+1 with isometry SO(d + 1, 1) such that the broken isometries are nonlinearly

realized.

Since we want to construct the analogue of the “gauged sigma-model” we allow a more

general metric Gµν(Xτ ) on which the Weyl transformations act. The condition this metric

has to fulfill in order to serve our purposes are:

a) It should be a d+1 metric but a functional of a d dimensional metric gij , i, j = 1, . . . , d

Gµν = Fµν [gij ] . (2.1)

b) It should admit the action of a group isomorphic to the Weyl transformations such that

δσG = F [gij exp 2σ(x)]− F [gij ] (2.2)

where δσ denotes the action on the d+ 1 dimensional metric isomorphic to the Weyl

transformations.

c) For gij = δij it should reduce to the natural metric on the SO(d+1,1)
SO(d)×Td

coset which is

AdSd+1.

A class of metrics which satisfy the above requirements are solutions of d+1 dimensional

“bulk” actions which admit AdSd+1 solutions, specified by the boundary metric gij (which

in the continuation we will denote by g
(0)
ij ) in the Fefferman-Graham gauge. Obviously this

class satisfies the above requirements, the group action isomorphic to Weyl transformations

being the PBH transformations as explained in the appendix.

The connection to holography is now obvious though we stress that we will use only the

algebraic properties of the solution. In particular the specific action to which the metric

is a solution will not play a role. It is an interesting question if there are metrics which

satisfy the above requirements not arriving from a holographic construction.

The natural building blocks for the gauged sigma-model are the induced metric:

hij(x) = Gµν(Xτ (x))∂iX
µ(x)∂jX

ν(x) (2.3)

and the second fundamental form. While for an ordinary sigma-model we would take as

an action e.g. δijhij , here we insist on reparametrization invariance in d dimensions which,

together with the field redefinition invariance present in (2.3), will allow us to project to

the dilaton. Therefore the minimal sigma-model action having these properties is:

S =
1

`d

∫
ddx
√

dethij . (2.4)
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If from the beginning we choose Gµν to be in the FG gauge, we split the fields Xµ into

Xi(x) i = 1, . . . , d and Φ(x) in the “ρ”-direction. Now we can achieve the reduction to the

dilaton action by choosing the gauge:

Xi(x) = xi (2.5)

and the gauge fixed action becomes:

S =
1

`d

∫
ddx

√
det gij(x,Φ(x))

Φd/2(x)

√
1 +

`2gij(x,Φ(x))∂iΦ∂jΦ(x)

4Φ(x)
. (2.6)

For the particular case of the AdS metric we recognize the expression proposed in [13]

as representing the action for the displacement of the brane which breaks the gauge and

conformal symmetry on the N = 4 Super Yang-Mills Coulomb branch.

In order to exploit the symmetries of the action it is convenient to start with its unfixed

form (2.4). Since in the FG gauge the metric is determined by its boundary value g
(0)
ij (X),

the action is a functional of g
(0)
ij and Xµ. The action has symmetries of two kinds:

a) Field transformations of the Xµ fields relating two different background metrics Gµν .

These transformation make explicit the variation under a change of g
(0)
ij . The trans-

formations are inherited from residual gauge transformations in the FG gauge, i.e.

the PBH transformation parametrized by σ(Xj) and Xj-dependent field transforma-

tions parametrized by ζi(Xj). We rewrite the PBH transformations of the appendix,

making it explicit that in the framework of the sigma-model we deal with field trans-

formations at fixed coordinates xi:

Φ′ = Φ(1 + 2σ(Xj)) (2.7)

X ′i = Xi − ai(Xj ,Φ(x))− ζi(Xj) (2.8)

where

ai(X,Φ(x)) =
`2

2

∫ Φ(x)

0
dρ′gij(x, ρ′)∂jσ(X) . (2.9)

Such a transformation changes g
(0)
ij by:

δg
(0)
ij (Xk) = 2σ(Xk)g

(0)
ij (Xk) +∇iζj(Xk) +∇jζi(Xk) (2.10)

where the covariant derivatives are constructed with g
(0)
ij and all the functional de-

pendences are on Xj .

