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Chapter 1                                
 

INTRODUCTION 

 
1.1 GOAL  OF  THE  DISSERTATION 

We live in a constantly changing environment. Many of our activities require interaction with 

this dynamic environment, not uncommonly also involving other people. Consider yourself 

dancing during a night out with friends. Seemingly effortlessly you synchronize your dance 

moves to the music and your friends. How are we able to effectively coordinate our actions 

without losing flexibility? This flexibility is, for example, necessary to be able to continue to 

dance also with the next song that might be of a different genre and at a different tempo.  

Sensorimotor synchronization (SMS) is the temporal coordination of actions with external 

events (cf. Repp, 20051). SMS is essential for the successful coordination of movements. 

Some people, like professional dancers, musicians, and rowers, display extraordinary skills in 

timing their movement accurately and precisely (e.g. Keller & Appel, 2010; Wing, Endo, 

Bradbury, & Vorberg, 2014; Wing & Woodburn, 1995), while other people seem to be less 

skilled. Several patient groups have even shown explicit problems related to SMS. For 

example,   Parkinson’s   disease   patients   exhibit   problems   when   reproducing   intervals   of  

different   lengths   (Pastor,   Artieda,   Jahanshahi,   &   Obeso,   1992)   and   Musician’s   dystonia  

patients show impairments in detecting late stimuli in a train of auditory onsets (Lim, 

Bradshaw, Nicholls, & Altenmüller, 2003). Furthermore, patients with lesions in the basal 

ganglia or cerebellum as a result of a stroke have been found to have compromised 

synchronization behavior (e.g. Ivry, Spencer, Zelaznik, & Diedrichsen, 2002; Schwartze, 

Keller,   Patel,   &   Kotz,   2011).   Interestingly,   despite   the   timing   problems   Parkinson’s patients 

might display, the gait of these patients has been shown to benefit from external auditory 

timing cues (Lim et al., 2005). Furthermore, stroke and traumatic brain injury patients achieve 

significant improvements after rehabilitation programs involving synchronization with music 

(e.g. Schneider, Schönle, Altenmüller, & Münte, 2007; Thaut et al., 2009).  

Overall, these studies suggest that SMS is an important aspect of successful motor timing and 

that it might be exploited in motor rehabilitation programs for different patient groups. The 

goal of this PhD was to get a better understanding of the underlying mechanisms of SMS, in 

                                                                 
1 Citations in this chapter follow the rules and regulations established by the American Psychological Association (APA). In 
the remaining chapters the citation style of the specific journal were the paper was published/ submitted was applied. 
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both healthy and patient populations. This goal was motivated by the assumption that, once 

we have a better understanding of the mechanisms underlying temporal sensorimotor 

synchronization and related deficits in patient populations, we will be better able to set up 

targeted rehabilitation programs focusing on the timing of movements. 

 

1.2 SENSORIMOTOR  SYNCHRONIZATION 

SMS is a fundamental human skill underpinning behaviors that require humans to coordinate 

their movements (action) with something or someone else (event). Whether one is practicing a 

forehand with a tennis ball machine, preparing to cross a street full of driving cars, or is 

making   music   in   a   group,   to   be   successful   at   these   tasks   one’s   movements   need   to   be  

synchronized with the timing of the other, externally controlled events. In many cases, SMS 

will occur more or less spontaneously, for example, people tend to nod their head in 

synchrony with music and steps become synchronized when walking together with a friend 

(van Ulzen, Lamoth, Daffertshofer, Semin, & Beek, 2008). On the other hand, highly accurate 

and precise SMS can be the goal of extensive practice, as is the case for musical ensembles 

(Keller & Appel, 2010) and rowing crews (Wing & Woodburn, 1995). Since SMS is part of 

such a broad range of behavioral coordination it is important that SMS is precise yet flexible. 

Both temporal adaptation (reactive error correction processes) and anticipation (predictive 

processes) mechanisms are thought to play an important role in achieving this balance 

between precision and flexibility (e.g., Keller, 2008; Repp & Su, 2013).  

A common paradigm to investigate SMS and its underlying mechanisms involves a finger 

tapping task (Repp, 2005). During this simple task participants are asked to tap their finger in 

synchrony with a pacing stimulus, often consisting of an auditory sequence. Measures of 

interest are typically related the asynchrony, the timing error between the participants tap and 

the event in the stimulus sequence (Figure 1.1). By convention, taps that precede the even are 

reflected in negative asynchronies. Frequently the mean asynchrony is used as an inverse 

measure of SMS accuracy and as an inverse measure of SMS precision the variability (i.e., 

standard deviation) of the signed asynchrony is used (Repp, 2005). Other measures are often 

related to the intervals between successive actions (ITI) or onsets of the stimulus sequence 

(IOI) (Figure 1.1). 
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Figure 1.1 Standard variables related to a finger tapping task. asyn, asynchrony; ITI, interval between successive actions; 
IOI, interval between the onsets of the stimulus sequence.   

 

1.3 TEMPORAL ADAPATION 

SMS has been studied extensively in the tradition of information-processing approaches. 

According to the information-processing theory, the timing of simple movements is assumed 

to be the result of a timekeeping process that generates pulses that trigger motor responses 

(Wing & Kristofferson 1973a, 1973b). Timing errors (i.e., asynchronies) between events in 

the stimulus sequence and the movements are the result of variability in movement timing 

caused by biological noise. Furthermore, asynchronies occur due to intentional deviations 

from regularity (e.g. expressive timing in music performance). Error correction processes 

compensate for timing errors in a reactive fashion (Mates, 1994a, 1994b; Vorberg & Schulze, 

2002; Vorberg & Wing, 1996).  

Phase and period correction are two types of adaptation mechanism that have been 

distinguished (Mates, 1994a, 1994b; Semjen, Vorberg, & Schulze, 1998; Vorberg & Wing, 

1996).  It has been claimed that both error correction processes modify the timing of the next 

action based on the asynchrony (e.g., Semjen et al., 1998). Phase correction is an automatic 

and local adjustment of the interval generated by the internal timekeeper. It influences the 

temporal alignment but leaves the interval setting of the timekeeper unaffected (Repp, 2001a, 

2002a). Period correction, on the other hand, changes the interval setting of the timekeeper 

that drives the motor activity. This change in timekeeper setting persists until period 

correction is again applied and has an influence on the rate of the motor responses (Repp, 

2001b). Successful period correction requires the conscious perception of a tempo change in 

the stimulus sequence (Repp & Keller, 2004). Without these adaptation mechanisms, 

variability would accumulate over time. This would lead to increasing asynchronies, phase 

drift, and eventually even the loss of synchrony between the stimulus event and movement 

(Vorberg & Wing, 1996).  
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There are different methods available to estimate the amount of phase correction implemented 

by the participant during synchronization tasks.  For example, the amount of phase correction 

can be estimated based on lag-1 (AC1) and lag-2 (AC2) autocorrelations via a simple analytic 

solution;  𝑎𝑚𝑜𝑢𝑛𝑡  𝑜𝑓  𝑝ℎ𝑎𝑠𝑒  𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛  (𝛼) = 1 −𝐴𝐶2/𝐴𝐶1  (Pressing, 1998; Schulze & 

Vorberg, 2002). Unfortunately, this estimate can be problematic because AC1 approaches 

zero when phase correction is optimal and AC2 values are unreliable of based on short time 

series (Schulze & Schulze, 2002; Repp & Keller, 2008). Recently, the bounded Generalized 

Least Squeares (bGLS) method was proposed (Jacoby & Repp, 2012; Repp, Keller, & Jacoby, 

2012). This analytic method is related to the numerical optimization method of Vorberg and 

Schulze (2002) but finds a maximum likelihood approximation to the equation that describes 

the relation between successive asynchronies governed by phase correction (Repp et al., 

2012). The advantage of this latter method is that it can be applied to different types of 

synchronization paradigm and that also parameter estimates such as period correction can be 

obtained (Jacoby & Repp, 2012). 

 

1.4 TEMPORAL ANTICIPATION 

Although successful SMS depends crucially on adaptation mechanisms, these reactive 

processes alone cannot account for all aspects of SMS: temporal adaptation is thus necessary 

but not sufficient. For example, when trained musicians play together in an ensemble, the 

asynchronies between the tones that should be played simultaneously according to the notated 

score are usually in the order of 30-50 ms (e.g., Keller & Appel, 2010; Rasch, 1979). 

Asynchronies of this magnitude are too small to be the result of purely reactive mechanisms 

(Keller, 2008) and are therefore suggestive of anticipation mechanisms related to SMS. 

During synchronization with tempo changing sequences that resemble expressively timed 

music, participants are able to predict the tempo changes (e.g., Pecenka & Keller, 2011; 

Rankin, Large, & Fink, 2009). The predictive processes allow the anticipation of the precise 

onset of stimulus events. Based on the anticipated onset, individuals can get their movements 

under way early enough so that the responses coincide with the events (Schmidt, 1968). 

Anticipation occurs when actions not only depend on the past and present but also on 

predictions, expectations, or beliefs about the future (Butz, Sigaud, & Gérard, 2003). 

Anticipatory mechanisms have been linked to online action simulations and internal models 

(Keller, 2008). Internal models generate predictions based on the effects of the intention to 

perform a specific movement (Wolpert & Kawato, 1998). Two types of internal model have 

been distinguished: forward and inverse models. Forward models predict the effect a 
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particular motor command will have upon the body and the dynamic environment, given the 

current state of the action control system. Forward models therefore represent the causal 

relationship between the input and output of the action control system. Inverse models serve 

as a controller for intentional movements by providing the motor command that is necessary 

to change the current state of the body and the environment to the desired end state (Wolpert 

& Kawato, 1998).  

Paired forward and inverse models have been linked to flexible and successful motor control, 

because the predicted effect can be used to adjust the planned motor command (e.g., Wolpert 

& Kawato, 1998). Internal models can also be used to predict the outcome   of   others’   actions  

(e.g., from a stimulus event or another person) (Wolpert, Doya, & Kawato, 2003).  The 

coupling   of   ‘own’   and   ‘other’   internal   models   in   facilitates   SMS   because   it   allows   potential  

errors in timing to be foreseen and corrected before they occur (Wolpert et al., 2003; Keller, 

2008).  

