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Abstract. During the On-Station Thermal Test campaign of the LISA Pathfinder

the Diagnostics Subsystem was tested in nearly space conditions for the first time after

integration in the satellite. The results showed the compliance of the temperature

measurement system, obtaining temperature noise around 10−4 K Hz−1/2 in the

frequency band of 1− 30 mHz. In addition, controlled injection of heat signals to the

suspension struts anchoring the LISA Technology Package (LTP) Core Assembly to

the satellite structure allowed to experimentally estimate for the first time the phase

noise contribution through thermo-elastic distortion of the LTP interferometer, the

satellite’s main instrument. Such contribution was found to be at 10−12 m Hz−1/2, a

factor of 30 below the measured noise at the lower end of the measurement bandwidth

(1 mHz).
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1. Introduction

LISA Pathfinder (LPF) [1] will be the in-flight experiment to test key elements required

for a future space-borne gravitational wave detector, as for instance the proposed

eLISA mission [2]. LPF is an ESA mission, with some NASA contributions [3]. The

main scientific instrument on-board the LPF is the LISA Technology Package (LTP),

consisting of two test masses which are kept in nominal free fall by means of a precise

drag-free control loop [4]. A high precision interferometer [5] measures the relative

longitudinal and angular displacements with high stability.

The main scientific goal of the mission is to reach a residual acceleration between

both test masses of 3× 10−14 m/s2/
√

Hz in the bandwidth between 1− 30 mHz [6], as

expressed in amplitude spectral density of differential acceleration fluctuations between

them. Though the sensitivity of the instrument is limited at the lower side of the band

by the cross-talk actuation on the test masses and at the upper side by the interferometer

sensing noise [7], several environmental noise sources could induce disturbances in the

system that would reduce the sensitivity of the system, if they were not antecedently

accounted for.

The Diagnostics Subsystem on-board LISA Pathfinder is designed precisely for

that purpose: it will monitor magnetic fields [8], charged particles [9] and temperature

variations on the satellite [10]. It also includes a set of precision heaters and coils that

will allow a characterisation of the effects in-flight and its consequent translation into

noise models to be taken into account for future gravitational wave observatories in

space.

The thermal case is of particular relevance since it becomes more important

in the very low frequency regime [11], where LISA Pathfinder has its measurement

bandwidth. Also, thermal effects have been identified as a leading term in the noise

contribution through different effects, namely: net forces and torques appearing on

the test masses caused by asymmetric temperature distributions around them, optical

pathlength variation due to temperature fluctuation of optical elements and thermo-

elastic distortion of the satellite structure, including the distortion of the Optical

Metrology Subsystem’s optical bench itself. While there have been experiments

addressing the first two —through torsion pendulum measurements [12] and laser

metrology set-ups [13], respectively— there were no empirical results providing an

indication of the impact of the temperature-induced deformation of the structure hosting

an instrument as the LTP, reaching picometer resolution.

Spacecraft thermal-vacuum tests are the first realistic scenario where these

experiments can take place. In the following we describe the LISA Pathfinder On-

Station Thermal Test (OSTT) campaign which took place late in 2011, involving for

the first time thermal diagnostics experiments to be carried out during the mission

and providing critical information regarding the LTP sensitivity towards thermoelastic

perturbations at the LTP Core Assembly (LCA).

This test campaign was used to test the data analysis tools that are being developed
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Figure 1. Left: General view of the LTP Core Assembly (LCA), with both Vacuum

Enclosures that host the Inertial Sensors. The optical bench is located between them.

Image credits: Airbus Defence and Space, Germany. Right: IABG mbH space vacuum

chamber with the LPF during the OSTT campaign. Image credits: Airbus Defence

and Space UK.

for the mission. In that sense, all the data analysis was carried out with software from

the LISA Technology Package Data Analysis (LTPDA) toolbox, which is a dedicated

MATLAB Toolbox developed by the LPF Data Analysis team, integrating the different

data analysis tools to be used during the mission operations and the posterior data

analysis phase [14].

