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The inclusion of aligned-spin effects in gravitational-wave search pipelines for neutron-star–black-
hole binary coalescence has been shown to increase the astrophysical reach with respect to search
methods where spins are neglected completely, under astrophysically reasonable assumptions about
black-hole spins. However, theoretical considerations and population synthesis models suggest that
many of these binaries may have a significant misalignment between the black-hole spin and the
orbital angular momentum, which could lead to precession of the orbital plane during the inspiral and
a consequent loss in detection efficiency if precession is ignored. This work explores the effect of spin
misalignment on a search pipeline that completely neglects spin effects and on a recently-developed
pipeline that only includes aligned-spin effects. Using synthetic but realistic data, which could
reasonably represent the first scientific runs of advanced-LIGO detectors, the relative sensitivities of
both pipelines are shown for different assumptions about black-hole spin magnitude and alignment
with the orbital angular momentum. Despite the inclusion of aligned-spin effects, the loss in signal-
to-noise ratio due to precession can be as large as 40%, but this has a limited impact on the overall
detection rate: even if precession is a predominant feature of neutron-star–black-hole binaries, an
aligned-spin search pipeline can still detect at least half of the signals compared to an idealized
generic precessing search pipeline.

I. INTRODUCTION

Astrophysical black holes (BHs) can be simply de-
scribed by their mass and spin angular momentum. A
large number of BH properties can be derived from know-
ing just these two values. Searching for faint gravitational
wave (GW) signals from BHs in coalescing binary sys-
tems using ground-based interferometers such as ad-
vanced LIGO [1], advanced Virgo [2] and KAGRA [3]
requires a bank of potential inspiral signals (templates)
over a range of possible parameter values. Such template
banks have traditionally been built ranging over possible
BH masses, but in most cases assuming the absence of
spin (see e.g. [4–8]). This was recently extended to en-
able searches for gravitational radiation from coalescing
neutron-star–black-hole (NSBH) binaries which include
aligned-spin effects [9–11]. Under reasonable distribu-
tions of binary configurations and the assumption that
the BH spin and orbital angular momentum are aligned,
including spin effects has been shown to improve the sen-
sitivity of the search method with respect to methods
neglecting the effect of spin altogether [11].

However, NSBH binaries are generally expected to
have a BH spin misaligned with respect to the orbital
angular momentum. The formation of NSBH binaries co-
alescing in a time useful for detection seems to require a
dissipative common-envelope phase [12, 13], which tends
to align the angular momenta and spin up the BH, fol-
lowed by the supernova explosion of the smaller object,
which imparts a significant kick to the resulting neutron
star (NS). Binaries surviving the second supernova ex-
plosion turn out to have a NS kick that effectively tilts
the orbital plane with respect to the BH spin [14].

Nevertheless, tilting the orbit by large angles turns out
to be very hard; simulations suggest that most NSBH bi-
naries will generally have a misalignment angle smaller

than about 60 degrees, with a large fraction having an
angle smaller than 45 degrees [15–17]. Unfortunately, X-
ray studies of BH spin values are not able to measure
directly the alignment of the spin; instead, they rely on
the assumption that the accretion disk should align with
the spin, and observational constraints on spin magni-
tudes can thus be influenced by misalignment [18].

A misalignment between the BH spin and the orbital
angular momentum breaks a symmetry of the system and
leads to a precessing orbital plane. The time-varying
orientation of the orbital angular momentum then causes
a characteristic phase and amplitude modulation of the
chirping GW signal observed on Earth [19, 20] which is
absent in a nonprecessing waveform.