Measures pertaining to underlying anticipation mechanisms are related to the dependencies 

between ITIs and IOIs at lag 0 and lag 1 (Figure 1.1). The lag 0 cross-correlation reflects the 

tendency to predict the intervals in the stimulus sequence, while the lag 1 cross-correlation 

mirrors the tendency to track, or copy, the intervals during synchronization with the tempo 

changes (Repp, 2002b; Rankin et al., 2009). The ratio between the lag 0 and lag 1 cross-

correlations can be used as a measure of prediction in SMS with tempo changing tapping 

tasks, where a ratio larger than 1 indicates that the participant anticipates the tempo changes 

(Pecenka & Keller, 2011). 

 

In Chapter 2, a more detailed overview of the existing literature on adaptation and anticipation 

mechanisms in SMS is given.  In the following, an overview of the theoretical contribution of 

this dissertation in terms of the development of a computational model is given, followed by 

descriptions of key results obtained in studies using model-based computer simulations and 

related behavioral experiments. 

 

1.5 ADAM: THE ADAPTATION AND ANTICIPATION MODEL 

In 1987, George Box pointed out that essentially all models are wrong, but that some might 

nevertheless be useful. Models are a simplified representation of the reality. The downside of 

working with models is that one always ignores parts of the reality that might also influence 

the process that is the main focus of the model. On the other hand, due to the simplification it 

might be possible to get a better understanding of this aspect of the real state of affairs. One 
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can systematically vary and investigate parts of the model in order to obtain more knowledge 

and a better understanding of the modeled reality. The latter can then help to improve the 

model and therefore lead to a better representation of reality.  

An important model for the timing of self-paced, repetitive discrete motor responses was 

proposed by Wing and Kristofferson (1973a, 1973b). This two-level timing model assumes 

two independent processes that are uncorrelated: (1) a timekeeping process that generates 

pulses that trigger motor responses and (2) a delay processes that accounts for transmission 

lags and movement time. Later, this two-level timing model was extended by including error 

correction mechanisms to account for synchronization with an external sequence (e.g., Mates, 

1994a, 1994b; Vorberg & Wing, 1996). But, as mentioned before, not all aspects of SMS can 

be explained by means of reactive adaptation mechanisms as phase and period correction. 

Instead anticipation mechanisms seem to also play a role in SMS (e.g., Pecenka & Keller, 

2011).  

Traditionally, adaptation and anticipation mechanisms are investigated using separate 

paradigms. Although this has contributed much to our knowledge about SMS, it is likely that 

both mechanisms interact with each other and influence SMS. For example, a precise 

prediction will lead to a smaller timing error and with smaller the timing errors better 

predictions can be made. It is therefore important to investigate both mechanisms within a 

unified framework. Hence, our work has focused on creating ADAM, the ADaptation and 

Anticipation Model. ADAM combines phase and period correction based on the asynchrony 

(adaptation module) (Repp & Keller, 2008) with a predictive temporal extrapolation process 

based on a series of intervals (anticipation module) (Figure 1.2). ADAM can be used to run 

simulations to systematically investigate the effect of phase and period correction on SMS, 

while also taking into account aspects of anticipation, such as the number of intervals used to 

make the prediction. Furthermore, with ADAM the link between adaptation and anticipation 

mechanisms   can   be   examined.   It   has   been   proposed   that   ‘joint’   internal   models,   pairing   both  

forward   and   inverse   models   focusing   on   ‘own’   and   ‘others’   action   could   play   a   role   in   linking  

both mechanisms (e.g., Keller, 2008).  

The primary motivation for designing ADAM was to contribute to the theoretical 

understanding of SMS. However, in the long run we envision ADAM playing a role in the 

clinical assessment and rehabilitation of patients with motor timing problems. By creating a 

virtual partner that is based on ADAM, patients could be allowed to interact with ADAM. In 

such as system, ADAM could adopt different roles (e.g., facilitate SMS or create challenging 

SMS situations) by means of implementing adaptation and anticipation mechanisms in 
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different manners. This would allow problems with different aspects of SMS to be identified 

and a customized rehabilitation program involving ADAM could be created to address such 

specific deficits in the future. 

 

Chapter 2 gives an introduction to ADAM and outlines possible extensions of ADAM. 

 

Figure 1.2 Implementation of adaptation (A) and anticipation (B, C) in ADAM. asyn, asynchrony; Int, interval; T, 
Timekeeper  period;;  α,  phase  correction  parameter;;  β,  period  correction  parameter;;  k,  number  of  intervals.  (A) The time of the 
occurrence of the next tone  is  determined  based  on  the  asynchrony  and  the  settings  of  the  error  correction  parameters  α  and  β.  
(B, C) A curve-fitting  process,  applied  to  the  preceding  intervals,  predicts  the  next  tap  [Reprinted  from  “The  Adaptation  and  
Anticipation Model (ADAM) of  sensorimotor  synchronization,”  by  M.C.  van  der  Steen  and  P.E.  Keller,  Frontiers in Human 
Neuroscience, 7:253, p. 9] 

 

1.6 SIMULATIONS 

Running simulations based on models can be used to systematically investigate the effect of 

the different parameter settings; with human participants this is not possible. Simulations 

combined with behavioral data create a powerful method to gain knowledge on the modeled 

reality, which, in the case of ADAM, refers to knowledge on the effects of adaptation and 

anticipation mechanisms in SMS.  

Initial simulations conducted with ADAM while developing and improving the model 

included variations of the parameter settings for phase and period correction in the adaptation 

module of ADAM. The goal of these simulations was to investigate with which parameter 

settings phase and period correction would lead to synchronization versus loss of 

synchronization due to drift both in SMS with stable and tempo changing sequences. 

Examples of simulations related to the anticipation module of ADAM include variations of 

the order of fitted line and the numbers of intervals used for the extrapolation process. 

Furthermore, simulations were carried to investigate how different noise settings affect SMS 

and whether additional assumptions are necessary in order for the model to be able to deal 

with human input data.  

In a second step, simulations with ADAM were run to obtain hypotheses on the relationship 

between anticipatory and adaptive timing skills (Mills, van der Steen, Schultz, & Keller, 
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submitted). Simulations were set up to model the process of synchronizing with tempo 

changing sequences. The effect of different parameter settings on measures pertaining to the 

underlying adaptation and anticipation mechanisms were the main focus of the simulations. 

Based on the results of these simulations, it was hypothesized that temporal anticipation and 

adaptation mechanisms would show a positive relation and that both mechanisms would 

contribute to successful SMS. These hypotheses were tested in a behavioral experiment. As 

hypothesized, results demonstrated a relationship between adaptation and anticipation 

mechanisms. Furthermore, adaptation mechanisms seemed to contribute more to SMS 

accuracy, while both adaptation and anticipation mechanisms predicted SMS precision (Mills 

et al., submitted). 

In a third line of inquiry, simulations with ADAM were matched to behavioral results 

directly. The study reported in Chapter 3 of the current dissertation focused on different types 

of potential links between adaptation and anticipation mechanisms during synchronization 

with tempo changing sequences. Simulations were run with four versions of ADAM. 1) In the 

‘Adaptation   Model’   synchronization   is   established   and   maintained   by   means   of   phase   and  

period correction. In the other three models both adaptation and anticipation mechanisms 

were   active.   2)   In   the   ‘Independent   ADAM’   model   adaption   and   anticipation   mechanisms  

contribute independent of each other to SMS. Based on anticipation a prediction about the 

next tone and thus occurrence of the next tap is made. The timing of this tap is subjected to a 

phase   correction   process.   In   the   ‘Joint   ADAM   (α   |   β)’   models   adaptation   and   anticipation  

mechanisms are linked in a joint internal module that implements an anticipatory phase 

correction   process.   3)   In   the   Joint   ADAM   (α)   model   adaptation   simulates   the   next   tap,   which  

is subjected to phase correction. Anticipation predicts the timing of the next tone. The 

simulated asynchrony between the simulated next tap and the predicted next tone is 

minimized by means of an anticipatory phase correction process when determining the timing 

of   the   next   tap   that   will   be   executed.   4)   The   Joint   ADAM   (β)   model   is   similar   to   the   Joint  

ADAM   (α)   model   except   that   the   now   period   correction   is   applied   as   adaptation mechanism. 

In ‘Joint   ADAM   (α   |   β)’   models   potential errors are thus predicted and corrected before they 

could occur. Using a newly developed bGLS method (Jacoby & Repp, 2012; Repp et al., 

2012) parameters relevant for the different models were estimated from a behavioral data set 

(see below). The bGLS method tries to solve a generalized regression problem. Furthermore, 

the fit of the models to the behavioral data was determined to compare the models. 

Simulations showed the advantage of implementing both adaptation and anticipation 

mechanisms when synchronizing with a tempo changing sequence. Including the anticipation 
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in the model increased the precision of simulated sensorimotor synchronization and improved 

the fit of model to behavioral data. Joint internal models seem to play a role in linking 

adaptation and anticipation mechanisms.  

 

Chapter 3 describes the four models in more detail and shows with simulations the effect of 

different parameter settings on SMS. Furthermore, the models were used to estimate 

parameter settings from the behavioral data and the fit between simulated and behavioral data 

was assessed. 

 

1.7 EXPERIMENTS 

As mentioned before, it is standard practice to investigate aspects of SMS and the underlying 

mechanisms by means of finger tapping tasks. Typically, during such tasks, participants are 

instructed to tap their finger in time with (auditory) stimulus sequences. The nature of the 

stimulus sequence differs depending on the topic of interest. For example, studies of 

synchronization with fixed, step change or adaptive sequences have revealed specific 

information about the operation of adaption mechanisms (cf., Repp, 2005; Repp & Su, 2013). 

