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Abstract: Efficient numerical techniques for multivariable system identification and model
reduction are investigated. The techniques are implemented in the system identification
and model reduction toolboxes based on the Fortran 77SubroutineL ibrary in Control
Theory (SLICOT). Besides highly performant Fortran driversand computational routines,
these toolboxes provide MATLAB or Scilab interfaces, implementing several algorithmic
approaches. Extensive numerical testing and comparisons with similar MATLAB tools
show that the solvers in these toolboxes are reliable, efficient, and able to solve industrially
relevant problems.Copyright ©2007 IFAC
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1. INTRODUCTION

The availability of powerful system identification and
model reduction tools is very important in practice,
since modern control techniques are increasingly de-
pendent on suitable dynamical models. The numeri-
cal procedures need to be based on reliable and ro-
bust numerical software provided by well-tested and
user-friendly software libraries. This paper summa-
rizes the functional and computational performances
of the MATLAB 1 identification and model reduction
toolboxes based on the SLICOT Library (Benneret
al., 1999).2

1 MATLAB is a registered trademark of The MathWorks.
2 The SLICOT (Subroutine Library in Control Theory) software
library and the related CACSD tools based on SLICOT were de-
veloped within the Numerics in Control Network (NICONET)
funded by the European Community BRITE-EURAM III RTD The-
matic Networks Programme, seehttp://www.icm.tu-bs.
de/NICONET. SLICOT can be used free of charge by academic
users, seehttp://www.slicot.org.

The SLICOT-based MATLAB toolboxes provide a
user-friendly interface to the highly efficient, ro-
bust, and portable Fortran 77 SLICOT routines. The
MATLAB M-functions contained in these toolboxes
are based on MEX-files calling the Fortran routines.
While the M-functions are destined to all user cat-
egories, the more sophisticated and flexible MEX-
functions are intended for expert users and software
developers. Executable SLICOT MEX-files are pro-
vided for MATLAB running under WINDOWS 95–XP,
Sun Solaris, and Linux.

Most of the SLICOT functionality is concerned with
linear time-invariant (LTI) systems in state-space
form:

ẋ(t) = Ax(t)+Bu(t)
y(t) = Cx(t)+Du(t),

(1)

in the continuous-time case, and

xk+1 = Axk +Buk

yk = Cxk +Duk,
(2)



in the discrete-time case, whereA is n×n, B is n×m,
C is ℓ×n, andD is ℓ×m. All matrices are assumed to
be real.

Alternatively, an LTI system (1) or (2) may be repre-
sented by a rational transfer-function matrix (TFM),

G(λ ) = C(λ I −A)−1B+D, (3)

where λ is the variables appearing in the Laplace
transform, or thez variable appearing in thez-
transform, respectively.

Sections 2 and 3 provide a short description of the
two SLICOT toolboxes emphasizing their potential in
solving computationally challenging problems.

2. THE SYSTEM IDENTIFICATION TOOLBOX

Consider a discrete-time system ininnovation form,

xk+1 = Axk +Buk +Kek ,

yk = Cxk +Duk +ek , (4)

wherexk is the state vector at timek, uk andyk are the
input and output vectors, respectively,{ek} is a zero
mean white noise sequence, uncorrelated with{uk}
and with the initial state of the system, andK is the
Kalman gain matrix; (A,C) is assumed observable.

In system identificationproblems, the system order,
n, and the quadruple of system matrices(A,B,C,D)
have to be determined (up to a system similarity trans-
formation) using the input and output data sequences,
{uk} and{yk}, k= 1: N̄. In addition, the Kalman gain
matrixK in (4) has often to be found.

The SLICOT calculations are based onsubspace iden-
tification algorithms, which use a matrixH, built
from block-Hankel matrices, using part of the avail-
able input-output (I/O) data. Two approaches, MOESP
(Multivariable Output Error state-space) (Verhaegen
and Dewilde, 1992), and N4SID (Numerical algo-
rithm for Subspace State Space System IDentifica-
tion) (Van Overschee and De Moor, 1994), and their
combination are used. The matrixH is given by

H =
[

UT
q+1,q+s,N+q UT

1,q,N YT
1,r+s,N

]
(MOESP),

H =
[

UT
1,q+s,N YT

1,r+s,N

]
(N4SID),

with H ∈ R
N×(mq+ℓr+(m+ℓ)s), where N ≤ N̄ − s−

min(q, r)+1 (usuallyN ≫ mq+ ℓr +(m+ ℓ)s),

Ua,b,c =




ua ua+1 ua+2 · · · uc

ua+1 ua+2 ua+3 · · · uc+1
...