The paper is organized as follows. We describe the set-up during the campaign and

the experiments performed in Section 2. Results are presented in Section 3 together

with the discussion of the distortion mechanism, following to that the thermo-elastic

noise contribution to the optical metrology is presented in Section 4, to then finally

discuss our conclusions in Section 5.

2. The LISA Pathfinder Thermal Balance and Thermal Vacuum campaign

Thermal Balance and Thermal Vacuum test are one of the most comprehensive series

of tests that a spacecraft needs to overcome before launch. The main purpose of the

Thermal Vacuum test is to verify the satellite performance in its thermal design limits.

This set of thermal data is required as well for correlation with the spacecraft thermal

model. On the other side, Thermal Balance checks the performance of the spacecraft

by operating all of its systems in the same simulated space conditions until thermal

equilibrium is achieved.

For LISA Pathfinder, these represented an extensive campaign of tests conducted

at the IABG mbH space simulator, in Ottobrun (Germany) in the framework of the On-

Station Thermal Test campaign –see Figure 1. During the campaign, the spacecraft was

operated in space conditions, i.e. with a nominal pressure below 10−4 Pa and powered

up by means of a sun simulator, consisting of an array of high power lamps mimicking

the radiation that will hit the spacecraft in orbit.



Thermo-elastic induced phase noise in the LISA Pathfinder spacecraft 4

TM1 TM2

Φx1,a

Φx12,a

Laser
 inj.

OB
ΦF,b

ΦA,2

ΦR,a
ΦA,1

Φx12,bΦF,a

ΦR,b Φx1,b

x

y

Figure 2. Schematic of the interferometer main measurements: Φ12 quadrant photo-

diodes measure relative displacement of Test Mass 1 with respect to Test Mass 2, and

angular relative position on Y and Z axes between them. On the other hand, Φ1

quadrant photo-diodes measure the same displacements and angles on Test Mass 1

but with respect to the spacecraft. The final relative displacement measurements x12

and x1 are obtained by subtracting the reference measurement ΦR to both Φ12 and

Φ1 respectively. The suffixes a, b refer to each of the redundant photodiodes of each

interferometer measurement, and the dashed lines represent the recombined beams for

each measurement. At the OSTT campaign the Test Masses were replaced by mirrors.

2.1. Subsystems in the LISA Pathfinder Core Assembly

The instrumentation on-board the satellite was almost the complete flight version of

the LPF satellite. Most parts of the different satellite units were already integrated and

operative. Here we provide a brief description of the main subsystems in the LCA and

comment any modifications to the setup with respect the flight version.

Gravitational Reference Sensor During the Thermal Balance and Thermal Vacuum

campaign, the Electrode Housings and the test masses of the Inertial Sensors were not

present and were replaced by piezoelectric driven mirrors acting as end-mirrors of the

interferometer [15].

Optical Metrology Subsystem The Optical Metrology Subsystem is composed by the

Reference Laser Unit, the Laser Modulator, the Phasemeter [5], the Optical Bench [16]

and the Data Management Unit (DMU) [9], all of them integrated in the spacecraft

during the campaign. In the Optical Bench four different interferometer measurements

are taking place. The main two interferometers are the x1 that measures the distance

between Test Mass 1 and the optical bench and the x12 provides the relative distance

between the two test masses
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A third interferometer, the reference interferometer is sensitive to environment

perturbations and pathlength noise originated out of the ultra-stable Zerodur optical

bench. This read-out is subtracted from the rest of the interferometers read-outs in order

to remove common-mode disturbances and increase their sensitivity. In addition to these

three interferometers, the optical bench is also equipped with a frequency interferometer

similar to the reference interferometer but with an intended 38 cm pathlength mismatch

which makes it specifically sensitive to laser frequency fluctuations. This readout acts

as a control signal of the Reference Laser Unit.

The photodiodes used for these measurements are actually quadrant photodiodes,

therefore they are also sensitive to displacements and angular fluctuations of the beams.

Such feature is used to measure the test masses attitude around Y (η1, η2) and Z (φ1,

φ2). Two different approaches are used to measure these angles [5, 17]:

• Differential Power Sensing (DPS) measurements, where beam displacements

are measured on the quadrants and test mass angles inferred. Strictly, such

measurement provides the average displacement of the two recombined beams on

each quadrant photodiode.