b) Reparametrizations of the xi variables parametrized by ξi(xk):

x′i = xi − ξi(xk) (2.11)

under which the “fields” Xµ transform as:

δXµ(xk) = ξi∂iX
µ(xk) . (2.12)

We are now ready to study the symmetries of the “projected” action (2.6) in the

special coordinates (2.5), the action being now a functional just of g
(0)
ij and Φ.
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After the transformation (2.7) the special choice (2.5) is not anymore respected. In

order to reinstate it1 we should make a reparametrization with the special choice of the

parameters ξi:

ξi(xk) = ai(Xk = xk,Φ(x)) + ζi(Xk = xk) (2.13)

Therefore the action (2.6) will be invariant under a joint transformation:

δg
(0)
ij (x) = 2σ(x)g

(0)
ij +∇iζj +∇jζi (2.14)

and

δΦ(x) = 2σ(x)Φ(x) + [ai(Xk = xk,Φ(x)) + ζi(Xk = xk)]∂iΦ(x) (2.15)

where we indicated the places where the field Xk was replaced with the variables xk using

the gauge (2.5).

Equations (2.14), (2.15) make explicit the invariance of (2.6) under the Weyl transfor-

mations. The transformations are non-anomalous since there is no boundary term which

could be the source of violation in the above classical argument.

Equation (2.15) shows that in order to have the usual transformation of the dilaton

field τ under Weyl transformation:

τ → τ + σ (2.16)

there is a field redefinition relating Φ and τ . Using (2.15) the field redefinition can be

found iteratively giving an expansion in powers of e2τ where the terms of O(e2nτ ) contain

2(n− 1) derivatives.2 The 0-th order solution of (2.15) is:

Φ(0) = e2τ . (2.17)

For the higher order terms in the iterative solution we make the most general Ansatz and

require (2.15) to be satisfied. (For simplicity and without loss of generality, we set ζi = 0.)

To proceed we need the Φ-expansion of ai which depends on the higher order terms in the

FG expansion of the metric. Both can be found in [20]. In this way we find

1

`2
Φ(1) =

1

2
e4τ (∇τ)2 + α e2τ R̂ (2.18)

and

1

`4
Φ(2) = e6τ

(
Rij∇iτ∇jτ

4(d− 2)
− R(∇τ)2

8(d− 1)(d− 2)
+

1

4
∇iτ∇jτ ∇i∇jτ +

7

16
(∇τ)4

)
+α e2τ

(
1

2
∇̂iτ∇̂iR̂+ ∇̂iτ∇̂iτ R̂

)
+ e2τ

(
β1�̂R̂+ β2R̂

2 + β3R̂
ijR̂ij + β4Ĉ

ijklĈijkl

)
(2.19)

Here α parametrizes the homogeneous solution of (2.15) at O(∂2) and β1, . . . , β4 param-

eterizes the homogeneous solutions at O(∂4). The hatted quantities are built from the

invariant metric ĝij = e−2τgij and gij = g
(0)
ij .

1For a related discussion see [19].
2The discussion here generalizes that of [19] to a curved metric.
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Plugging this into (2.6) we obtain the “universal minimal” invariant part of the action

(cf. appendix A):

S =
1

`d

∫
ddx
√
ĝ

(
1 +

`2

4(d− 1)
R̂+

`4

32(d− 2)(d− 3)
(Ê4 − Ĉ2) +O(∂6)

)
(2.20)

Additional terms can be obtained by adding to (2.4) reparametrization invariant terms

depending on curvatures constructed from hij as well as from the second fundamental

form.3 Also, we have set α = βi = 0 (cf. (2.18), (2.19)). Note that in d = 2 the O(∂2)

terms are 1
4

∫ √
gR while in d = 4 the O(∂4) terms are 1

64

∫ √
g(E4 − C2).

If one keeps the homogeneous terms in Φ, one finds the additional terms

∆S =
1

`d

∫
ddx
√
ĝ

{
− d `2

2
αR̂+

`4

8
d(d+ 2)αR̂2 +

`4

8

(d− 2)

(d− 1)
α2R̂2

−d `
4

2

(
β1�̂R̂+ β2R̂

2 + β3R̂
ijR̂ij + β4ĈijklĈ

ijkl
)}

. (2.21)

The above analysis made for the minimal action can be repeated after adding terms de-

pending on curvatures built with the induced metric and/or the second fundamental form.