Including the effect of precession in a GW search
pipeline has been attempted before, but it did not yield
a significant gain in sensitivity [21, 22]. The best strat-
egy for including such effects is still unknown, as are the
resources required by a fully-precessing search pipeline.
Thus, even if the spin-orbit misalignment may not be
very large, it is important to assess its impact on a search
pipeline that completely neglects precession. In light of
the results of [22] it is possible that an aligned-spin search
pipeline performs no better than a nonspinning one. It
is therefore important to determine how precession af-
fects the sensitivity of including aligned-spin effects over
a cheaper method that completely neglects spin. This
problem has been recently investigated using bank sim-
ulations and assuming the final design sensitivity of ad-
vanced LIGO interferometers [23, 24]. Here the investi-
gation is extended, in particular it is applied to realistic
data rather than idealized noise and assuming an “early-
advanced-LIGO” sensitivity curve, which more realisti-
cally represents the first (2015) scientific runs of advanced
LIGO. The curve is available at [25] and plotted in Figure
1 of [11] (black solid line).
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Using bank simulations, we first study the loss in
signal-to-noise ratio (SNR) imparted by precession when
using template banks which (i) neglect spin altogether
and (ii) only include aligned-spin effects. For both cases
we explore the dependency of the loss on the parameters
which mainly affect precession, i.e. the magnitude and
tilt of the BH spin. We also use the bank simulations to
estimate the loss of detections produced by considering
aligned-spin effects but neglecting precession. Then, us-
ing the approach described in [11], we search for a pop-
ulation of simulated precessing NSBH binaries in syn-
thetic data and we present the sensitivity of the search
pipeline for different possible distributions of BH spins.
The synthetic data we analyze consist of 60 days of real
data (of which about 25 are useful for the analysis) from
the sixth scientific run of the initial LIGO Hanford and
Livingston interferometers. However, the power spectral
density (PSD) of the data is modified to resemble the
aforementioned early-advanced-LIGO sensitivity curve,
in order to reasonably represent data expected from the
first scientific runs of advanced LIGO.

Although the merger and ringdown parts of NSBH sig-
nals happen within the bandwidth of the detectors for
some regions of the NSBH parameter space, particularly
anti-aligned systems, we neglect them in this work and
focus instead on purely precessional effects, which we
expect to be somewhat complementary. We reserve a
comprehensive study of merger and ringdown effects to
a future article.

The paper is organized as follows. In section II we
present bank simulations showing the effectualness of a
nonspinning template bank for precessing NSBH signals
and of a spinning but nonprecessing bank. In section
III we present the results of running our search pipeline,
using the above banks, on a stretch of realistic data con-
taining simulated precessing NSBH binaries. Section IV
summarizes conclusions and future work.

II. EFFECT OF PRECESSION ON SNR LOSS

The first step in studying the effect of precession is
calculating the fitting factor between the population of
precessing signals we want to observe and the template
banks we intend to use, which is equivalent to asking how
good, on average, our bank is at recovering the signals we
target. This can be done via bank simulations. For a full
description of the basic ideas behind template banks and
bank simulations, as well as more details of the banks we
use in this section, see [11].

The source population we are interested in contains
NSBH binaries with BH mass mBH between 3M� and
15M� and NS mass mNS between 1M� and 3M�.
The dimensionless BH spin has magnitude uniformly dis-
tributed within the bounds imposed by the Kerr solution,
0 ≤ χBH ≤ 1. The tilt angle ϑ of the BH spin with respect
to the orbital angular momentum is defined by a uniform
distribution of κ ≡ cosϑ in the range ±1, such that χ̂BH

is uniformly distributed on the sphere. Although the re-
sulting spin distribution is a reasonable choice if no infor-
mation is available about BH spins, a number of studies
and observations exist suggesting that χBH may be large
[12, 26]. At the same time, models based on population
synthesis suggest that ϑ is likely peaked at 0, with only
a small fraction of NSBH binaries having ϑ > 60 degrees
[15, 16]. In other words, there is a small region of the
(χBH, ϑ) plane which may be much more common astro-
physically than the rest. The NS spin is known to have a
small effect on a search for NSBH coalescence [11]. Nev-
ertheless we take a uniform distribution of its magnitude
in the range 0 ≤ χNS ≤ 0.05, which should include the
fastest spinning NSs observed in compact binaries (see
e.g. [27]). The distribution of χ̂NS is also uniform on the
unit sphere.