...
...

...
...

ub ub+1 ub+2 · · · uc+b−a


 , (5)

and similarly for Ya,b,c. The latest version of the
MATLAB function n4sid from the System Identifi-
cation Toolbox (Ljung, 2000) can use different “pre-
diction horizons”s, q, and r. But standard MOESP
and N4SID algorithms, assumed below, useq= r = s,

wheres denotes the “number of block rows”, ands
usually satisfiess≥ n.

The first step in a subspace identification procedure
is to perform a “data compression” by computing the
upper triangular factorR of a QR factorization of the
matrix H, H = QR ; the matrixQ ∈ R

N×2(m+ℓ)s, sat-
isfying QTQ = I2(m+ℓ)s, is not needed subsequently.
Parts ofR are further used to estimaten and sys-
tem matrices. As many theoretical results concerning,
e.g., consistency and normality of the estimates of the
system matrices hold asymptotically, for̄N → ∞, the
algorithms should work with large amounts of data,
if available. The standard QR factorization algorithm
could be too costly, becauseH can have very large
dimensions. Since matrixH is highly structured, effi-
cient data processing is possible by using the problem
structure. Two such techniques implemented in the
SLICOT Library are based on fast Cholesky and fast
QR factorization algorithms, which exploit the special
structure of the matrixH.

The Cholesky factorization algorithm efficiently builds
the inter-correlation matrixW = HTH, and then fac-
tors W, assuming it is positive definite. (In the rare
case when this algorithm fails, the usual QR factoriza-
tion is automatically used.) For the standard N4SID
approach, the block-Hankel matrices corresponding to
the inputs and outputs areHu = UT

1,2s,N and Hy =

YT
1,2s,N , and H =

[
Hu Hy

]
. The definitions extend

to multiple I/O data batches. Actually, assuming that
the latest batch to be processed is defined byH,
then W = W̃ + HTH, whereW̃ corresponds to the
already processed data batches. Clearly,W̃ = 0 if the
first (or single) data batch is processed. Two lemmas
in (Simaet al., 2004; Sima, 2004) give cheap formulas
for computing the symmetric block matrixW for the
N4SID and MOESP approaches, respectively. In the
later case, the matrix for the N4SID technique is built,
and then it is transformed for the MOESP case.

Consider now the fast QR factorization algorithm for
the N4SID approach. Define theshift matrix Z =
diag(Zu,Zy), whereZu (Zy) is a 2s×2s block matrix
with m×m (ℓ× ℓ) blocks, all zero except for identity
blocks on the superdiagonal. A lemma in (Simaet
al., 2004) shows that the symmetric matrix∇W =
W −ZTWZ , called thedisplacementof W (Kailath
and Sayed, 1995), has a low rank factorization. Specif-
ically, ∇W can be written as

∇W = GTΣG, Σ = diag(I p,−Iq), (6)

where p = q = m+ ℓ + 1, hence∇W has the rank
2(m+ℓ+1) at most. The matrixG∈R

2(m+ℓ+1)×2(m+ℓ)s

is called thegeneratorof W, and efficient techniques
are available to build the generators and the factor
R (Kailath and Sayed, 1995; Mastronardiet al., 2001).
In practical calculations, thegeneralized Schur algo-
rithm is used to find all rows of the Cholesky fac-
tor of W, W = W̃ + HTH. Householder transforma-
tions and hyperbolic rotations are involved. Details are



given in (Mastronardiet al., 2001). For the MOESP
approach, the same algorithm as for N4SID is used,
but the first two block columns of the resulting upper
triangular factorR are interchanged, and then retrian-
gularized, exploiting the structure.

SLICOT System Identification Toolbox can also be
used to identify Wiener systems. A discrete-time
Wiener system has a state-space representation

xk+1 = Axk +Buk, zk = Cxk +Duk,

yk = f (zk)+ek, (7)