From the analysis above it is clear that while the final form of the action will depend on

these terms the field redefinition of Φ in terms of τ is universal. A unique feature of the

minimal action which we will use in the following is that it is the only term written in

terms of the Φ field which contains a “potential” of the dilaton field τ . In flat space this is

simply 1
Φd/2 , while after the field redefinition it gives rises to the

√
ĝ term.

Another application of our formalism is the study of the symmetries of (2.6) for the

special case g
(0)
ij = δij , i.e. AdS background metric. The AdS metric is invariant under

special conformal transformations accompanied by an appropriate Weyl transformation,

i.e. in the notation of (2.7):

ζi =
1

2
εi x2 − xi(ε · x) (2.22)

with εi = const. and

σ(x) = −1

d
(∂ · ζ) = ε · x . (2.23)

For a flat background the ai have a very simple form:

ai =
`2

2
Φ(x)∂iσ(x) =

`2

2
εiΦ(x) . (2.24)

Therefore (2.6) for a flat g
(0)
ij is invariant under a reparametrization transformation:

x′i = xi − 1

2
εix2 + xi(ε · x)− `2

2
εiΦ(x) (2.25)

followed by a field transformation:

Φ′(x′) = Φ(x) + 2ε · xΦ(x) (2.26)

which is the defining symmetry of (2.6) in [13].

3Such terms were considered, in a somewhat different context, in [21].
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3 The WZW term

We want to construct a sigma-model term which reproduces the trace anomalies. This

should be an action on a d+ 1 dimensional manifold with boundary and should share with

the invariant term the property of reducing to a functional just of the dilaton field and

the boundary metric. We will achieve that by requiring that the action is invariant under

reparametrizations in d+ 1 dimensions. We define

fαβ = Gµν(X) ∂αX
µ∂βX

ν (3.1)

where Gµν is the bulk metric in FG gauge and α, β = 1, . . . , d + 1. The fields Xµ depend

now on d + 1 coordinates which we split from the beginning into xi, i = 1, . . . , d and ρ.

The boundary of the manifold is at ρ = 0. The WZW action is then

SWZW =
1

`d

∫
ddx dρ

√
det fαβ . (3.2)

We remark that the classical solution metric which is used in (3.1) should not be

necessarily a solution of a minimal action like (3.2): only its transformation properties

enter our arguments.

Since the embedding has the same dimension as the space all the relevant information

is in the boundary conditions of the embedding fields. We split Xµ into Xi(x, ρ) and

Φ(x, ρ). The symmetries of the action are again:

a) Field transformations relating backgrounds defined by different g
(0)
ij . These transfor-

mations, which involve fields at fixed coordinates, will have exactly the same form as

in the previous section, i.e. (2.7) and (2.9).

b) Reparametrizations in d+ 1 dimensions.

We choose again a special set of coordinates by:

Xi(x, ρ) = xi . (3.3)

Then the action (3.2) becomes:

SWZW =
1

2 `d

∫
ddx dρ ∂ρΦ

√
det gij(x,Φ(x, ρ))

Φ(x, ρ)1+d/2
. (3.4)

We see that a change of variable between ρ and Φ(x, ρ) is possible in the integral at each

fixed x such that the action (3.4) depends on Φ(x, ρ) just through its boundary value

Φ(x, ρ = 0).

The symmetry transformations which leave the gauge condition (3.3) unchanged are

again PBH transformations accompanied by reparametrizations:

δg
(0)
ij (x) = 2σ(x)g

(0)
ij +∇iζj(x) +∇jζi(x) (3.5)

and

δΦ(x, ρ) = 2σ(x)Φ(x, ρ) + [ai(Xk = xk,Φ(x, ρ)) + ζi(Xk = xk)]∂iΦ(x, ρ) (3.6)
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σ(x) and ζi(x) being the parameters of the transformation. We remark that as in the

previous section ai are determined by the PBH transformations such that Φ is treated just

as an expansion parameter, its x-dependence not being acted upon.