• Differential Wavefront Sensing (DWS) measurements, where the test mass angles

are obtained by measuring the relative angles between the two beams on each

quadrant photodiode.

While the DPS technique has a wider dynamic range, the DWS is used as a

measurement signal for the different control loops because of its better sensitivity.

For redundancy issues, each interferometer’s measurement is performed by actually

two quadrant photodiodes. Considering that there are as well two additional

photodiodes to control the amplitude stability of each injected laser beam §, a total

of ten quadrant photodiodes are placed on the LTP optical bench – see Figure 2.

Temperature Diagnostics The thermal part of the Diagnostics Subsystem in LPF [10]

is composed by a set of 24 sensors and 14 heaters distributed through the LCA. The fact

that the Inertial Sensor was not part of the campaign implied a relocation of some of

the temperature items. Regarding the temperature sensors, 8 thermistors were relocated

around the dummy Inertial Sensor Housing structures and 6 placed on the inner sides

of the LCA support structure, leaving at their flight representative locations only the 6

Suspension Struts temperature sensors and the 4 sensors located on the optical bench

—see Figure 3. Despite of the modifications, the temperature measurement system

(TMS) could perform correctly. With respect to the heaters, only the 6 Suspension

Strut heaters were present and placed in their design locations. As a consequence,

among the different heating experiments planned for the mission, only the thermistors

and heaters concerning the Suspension Strut heating were available for test.

§ The amplitude detectors are single element photodiodes but, due to the lack of availability of

convenient space-qualified single element photodiodes they are implemented as one element of a

quadrant photodiode.
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Figure 3. Schematic of the LCA and its series of diagnostics heaters and temperature

sensors on the different Suspension Struts and on the optical bench, as during the

OSTT campaign.

2.2. Thermal experiments during the campaign

The campaign was divided in two main stages, where experiments involving many

different subsystems of the spacecraft were repeated at two different temperatures,

i.e. the hot case at 30.5◦C ± 0.5◦C and the cold case at 9.5◦C ± 0.5◦C, reaching

temperatures of around 26◦C and 12◦C respectively in the LCA [15]. In both of them a

series of experiments to test system performance and to characterise different spacecraft

subsystems were run and, as regards of the thermal diagnostics, the execution of different

telecommand sequences of heater activations was included. These experiments were

carried out during the cold case and were planned as follows:

• Phase 1: Continuous heat injection in Heaters 9 and 11 (14h).

• Phase 2: Individual heater activations in series of pulses to all strut heaters (6 ×
2h).

• Phase 3: Combined heater activation for thermoelastic stress tests (10h).

• Phase 4: Relaxation time (12h).

Phase 1 experiment was aimed to test long-term heating system performance while

Phase 2 experiments were providing most of the information regarding the system

response to local —at a single Suspension Strut level— temperature fluctuation. The

incidence of such experiments to the interferometer readout was expected to be linear,

what was checked with data from Phase 3. Phase 4 provided with a set of noise data that
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Figure 4. Left: Power Spectral Density (PSD) for the optical bench temperature

sensors, together with the best performance case of the temperature measurement

subsystem during the campaign (labelled as Best case), obtained outside the LCA

by a relocated sensor. The system reference noise (labelled as TMS noise) sets the

floor for the temperature measurement. All these spectra correspond to temperature

measurements taken some days before the thermal experiments, during the hot case

of the campaign. Right: PSD of the different Suspension Strut temperature sensors

for the same times. At both Figures, the sudden noise falls observed for instance on

TS15-19 are attributed to non-linear effects of the ADC, caused by the presence of too

high temperature drifts during the campaign –see Appendix A.

will be used to analyse the temperature noise contribution during normal performance

as well as with information regarding the relaxation times needed to recover from heater-

induced conditions.

The whole data communication chain between the spacecraft and the operations

center was already through the flight model DMU and OBC (On-Board Computer), and

the spacecraft kept being powered up from the solar-like radiation energy provided by

an array of high power lamps in the vacuum chamber.