wheref(·) is a nonlinear vector function fromRℓ to
R

ℓ. Briefly speaking, a Wiener system consists of a
linear dynamic block followed by a static nonlinear-
ity. The system identification problem for (7) requires
to find an approximation off(·), besides estimating
n, the quadruple(A,B,C,D), and the initial condi-
tions. The implemented approach uses a state-space
representation for the linear part and a single layer
neural network to model the static nonlinearity. Fast
subspace identification algorithms are employed for
estimating the linear part, based on the available input-
output data. The resulted state-space model is used for
finding an approximate model of the nonlinear part by
a Levenberg-Marquardt (LM) algorithm. Finally, the
whole model is refined using a specialized, structure-
exploiting LAPACK-based scaling-invariant LM algo-
rithm. The output normal form is used to parameter-
ize the linear part. The parameters corresponding to
the nonlinear part come first in the global parameter
vector. Using this ordering, the Jacobian matrices in
the multi-output case (ℓ > 1) have a block diagonal
form, with an additional block column at the right.
This structure is preserved in a QR factorization with
column pivoting restricted to each block column. The
rank deficient case is also covered. The Jacobian is
computed analytically, for the nonlinear part, and nu-
merically, for the linear part. The implementation is
memory conserving and significantly faster than stan-
dard LM algorithms or specialized LM calculations
based on conjugate gradients (without precondition-
ing) for solving linear systems. Details and numerical
results are given, e.g., in (Sima, 2003a; Sima, 2003b).

2.1 Functionality of the Toolbox

Summarizing, SLICOT System Identification Toolbox
includes SLICOT-based MATLAB and Fortran tools
for linear and Wiener-type, time-invariant discrete-
time multivariable systems. The approaches MOESP,
N4SID, and their combination, are used to identify
linear systems, and to initialize the parameters of the
linear part of a Wiener system. The toolbox function-
alities include:

• identification of linear discrete-time state-space
systems(A,B,C,D);

• identification of state and output covariance ma-
trices for such systems;

• estimation of the associated Kalman gain matrix;
• estimation of the initial state;
• conversion from/to a state-space representation

to/from the output normal form;
• identification of discrete-time Wiener systems;
• computation of the output of Wiener systems.

Attractive features of this toolbox include:

• possible speed-up factors larger then 10 in com-
parison with the commonly used software tools;

• standard or fast techniques for data compression
(exploiting the block-Hankel structure);

• fast estimation of system models of various,
specified orders;

• ability to process multiple data batches;
• specialized, structure-exploiting LM algorithm

using block QR factorization with pivoting;
• optional assessing the quality of the intermediate

results using the associated condition numbers.

2.2 Performance Results

Performance evaluation of the system identification
software has been performed using data sets from
the DAISY collection, publicly available from the
Internet sitewww.esat.kuleuven.be/sista/
daisy. Accuracy and efficiency comparisons of the
SLICOT linear systems identification software and the
available subspace-based codes for 25 applications are
presented in (Simaet al., 2004). New results are given
below, comparing the SLICOT codeslmoen4 and
MATLAB function n4sid (Ljung, 2000). The main
SLICOT-based call for standard calculations was

[sys,K,rcnd] = slmoen4(s,y,u,n,alg);

The results have been obtained on an Intel Pentium 4
computer, at 3 GHz, with 1 GB RAM, under Windows
XP, with Compaq Visual Fortran V6.5 and optimized
LAPACK and BLAS (available in MATLAB ), under
MATLAB 7.0.4.365 (R14) Service Pack 2.

Figure 1 shows a timing comparison ofslmoen4
with fast QR factorization (alg = 2) vs MATLAB 7.0.4
n4sid with standard QR factorization and default
options, but with order = n, ’N4Weight’ =
’MOESP’, and four cases (a)–(d) for the possible
combinations of values for’N4H’ :=’N4Horizon’
and ’Cov’ := ’CovarianceMatrix’ (see the
caption). Heren is the chosen order of the system, and
s is the number of block rows, set to the same values
as forslmoen4 (see, e.g., (Simaet al., 2004)). Set-
ting ’Cov’ = ’None’ avoids the calculation of the
covariance information, reducing the execution times.
Specifically, Figure 1 shows the ratios between the
execution times ofn4sid andslmoen4—the speed-
up factors—for each application and each case (a)-(d).
Clearly, the use of a fast algorithm is very advanta-
geous. The figure also illustrates the strong influence
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Fig. 1. slmoen4 with fast QR versus MATLAB

7.0.4 n4sid with QR factorization and de-
fault options, butorder = n, ’N4Weight’
= ’MOESP’, and: (a)’Cov’ = [ ], ’N4H’
= ’Auto’; (b) ’Cov’ = ’None’, ’N4H’ =
’Auto’; (c)’Cov’ = [ ], ’N4H’ = [sss]; (d)
’Cov’ = ’None’, ’N4H’ = [sss].