The nonspinning bank (NSB) we use here covers BH
masses between 3M� and 15M� and NS masses be-
tween 1M� and the smallest of either the equal-mass
boundary or the line corresponding to a total mass of
18M�. The aligned-spin bank (ASB) covers the same
BH masses, NS masses between 1M� and 3M� only,
dimensionless BH spin projection along the orbital an-
gular momentum ~χBH · L̂ ∈ [−1, 1] and NS spin pro-

jection ~χNS · L̂ ∈ [−0.4, 0.4]. The NSB and ASB con-
tain ∼ 2.8× 104 and ∼ 1.5× 105 templates respectively;
including aligned spin leads to a ∼ 5× larger comput-
ing cost. Template waveforms are computed in the fre-
quency domain using the TaylorF2 approximant. Their
inspiral phasing contains orbital terms up to 3.5 post-
Newtonian (pN) order and spin-orbit terms up to 2.5 pN.
Waveforms start at 30 Hz and terminate at the frequency
of the innermost stable circular orbit (ISCO).

In order to separate the effect of spin from mass-
related issues of the banks, we first restrict our atten-
tion to binaries with fixed masses mBH = 7.8M� and
mNS = 1.35M�, which represent typical mass values for
BHs and NSs in binaries [28, 29]. This allows us to study
the fitting factor of the NSB and ASB as a function of
the BH spin parameters only and with high statistics.
The result of this first set of simulations is shown in Fig-
ure 1, which displays the fitting factor as a function of
the amount of BH spin orthogonal to the orbital angular
momentum and parallel to it,

χ⊥BH ≡ ||~χBH − (~χBH · L̂)L̂|| (1)

χ
‖
BH ≡ ~χBH · L̂. (2)

The behavior of the two banks allows us to roughly di-
vide this space in three approximately defined regions.

The first region is defined by low values of the BH spin
magnitude, approximately χBH . 0.4. Not surprisingly,
both banks perform well here. The spin-orbit terms in
the signal waveforms are small enough that the conse-
quent dephasing can be accommodated by a small bias
in the symmetric mass ratio η [30] allowing the NSB to
recover signals well. Moreover, even if the spin is tilted,
its magnitude is too small for precession to induce signif-
icant modulation.
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FIG. 1. Fitting factor of our nonspinning bank (left), aligned-spin bank (middle) and their ratio (right) for a population
of 20000 precessing NSBH binaries with fixed masses mBH = 7.8M�, mNS = 1.35M�. The horizontal axis is the amount
of BH spin orthogonal to the orbital angular momentum, while the vertical axis is its projection along the orbital angular
momentum; thus, the origin corresponds to nonspinning signals and the vertical axis corresponds to the aligned-spin case. The
spin magnitude and orientation on the sphere are both uniformly distributed.

The second region is defined by a small perpendicular
component of the BH spin but a large parallel compo-
nent (positive or negative), i.e. χ⊥BH . 0.5 and either

χ
‖
BH & 0.4 or χ

‖
BH . −0.5. Here the NSB has a sudden

and severe loss of effectualness, while the ASB performs
significantly better. This loss happens because the spin-
orbit terms in the waveform phase acquire their most ex-
treme values, so neglecting them causes the largest possi-
ble dephasing. The resulting bias in η when ignoring spin
is too large to fit into the NSB: unphysical templates with
η > 1/4 would be required to recover positively-aligned
signals and templates with mNS < 1 would be needed to
match negatively-aligned ones. In other words, signals in
this region “fall off” the NSB [11]. However, the signal
modulation due to precession is still small in this region,
so the ASB is able to recover almost all the signal power.