3. Thermo-optical characterisation of the LISA Pathfinder Core Assemby

3.1. Temperature environment characterisation

The temperature measurement system kept active through all the tests of the campaign,

allowing a complete characterisation of the environment whilst the different planned

experiments were taking place. Before entering in the analysis of the measurements

obtained through the set of temperature sensors, it is worth describing the temperature

acquisition readout and the associated data pre-processing.

The LPF temperature measurement system is based on series of Wheatstone bridges

centred at different temperatures in order to perform all the measurements close to the

linearity of the system, covering a total temperature range between around 8−30 degrees

Celsius [18]. The data is onboard measured at 0.83 Hz and –due to limitation on the

downlink telemetry budget for diagnostics– filtered with a Butterworth filter and then
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downsampled to 0.21 Hz. Since the filter is applied directly to the measured data, each

change of scale is equivalent to a changing signal bias for the filter, what induces a

transient response to the downsampled data. As a consequence of the previous, spikes

can appear along the data at each change of scale. In order to clean the signal from

such spikes, sets of samples are removed and interpolated, while the remaining offsets

are carefully identified and subtracted.

The best temperature stability during the OSTT campaign was found on a relocated

sensor outside the LCA (case of TS9, labelled Best case in Figure 4), achieving a noise

level of 10−5K Hz−1/2 through most frequency band, in practice achieving the electronic

noise floor as expressed by the reference temperature measurements, i.e. measurements

performed with high stability resistors instead of thermistors (labelled TMS noise in

Figure 4).

Such low levels were not achieved inside the LCA because of a high temperature

drift that induced a feature in the spectrum of temperature fluctuations due to a cyclic

error associated to analog-to-digital converter (ADC) nonlinearity [19]. Such an error is

related with imperfections at the quantization levels of the ADC. Appendix A focuses

on this particular issue, and how the error coming from the thermal drift is identified.

Moreover, slightly different temperature noise levels at different sides of the optical

bench caused sensors TS15 and TS16 to manifest higher noise levels than TS13 and

TS14 though they had similar temperature drifts –see the bump affecting only TS15

and TS16 between 2 mHz and 4 mHz at Figure 4, left. This can be explained by the

attenuation effect of the ADC non-linear error higher harmonics when the input signal

combines a drift with certain levels of noise [19]. A higher temperature noise level on

the +X side –where TS13 and TS14 are located– can actually reduce the effect of this

error, as it happens in Figure 4 to TS15 and TS16. The same effect appears on the

temperature stability plots of the struts (Figure 4, right), where a lower noise profile

on the +Y side of the LCA between 2 mHz and 3 mHz induces higher ADC non-linear

while on the -Y side the error is dumped.

The temperature drift causing the different bumps and sudden falls in Figure 4

appeared due to test schedule limitations, i.e. not allowing the instrument to achieve

a complete steady state. The real drift during flight operations is thus expected to be

smaller.

3.2. Response of the x1 and x12 interferometers to heat inputs

During the Phase 2 of the diagnostics experiments, a series of three pulses of 200 s in

periods of 1000 s and a power of 2 W were applied individually to each heater, producing

temperature increments in the respective struts around 8 K per pulse and inducing

immediate observable consequences on the interferometer channels with amplitudes

around ±10 nm, as shown in Figure 5. In order to better distinguish the effect, a

1st-order detrend is applied to all time series in the Figure 5.

Temperature increments at the optical bench clearly indicate that temperature
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Figure 5. On the left side, the temperature measurements at the different struts

(upper plot), the optical bench temperatures (centre plot) and the displacements

measured by the interferometer (IFO, lower plot), all of them detrended with a 1st-

order polynomial. On the right: coherences between different strut sensors (TS19 and

TS20) and interferometer’s channel x12 together with the coherences from their closest

optical bench (OB) sensors (TS15 and TS16 respectively) to the same interferometer

measurement.

variations in the lower struts (TS19, TS22) have a thermal impact on the optical bench

much larger than the upper struts (TS17, TS18, TS20, TS21). Indeed, the central panel

in Figure 5 shows how the temperature sensors in the optical bench have a clear response

for the former and a negligible reaction —out of the environmental drift— for the latter.