then4sid options can have on the execution times.
It should be mentioned thatn4sid computes the co-
variance matrices of the estimated systems in the cases
(a) and (c), while SLICOT function does not compute
them. These results are shown since’Cov’ = [ ] is
the default value for the correspondingn4sid para-
meter. Similarly,’Auto’ (as in cases (a) and (b)) is
the default value for the parameter’N4Horizon’.
But for large systems, the use of these default values
involve significant computational effort. The largest
speed-up factors have been usually obtained in case
(a), normally followed by (c). Even if’Cov’ =
’None’ (and’N4H’ = [sss], as forslmoen4), the
SLICOT function can be much more efficient than
n4sid, see the case (b) (and the case (d)) in Fig. 1.
Moreover, the timing results forslmoen4 (and other
SLICOT functions) withalg = 1 or alg = 2 are
essentially independent on the number of data samples
N̄, used for identification (see (Sima, 2004)). This is
due to the use of fast factorization algorithms. On the
other hand, the computing time forn4sid, which
uses standard QR factorization of the block-Hankel-
block matrixH, grows linearly withN̄, for largeN̄.

3. THE MODEL AND CONTROLLER
REDUCTION TOOLBOX

SLICOT provides a wide variety of model (order)
reduction techniques for LTI systems of the form (1)
or (2). Model reduction is often used in system analy-
sis and is mostly absolutely necessary for the compu-
tation of controllers. The reason is that modern and
robust controllers like those based on LQG,H2, or H∞
design techniques are themselves LTI systems of the
form (1) or (2) with state dimensionN ≥ n, while in
practice, only very low valuesN should be used. The
reduction ofn can be achieved using model reduc-
tion techniques, whileN can be directly reduced us-
ing controller reduction techniques, see, e.g., (Obinata

and Anderson, 2001; Varga, 2001; Varga, 2003). In
contrast to the MATLAB Control and Robust Control
Toolboxes, SLICOT offers several controller reduc-
tion functions. Due to space limitations, here we will
consider only continuous-time LTI systems although
most SLICOT routines can be applied also to discrete-
time systems.

Applying the Laplace transformation to (1) (with
x(0) = 0), the system dynamics are then given as
Y(s) = G(s)U(s), whereU,Y are the Laplace trans-
forms ofu,y, respectively, andG is given in (3).

The aim of model reduction is to find an LTI system,

˙̂x(t) = Âx̂(t)+ B̂u(t),
ŷ(t) = Ĉx̂(t)+ D̂u(t),

(8)

of orderr, r ≪ n, such that the associated TFM̂G(s) =
Ĉ(sI r − Â)−1B̂ + D̂ approximates the original TFM
G(s). This is motivated by the inequality‖y− ŷ‖2 ≤
‖G− Ĝ‖∞‖u‖2, where‖ · ‖2 corresponds to theL2-
norm and‖ · ‖∞ is theH∞-norm. Note that model and
controller reduction for unstable systems is possible
by an additive decomposition of the transfer-function
into its stable and unstable parts or by a coprime
factorization (where both factors are stable), see, e.g.,
(Varga, 2003).

Methods that attempt to minimize‖G− Ĝ‖ are called
absolute error methodswhile relative error methods
try to minimize‖∆r‖, where∆r is implicitly defined
by G− Ĝ = ∆rG. Nevertheless, balanced truncation
and related methods can be used to obtain good ap-
proximations using either one of these measures. An
alternative is to use the Hankel (semi-)norm of (1)
which is defined as the maximum Hankel singular
value ofG(s) for s on the imaginary axis. Formulae
for computing the best Hankel norm approximation
to a given stable systemG can for instance be found
in (Antoulas, 2005; Obinata and Anderson, 2001) and
references therein.

There is a vast variety of model reduction techniques
serving different purposes; in case of linear systems,
it seems that modal truncation and the related tech-
niques of substructuring and static condensation, Padé
and Padé-type approximations, and balancing-related
truncation techniques play the most prominent role;
see the recent monographs and surveys (Antoulas,
2005; Benneret al., 2005; Benneret al., 2006; Obi-
nata and Anderson, 2001). SLICOT’s model and con-
troller reduction routines are all based on the latter
approach. One reason is that SLICOT uses dense lin-
ear algebra while modal as well as Padé techniques
have only advantages if large and sparse systems have
to be reduced andn is too large to use dense lin-
ear algebra—regarding their model reduction abilities,
they are quite inferior to balancing-related techniques.