Adaptive sequences can be programmed to implement phase and or period correction in order 

to boost SMS or to create more challenging SMS tasks, thereby creating scenarios that 

capture the demands of synchronization with partners displaying different levels of dynamic 

cooperativity (e.g. Fairhurst, Janata, & Keller, 2012, 2014; Repp & Keller, 2008). 

Anticipation mechanisms, on the other hand, are usually investigated via tempo changing 

sequences (e.g., Pecenka & Keller, 2011; Rankin et al., 2009).  

The   study   presented   in   chapter   3   aimed   to   investigate   participants’   ability   to   synchronize   with  

continuously tempo changing sequences. Seventeen participants tapped in synchrony with 

three auditory tempo changing stimulus sequences. The pattern of the stimulus sequences 

differed in the rate with which the tempo changed and the number of turning points. The 

tempo changes were designed to resemble musical accelerando and ritardando and followed a 

sigmoidal function (cf. Schulze, Corde, & Vorberg, 2005). Participants were instructed to tap 

with the tempo changing sequences as accurately and precisely as possible across a series of 

trials for each pattern. The mean signed asynchrony was calculated as inverse measure of 

SMS accuracy and the standard deviation of the signed asynchronies was used as inverse 

measure of precision. To investigate adaptation, the amount of phase and period correction 

implemented by the participants was estimated by means of the bGLS method (Jacoby and 

Repp, 2012, Repp et al., 2012). Anticipation during synchronization with tempo changing 
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sequences was quantified based on the lag-1 and lag-0 cross-correlations between the inter-

stimulus and inter-tap intervals, the prediction/tracking ratio, as well as by a prediction index 

based on an autoregressive modeling technique (Pecenka & Keller, 2009; Mills et al., 

submitted). Results showed that participants were capable of synchronizing their finger taps 

with the tempo changing auditory stimulus sequence in a high level of SMS accuracy and 

precision. Although synchronization was less accurate and precise in pattern 3, that contained 

the most turning points and during which the tempo changes from interval to interval were the 

largest. Phase correction estimates increased across patterns, while period estimates decreased 

across patterns. Furthermore, participants were found to predict the tempo changes for all 

three patterns. However, prediction/tracking ratio increased with increasing degree of tempo 

change between successive intervals, indicating that there was a tendency to engage in more 

predictive behavior when differences in tempo were more salient. In conclusion both 

adaptation and anticipation mechanisms were employed by the participants in order to 

synchronize with continuously tempo changing sequences.  

Research from different fields, such as animal, pharmacological, neuropsychological, patient 

and brain studies, has provided evidence for a widespread timing network in the brain. Brain 

areas typically implicated in SMS, temporal processing, and evaluation of temporal structures 

include the cerebellum, basal ganglia, and supplementary motor area (cf., Coull, Cheng, & 

Meck, 2011). The basal ganglia have been shown to play an important role in timekeeping 

while the cerebellum seems to have a more important role in generating temporal predictions 

(Coull et al., 2011).  

SMS plays an important role during ensemble music making (Repp, 2005). Disorders that 

affect basic mechanisms underpinning SMS can therefore have profound implications for a 

common and cultural universal form of human communicative behavior. Even highly skilled 

professional musicians may come to experience compromised SMS skills due to acquired 

neurological   conditions.   Musician’s   dystonia   is   a   neurological   movement   disorder   specific   to  

musicians and is characterized by the loss of voluntary motor control of skilled movements 

related to instrumental playing (cf. Altenmüller & Jabusch, 2010). This disorder has also been 

linked to disturbed movement planning, somatosensory functions, and aspects of timing (e.g., 

Avanizo et al., 2013; Lim et al., 2003; Stamelou, Edwards, Hallett, & Bhatia, 2012). 

Approximately 1% of professional musicians are affected by this disabling disorder 

(Altenmüller   &   Jabusch,   2010).   Despite   the   available   therapies,   musician’s   dystonia   often  

forces professional musicians to change profession (Jabusch, Zschucke, Schmidt, Schuele, & 

Altenmüller, 2005). The pathophysiology of the disorder is still unclear but both functional 
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and structural abnormalities have been identified in brain areas implicated in timing (e.g., 

primary motor cortex, supplementary motor areas, basal ganglia and the cerebellum).  

The   study   reported   in   chapter   4   investigates   the   timing   abilities   in   musician’s   dystonia  

patients [N = 15] and matched controls [N=15] using a battery of auditory-motor tasks 

focusing on basic perceptual and action aspects of timing relevant for music making. To test 

SMS abilities and examine underlying anticipation and adaptation mechanisms, participants 

synchronized their taps with tempo changing and adaptive auditory sequences. In addition, an 

adjusted version of the Beat Alignment Test (during which participants are asked to judge if a 

superimposed metronome is aligned with the beat of the musical excerpt [Iversen & Patel, 

2008]) was used to examine the precision of beat synchrony perception. Performance on these 

tasks was compared with elementary perceptual tasks, namely anisochrony detection and 

auditory-motor delay detection.  Machine learning techniques were used to investigate 

whether   musician’s   dystonia   patients   were   characterized   by   non-linear combinations of the 

assessed timing abilities. Results did not show any timing deficits for patients relative to the 

matched controls. Both groups benefited from a pacing sequence that adapted to their timing 

in a stable SMS task. Furthermore, in the Beat Alignment Test, both groups were able to 

detect a misaligned metronome when it was late rather than early relative to the musical beat. 

Overall,   the   results   suggest   that   timing   abilities   are   intact   in   patients   with   musician’s   dystonia.  

This   supports   the   idea   that   musician’s   dystonia is a highly task-specific movement disorder in 

which impairments are most pronounced during instrumental playing. The finding that 

musician’s   dystonia   patients   benefited   from   synchronizing   with   adaptive   stimulus   sequences  

is promising for the development   of   rehabilitation   programs.   Musician’s   dystonia   patients  

could maintain their timing skills by practicing sensorimotor timing tasks away from their 

instrument. Challenging synchronization tasks could be developed involving adaptive virtual 

partners that could be driven by ADAM. 

In an ongoing study, we are investigating adaptation and anticipation mechanisms in patients 

with lesions to the basal ganglia and the cerebellum. SMS abilities were tested in these patient 

groups and matched controls using synchronization tasks with fixed, adaptive, and tempo 

changing sequences. Results suggest that only patients with lesions to the basal ganglia 

display impaired SMS precision (while SMS accuracy was intact). Furthermore, patient 

groups and control participants alike showed more accurate and precise SMS when 

synchronizing with an adaptive stimulus sequence. These preliminary results highlight the 

importance of the basal ganglia for successful SMS and suggest that patients benefit from 

synchronizing with an adaptive stimulus sequence that implements error correction as a 
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cooperative synchronization partner. The latter finding opens up possibilities for customized 

rehabilitation   programs   using   virtual   synchronization   partners   to   scaffold   the   patient’s  

behavior.   

 

Chapter 3 describes the study on the synchronization with tempo changing sequences. A 

behavioral experiment is combined with simulations with ADAM in order to gain insights 

into adaptation and anticipation mechanisms that support SMS with tempo changing 

sequences.      The   study   on   timing   abilities   in   musician’s   dystonia   patients   is   presented   in  

chapter 4.  

 

1.8 CONCLUSION  

The goal of this dissertation was to get a better understanding of the underlying mechanisms 

of SMS. To this end ADAM, an ADaptation and Anticipation Model was developed, 

simulations with ADAM were run and experiments focusing on different aspects of timing 

with healthy participants and patients were performed. ADAM was found to be a useful 

framework to investigate adaptation and anticipation mechanisms and possible links between 

these mechanisms. Hypothesized relationships between adaptation and anticipation were 

investigated by comparing computer simulations based on ADAM with data from behavioral 

experiments, leading to novel insights into SMS. Notably, it was shown not only that both 

adaptation and anticipation mechanisms play a role during SMS with tempo changing 

sequences, but also that internal models may provide link between the mechanisms. It is 

proposed that ADAM, with the envisioned extensions into the visual domain, will also be able 

to contribute to the understanding of the different aspects of SMS that arise in everyday life, 

where synchronization takes place via multiple domains and time scales. Furthermore, the 

finding that different patient groups, despite impaired performance in other domains, benefit 

from synchronizing with adaptive stimulus sequences is a promising outcome for 

rehabilitation programs. Targeted rehabilitation programs focusing on the facilitation of 

movement timing could be developed involving adaptive virtual partners driven by ADAM. 
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2.1 ABSTRACT 

A constantly changing environment requires precise yet flexible timing of movements. 

Sensorimotor synchronization (SMS) —the temporal coordination of an action with events in 

a predictable external rhythm— is a fundamental human skill that contributes to optimal 

sensory-motor control in daily life. A large body of research related to SMS has focused on 

adaptive error correction mechanisms that support the synchronization of periodic movements 

(e.g., finger taps) with events in regular pacing sequences. The results of recent studies 

additionally highlight the importance of anticipatory mechanisms that support temporal 

prediction in the context of SMS with sequences that contain tempo changes. To investigate 

the role of adaptation and anticipatory mechanisms in SMS we introduce ADAM: an 

ADaptation and Anticipation Model. ADAM combines reactive error correction processes 

(adaptation) with predictive temporal extrapolation processes (anticipation) inspired by the 

computational neuroscience concept of internal models. The combination of simulations and 

experimental manipulations based on ADAM creates a novel and promising approach for 

exploring adaptation and anticipation in SMS. The current paper describes the conceptual 

basis and architecture of ADAM. 

 

Keywords: sensorimotor synchronization –  computational model –temporal adaptation –  

error correction –  temporal anticipation –  predictive internal models 
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2.2 INTRODUCTION 

An intriguing question about motor control in daily life is how people effectively time their 

coordinated actions during everyday activities. The question is especially interesting when 

one considers that coordination needs to occur in a constantly changing environment and with 

other people who are also dynamic in their behavior. Precise but flexible motor timing is an 

important aspect of successful coordination. Sensorimotor synchronization (SMS) is a 

fundamental human skill that is the basis of numerous forms of behavioral coordination. 

Broadly speaking, SMS is the temporal coordination of an action with a predictable external 

event, an external rhythm (Repp, 2005).  