The difference in the heat conduction through the parts between the upper and

the lower struts to their optical bench closest sensor cannot justify such a significant

difference of more than one order of magnitude (about a factor 13). On the other hand,

none of the struts has visibility to the sensors which could create a direct radiative link.

An explanation of this effect must be sought in the fact that, opposite to the upper

(+Z) struts –see Figure 3–, the screws attaching the lower (-Z) struts to the optical

bench assembly present direct visibility to their closest optical bench sensor, establishing

a direct thermal radiative link. If we consider on one hand the screw temperature being

increased at least up to 2 K through thermal conduction, a heated area of at least

20− 22 mm2 and a screw emissivity of around 0.5 and, on the other hand, a sensor area

of around 10 mm2 with high absorption (∼ 0.9) and a thermal resistance to the optical

bench of ∼ 100 K/W, increments of ∼ 10 mK should be expected in these optical bench

sensors. This is already about one order of magnitude above the equivalent case with

just conduction —which is the case for the higher struts.

Nevertheless, the lower left hand plot in Figure 5 shows how the interferometer

perturbation repeats the same pattern of signals for all the heater activations, regardless

of the above discussed asymmetry on +Z and -Z struts. In order to further investigate

this effect, we computed the coherence function between the interferometer phase

readout and the four temperature sensors involved in the -Z struts experiments.

As shown in Figure 5 (right), the analysis confirms that the signal observed in the
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Figure 6. Left: Readouts of the reference interferometer ΦR and the same

measurement filtered with a 4th order lowpass filter with a cut-off frequency of 5 mHz.

Right: OPD control signal applied to the piezo actuator that controls the differential

optical pathlengh fluctuations.

interferometer is not coherent with temperature variations observed in the optical bench

(' 8% coherence 10 mHz with sensors TS15 and TS16) and is strongly correlated with

the temperature increase in the struts (' 92% coherence at 10 mHz with sensors TS19

and TS20). This suggests that, though the Zerodur plate is being heated up through

radiative effects when activating lower-strut heaters, the interferometer sensitivity from

this effect is negligible in comparison to the general strut heating effect, discarding

the Zerodur plate heating up as the mechanism describing the main perturbation and

pointing to a global elastic distortion effect on the LCA.

3.3. Response of the static interferometers to heat inputs

The fact that the longitudinal motion signals x12 and x1 present similar amplitudes no

matter which strut is being heated (though the Φ12 optical path is a factor 2 longer than

the Φ1) suggests that the distortion mechanism does not involve the vacuum enclosures

with the inertial sensors and must be sought on the optical bench itself.

In order to further investigate the origin of the response of the main interferometer

channels –x1 and x12–, we explore the readouts of the two remaining interferometers.

The frequency and reference interferometers are static interferometers in the sense that,

apart from the fibres, they do not have moving parts outside the bench.

The reference interferometer readout is roughly the phase measured at ΦR and

includes mainly all the optical pathlength fluctuations outside the optical bench –

excepting eventual test masses motion. In addition, it is used to actively stabilize

the optical pathlength difference (OPD) between fibres [20] and, since its information

may be shaped by the noise its relevant information is found on its control signal rather

than on the signal itself. In Figure 6, the OPD control signal shows how the reference

interferometer is sensitive to each of the heat injection series applied. As observed, the

activation of Heater 9 (close to TS17) produces the largest response, followed by the
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Figure 7. Left: Readout of the frequency interferometer ΦF and the same

measurement filtered with a 4th order lowpass filter with a cut-off frequency of 5 mHz.

Right: Control signals applied to the actuators for frequency noise stability. The fast

controller –filtered here with the same filter than in the adjacent plot– is related to a

piezoelectric transducer acting on the laser head while the slow control signal is related

to a temperature control loop on the laser head as well. The slow control signal shows

how a similar effect is affecting the optical bench no matter the heater being activated.

activation of Heater 10 and, at third position, the activation of Heater 19, all of them

at the +Y side of the LCA. However, the disturbance is significantly removed from the

final reference interferometer readout and only fast optical pathlength corrections are

observed, specifically ones from H9 activation. Due to the vicinity of this heater to

the optical fibres, this suggests that a possible interaction with the optical fibres could

cause this effect. However, the eventual consequences of this effect are cancelled in the

common-mode rejection and do not explain the observations in Figure 5.