At the boundary ρ = 0, Φ(x, ρ = 0) has exactly the same Weyl transformation property

as Φ(x) in the previous section and the field redefinition relating it to the dilaton field τ(x)

is identical.

As long as Φ(x, 0) and g
(0)
ij are transformed simultaneously the action will be invariant.

This is the analogue in this set up of the fact that whatever the generating functional

of a CFT W (g) is, if we define ĝij = e−2τgij then W (ĝ) will be invariant under a joint

transformation of the metric and the dilaton. The expression which is local and reproduces

the anomalies i.e. the WZW term, is the difference W (g)−W (ĝ).

From (3.6) it is clear that in flat space τ = 0 corresponds to Φ(x, ρ = 0) = 1. Therefore,

using the change of variable from ρ to Φ(x, ρ) we define the WZW action by

SWZW =
1

2 `d

Φ(x,0)∫
1

dΦ ddx

√
det gij(x,Φ)

Φ1+d/2
. (3.7)

We expect that the expression (3.7) has a well defined limit for d→ 2n.

We discuss now the way (3.7) reproduces the trace anomalies. Under (3.5), (3.6) the

metric g
(0)
ij transforms by a Weyl transformation. If this transformation is accompanied

by the appropriate transformation of Φ or equivalently of τ , this will be an invariance.

Therefore the variation will not get a contribution from the upper limit of integration. On

the other hand for the lower limit of integration the expression would be invariant if the

lower limit which corresponds to Φ(x, 0) = 1 transformed as follows from (3.6), i.e. by the

amount

δ(Φ = 1) = 2σ(x) . (3.8)

Since the lower limit is kept fixed the variation is the compensating contribution coming

from the integrand multiplied with (3.8):

δSWZW = − 1

2 `d

∫
ddx 2σ(x)

√
det gij(x,Φ = 1) . (3.9)

As discussed in the appendix, in the expression (3.9) the anomalies in d = 2n are to be

found among the terms with no ` dependence. With this identification it is clear that the

type A anomalies [22] following from (3.9) are the ones calculated a long time ago [5, 20].

One can now explicitly work out the WZW part in the dilaton action in an external

metric following from (3.7). Using the FG expansions for gij(x, ρ) in [5] and [20] we find

in d = 4:

SWZW =

∫
√
g d4x

(
1

4 `4

(
1− e−4τ

)
− 1

24 `2
R
(

1− e−2τ
)

+
1

4 `2
(∂τ)2e−2τ

+
1

64

(
τ E4 + 4

(
Rij − 1

2
Rgij

)
∇iτ∇jτ − 4(∇τ)2 �τ + 2(∇τ)4

)
+
(γ

2
− 1

64

)
τ C2 .

(3.10)
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Here γ is a combination of the two parameters which specify the homogeneous solution

of the PBH transformation for g(2) [20]. They could be fixed by explicitly solving the

equations of motion of the bulk gravitational action. For the Einstein-Hilbert action with

cosmological constant, which is dual do N = 4 SYM theory, γ = 0 and one finds that the

two anomaly coefficients a and c are the same. In deriving (3.10) we have set to zero the

free parameters which appear in the solution of (3.6), i.e the coefficients α and βi in (2.18)

and (2.19).

An alternative way of writing (3.10) is

SWZW =

∫
d4x

{
− 1

4`2

(√
ĝ −√g

)
+

1

24`2

(√
ĝR̂−√gR

)
+

1

64

(
τ E4 + 4

(
Rij − 1

2
Rgij

)
∇iτ∇jτ − 4(∇τ)2 �τ + 2(∇τ)4

)
+
(γ

2
− 1

64

)
τ C2

}
.

(3.11)

The expression (3.11) above shows clearly that besides the standard terms of the

dilaton action which reproduce the trace anomaly there are invariant terms including the

“dilaton potential” term
√
ĝ whose normalization is completely fixed by the “a” anomaly.

In appendix A this fact is analysed in detail showing that it has an algebraic origin and

it is independent both on the metric used and a possible replacement of the “minimal

action” (3.7) by an action having additional curvature terms.