SMS frequently takes place in social contexts in the sense that other humans produce the 

sequences   with   which   one’s   movements   need   to   be   synchronized.   Many   examples   can   be  

found in musical settings; people tend to nod their head, clap, or dance in synchrony with 

music performed live by musicians. When listening to music, people generate temporal 

expectations based on structural regularities related to the musical beat (a periodic pulse), and 

they are often compelled to produce movements in synchrony with these regularities (Repp, 

2005; Large, 2008). The external events with which actions are temporally coordinated can 

also be actions themselves, such as when the chaotic applause of an enthusiastic audience 

after a concert morphs into synchronized clapping (Néda et al., 2000). The act of 

synchronizing movements with sequences that are produced by other humans is not restricted 

to musical settings. Another classic example of –involuntary– interpersonal coordination is 

the tendency for two people walking together to synchronize their walking rhythm with each 

other (van Ulzen et al., 2008). The above mentioned examples are situations from daily life 

during which SMS occurs more or less spontaneously. But precise synchronization might also 

be the explicit goal of extensive practice schedules that are intended to achieve artistic or 

athletic perfection, as in musical ensembles (Keller and Appel, 2010) or rowing crews (Wing 

and Woodburn, 1995).  

Precise yet flexible SMS requires temporal adaptation (reactive error correction) and 

anticipation (predictive processes) (see Keller, 2008; Repp and Su, 2013). The mechanisms 

that support these processes are typically studied separately in SMS research. Here we argue 

that, to get a better understanding of the nature of SMS, it is fruitful to study adaptive and 

anticipatory mechanisms within a single framework. The goal of the present paper is therefore 

twofold:  

The first aim is to give an overview of the existing literature on the roles of temporal 

adaptation and anticipation in SMS. To this end, we provide a sketch of what can be 
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considered to be the state-of-the-art in the field of SMS research, covering its main 

approaches, including those that employ behavioral experimentation, computational 

modeling, and the study of brain structures and functional processes that support SMS. This 

brief review serves to illustrate that, although SMS is a basic and fundamental human skill, its 

workings are far from simple and are not yet fully understood. In our view, an important gap 

that needs to be bridged is that between research on adaptive and anticipatory processes in 

SMS. However, it is also the case that research devoted to understanding each class of process 

alone has taken divergent paths. In an attempt to make steps towards redressing this 

divergence, we delineate connections between fields of research that are relevant to the 

investigation of the role of temporal adaptation and anticipation in SMS but that, to our 

knowledge,   have   not   been   linked   before   (e.g.,   tau   theory   and   the   concept   of   ‘strong  

anticipation’,   see  section   2.5.2).  

The second aim is to introduce ADAM (Figure 2.1), an ADaptation and Anticipation Model 

that is intended to account for both adaptive and anticipatory aspects of sensorimotor 

synchronization. After introducing ADAM, we give a brief overview of novel research 

paradigms that employ the model in the context of computer simulations and behavioral 

experiments. These simulations and experiments permit different aspect of SMS —

specifically, the effects of, and the link between, adaptation and anticipation mechanisms— to 

be investigated systematically within a unified theoretical framework.  
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Figure 2.1 (A) The proposed architecture of the ADaptation and Anticipation Model, ADAM. The main components that are 
illustrated include auditory and visual input, internal mechanisms that support adaptation to and anticipation of this input,  and 
—by communing with internal  models  of  one’s  own  actions,  others’  actions,  and  collective  joint  actions— control behavioral 
output.   In   addition,   three   sources   of   noise   (perceptual,   timekeeper,   and  motor)   can   affect   ADAM’s   SMS   accuracy   and  
precision. Components illustrated in grey have not been implemented in the current version of ADAM, though their 
relevance to SMS is discussed in this article.  
(B) An example of a bi-directional experimental set up in which the participant and ADAM influence each other in the 
context of a joint drumming task.  

 
2.3  SENSORIMOTOR SYNCHRONIZATION 

SMS is a form of referential behavior in which actions are timed relative to an external event, 

the referent (Pressing, 1999, Repp, 2005). There is a long tradition of studying sensorimotor 

synchronization in laboratory tasks that require participants to produce simple movements 

(such as finger taps) in time with events in computer-controlled pacing sequences (e.g., 

tones). In such paced finger tapping tasks, participants are asked to tap their finger with a 

specific phase and/or period relation to the timing of an auditory or visual pacing sequence. It 

is standard practice for participants to be instructed to tap with their index finger in synchrony 
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with the tones produced by a metronome they hear over headphones, while keeping the beat 

of their taps as stable as possible. Drum strokes may be substituted for finger taps, as shown 

in the drumming task illustrated in Figure 2.1B.  

A common variable of interest when assessing SMS accuracy is the timing error –the 

asynchrony– between the occurrence of the action (the drum stick contacting the drum) and 

the pacing event (see Figure 2.1B). Although asynchronies can vary in magnitude across 

experimental conditions and cohorts, and large inter-individual differences are usually 

evident,   the   action   typically   precedes   the   event,   resulting   in   what   has   been   termed   a   ‘negative  

mean   asynchrony’   (Aschersleben,   2002).   The   level   of   participants’   synchronization   skill   is  

also reflected in measures of precision, including the variability of asynchronies (i.e., an 

inverse index of the strength of sensorimotor coupling) and the variability of the intervals 

between consecutive movements (i.e., an inverse index of stability in tapping tempo) [see 

Repp, 2005; Repp and Su (2013) for extensive reviews on SMS].  

Although SMS is a widespread and fundamental human skill, individual differences in SMS 

ability can be observed (e.g., Pecenka and Keller, 2009; Repp, 2010; Pecenka and Keller, 

2011; Repp and Su, 2013), with certain individuals exhibiting marked impairment in SMS in 

some contexts (Phillips-Silver et al., 2011). The sources of these individual differences may 

lie in variations of three broad classes of functional processes that underlie SMS: (1) the 

perception of timing in rhythmic stimuli, and, specifically a periodic beat, (2) the production 

of rhythmic movements, and (3) the multisensory integration, or coupling, of perceived 

rhythms and produced motor rhythms (see Phillips-Silver et al., 2010).  

Neuroscientific work on SMS has revealed that these processes are implemented in an 

extensive network of brain regions, including the primary sensorimotor cortices, premotor 

cortex, inferior parietal cortex, the supplementary motor area, the cerebellum and the basal 

ganglia (e.g., Witt et al., 2008; Coull et al., 2011; see Repp and Su (2013) part 4 for a review 

on the neuroscience of SMS). The cerebellar-premotor network seems to be of particular 

importance for SMS presumably because this network is involved in sensorimotor 

coordination (Molinari et al., 2007) and audio-motor coupling (Chen et al., 2009). It follows 

that damage to regions within this network may impair SMS skills, and thus have detrimental 

effects on the fulfillment of daily activities. To understand the specific sub-components of 

SMS skill that may be affected, it is helpful to unpack SMS in terms of the sensory modalities 

that it may involve, the processes that characterize interactions between mutually responsive 

agents in naturalistic SMS tasks, and the mechanisms related to temporal error correction and 

prediction in SMS. 
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2.3.1  SMS between mutually responsive agents 

Studies   related   to   SMS   traditionally   investigate   participants’   synchronization   with   a   pacing  

sequence that is either isochronous or perturbed in more or less systematic ways (see Repp, 

2005 for review). The coupling in these cases is unidirectional: the human participant 

synchronizes with the unresponsive pacing sequence. But in daily life, most of SMS activities 

involve two mutually responsive agents that are coupled bidirectionally (e.g. interpersonal 

coordination, musicians playing together). Recently, several paradigms have been introduced 

to investigate these types of SMS activity. 

 

2.3.1.1  SMS between a human and virtual partner 

Following a precedent set by Vorberg (2005), Repp and Keller (2008) examined mutual 

adaptation   during   SMS   using   a   paradigm   that   required   interaction   with   an   ‘adaptive   virtual  

partner’.   Specifically,   the   task   entailed   a   human   participant   tapping   a   finger   in time with a 

computer-controlled auditory pacing signal that simulated the potential behavior of a human 

partner   by   adapting   to   the   participant’s   tap   timing   to   varying   degrees.   This   allowed   the  

bidirectional coupling between two interacting agents to be studied under conditions where 

the behavior of one agent (the virtual partner) was under experimental control. The advantage 

of this approach is that the effects of parametric variations in adaptation strategy 

(programmed into the virtual partner) on the behavior of the human participant can be 

assessed.  

Taking a different approach, Kelso and colleagues (2009) employed a real-time interaction 

paradigm involving visually mediated coupling between a human and a virtual partner to 

investigate the dynamics of basic human social coordination. The virtual partner was an 

avatar of a hand whose movements were driven by a non-linearly coupled component 

oscillator of the Haken-Kelso-Bunz (HKB) model, a model of basic coordination dynamics. 

The original HKB model described phase transitions between two hands (Haken et al., 1985). 

Since then, it has been shown that the HKB equations can be used to describe rhythmic 

coordination between similar effectors (e.g., fingers) as well as between different effectors 

(e.g., arm-leg) and even between two individuals (e.g., Kelso, 1995; Schmidt and Richardson, 

2008). In the study by Kelso and colleagues (2009) participants were coupled with the virtual 

partner via the visual modality. The coupling term for the oscillator used the participant’s  

finger   position   and   velocity   to   adapt   to   the   participant’s   performance.   Having   participants  

interact with the virtual partner based on the HKB model therefore created an opportunity to 

investigate reciprocal coordination. Results showed that being reciprocally coordinated with 
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the virtual partner led to different levels of stability and novel behavioral strategies employed 

by the participants. For example, participants transiently switched between in-phase and anti-

phase relations or varied the spatial amplitude of their movements relative to the virtual 

partner in order to maintain synchronization. 

Both of the studies described above (Repp & Keller, 2008; Kelso et al., 2009) combined the 

use of experiments involving a human participant and a virtual partner with the use of 

simulations in order to arrive at a better understanding of the observed behavior and its 

underlying mechanisms. In doing so, these paradigms were successful in identifying new 

characteristics of SMS behavior. 