Regarding the other static interferometer, the frequency interferometer measure-

ment is used to control the frequency fluctuations in two different ways: a piezoelectric

transducer to stabilize high frequency fluctuations and a thermal control loop to reg-

ulate the low frequency oscillations by controlling the temperature at the laser head,

being the fast controller nested inside the loop of the slow controller [20]. Since the final

readout is the result of subtracting ΦR to ΦF this interferometer is expected to present

significantly less noise than the reference one, and actually a reduction factor of 10 is

found between them –see Figure 7, left. After removing the reference measurement the

effect is much more homogeneous and, as expected, the proximity to the optical fibres

no longer explain the effect. Regarding the control signals in Figure 7, right, quick kicks

corresponding to corrections from the fast controller (obtained after low-pass filtering

the whole signal) are combined with a quite smoother correction by the other controller.

The signal amplitudes of the slow controller present approximately the same amplitude

no matter the heater being injected, which is coherent with the observations in the main

interferometers. Since the frequency interferometer can only be reporting disturbances

from the optical bench, it is quite evident from Figure 7 that the optical bench must be

being distorted here following a unique deformation mode.
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Figure 8. DWS angles of the vertical and horizontal incident beams on the reference

and frequency interferometers, after a 1st order detrend.

The DWS angles from the reference and frequency interferometers report interesting

information about how the optical bench is being distorted. The vertical angle on the

reference interferometer –see Figure 8– is by far the most affected, followed by the

one order of magnitude smaller vertical component of the frequency interferometer.

Such an effect points to a mechanical deformation of the bench related with relative

displacements on the Z axis. In addition, the pattern of signs [− + + − + + ] is

coherent with the relative displacement readouts. Such scheme of signs is consistent with

an eventual optical bench torsion along the Y axis, induced by stresses on Z, caused by

the Z-component of the strut-elongation. Such torsion mode must expand/contract the

optical path of the reference measurement more than the path of the other measurements

and should bend the optical bench so its beams are tilt as observed. Under these

circumstances, fluctuations affecting mainly the reference path on the optical bench

would not be cancelled and therefore would be seen as a quite common distortion at all

the other channels, as observed in 5. Figure 9 shows the torsion mechanism proposed.

y Ty

x

Fz

Figure 9. Schematic of the torsion mechanism on Y produced by the vertical

component of the force exerted by a heated strut. The case of the image would

correspond to a lower strut heater activation such H11 or H14. This distortion

mechanism is coherent with the observations.

The struts attaching the LCA to the spacecraft structure can be approximated to

a 10 cm-length part of Carbon-Fiber-Reinforced Plastic (CFRP) with 2.9 cm titanium
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test masses (x12), magnitude (left) and phase (right).

end fittings at the edges ‖. Assuming average temperature increments for the CFRP

part and the titanium end fittings of 3.5 K and 1 K respectively, and thermal expansion

coefficients of 8.3 × 10−7 K−1 and 8.6 × 10−6 K−1, the projected free elongation on the

Z axis represents a vertical displacement of 0.7µm. Since the LCA is a hyperstatic

structure it is reasonable to expect a real displacement of at least one order of magnitude

smaller, i.e 0.07µm, just a few times bigger than the measured perturbation at the

displacement channels of ≈ 0.01µm.

Another first order approximation can be found by comparing the observations

against a pure bending mechanism of the optical bench around the X axis [21]. In this

sense, considering a beam path of D ≈ 30 cm for the reference interferometer beams, the

expected optical pathlength variation in front of a given beam angle θ at a photodiode

can be expressed by

∆x = θ2D

2
(1)

which turns to be ∆x ≈ 0.6 µm for the DWS angle of θ ≈ 2 mrad measured by

the reference interferometer. This value is much larger (about a factor of 60) than the

observed longitudinal measurements in x12 and x1. However we would expect this simple

model to give a significant overestimate of the coupling through two independent effects.