The third region is the highly-precessing case, roughly
identified by χ⊥BH & 0.5. The main features here are the
very similar performance of both banks and the signifi-
cant spread of the fitting factor with respect to the other
two regions, with some sources being recovered well and
others poorly. The former effect happens because spin-
orbit terms are small, so the NSB is still able to compen-
sate them by using templates with a biased symmetric
mass ratio. At the same time, the modulation induced
by precession is strong and both banks are equally un-
able to recover the power going into the modulation side-
bands. This suggests that the effects of the modulation

and of χ
‖
BH effectively decouple, as predicted for example

in [31, 32].

The second effect visible in this region, i.e. the scat-
ter of the fitting factor, is due to the different possi-

ble orientations of the total angular momentum ~J with
respect to the detector, as demonstrated in Figure 2.
In fact, the orientation changes the fraction of signal
power in the modulation sidebands, which nonprecess-
ing templates cannot recover. In particular, face-on and
face-off binaries almost look like nonprecessing systems
when viewed from the detector, so their waveforms have
a smaller modulation, and thus larger fitting factor, than
edge-on systems. Note that edge-on systems can also
have good fitting factors at four particular orientations

of ~J ; however, those orientations produce quiet signals at
the detector. Because of the almost-linear polarization of
their radiation, edge-on systems are in fact generally qui-
eter than face-on or face-off ones at the same distance.
Thus, although recovering them is challenging even with
the ASB, they are also the least detectable even in the
ideal case.

One can therefore ask whether the poor performance of
the ASB in the high-precession case is really affecting the
overall sensitive volume to a population of binaries with
uniform spin and angle distribution as we assume here.
The bank simulation enables a rough estimate of the sen-
sitive volume of an aligned-spin search pipeline relative
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FIG. 2. Fitting factor of the aligned-spin bank for strongly-
precessing NSBH binaries as a function of the orientation of
the total angular momentum with respect to the detector.
The south and north poles of the projection correspond to
face-on and face-off orientations, while the equatorial line is
the edge-on case. Sources have fixed masses mBH = 7.8M�
and mNS = 1.35M� and spin parameters χBH > 0.8 and
|κ| < 0.2. Each source is shown as a black dot.

to a hypothetical ideal generic precessing pipeline:

V ≡ VASB

Vprec
'

∑
i(miρi)

3

m3
prec

∑
i ρ

3
i

. (3)

Here the sums are over the simulated signals, mi is the
fitting factor of signal i obtained from the bank simula-
tion, ρi is the optimal SNR of signal i at a fixed reference
distance and mprec = 98.5% is a guess for the average
fitting factor of the hypothetical precessing bank. This
estimate does not include the likely increased false-alarm
background of the precessing pipeline, which would in-
crease V. Evaluating this increase requires construct-
ing a generic precessing template bank, which is an open
problem and is outside the scope of this paper. The es-
timation also neglects the effect of signal-based vetoes,
which would instead reduce V. The effect of vetoes, co-
incidence and realistic data can be included by running a
full aligned-spin search pipeline, which will be described
in Section III. With this caveat in mind, the fixed-mass
bank simulation gives, for no restriction on spin,

Vall
FM ' 81%. (4)

If we restrict our attention to highly-precessing binaries,
say with χBH > 0.7 and 1

4π < ϑ < 3
4π, we obtain instead

VHP
FM ' 61%. (5)

We now repeat the bank simulation for the full dis-
tribution of masses described earlier in this section. The
spin parameters are distributed as before. Figure 3 shows
the results and it can be seen that the match variation
is qualitatively consistent with the fixed-mass case. A

noticeable difference, however, is the much worse mis-
match of the NSB for some of the strongly-spinning and
anti-aligned systems (lower region of first and last plots).
These happen to be heavy systems, with BH mass larger
than about 11M�. Their poor match is not due to pre-
cession but again to the bias in symmetric mass ratio
produced when attempting to recover spinning signals
with zero-spin templates. In this case the spin is anti-
aligned, so the bias is negative: signals are well matched
by templates associated with a lighter NS and a heav-
ier BH. For signals with small enough mass, the bias is
within the mass space covered by the NSB and a good fit-
ting factor is obtained. Signals with negatively-spinning
BHs heavier than ∼ 11M�, however, “fall off” the high-
BH-mass edge of the NSB; templates with BH masses
higher than 15M� would be needed to recover these sig-
nals. This effect is less dramatic in the fixed-mass bank
simulation because the masses are far from the boundary
of the bank.