 

2.3.1.2  SMS between two humans 

Related work that investigated interaction between live humans in dyadic sensorimotor 

synchronization tasks has revealed evidence for mutual temporal adaptation. Konvalinka and 

colleagues (2010) explored the ongoing dynamics that result from a coordinated joint tapping 

task under different coupling conditions created by varying the auditory feedback settings. 

Participants were asked to maintain a given beat while producing or synchronizing with an 

auditory signal. The auditory signals were produced   either   by   the   participant’s   own   taps,   the  

other   person’s   taps,   or   the   computer   metronome.      In   the   metronome   conditions,   both  

participants heard only the computer sounds. In the uncoupled condition each participant only 

heard sounds triggered by his or her own taps, in the unidirectional coupling condition both 

participants heard taps generated by just one of them, while in the bidirectional coupling 

condition both participants received the taps generated by the other participant. Results 

showed that participants were able to synchronize equally well with a human partner that was 

relatively unpredictable but responsive and with a predictable but unresponsive computer 

metronome. Furthermore, in the bidirectional coupled condition, the lagged cross-correlations 

of interpersonal inter-tap intervals showed negative lag-0 and positive lag-1 cross-correlations 

(e.g., if one participant produced a relatively long interval, the next interval produced by the 

other individual would be relatively long, suggesting assimilation at the level of inter-onset 

interval timing). The authors concluded that synchronization between two participants was 

characterized by continuous adaptation on a millisecond timescale by both individuals.  

Taking a different approach, Nowicki and colleagues (2013) employed a dyadic finger-

tapping task in which paired musicians were required to tap in alternation, in synchrony with 

an auditory pacing signal. Serial dependencies between successive asynchronies produced by 

alternating   individuals’   taps relative to the pacing tones revealed evidence for mutual 
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temporal assimilation –a form of behavioral mimicry– when   both   individuals’   taps   generated  

auditory feedback. This result suggested that mutual adaptive timing is characterized more 

strongly by temporal assimilation than by a compensation processes whereby individuals 

correct  each  other’s   timing   errors.    

 

2.4 ADAPTATION: REACTIVE, ERROR CORRECTION MECHANISMS  

SMS, like any human behavior, is characterized by biological noise that leads to variability in 

movement timing and, therefore, temporal error even when synchronizing with a regular 

pacing signal. Many instances of SMS, however, involve coordination with signals containing 

deviations from regularity (e.g., expressive timing in music performance), leading to some 

degree of uncertainty about event timing and, again, temporal error. Adaptation processes that 

correct these errors are hence necessary to sustain SMS and to behave with temporal 

flexibility in the face of this variability. Without these error correction processes, which 

compensate for timing errors in a reactive fashion, variability would accumulate from 

movement cycle to movement cycle. This would result in increasingly large asynchronies, 

phase drift, and the eventual loss of synchronization (Vorberg and Wing, 1996).  

 

2.4.1  Models of error correction 

The modeling of error correction in SMS has been done in myriad ways. Two main 

approaches can be distinguished: dynamic systems theory and information-processing theory. 

Dynamic systems models of SMS deal with the relative phase of periodic oscillators, while 

information processing models posit internal clocks, or timekeepers, that measure or generate 

discrete time intervals.  

Dynamic systems theory assumes that an external rhythmic signal evokes intrinsic neural 

oscillations that entrain to periodicities in the rhythmic sequence (Large, 2008). The focus 

within this field is on continuous, non-linear, and within-cycle coupling between these 

oscillations and the pacing signal. SMS behavior can therefore be modeled with non-linearly 

coupled oscillators that are described formally in terms of differential equations (e.g. Schöner 

and Kelso, 1988; Fink et al., 2000; Assis et al., 2005; Torre and Balasubramaniam, 2009).  

According to these models, the accuracy and precision of SMS vary as a function of the 

strength of the phase entrainment of the oscillation to the stimulus sequence, which is defined 

by a coupling term. To maintain synchrony when the tempo of the stimulus sequence 

undergoes change, an additional term reflecting period matching is necessary (Large et al., 

2002).  
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The information-processing theory focuses on cycle-to-cycle correction of timing errors and 

uses linear timekeeper models to model this error correction process. According to timekeeper 

models, error correction can be described according to linear autoregressive processes (Wing 

and Kristofferson, 1973; Vorberg and Wing, 1996). These processes produce local 

dependencies between successive taps: the deviation of the current tap from the mean inter-

tap interval and mean asynchrony is proportionally related to the deviation of the inter-tap 

interval and asynchrony associated with the previous tap plus random noise (Wing and 

Kristofferson, 1973; Wing and Beek, 2002). The models assume the existence of a timekeeper 

and different sources of timing variability. The timekeeper functions as a clock that generates 

pulses, which initiate motor commands (Wing and Kristofferson, 1973). Two additive sources 

of random timing variability are noise in the timekeeper (related to variability in neural 

activity) and in the execution of motor commands (due to variable transmission delays in the 

peripheral motor system). Timing variability can result in large asynchronies and tempo drift. 

Error correction mechanisms counteract these effects of variability and therefore contribute to 

maintenance of synchrony with external stimulus sequences (Mates 1994a; 1994b; Vorberg 

and Wing, 1996; Vorberg and Schulze, 2002). 

It has been argued that the information-processing theory and the dynamic systems theory are 

closely related, as both can be regarded as variants of a general control equation for referential 

behavior (Pressing, 1999). However, situations have been documented in which one approach 

fares better than the other in explaining observed behavioral patterns, as in a recent study that 

favored a dynamic systems model of synchronized finger tapping with sequences containing 

gradual tempo changes (Loehr et al., 2011). An alternative to the view that dynamic and 

information-processing models are essentially equivalent posits that the approaches account 

for different synchronization processes, and are therefore better suited to explain distinct 

aspects of SMS (Repp, 2005; Torre and Balasubramaniam, 2009). In the current article, we 

focus mainly on the information-processing theory because the adaptation module of ADAM 

is based on work (Repp and Keller, 2008) that took an information-processing approach using 

autoregressive linear models that account for the behavior in question adequately.  

 

2.4.2  Phase and period correction 

In the information-processing theory framework, like in the dynamic systems theory, two 

separate adaptive processes (namely phase and period correction) have been proposed (Mates, 

1994a; 1994b; Vorberg and Wing, 1996; Semjen et al., 1998). Both processes independently 

modify   the   timing   of   the   next   action   based   on   a   percentage   (α   for   phase   correction;;   β   for  
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period correction) of the asynchrony (Repp and Keller, 2008) (Figure 2.2) or the difference 

between the preceding inter-onset interval and the preceding timekeeper interval (Hary and 

Moore 1985; 1987). Phase correction is a local adjustment to the interval generated by the 

internal timekeeper, leaving the period of the timekeeper unaffected (Figure 2.2A). Phase 

correction is automatic and does not require conscious registration of the timing error (Repp, 

2001a; 2002a), although the gain of implemented phase correction can be manipulated 

voluntarily to some extent, for example, by suppressing the tendency to react to perturbations 

(Repp, 2002a; Repp and Keller, 2004). Furthermore, participants can implement phase 

correction in advance of an expected perturbation to reduce timing errors (Repp and Moseley, 

2012). When systematic tempo fluctuations exceed a certain threshold, depending on several 

parameters like the base tempo (e.g., Takano and Miyake, 2007), phase correction alone is 

insufficient for maintaining synchronization and the additional process of period correction is 

necessary. Period correction adjusts the period of the timekeeper that drives the motor 

activity, and this change to the timekeeper period persists until period correction is applied 

again (Repp, 2001b) (Figure 2.2B). Based on simulations, Schulze and colleagues (2005) 

proposed that additional control mechanisms function to set the gain of period correction and 

can thereby determine when it is started and stopped. Period correction is largely under 

cognitive control, requires attentional resources, and relies on the conscious perception of a 

tempo change in the pacing sequence (Repp and Keller, 2004). 

 

 

Figure 2.2 Adaptation processes based on the asynchrony following the information-processing  theory.  In  the  examples,  α  
and  β  are  both  equal  to  0.5,  which  is  a  value  that  fits  within  the  typical  range  of  empirical  α  and  β  estimates  (0.2 -0.8). The 
examples given show how the timing of the next tap is adjusted to compensate for the asynchrony. As a result of the 
timekeeper setting, the asynchrony (asyn) in combination with error correction mechanisms, and motor and timekeeper noise 
(N [which is set to zero in the present example]) the next tap is shifted in the opposite direction of the asynchrony. 
(A)  Phase  correction  (α  =  0.5):  half  of  the  asynchrony  is  corrected.  Phase  correction  is  a  local  adjustment;;  the  setting  of  the 
timekeeper (in this example 500 ms) is not affected.  
(B)  Period  correction  (β  =  0.5):  the  correction  of  the  asynchrony  has  a  cumulative  effect  on  the  setting  of  the  timekeeper  (in  
this example the base timekeeper is 500 ms), leading to tempo drift. 
(C) In practice, phase and period correction can be both active during SMS. As a result of the combination of both error 
correction mechanisms, the timing of the next tap is adjusted based on a percentage of the asynchrony. 
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A number of techniques can be used to estimate the amount of phase correction implemented 

by humans (see Repp et al., 2012). One technique that has been employed extensively is a 

perturbation method that involves introducing an abrupt change to a single pacing inter-onset 

interval in order to examine the so-called   ‘phase   correction   response’   in   taps   that   follow   this  

change (e.g., Repp, 2001a). Recently, Repp and colleagues (2012) compared the perturbation 

method with two different methods for estimating phase correction that are based on data 

from tasks that require participants to synchronize   with   a   regular   metronome   or   an   “adaptively  

timed”   pacing   signal.   In   the   latter   two   methods,   the   estimation   of   the   amount   of   phase  

correction implemented by humans is based on analytical techniques that examine the degree 

of autocorrelation in the time series of asynchronies between finger taps and pacing events. 