The first is that the actual distortion is significantly more complicated than the simple

model, and the second is that the wavefront curvature of the optical beams will also

significantly reduce the coupling factor.

4. Projection of thermo-elastic induced phase noise

Once the origin of interferometer response has been traced, we can proceed to quantify

its contribution to the noise budget. We start by computing the individual transfer

‖ These values correspond to a -Z strut at the OSTT campaign, while +Z struts were a factor 1.1

longer.
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Figure 11. Noise projection of thermo-elastic induced phase noise on the

interferometer x12. The contribution from each suspension strut is shown together

with the uncorrelated sum of all.

functions from the the temperature signals to the interferometer readouts, given by [22]

HTiX(ω) =
STiX(ω)

STiTi(ω)
(2)

where Ti and X are the Suspension Strut temperature sensor and the interferometer

signals respectively, and STiX(ω) and STiTi(ω) are the cross-power spectral density

and the power spectral density. The transfer functions for each strut is shown in

Figure 10. The thermo-elastic coupling of the struts to the interferometer is of 10−9 m/K

throughout most of the LTP band. No significant differences between transfer functions

are found since the geometry of the LCA is symmetric regarding all the suspension

struts and the interferometer. The noise at frequencies higher than 70 mHz corresponds

to the band where the ambient noise is lower than the electronic noise and the signals

become uncorrelated.

The system linearity in front of this distortion is checked by comparing such transfer

functions with respect to data from Phase 3. In this phase pulses of 500 s are applied

simultaneously to TS17 and TS19 alternating with pulses to TS20 and TS22, producing

a 2 mHz perturbation signal to the interferometer. The global transfer function recovered

in this experiment matches with the coherent sum of the individual transfer functions

for all the temperature sensors involved, meaning that, as expected, the thermoelastic

strain mechanism keeps within its linearity.

Following the previous notation, the thermo-elastic phase noise contribution to the

total interferometer noise –known also as noise projection– can be obtained by

SXX, Ti(ω) = HTiX(ω)STiTi(ω) (3)

where to evaluate STiTi(ω) we now use a segment without heat injections, as the

ones shown in Figure 4. The results —in Figure 11— show how the overall thermo-

elastic phase noise contribution accounts approximately for 10−12 m/
√

Hz at 1 mHz,

assuming that all contributions are added in an uncorrelated sum. Such assumption is
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Figure 12. Coherences between the different temperature sensors on the struts in the

same timespan used for the computation of the temperature noise projection.

feasible in the bandwidth of interest after discarding correlation through a coherence

analysis between strut temperature sensors —see Figure 12. Although strong correlation

dominates the band below 0.5 mHz and is present at some pairs of sensors (e.g. TS20

and TS21), the signals above 1 mHz are fairly enough uncorrelated. Still, Figure 11 also

shows the worse-case contribution of a hypothetical completely-correlated temperature

noise distribution, where the temperature noise pattern considered is built by selecting

the highest level of noise at each frequency for all the sensors involved. On the

other hand, no differences were appreciated between contributions to the different

interferometer readouts and also between the hot case and the cold case.

It is worth stressing that the obtained contribution is not representative of the flight

operations since temperature stability is expected to be better in the Lagrange point L1

compared to the current experiment. However, the analysis reported here will be valid

for the mission analysis.

5. Conclusions

We have presented first results for the thermal diagnostics sensors on the LISA

Pathfinder spacecraft in space-like conditions. During the campaign, the temperature

measuring system achieved an in-band sensitivity of 10−4 K Hz−1/2 in those parts not

exposed to temperature drifts higher than 10−5 K/s. The electronic noise of the
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measurement system kept the noise floor down to 10−5 K Hz−1/2. Among other thermal

experiments, a set of heat injections were applied at each Suspension Strut anchoring

the LTP Core Assembly at the satellite’s mechanical support structure for the LTP,

which is acting as well as thermal shield. This temperature modulation allowed us

to experimentally determine the coupling of temperature fluctuations on the struts to

the interferometer onboard for the first time. We have estimated a nearly flat transfer

function throughout the measuring bandwidth with magnitude 10−9 m/K.