As done for the fixed-mass bank simulation, we can
again estimate the loss of detections of the aligned-
spin pipeline relative to a hypothetical generic precessing
pipeline. Using Eq. 3 with the result of the varying-mass
bank simulation yields

Vall
VM ' 86%. (6)

High-mass systems have a larger weight in this estimate
due to the higher intrinsic loudness of their signals and
they also exhibit the largest precession effects due to
the high mass ratio. VVM may therefore overestimate
precession effects, but nevertheless the resulting loss is
still quite small. The relative volume for varying-mass,
highly-precessing systems (χBH > 0.7 and 1

4π < ϑ < 3
4π)

is

VHP
VM ' 71%. (7)

These two first exercises show that: (i) the ASB is
much better exactly where population synthesis mod-
els suggest the majority of signals will be (χBH → 1
and ϑ → 0); (ii) anti-aligned systems (χBH → 1 and
ϑ → π) give rise to the worst matches in the NSB, but
this problem could be alleviated by adding heavier-BH
templates to the NSB; (iii) both banks show a compa-
rable inefficiency with strong precession, i.e. near max-
imal spin misalignments (ϑ → π/2), but this effect is
smaller than the loss imparted by neglecting spin-orbit
terms and only happens for some orientations of the to-
tal angular momentum; (iv) even if a generic precess-
ing template bank is not yet available, when taking into
account the orientation-dependent intrinsic loudness of
signals, the poor performance of the ASB with strong
precession seems to reduce the detection rate by a few
tens of percent at most. This result is compatible with
similar existing studies [10, 24]. However, the estimate
only considers the loss of SNR and obviously needs to
be evaluated more precisely by running a full, realistic
search pipeline.
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FIG. 3. Fitting factor of our nonspinning bank (left), aligned-spin bank (middle) and their ratio (right) for a population of
20000 precessing NSBH binaries with the mass distribution described in the text. Compare with Figure 1.

III. EFFECT OF PRECESSION ON A
REALISTIC SEARCH PIPELINE

The overall efficiency of a search is determined primar-
ily by two features. The first is the background of false
alarms generated by the template bank due to the detec-
tor noise. It has been shown in our previous study that
the increase in background due to using the larger ASB is
not considerable relative to the NSB when the reweighted
SNR is used as a ranking statistic [11]. The second fea-
ture is the ability of the waveforms in the chosen template
bank to match the targeted signals; we studied that in
the previous section. Based on these results, we expect
a search using the ASB to perform at least as well as
the NSB, and to significantly outperform it for a pop-
ulation of almost-aligned systems. However, it remains
to be checked whether coincidence between the detectors
and the inclusion of the χ2 veto alter the result signif-
icantly in the presence of precession. As a final result,
we also want to compare the search sensitivity at fixed
false-alarm rate.

In this section, we thus apply the search method de-
scribed in [11], with identical parameters and data, to
the fixed-mass and variable-mass precessing signal popu-
lations described in the previous section. We recall that
this is a matched-filter, exact-match-coincidence pipeline
based on the PyCBC toolkit, with settings similar to
what used in the last initial-LIGO searches. The data
we analyze are constructed using two months of data
from the sixth science run of the Hanford and Livingston
LIGO detectors and modifying their PSD to resemble the
early-advanced-LIGO sensitivity curve we assume in this