Repp and colleagues (2012) found that estimates of the amount of phase correction 

implemented   by   humans   obtained   with   the   regular   and   “adaptively   timed”   methods   were  

strongly correlated while estimates obtained with the perturbation method were uncorrelated. 

According to the authors, these results suggest that keeping in synchrony with a metronome 

that contains occasional timing perturbations requires different phase correction mechanisms 

than when   synchronizing   with   a   regular   metronome   or   an   “adaptively   timed”   signal   (Repp   et  

al., 2012). Estimating the amount of phase and period correction implemented by humans is 

possible through the use of two-process error correction models that account for short-term 

phase correction and longer-lasting period correction within a single model (Mates, 1994a, 

1994b; Vorberg and Schulze 2002; Schulze et al., 2005). Repp and Keller (2004) estimated 

error correction by applying a two-process error correction model (Mates, 1994a; 1994b) to 

tapping data obtained in a task that required synchronization with a metronome that 

implemented an abrupt tempo change, after which the participant was required to continue 

tapping at the new tempo (see Repp and Keller, 2004 for a detailed description). Phase and 

period correction estimates depend on several aspects of the experimental method (e.g., 

tempo, task, and analytical technique) but typically vary between 0.2 and 0.8 (Repp and 

Keller, 2004; Fairhurst et al., 2012; Repp et al., 2012). 

 

2.4.3  Adaptation mechanisms in the brain 

Further evidence that phase and period correction are distinct processes comes from studies 

using different procedures to investigate brain function (functional magnetic resonance 

imaging [fMRI], electroencephalography [EEG], and transcranial magnetic stimulation 

[TMS]) (see Witt et al., 2008; Repp and Su, 2013). This work has revealed extensive 

subcortical and cortical networks (spanning the cerebellum, basal ganglia, premotor cortex, 



35 
 

[pre-]supplementary motor area, sensorimotor cortex, superior temporal gyrus, and inferior 

frontal gyrus) that exhibit different patterns of functional connectivity depending on whether 

error correction is automatic or effortful (Rao et al., 1997; Jänke et al., 2000; Oullier et al., 

2005; Chen et al., 2008; Thaut et al., 2009; Bijsterbosch et al., 2011a; Bijsterbosch et al., 

2011b). An EEG study that specifically targeted the distinction between phase and period 

correction using source localization placed the former in auditory and secondary 

somatosensory cortices and the latter in medial frontal cortex, particularly the supplementary 

motor area (Praamstra et al., 2003).  

The brain-based distinction between automatic and effortful error correction has received 

further support from a recent fMRI study of SMS with virtual partners (Fairhurst et al., 2012). 

This study, which required participants to synchronize with an adaptive virtual partner that 

implemented varying degrees of phase correction, highlighted the importance of the 

hippocampus, precuneus, posterior cingulate, and cuneus cortex for successful 

synchronization (Fairhurst et al., 2012). Moreover, when the adaptive partner was easier to 

synchronize with (i.e., when it implemented moderate degrees of phase correction), cortical 

midline structures were strongly activated. However, when synchronizing with an overly 

adaptive virtual partner that made the interaction more cognitively challenging, lateral 

prefrontal areas were recruited to a greater degree. This shift between brain areas suggests a 

link between action and social processes related to cooperation in the former case and brain 

areas associated with cognitive control in the latter case, and might indicate an increase in 

phase correction or the engagement of period correction by the participants (Fairhurst et al., 

2012).  

 

2.5  ANTICIPATION: PREDICTIVE MECHANISMS 

Anticipating the precise onset of stimulus events is important for successful SMS because it 

allows an individual to get his or her response under way early enough so as to coincide with 

the event (Schmidt, 1968). To achieve this, the brain has evolved the capacity to extract 

structural regularities rapidly from ongoing events in the environment, and to use this 

information as a basis for generating online predictions about the immediate future (e.g., 

Schubotz, 2007; Friston and Kiebel, 2009). These predictions can coevolve via two routes, 

one characterized by automatic bottom-up expectancies and the other by top-down processes 

involving mental imagery (Vuust et al., 2009; Keller, 2012).  

Evidence for the involvement of anticipatory mechanisms in SMS comes from several 

sources. One SMS-related phenomenon that has been attributed to predictive processes is the 
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negative mean asynchrony —indicating   that   participants’   finger   taps   precede   pacing signal 

tones— that is often observed in simple finger tapping tasks. It has been suggested that the 

negative mean asynchrony provides evidence that participants anticipate the occurrence of the 

events in the pacing signal, rather than simply reacting to each successive pacing event, to 

ensure that (relatively slow) somatosensory feedback from finger taps coincides with (faster) 

auditory feedback from pacing events (Aschersleben, 2002; for a review see Repp, 2005). 

However, it may also be the case that the negative mean asynchrony reflects the perceptual 

underestimation of the time interval between the stimulus events (Wohlschläger and Koch, 

2000) resulting in a timekeeper setting that is slightly shorter than the pacing interval (Repp 

and Keller, 2008), which is not necessarily related to anticipation.  

Clearer evidence for anticipation mechanisms related to SMS comes from musical activities. 

When musicians play together, actions need to be coordinated with a high precision but also 

flexibility to create a coherent piece of ensemble music. Trained ensemble musicians typically 

show asynchronies in the order of 30-50 ms between tones that, according to the notated 

score, should be played simultaneously (e.g., Rasch, 1979; Keller and Appel, 2010; Keller, in 

press). These small asynchronies, indicating a high level of temporal precision, are suggestive 

of predictive mechanisms related to SMS, as the asynchronies are too small to be the result of 

purely reactive mechanisms (the fastest reaction times to auditory stimuli are in the order of 

100 ms, with average times being around 160 ms [Galton, 1899]) (Keller, 2008).  

Furthermore, evidence for anticipation during SMS can be found in studies focusing on the 

abilities of participants to tap along in synchrony with pacing stimuli (simple tone sequences 

or musical pieces) that contain gradual tempo changes (Repp, 1999; 2002b; Rankin et al., 

2009; Pecenka and Keller, 2011). The relevant dependent variable in these studies is a ratio 

based on the lag-0 and lag-1 cross-correlation between inter-tap and inter-stimulus intervals. 

This   ratio   reflects   the   degree   to   which   an   individual’s   taps   anticipate   (‘predict’)   or   follow  

(‘track’)   the   tempo   changes.   If   an   individual   tends   towards   predicting   tempo   changes   (ratio   >  

1), then the lag-0 cross-correlation coefficient is high relative to the lag-1 cross-correlation 

coefficient (i.e., the prediction/tracking ratio is greater than 1), because prediction leads to a 

close match between the current inter-tap and inter-stimulus interval. A tendency to track 

(ratio < 1), on the other hand, is reflected in higher lag-1 than lag-0 cross-correlations 

(prediction/tracking ratios less than one) because the current inter-tap interval will most 

closely match the previous inter-stimulus interval when tracking (Repp, 2002b; Pecenka and 

Keller, 2011). Prediction and tracking are not mutually exclusive, as an individual can 

simultaneously engage in both behaviors to some degree.  
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The   tendency   to   predict   tempo   changes   has   been   found   to   differ   between   individuals   in   a  

manner   that   is   positively   correlated   with   musical   experience   (Pecenka   and   Keller,   2009).  

Prediction/tracking   tendencies   are,   furthermore,   stable   over   time   and   they   are   able   to   account  

for   how   accurately   and   precisely   an   individual   synchronizes   with   computer   controlled   pacing  

sequences,   as   well   as   how   accurately   and   precisely   two   individuals   synchronize   with   one  

another   during   dyadic   finger   tapping   (Pecenka   and   Keller,   2011).   Studies   on   prediction   during  

SMS   have   revealed   that   prediction   can   take   place   at   multiple   timescales.   Local   predictions   at  

short   timescales   (between-cycles)   are   evident   in   the   observed   over-   and   undershooting   that  

occurs   when   the   tempo   alternates   between   increasing   and   decreasing   in   sequences   with  

smooth   tempo   changes   over   multiple   intervals.   Long-range   (fractal)   scaling   of   tap   timing  

suggests   that   global   prediction   at   longer   timescales   takes   place   when   synchronizing   with  

musical   pieces   that   contained   serial   correlation   (dependencies   between   the   timing   of  

consecutive   events)   and   fractal   scaling   (long-range   correlations   affecting   non-consecutive  

events)   (Rankin   et  al.,   2009). 

 

2.5.1   Anticipation   and  internal   models 

It has been claimed that anticipatory mechanisms that subserve SMS with tempo changing 

sequences are grounded in online action simulations and internal models (Keller, 2008; 2012). 

Action simulation occurs when sensorimotor brain processes that resemble those associated 

with executing an action are engaged in a manner that does not directly produce overt 

movement (Decety and Grezes, 2006; Rizzolati and Sinigalia, 2010). The process of action 

simulation is supported by internal models that represent the sensorimotor transformations 

that mediate intentions, motor commands, and behavioral effects. Internal models can run 

independently of action execution, and they can therefore be used to generate predictions 

about the effects of the intention to perform a particular act, and of a specific movement 

(Wolpert and Kawato, 1998). Two types of internal model have been distinguished: forward 

and inverse models. Forward models represent the causal relationship between the input and 

output of the action control system. They predict the effect that a particular motor command 

will have upon the body and the dynamic environment, given the current state of the action 

control system. Inverse models, on the other hand, provide the motor command that is 

necessary to produce a desired change in state of the body and the environment. By providing 

motor commands, inverse models serve as controllers for intentional action (Wolpert and 

Kawato, 1998).  
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Forward and inverse models are tightly coupled and together facilitate efficient motor control 

by allowing potential movement errors to be corrected in advance. Internal models can be 

employed   to   make   predictions   about   others’   actions,   including   the   timing   of   these   actions  

(e.g., Wolpert et al., 2003; Knoblich and Jordan, 2003; Blakemore and Frith, 2005; Wilson 

and Knoblich, 2005; Keller, 2008). Utilizing these predictions of future events during the 

planning   of   one’s   own   actions   is   important   for   successful   interpersonal   coordination 

(Knoblich and Jordan, 2003; Konvalinka et al., 2010; Vesper et al., 2011). The predictive 

abilities of the motor system can extend from actions to external events more generally, which 

allows for the prediction of spatiotemporal properties even of event sequences that humans 

are not capable of producing themselves (e.g., when a wave will hit the coast) (Schubotz, 

2007). Internal models thus provide an effective mechanism for anticipating future events, 

and for controlling behavior accordingly, which is a crucial aspect of successful SMS. 