At the same time, we have allocated the contribution arising from temperature

fluctuations in the struts to be 10−12 m/
√

Hz at 1 mHz, around a factor 30 below the

main interferometer measurement floor noise, for the campaign conditions (which in

turn was a factor of approximately 3 better than required for flight). Although the

obtained results are related to the particular temperature environment of the campaign,

the methodology described here is readily applicable to the in-flight case.

We have also investigated the origin of the coupling between temperature

fluctuations and interferometer response to conclude that the effect has a thermo-elastic

origin, discarding direct temperature gradients on the optical bench as the cause of the

observed phase response. A thermo-elastic mechanism consisting of an optical bench

torsion around the Y axis, induced mainly by the vertical component of the stress caused

by the elongation of the heated strut is consistent with the observations.

Coupling through other thermal sensitive locations, as for instance the electrode

housing surrounding the test mass can be disregarded since they were not present

in the current setup. The temperature-induced pathlength variation at the Optical

Window [13] has not been assessed since, though the Optical Windows were present

in the setup in a thermally almost representative mount with respect to the optical

bench, no mission-planned experiments were performed on them. These effects, which

will be the aim of the thermal experiment during flight operations, are being end-to-end

simulated [23] and tested on-ground through other setups [12, 13].

Appendix A. Identification and fit of the ADC non-linear error

The bumps and sudden falls that appear in the power spectra of some temperature

sensors, in the LPF band –see Figures 4–, are individually associated to integral non-

linearities of specific bits of the 16-bit Analog-to-Digital Converter (ADC). Their affected

frequencies depend on the signal drift. Each bit contribution –as a voltage error– is

frequency-dependent and can be expressed as [24]:

|qk(ω)| = ∆
∞∑

n=−∞

sin nπεk
2k+1∆

n

sin nπ
2

sin nπ
2k+1

δ

(
ω − πn|b|

2k∆

)
(A.1)

where:

• b is the voltage slope, in V/s.

• ∆ is the ADC quantization step in V.
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Figure A1. Left: PSD of the voltage noise at TS15 at specific segment where the

ADC non-linear effects create two bumps around 3 mHz and 6 mHz caused by bit errors

at bits 3 and 2 respectively in front of a voltage drift varying around 7.4µV/s. The

bit errors provided in percentage of ∆ correspond to the theoretical values computed

with Equation A.1 for bits 2 and 3 with the measured average drift –only the error

amplitudes for the fundamental frequencies are shown. The exact amounts of ∆

mismatch for each bit cannot be determined since depend as well on the environment

noise at the affected bands, which are shaped by the error itself. Right: Spectrogram

of the voltage during chosen segment. The reddish lines show the affected frequencies

varying within the time, caused by the variation of temperature drift.

• k is the binary digit, increasing from 0 to 15, i.e. from the least significant bit to

the most significant.

• εk is the relative error associated to each bit, as a fraction of ∆.

Nevertheless, a drifting noisy input signal instead of a pure voltage drift –which is

the case of the studied temperature measurements– strongly dumps the high frequency

contributions at A.1. Such an effect helps to reduce the impact of the nonlinear effects at

high frequencies with the tradeoff of spreading their energy across the whole spectrum.

Inducing out-of-band dither noise to the signal prior to the ADC input is often used to

increase ADC sensitivity at specific bands [19].

In the case at Figure A1 the affected frequencies clearly oscillate close to 3 mHz

and 6 mHz, which is consistent with a bit mismatch at bits 2 and 3 of the ADC in

front of a mean drift of 6µK/s, considering a system sensitivity of 1.35 V/K. The

corresponding temperature noise level introduced, around 1.5 × 10−4 K Hz−1/2, clearly

exceeds the ambient level by a factor two. Non-linear effects at the highest side of the

spectrum are self-mitigated by the signal noise.

Limits to the temperature drift can be obtained from this analysis. Since the

bumps noise amplitude of this error depend only on the ∆ parameter which cannot

be modified, the highest-frequency bump must be shifted down, out of the bandwidth

of interest. In this sense, in order to reduce its highest frequency affected (8 mHz) to

1 mHz, the temperature drift must be therefore limited to 1/8 of the measured, around

0.75µK/s.
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