work.
Similarly to what was done in [11], we first compare,

for each simulated system, the combined SNR and com-
bined reweighted SNR observed by the pipeline to the
optimal combined SNR. The latter is calculated by sim-
ulating the system’s waveform and using it as its own
optimal template1. The comparison for the fixed-mass
population is shown in Figures 4 and 5; results for the
varying-mass systems are consistent with the fixed-mass
case and are not shown. In Figure 4 it can be seen that
many systems have a large loss of both ranking statistics.
The reweighted SNR is particularly affected, which can
be explained by the χ2 veto penalizing strongly precess-
ing signals in both banks. As the signals shown in Figure
4 have no constraints on spin parameters, and relatively
few points have high and quasi-aligned systems, the ad-
vantage of the ASB is not clearly visible in these plots.
Figure 5 shows instead the observed fraction of optimal
SNR across the spin parameter space and can be com-
pared with Figure 1. The optimal SNR is not a good pre-
dictor of the reweighted SNR when signals become too
loud, because in that regime even a small residual mis-
match causes the χ2 statistic to become very large. In
order to make Figure 5 more clear, thus, the reweighted

1 Note that, with precessing signals, waveforms observed by dif-
ferent detectors are not simply related by phase rotations and
amplitude scalings, but can be qualitatively different due to the
variable relative orientations between the system and the de-
tectors. Therefore, the optimal template in one detector is, in
general, not optimal for another detector.
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FIG. 4. Combined SNR and reweighted SNR observed by our
search pipeline versus the optimal SNR one would achieve
by using templates perfectly matched to each simulated sys-
tem. The source population has fixed masses mBH = 7.8M�,
mNS = 1.35M�. There is no clear difference between the left
and right plots because relatively few points have large and
almost aligned spins.

SNR plots exclude signals with observed combined SNR
larger than 50. For both statistics the results are con-
sistent with Sec. II: the ASB performance is superior to
the NSB for large spin and tilt angle close to 0 or 180 de-
grees, while both banks perform similarly for small spin
or tilt angle around 90 degrees. In particular, looking at
the top of the plots, it can be seen that many high-spin
and small-tilt signals are not detected at all by the NSB.
Thus, the χ2 veto and exact-match coincidence preserve
the features of the banks described in Sec. II.

As a final step, we turn our attention to receiver op-
erating characteristic (ROC) curves, showing the sensi-
tive volume of the pipeline (proportional to the detec-
tion rate) as a function of the false-alarm rate. ROCs for
fixed masses are shown in Figure 6, where different plots
compare the pipelines using the NSB (dashed lines) and
ASB (solid lines) for different cuts on the BH spin mag-
nitude χBH and tilt angle ϑ. Error intervals represent the
standard deviation of 100 realizations of each curve, each
constructed from a random selection of half of the back-
ground and half of the simulated signals. The first plot
contains systems with no restrictions on spin parameters
and in this case the ASB gives a slightly larger sensitivity,
although the difference is within the error intervals. The
second plot corresponds to weakly-spinning BHs with no
restriction on tilt angles. Such a population would be
almost “tuned” to the NSB and in fact the ASB has a
slightly lower sensitivity due to the larger background.
The difference is nevertheless still comparable to the er-

ror intervals. The next three plots assume respectively
large spins, large spins and small tilt angles, and small tilt
angles only. In this case the ASB has a clear advantage,
with a sensitivity between 50% and one order of magni-
tude larger. If the existing population synthesis models
and spin measurements are assumed, the most realistic
scenario would lie somewhere between plots 4 and 5. We
can also see from Figure 6 that the sensitivity of the ASB
remains good for most choices of cuts on spin param-
eters, while the sensitivity of the nonspinning pipeline
drops significantly when χBH > 0.7. Nevertheless, if a
large fraction of sources has strong and misaligned spins
(plots 3 and 6) the detection rate drops noticeably also
with the aligned-spin pipeline.

ROCs for the varying-mass population are shown in
Figure 7. The curves are qualitatively similar to the
fixed-mass case and we can thus extend our previous con-
clusions to a realistic distribution of masses. The curves
should be compared to the final plot of [11].