 

2.5.2  Strong and weak anticipation 

A   relatively   recent   development   related   to   anticipation   is   the   distinction   between   ‘strong  

anticipation’   and   ‘weak   anticipation’.   Weak   anticipation   refers   to   anticipation   based   on   a  

model of the environment (akin to an internal model). Strong anticipation is based on 

anticipation of the system itself and relies on systemic lawfulness, a dynamic process in 

which behavior adapts itself to the global statistical structure of the environment (Stepp and 

Turvey, 2010). Strong anticipation can therefore occur without any reference to an internal 

model (Dubois, 2003). In the former (weak) case, anticipation involves prediction and 

expectation, whereas in the latter (strong) case, anticipation arises from lawful regularities 

between a system and its environment, rather than from a process of action planning that takes 

future states of the environment into account (Dubois, 2003; Stepp and Turvey, 2010). Strong 

anticipation is thus not about solving a model of the predicted future but instead about 

keeping specific relationships between components of the to-be-performed task stable and, by 

doing so, the future states of the components will emerge without the need for an active 

process of prediction.  

An apt example of strong anticipation in music can be found in work on general tau theory 

(although strong anticipation is not explicitly mentioned in this work) (Lee, 1998; Lee and 

Schögler, 2009). The general tau theory assumes that purposeful movements involve closing 

‘gaps’   between   the   current   state   of   the body and a goal state. For example, successful violin 

playing entails controlling the closure of the gap between the initial position of the bow and 

the end position, to produce the desired tone. According to the general tau theory, the only 
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variable necessary to guide the gap closure is the time-to-closure of the gap at the current 

closure rate (tau). An intrinsic tau, necessary to close the gap, is computed in the brain, and 

while playing the violinist tries to maintain a constant relation between this intrinsic tau and 

the actual tau of the gap, which changes during the movement (Lee and Schögler, 2009). By 

keeping the ratio constant, it is not necessary to use a model to predict the appropriate 

movement; the movement emerges as the gap closes.  

Weak and strong anticipation may play complementary roles in sensorimotor synchronization. 

Weak anticipation has been linked to event-based timing, as conceptualized by the 

information processing theory, while strong anticipation is more closely aligned with 

emergent timing, which is a key feature of the dynamical systems theory (Torre and 

Balasubramaniam, 2009; Marmelat and Delignières, 2012). Although the exact role of the 

processes and how the two interact with each other is still unclear, weak anticipation may 

subserve local timing at short time scales while strong anticipation may be relevant to global 

timing at long time scales. Thus, weak anticipation may entail local predictions generated via 

action simulation and internal models, while strong anticipation arises naturally as a 

consequence of the presence of long-range correlations in environmental event sequences and 

behavior performed in synchrony with these event sequences (Stephen et al., 2008; Marmelat 

and Delignières, 2012). 

 

2.5.3  Anticipation in the brain 

The distinction between types of anticipation that differ in terms of timescale and whether 

they are generated in a top-down or bottom-up fashion is reflected in different brain networks, 

which nevertheless interact with one another. The extent of these networks is large, prompting 

Bubic   and   colleagues   (2010)   to   point   out   that   the   “predictive   brain”   is   in   fact   the   whole   brain.  

However, it is still possible to paint a picture in broad brushstrokes where higher-level areas 

(e.g., premotor and lateral, medial and prefrontal regions) formulate expectations that are 

communicated to sensory, lower-level areas (Bubic et al., 2010). These top-down mechanisms 

could then interact with predictions that are generated automatically in a bottom-up manner in 

sensory areas such as the auditory cortex (see Bendixen et al., 2012).  

A recent fMRI-study by Pecenka and colleagues (submitted), which investigated 

synchronization with tempo changing sequences, highlights the extent of the brain network 

that is involved in generating predictions at multiple levels during SMS. This study identified 

a large-scale network of areas —including superior temporal gyrus, medial orbitofrontal 

cortex, midcingulate cortex, posterior cingulate gyrus, and cerebellum— in which activation 
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was related to behavioral measures of the degree to which tempo changes were anticipated. 

This study, taken together with other work on temporal prediction (Schubotz, 2007; Leaver et 

al., 2009), suggests that the mixture of processes related to action simulation and expectancy 

generation during SMS is orchestrated by a network of cortical areas (including prefrontal 

cortex, inferior frontal gyrus, premotor cortex, superior/middle temporal gyrus and 

sensorimotor cortex) that communes with internal models in cerebellum (see Wolpert et al., 

1998; Fleisher, 2007; Ito, 2008; Coull et al., 2011).  

 

2.6  ADAM: THE ADAPTATION AND ANTICIPATION MODEL 

The literature reviewed in the foregoing sections of this article suggests that adaptation and 

anticipation mechanisms are involved when synchronizing actions to external events. To get a 

more complete idea about what the role of both mechanisms is, how they are linked, and how 

they influence each other, it is desirable to consider both mechanisms within a unified 

framework. In the following paragraphs we introduce ADAM (Figure 2.1), an ADaptiation 

and Anticipation model as an appropriate next step in the process of disentangling the reactive 

and proactive processes that underpin SMS.  

Our goal in creating ADAM was to provide a novel tool that can be employed to explore 

different sensory modalities (e.g., auditory and visual input) and timescales (within-cycle, 

between-cycles, and long range structures) in SMS. Furthermore, we propose that ADAM can 

assist in evaluating the degree of motor impairment and can be used in guiding patients 

through motor rehabilitation. The current article describes how ADAM handles auditory 

input, taking within- and between-cycle information into account when computing its 

behavioral   output   via   timekeeper   adjustment   and  the   issuing   of   ‘motor’   commands.    

ADAM is an adaptation and anticipation model that combines the adaptive model used by 

Repp and Keller (2008) with an anticipation process instantiated as an internal model. 

Combining adaptation and anticipation within one framework holds the potential to shed light 

on the relation between these mechanisms by allowing a direct comparison of the effect of 

adaptive timing and anticipatory processes on SMS. To provide an intuitive description of 

ADAM, in the current article, a drumming paradigm in which ADAM produces the stimulus 

sequence by means of percussion sounds and the human participant strikes a drum is used to 

describe the model. Obviously these sounds can be substituted by any discrete event and drum 

strokes are simply a convenient, exemplary action. For the sake of consistency with the large 

body of research on finger tapping with pacing sequences comprised of tones, we refer here to 

percussion   sounds   as  ‘tones’   and  drum   strikes   as  ‘taps’. 
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2.6.1  Adaptation with ADAM 

The adaptive module is conceived in the spirit of the information processing approach. 

Therefore the occurrence of the next tone (𝑡 ) produced by ADAM is based on a 

timekeeper (𝑇) with additional phase (𝛼) and period (𝛽) correction linked to the asynchrony 

(𝑎𝑠𝑦𝑛) between the tone produced by ADAM and the tap produced by the participant (Figure 

2.3A). The adaptive module uses a two-process error correction model (Repp and Keller, 

2008) that can be described by the following equations1: 

 

𝑡 =   𝑡 +   𝑇 + (𝛼 + 𝛽) ∙   𝑎𝑠𝑦𝑛  (1) 

𝑇 =  𝑇 +   𝛽 ∙   𝑎𝑠𝑦𝑛     (2) 

 

The most recent asynchrony (𝑎𝑠𝑦𝑛 ) is multiplied by the sum of the phase (𝛼) and period (𝛽) 

correction parameters and the result is added to the current timekeeper period (𝑇 ) in order to 

obtain the current tone inter-onset interval (𝑇 + (𝛼 +   𝛽) ∙   𝑎𝑠𝑦𝑛 ). This current tone inter-

onset interval is added to the onset time of the current tone (𝑡 ) to calculate the time of 

occurrence of the next tone (𝑡 ) (eq. 1). Period correction is a lasting change of the 

timekeeper setting. To accomplish this, the next timekeeper period (𝑇 ) is given by the last 

asynchrony (𝑎𝑠𝑦𝑛 ) multiplied by the period correction parameter (𝛽) added to the current 

timekeeper (𝑇 ) (eq.2).  

The phase (𝛼) and period (𝛽) correction parameter can be set separately. The settings of 𝛼 and 

𝛽 cause ADAM to implement phase or period correction, or a combination of both error 

correction mechanisms (eq. 1 and 2). Repp and Keller (2008) used a similar adaptive virtual 

partner that varied 𝛼 between -1 and 1 and 𝛽 between 0 and 1. Setting both parameters to 0 

results in a conventional non-responding metronome, while an 𝛼 less than 0 leads to negative 

phase correction (onset of the tone shifts in opposite direction to the asynchrony), which 

makes SMS difficult for the participant. Optimal phase correction, operationally defined as 

the 𝛼 value that minimizes the variability of asynchronies, is achieved with an 𝛼 between 0.3-

0.5, both for the adaptive pacing signal and humans (Repp and Keller, 2008; Fairhurst et al., 

2012). A phase correction parameter of 1 would be perfect phase correction, an 𝛼 of 2 would 

imply over-correction and settings greater than 2 result in instability (Repp and Keller, 2008).  