Balanced truncation is based on finding a state-
space transformation which balances the controllabil-
ity GramianP versus the observability GramianQ of



the system (1). The Gramians are given as the solu-
tions of the Lyapunov equations

AP+PAT +BBT = 0, ATQ+QA +CTC = 0. (9)

A minimal and stable LTI system can be transformed
by a state-space transformation (change of coordinates
in state-space) such that the GramiansP,Q become
equal and diagonal and the diagonal elementsσ j , j =
1, . . . ,n, are monotonically decreasing positive real
numbers, called the Hankel singular values of the LTI
system (1). The reduced-order model is obtained by
truncating the balanced state-space representation of
the system at an orderr so thatσr > σr+1. The so-
obtained reduced-order model is stable and satisfies
the error bound

σr+1 ≤ ‖G− Ĝ‖∞ ≤ 2
n

∑
k=r+1

σk , (10)

which allows an adaptive choice ofr given an error
tolerance. In the SLICOT toolbox, there are also sev-
eral functions implementing balancing-related meth-
ods that can be used if other system properties are to
be preserved (e.g., minimum-phase) or if controller
reduction is desired. To overcome a disadvantage of
balanced truncation of not preserving the steady-state
performance, i.e.,G(0) 6= Ĝ(0), it can be combined
with singular perturbation approximation (SPA).

3.1 Functionality of the Toolbox

The SLICOT Model and Controller Reduction Tool-
box for MATLAB provides numerically reliable and
efficient functions for balanced truncation, singular
perturbation approximation, balanced stochastic trun-
cation, frequency-weighting balancing, Hankel-norm
approximation, coprime factorization, etc. The al-
gorithms are based on methods with theoretically
sound mathematical background described well in
(Antoulas, 2005; Obinata and Anderson, 2001). The
functionality of the toolbox includes

• order reduction for continuous-time and discrete-
time LTI systems and controllers;

• order reduction for stable or unstable mod-
els/controllers;

• additive and relative error model reduction;
• frequency-weighted reduction with special sta-

bility/performance enforcing weights;
• coprime factorization-based reduction of state

feedback and observer-based controllers.

The main features of the toolbox are:

• computational reliability using square-root and
balancing-free accuracy enhancing techniques;

• high numerical efficiency, using latest develop-
ments and structure-exploiting algorithms;

• enhanced functionality, e.g, controller reduction.

For a more detailed description of the SLICOT Fortran
77 routines for model and controller reduction see
(Varga, 2003).
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Fig. 2. Comparison of MATLAB functions for singular
perturbation approximation for SISO (top) and
MIMO (bottom,m= 5, ℓ = 10) systems.

3.2 Performance results

In this section we present some typical results for
functions from the SLICOT Model and Controller
Reduction Toolbox. All tests are performed on a
Toshiba notebook with 1.25 GB main memory, an In-
tel M processor at 1.1 Ghz, running MATLAB R2006a.
We compare the functions for balanced truncation
with matching DC gain, i.e., the balanced truncation
method with singular perturbation approximation is
used. This is the default in the functionbalred from
the MATLAB Control System Toolbox (in the follow-
ing, CST for short) and implemented as MATLAB

function spabal in the SLICOT Model and Con-
troller Reduction Toolbox. Note thatbalancmr from
the MATLAB Robust Control Toolbox does not offer
an option for matching DC gains and is thus not in-
cluded in the comparison. It should be noted, though,
that its performance is usually much worse than that
of balred, see, e.g., (Benner, 2006).

We generate systems withA,B,C having normally
distributed random entries. Figure 2 shows the CPU
times needed for systems of increasing order for
single-input/single-output (SISO,m = ℓ = 1) and
multi-input/multi-output (MIMO; here,m= 5,ℓ = 10)
systems. In contrast tospabal, balred does not
offer to compute a reduced-order model satisfying a
given error tolerance based on the computable error
bound (10). Thus, in all cases, a reduced-order model
of prescribed ordernu + 5 is computed, wherenu is
the number of unstable poles of the system. For all



systems except for the smallest one tested (n = 20),
spabal requires less than 40% of the CPU time of
the already quite efficient routinebalred. The accu-
racy of the reduced-order models is comparable for all
routines and all tests.

Besides the often significant advantage in execu-
tion times shown above, the main advantage of the
SLICOT Model and Controller Reduction Toolbox
is the availability of frequency-weighted versions of
balanced truncation methods for model and controller
reduction. None of these are available in current
MATLAB toolboxes. Also, as mentioned above, even
for standard model reduction techniques, the SLICOT-
based functions are sometimes more flexible and offer
a better functionality.

4. CONCLUSIONS

The results show that the fast and reliable system iden-
tification and model/controller reduction algorithms
and solvers included in the SLICOT toolboxes can be
safely used, and they are significantly more efficient
than the existing MATLAB codes.
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