As shown in the previous section the action (2.6) is the only one among the invariant

actions which has a potential term for the dilaton. Since the total effective action for

the dilaton cannot have a potential term for the dilaton this term has to be cancelled

by the one appearing in the WZW part (3.11). We conclude therefore that (2.6) with a

normalization “−a” should necessarily accompany (3.11). This unexpected conclusion is a

consequence of our embedding the dilaton in the space of the d+ 1 Goldstone bosons with

the symmetry structure assumed. In the normalization of the type A anomaly coefficient

s.t. δσW = a
∫
σE4 + type B, the total dilaton action is

16 a
(
S + 4SWZW

)
. (3.12)

In this combination the dilaton potential cancels and the anomaly is reproduced with the

correct normalization. The same relative factor was derived in [13] from the requirement

of supersymmetry in the form of a no-force requirement for a probe D3-brane in AdS5.

Alternative arguments for the special role of (2.6) were recently put forward in [18].

If we want to calculate the WZW terms S
(0)
WZW, i.e. the dilaton self-interaction terms

in flat external metric from (3.7) with g
(0)
ij = δij , we obtain a deceptively simple looking

universal expression:

S
(0)
WZW = − 1

d `d

∫
ddx

(
1

Φ(x, 0)d/2
− 1

)
. (3.13)

For each dimension we should look at the term independent on `. In principle this calcula-

tion should check the relative normalizations of the terms in different dimensions following

from the general relation between type A anomalies [6, 20].
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4 Discussion

The special feature we used for constructing the sigma-model actions which reduced to the

dilaton action was their diffeomorphism invariance. Using this invariance we could gauge

away some of the “would be Goldstone bosons” ending with the relevant one, the dilaton.

We believe that this is a general feature whenever a space-time symmetry is spontaneously

broken. It would be interesting to have a general treatment of this pattern.4

For the dilaton action the embedding gave new, unexpected information, i.e. that there

is a Weyl invariant piece of the action, the “minimal” one normalized by the a anomaly

which should accompany the WZW term. This feature appeared when we formulated

the actions in term of the Φ field, the coordinate left unfixed after using diffeomorphism

invariance. The change of variable to the τ field, which realizes additively the Weyl trans-

formation, obscures this connection. It is an open question if one can reformulate in an

invariant fashion the “minimal” action in terms of the τ field.

We used extensively the “gauging” of the sigma-model in order to study its symmetries.

The gauging used was a coupling to a general d dimensional metric. We used the fact that

the natural AdSd+1 metric on the Goldstone boson space can be related in the Poincaré

patch to a d dimensional flat metric. Our “gauging” was a natural deformation of this

relation leading to a natural appearance of the holographic set up. Alternative paths for

coupling the sigma-model to a metric, still respecting diffeomorphism invariance should be

explored. Once the above structure was picked we were led to consider metrics which were

solutions of equations of motion corresponding to a bulk action. There is a large freedom

in the choice of the bulk action and in particular there is no need that the action picked

for the sigma-model has any relation to the action which provided the metric solution. In

this sense the treatment seems to be purely algebraic. Nevertheless one should investigate

if this very relaxed holographic framework is really necessary or the requirements we listed

for the metrics can be achieved in a different way.

At a more basic level the gauging we used via the coupling to a metric might not be

the most natural one. Following the analogy to the chiral situation a coupling of the sigma-

model to SO(d + 1, 1) gauge fields would be more natural. This would require however the

understanding of the relation (if any) between the a Weyl anomaly and descent equations

of the conformal group.
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A Review of trace anomalies in holography

We will adopt the point of view that while AdS/CFT duality gives a physical realization

in which the trace anomalies of a CFT appear, one can abstract from it general, algebraic

properties rather similar to the “descent treatment” [1] of chiral anomalies.

The basic setup involves a d+1 (where d = 2n) dimensional manifold with the topology

of the Poincaré patch of AdS. For the d dimensional boundary we will take a manifold

with Euclidean signature and the topology of Rd (taking the topology to be e.g. Sd is

unimportant as long as we discuss local anomalies).