Similarly to what done in Section II, ROCs allow us
to estimate the detection rate of an aligned-spin search
pipeline relative to an ideal generic precessing pipeline. If
we neglect the increased background, we can expect that
a properly constructed precessing template bank would
produce a ROC curve similar to what we obtain with the
ASB in the case of small precession (which can be defined
as, say, χ⊥BH < 0.4). In other words, the ROC associated
with the ASB for small precession can be used as a proxy
for the precessing pipeline over the full spin parameter
space. We can then estimate the relative sensitivity of
the aligned-spin pipeline with respect to a precessing one
as

W{all,HP}
{FM,VM}(f) ≡

W
{all,HP}
{FM,VM}(f)

WLP
{FM,VM}(f)

(8)

where WS
M (f) is the ROC associated with the aligned-

spin pipeline and the particular cut S of the spin pa-
rameter space (“all”: no restriction on spin; “LP”: low
precession, χ⊥BH < 0.4; “HP”: high precession, χBH > 0.7
and 1

4π < ϑ < 3
4π) and mass distributionM (“FM”: fixed

mass; “VM”: varying mass) and f is the false-alarm rate
at which the ROC is evaluated. We obtain

78% <Wall
FM< 83% (9)

41% <WHP
FM< 50% (10)

80% <Wall
VM< 87% (11)

50% <WHP
VM< 68% (12)

where the ranges include the different possibe false-alarm
rates. As opposed to the estimates obtained at the
end of Section II, these estimates do include the effect
of the χ2 veto. This seems to have a small effect in
the unrestricted-spin case, as Wall

FM and Wall
VM are con-

sistent with Vall
FM and Vall

VM respectively. However, the
high-precession estimates are systematically smaller than
Eq. 5 and 7, suggesting that the χ2 veto is indeed penal-
izing precessing signals. Including the effect of the larger
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FIG. 5. Ratio between combined SNR or combined reweighted SNR observed by our search pipeline and the optimal SNR
one would achieve by using templates perfectly matched to each simulated system. The source population has fixed masses
mBH = 7.8M�, mNS = 1.35M�. In the reweighted SNR plots, only systems with an observed combined SNR smaller than 50
are shown, because for louder systems the observed reweighted SNR is much smaller than the optimal SNR.

background of the precessing pipeline requires at least
an estimate of the number of precessing templates, but
it can only increase allW estimates. We therefore expect
that the loss of detections due to using an aligned-spin
pipeline versus a precessing one is, with no restrictions on
BH spin parameters, no larger than ∼ 20%; if we make
a less plausible assumption of highly-precessing NSBH
binaries, we expect a loss within ∼ 60%.

IV. CONCLUSION

In this paper we study the effect of precession on NSBH
binary inspiral search pipelines using nonspinning and
aligned-spin template banks.

By means of bank simulations, we first show that the
two banks perform similarly over the parameter space of
the dimensionless BH spin, except for a large drop in ef-
fectualness of the nonspinning bank when the projection
of the spin on the orbital angular momentum is larger
than ∼ 0.4 or smaller than ∼ −0.5, which corresponds to
strongly-spinning but weakly-precessing systems. When
precession is strong, both banks can lose up to ∼ 40% of
the SNR for particular orientations of the total angular
momentum with respect to the detector. Nevertheless,
the high-precession systems which are best recovered cor-
respond to face-on and face-off orientations, which are the
most likely to be observed based on their intrinsic SNR.

Using the same template banks, we then employ a real-
istic search pipeline to recover the same signal population

in simulated noise, constructed by recoloring real initial-
LIGO data to a sensitivity indicative of early advanced-
LIGO detectors. The search pipeline includes the χ2

signal-based veto and exact-match coincidence between
the Hanford and Livingston LIGO detectors. We com-
pare the resulting nonspinning and aligned-spin ROC
curves for different choices of BH spin parameters.