The metric Gµν on the d+ 1 dimensional manifold can be brought to the “Fefferman-

Graham (FG in the following) gauge” ideally suited for the problem:

ds2 = GµνdX
µdXν =

`2

4

(
dρ

ρ

)2

+
1

ρ
gij(x, ρ)dxidxj . (A.1)

Here µ, ν = 1, . . . , d + 1 and i, j = 1, . . . , d. The coordinates are chosen such that ρ = 0

corresponds to the boundary. We will assume that gij is regular at ρ = 0.

We will consider Gµν , which are solutions of a gravitational equation of motion deter-

mined through the FG expansion in terms of the boundary value g
(0)
ij (x) = gij(x, ρ = 0).

The “FG ambiguities” in the expansion determining Gµν will not influence our calculations

since they appear one order higher than the expressions we use.

If we use as gravitational action the minimal one, i.e. Einstein term and a negative

cosmological constant, then on the solution this action becomes:

S =
1

`d

∫
dd+1X

√
detGµν . (A.2)

As we will discuss in the continuation, for the type A anomalies related to the WZW term

we are interested in, (A.2) gives the general expression up to an overall normalization.

The FG gauge is extremely useful since the symmetries playing an essential role for

trace anomalies appear as its residual gauge freedom [20] :5

a) diffeomorphism transformations which act just on the x variables, inducing therefore

the ordinary d-dimensional diffeomorphisms on the boundary

b) an additional subgroup of the d + 1-dimensional diffeomorphisms depending on one

function σ(x). The transformation (called PBH in the following) leaves the metric in

the FG gauge, i.e. LξGρρ = LξGρi = 0, with solution:

ρ′ = ρ e2σ(x) ' ρ(1 + 2σ(x)) , x′i = xi − ai(x, ρ) (A.3)

where

ai(x, ρ) =
`2

2

∫ ρ

0
dρ′gij(x, ρ′)∂jσ(x) . (A.4)

Correspondingly, the metric gij(x, ρ) transforms as:

δgij(x, ρ) = 2σ(1− ρ∂ρ)gij(x, ρ) +∇iaj(x, ρ) +∇jai(x, ρ) . (A.5)

The covariant derivatives are with respect to gij(x, ρ) with ρ fixed.

5Here our curvature convention are the opposite to those of [20], i.e. [∇i,∇j ]Vk = Rijk
lVl.
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In particular the boundary value of the metric g
(0)
ij transforms by an ordinary Weyl

transformation:

δg
(0)
ij (x) = 2σ(x)g

(0)
ij (x) . (A.6)

Therefore the PBH transformation lifts the Weyl transformations into an isomorphic sub-

group of diffeomorphisms in d + 1 dimensions. The change between two metrics corre-

sponding to boundary values related by (A.6) can be represented as a d + 1 dimensional

PBH transformation.

A diffeomorphism invariant action S on a manifold with boundary transforms under a

diffeomorphism with parameters ζµ as:

δS =

∫
dd+1X∂µ(ζµL) = 2σρL|ρ=0 (A.7)

where L is the gravitational Lagrangian density and we used the PBH diffeomorphism in

the ρ-direction. Therefore the anomalous Weyl variation of the action is expressed directly

through the boundary value and the trace anomalies can be read off directly from (A.7).

To make the discussion more concrete, we give the explicit expressions needed for the

calculation of anomalies in d = 4. The coefficients of the FG-expansion of the metric

gi,j(x, ρ) =
(0)
gij(x) + ρ

(1)
gij(x) + ρ2

(2)
gij(x) + . . . (A.8)

are largely fixed by PBH transformations (A.5):

(1)
g ij = − `2

d− 2

(
Rij −

1

2(d− 1)
Rgij

)
(2)
g ij = c1 `

4C2gij + c2 `
4 (C2)ij +

`4

d− 4

{ 1

8(d− 1)
∇i∇jR−

1

4(d− 2)
�Rij

+
1

8(d− 1)(d− 2)
�Rgij −

1

2(d− 2)
RklRikjl +

d− 4

2(d− 2)2
Ri

kRjk

+
1

(d− 1)(d− 2)2
RRij +

1

4(d− 2)2
RklRkl gij −

3d

16(d− 1)2(d− 2)2
R2 gij

}
. (A.9)

Here and below g =
(0)
g and likewise for the covariant derivatives and the curvatures. The

coefficients c1 and c2 parametrize the homogeneous solutions of (A.5) at O(ρ2). Inserting

this into the expansion√
det g(x, ρ) =

√
det g

{
1 +

1

2
ρ tr(

(1)
g ) + ρ2

[1

2
tr

(2)
g −1

4
tr
( (1)
g 2
)

+
1

8

(
tr

(1)
g
)2]

+ . . .

}
(A.10)

one finds√
det g(x, ρ) =

√
det g

{
1− `2

4(d−1)ρR+ `4 ρ2
[
γ C2 + 1

32(D−2)(d−3)E4

]
+ . . .

}
(A.11)

where PBH leaves γ arbitrary.6 E4 is the dimensionally continued four-dimensional Euler

density E4 = RijklR
ijkl− 4RijR

ij +R2. The contribution to the anomalies can be read off

immediately from (A.11).

6E.g. for the minimal action γ = − 1
32(d−2)(d−3)

.
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We remark that the type A anomaly is completely fixed by the PBH relation modulo

an over all normalization of the action. The same normalization fixes in an unambiguous

fashion the ρ0 and ρ1 terms. This universality of the type A contribution with the accom-

panying two terms is actually much more general: any modification of the bulk action by

higher curvature terms will lead to the same grouping of the three terms, only modifying

the overall normalization. This is, in fact, easy to prove.

Consider an arbitrary (local) scalar Ψ(x, ρ) built from the bulk curvature and its

covariant derivatives. It will have a FG expansion of the form

Ψ = Ψ(0) + ρ `2 Ψ(1) + ρ2 `4 Ψ(2) + . . . (A.12)

The leading term is always a constant, namely Ψ evaluated on AdS space. Recalling that a

term ρn is accompanied by a curvature scalar of the boundary metric with 2n derivatives,

we see that necessarily Ψ(1) ∝ R and Ψ(2) must be a linear combination of �R, R2, RijRij
and C2. Now we use the fact that Ψ was a bulk scalar, i.e. under PBH it transforms as

δΨ = ξµ∂µΨ = −2σ ρ ∂ρΨ + ai∂iΨ

= −2 `2 ρ σΨ(1) + ρ2
(
−4 `4 σΨ(2) + `2

(1)
a i ∂iΨ

(1)
)

+O(ρ3) (A.13)

where ∂iΨ
(0) = 0 was used. At O(ρ) this says that δΨ(1) = −2σΨ(1), but there is no such

curvature scalar. So we find at O(ρ2) that δΨ(2) = −4σΨ(2), from where we conclude that

Ψ(2) ∝ C2 and the term proportional to E4 is unaffected.

This argument can be generalized to any even dimension.

Therefore the type A anomaly and the related
√
ĝ term are a result of the algebraic

structure independent of the bulk action used. For convenience we can use therefore (A.2)

with an arbitrary overall normalization. For the type A anomaly in any even dimen-

sion (A.2) plays a role analogous to the Chern-Simons action for chiral anomalies. The

implications of the “coupling” between the type A anomaly and the
√
ĝ term are discussed

in the main part of the paper.

The limiting process ρ → 0 implicit in (A.7) is not entirely straightforward and we

make now more precise some of its features. The actions of the type of (A.2) when evaluated

in the FG expansion have pole terms in d− 2n when treated in dimensional regularization.

In addition there are a finite number of terms with inverse powers of ρ reflecting the

powerlike ultraviolet divergences present formally in the regularization which should be

however absent in the effective action of a CFT. If the variation of the action is considered

as in (A.7) the pole term in d − 2n is not anymore there and therefore the limit d → 2n

can be safely taken, however negative powers of ρ are still present. Therefore before taking

the limit in (A.7) we should simply discard these terms.7

Alternatively we could use the following equivalent prescription to isolate the trace

anomalies: we move the boundary to ρ = 1 and we use (A.7). There are now in the

variation local terms with positive and negative powers of the unique scale ` as coefficients.

7Alternatively one can add explicit local boundary terms to cancel them. For a clear discussion con-

sult [23].
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The anomaly terms are simply the ` independent terms in the variation (A.7) (modulo

cohomologically trivial terms of course).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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