We conclude that using an aligned-spin bank will in-
crease the detection rate of NSBH binaries by a fraction
which strongly depends on the distribution of BH spin
magnitudes and tilt angles in nature. At the very mini-
mum, assuming an extreme case of weakly-spinning BHs
(0 ≤ χBH < 0.4) and unrestricted, uniformly-distributed
tilt angle, a search pipeline based on the aligned-spin
bank would have a larger computational cost but it would
reduce the sensitivity relative to using a nonspinning
bank by ∼ 10% at most. With unrestricted, uniformly-
distributed spin magnitude and tilt, both methods have
very similar sensitivity. On the other hand, for large
spin magnitude and small tilt—a distribution supported
by population-synthesis models and existing BH spin
measurements—the improvement in sensitivity can be as
large as one order of magnitude. We also find a noticeable
improvement assuming either small tilt and unrestricted
magnitude, or unrestricted tilt and large magnitude. A
factor of ∼ 2 in sensitivity is lost for the unlikely case of
strongly-precessing systems, even with the aligned-spin
bank. Using these results we estimate that using a bank
of generic precessing templates could increase the sensi-
tivity by tens of percent or, under less realistic assump-
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‖
BH) (visualized in the insets). The lighter bands show the 68% error intervals estimated by constructing

each curve 100 times from different combinations of the available data.
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times from different combinations of the available data. Compare with the final plot of [11].
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tions, possibly by a factor of 2, assuming the background
does not increase significantly. Quantifying this improve-
ment more precisely requires constructing a bank of pre-
cessing waveforms (see e.g. [31, 33–36]) and applying it
to a full search pipeline with realistic advanced-detector
data, which will be subjects of future papers.

Although we assumed a particular sensitivity curve,
our conclusion is likely to remain true for the wider-band
sensitivity expected for the final design advanced LIGO;
bank simulations with precessing NSBH signals and the
final zero-detuned high-power design curve of advanced
LIGO produced results similar to ours [10, 24]. The sim-
ulated precessing signals we have used are based on post-
Newtonian expansions and terminate abruptly, ignoring
merger and ringdown effects. For the mass range con-
sidered, except for highly anti-aligned systems, these are
likely to be good approximations to the true waveforms
in the sensitive band of advanced LIGO detectors. We
reserve studying the inclusion of merger and ringdown,
as well as the comparison with numerical waveforms, to

a separate paper.

Assuming the larger computational cost can be sat-
isfied, we conclude with the recommendation of switch-
ing from nonspinning to aligned-spin templates for future
NSBH searches in the mass range considered here, as this
would provide good sensitivity across the entire BH spin
parameter space, including both the aligned and precess-
ing high-spin cases.
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Phys. Rev. D 89, 084006 (2014), arXiv:1307.6232 [gr-qc].

http://dx.doi.org/10.1103/PhysRevD.89.044021
http://dx.doi.org/10.1103/PhysRevD.89.044021
http://arxiv.org/abs/1304.3332
http://arxiv.org/abs/1408.1810
http://dx.doi.org/10.1103/PhysRevD.67.104025, 10.1103/PhysRevD.74.029904
http://dx.doi.org/10.1103/PhysRevD.67.104025, 10.1103/PhysRevD.74.029904
http://arxiv.org/abs/gr-qc/0211087
http://dx.doi.org/ 10.1103/PhysRevD.69.104017
http://dx.doi.org/ 10.1103/PhysRevD.69.104017
http://arxiv.org/abs/gr-qc/0310034
http://dx.doi.org/10.1088/0264-9381/28/13/134008
http://dx.doi.org/10.1088/0264-9381/28/13/134008
http://arxiv.org/abs/1101.1459
http://dx.doi.org/ 10.1103/PhysRevD.89.084006
http://arxiv.org/abs/1307.6232

	Impact of precession on aligned-spin searches for neutron-star–black-hole binaries
	Abstract
	I Introduction
	II Effect of precession on SNR loss
	III Effect of precession on a realistic search pipeline
	IV Conclusion
	 Acknowledgments
	 References