Repp and Keller (2008) showed that participants are capable of synchronizing with different 

types of adaptive virtual partners that implement varying degrees of (positive and negative) 

phase and/or period correction. Strategies used by the participant to maintain synchrony with 
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the virtual partner were determined with the help of computer simulations. The simulations 

aimed to find error correction settings for the human participants that showed the best fit with 

empirical data across the parameter settings employed by the virtual partner. Results showed 

that strategies differed as a function of the settings of the adaptive virtual partner. For 

example, participants implemented a fixed gain of phase correction as long as the adaptive 

partner was cooperative (i.e., the partner implemented a small-to-modest amount of positive 

phase correction), while the error correction strategy of the participants changed when 

participants were dealing with an uncooperative adaptive partner (i.e., the partner 

implemented negative phase correction). Furthermore it turned out to be important that 

participants assumed responsibility for maintaining the correct tempo when the virtual partner 

implemented period correction and was therefore liable to drift (see Repp and Keller, 2008 for 

additional findings). With the adaptation module ADAM, we are able to replicate the 

computer simulations and patterns of effects. 

 

 

Figure 2.3 Implementation of adaptation (A) and anticipation (B + C) in ADAM. asyn = asynchrony | Int = interval | T = 
Timekeeper period 
(A) The time of occurrence of the next tone is determined based on the asynchrony and the settings of error correction 
parameters 𝛼 and 𝛽 (eq. 1). The setting of 𝛽 affects the current timekeeper period (eq. 2). The interval produced by ADAM 
between 𝑡  and 𝑡  is equal to 𝑇 + (𝛼 + 𝛽) ∙ 𝑎𝑠𝑦𝑛 . 
(B-C) A curve-fitting  process  that  is  applied  to  the  preceding  intervals  predicts  the  participant’s  next  tap  time  (eq.  3  and  4).  
The timing of upcoming tone or the next interval produced by ADAM can be set to enable  ADAM’s  next  tone  to  coincide  
with the predicted next tap of the participant. 

 

2.6.2  Anticipation with ADAM 

The anticipatory module in ADAM is based on a temporal extrapolation process that 

generates   a   prediction   about   the   timing   of   the   participant’s   next   tap   based   on   the   most   recent  

series of inter-tap intervals that ADAM receives as input (Figure 2.3B-C). This temporal 

extrapolation process works by extending systematic patterns of tempo changes in such a way 

that a decelerating sequence with inter-tap intervals that increase in duration will result in a 

prediction that the next tap will occur after an even longer interval, and vice versa for tempo 

accelerations.   The   timing   of   the   participant’s   next   tap   is   determined   via   curve   fitting:   An   over-
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determined linear system based on at least three inter-tap intervals (𝑘 ≥ 3) is created and 

solved to find the straight line that fits best to the intervals. The line that fits best is defined as 

the one that minimizes the sum of the squared errors between the line itself and the interval 

data2. Extrapolating from this best-fitting function, the upcoming inter-tap interval of the 

participant is predicted (𝐼𝑛𝑡 ) (Figure 2.3C). Equation 3 is used to determine this predicted 

interval. The predicted time of the next tap (𝑡𝑎𝑝 ) is based on equation 4.  

 

𝐼𝑛𝑡   =   𝑎 + 𝑏 ∙ (𝑛 + 1)  (3) 

𝑡𝑎𝑝 =    𝑡𝑎𝑝 +   𝐼𝑛𝑡   (4) 

 

In equation 3, a represents the intercept and b stands for the slope of the best fitting line. Both 

parameters a and b depend on the number of intervals (k) used to determine the best-fitting 

straight line. Based on this predicted next tap it can be determined when the next tone 

produced by ADAM should occur or what the next interval of ADAM should be (𝐼𝑛𝑡 ) in 

order   for   ADAM’s   next   tone   (𝑡 ) to coincide with the predicted next tap of the participant 

(𝑡𝑎𝑝 ) (Figure 2.3B). The anticipatory module of ADAM thus constitutes an over-

determined system in which the number of intervals (k) used to create and solve the linear 

system can vary, but at least three intervals are used (a minimum of two intervals is necessary 

to find a straight line). An over-determined system is useful when dealing with noisy data —

such as those that arise, for example, due to variability in human sensorimotor systems— 

because the error resulting from the noise is averaged out when fitting the line to multiple 

intervals.  

The above implementation of anticipation in ADAM leads to patterns of inter-onset intervals 

that   are   classified   as   the   behavior   of   a   ‘predictor’   as   the   lag-0 cross-correlation between the 

inter-tap and inter-stimulus intervals is higher than the lag-1 cross-correlation, and therefore 

the prediction/tracking ratio will be bigger than 1 (Repp, 2002b; Pecenka and Keller, 2011). 

Tracking behavior can be produced by introducing into ADAM the tendency to mimic the 

previous inter-tap interval (cf. Konvalinka et al., 2010).  

 

2.6.3  Linking adaptation and anticipation mechanisms in ADAM 

One of our goals when developing ADAM was to shed light on the link between adaptation 

and anticipation. We hypothesize that a combination of paired internal models used to 

simulate   one’s   own   and   others’   actions   plays   a   role   in   this   link.   Following   seminal work by 

Wolpert and colleagues (2003), a number of approaches have proposed that such paired 
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forward and inverse models are employed during social interaction (e.g., Pacherie, 2008, 

2012). In ADAM, separate classes of forward and inverse models are harnessed to simulate 

ADAM’s   own   actions   and   the   human   participant’s   actions   slightly   in   advance   of   their  

production (Figure 2.4).   The   coupling   of   ‘own’   and   ‘other’   internal   models   facilitates   fluent  

SMS by allowing potential errors in timing to be anticipated and corrected before they occur 

(Wolpert et al., 2003; Keller, 2008).  

 

 

Figure  2.4  A  schematic  overview  of  the  joint  internal  model,  where  the  adaptation  and  anticipation  module  interact  via  ‘own’  
and   ‘other’   internal   models.   The   difference   between   the   outputs   of   the   adaptation   and   anticipation  module   of  ADAM  is  
compared  to  a  predefined  threshold.  Depending  on  this  comparison,  the  motor  command  is  either  executed  as  planned  or  in  
accordance   with  a  default  setting.  A  detailed  description  of  this  process  can  be  found  in  the  text. 
 

ADAM   simulates   its   next   action   with   an   ‘own’   inverse   model   that   receives   the   output   of   the  

adaptive module (i.e., the next planned inter-tone interval) and, based on this, selects an 

appropriate   motor   command.   An   ‘own’   forward   model then generates a prediction of the 

timing of the next tone that would result if the motor command were to be carried out. 

Independently   of   the   operation   of   these   ‘own’   internal   models,   the   anticipatory   module   of  

ADAM   runs   an   ‘other’   forward   model,   which generates   a   prediction   of   the   participant’s   next  

tap-interval and therefore a predicted tap time. In situations characterized by complex but 

systematic patterns of tempo change, as in expressively performed music, ADAM can be 

equipped with a template descripting the tempo changes that functions as an inverse model of 

the  other’s   actions. 

The predicted tap-interval of the participant or planned interval of ADAM (based on the 

‘other’   model)   is   compared   with   the   predicted   tone-interval   (from   the   ‘own’   model)   in a 

‘joint’   internal   model   (see   Figure   2.1). This joint model is where adaptation and anticipation 

mechanisms interact in ADAM (Figure 2.4). It essentially simulates the timing error that 

would arise as a result of the current parameter settings related to reactive   error   correction and 

predictive   temporal   extrapolation   processes   in   ADAM’s   adaptation   and   anticipation   modules.  

If the error falls within a pre-defined tolerance region (e.g., a threshold that is based on 

whether the difference is perceivable or not [Repp, 2001b]), then the motor command is 
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issued and ADAM produces a tone. If not, then ADAM refers to the default mechanism, 

which is either the interval computed via the adaptation or anticipation module, to set the 

motor command to produce the next tone.   ADAM’s   complete   architecture   (Figure   2.1) 

includes multiple, hierarchically nested internal models (cf. Pacherie, 2008) that can simulate 

processes unfolding at different timescales (within- and between-cycle) in different modalities 

(auditory and visual, see below). Combining adaptation and anticipation mechanisms at 

multiple   levels   in   ADAM’s   action   control   hierarchy   engenders   SMS   that   is   accurate,   precise,  

and flexible (in the sense that tempo changes can be negotiated). 

 

2.6.4  Simulations and experiments using ADAM 

The purpose of developing ADAM was twofold. The first goal was to provide a platform on 

which the multiple mechanisms and processes involved in SMS can be systematically 

explored in computer simulations and behavioral experiments. Under both investigative 

methods, the parameter settings for the adaptive and anticipatory components of ADAM can 

be varied in order to test hypotheses about the role of individual components, and the 

interaction of multiple components, on the accuracy and precision of SMS. Specific questions 

that we have considered in simulations include (1) the conditions under which adaptive phase 

correction (𝛼) and period correction (𝛽) processes are necessary and sufficient for stable 

SMS, (2) the way in which phase correction and period correction are combined (e.g., under-

additive, additive, or over-additive), (3) the effects of the type of function (e.g., linear,  2nd 

order polynomial) and the number of inter-onset intervals used by the anticipation module of 

ADAM to generate temporal predictions, (4) the relationship between temporal adaption and 

anticipation (as described in section 5.3), and (5) how varying levels of perceptual, 

timekeeper, or motor noise affect the optimal settings for parameters governing temporal 

adaptation and anticipation. The results of simulations addressing these issues have been used 

to inform the process of designing experiments to test how the effects observed in computer 

simulations generalize to situations that involve the interaction between ADAM and live 

human partners. The match between the results of the simulations and the behavior of ADAM 

with human participants can be used to improve the model in terms of optimizing the 

goodness of fit.  

Several different real-time experimental setups (finger tapping or drumming tasks; see Figure 

2.1B) are possible in which participants and ADAM interact with each other through different 

coupling regimens (unidirectional vs. bidirectional). These setups allow us to explore social 

aspects of SMS between   two   responsive   agents.   In   addition   to   interrogating   ADAM’s  
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behavior, this approach lends itself to the investigation of how participants respond to pacing 

signals associated with different types of interaction partner that ADAM can provide. 

Questions of interest include how human participants respond (in terms of objective behavior 

and subjective judgments) to ADAM when it is more or less adaptive or anticipatory. During 

such   experiments,   ADAM’s   parameter   settings   are   known,   and   therefore   the   controlled 

variation of these parameters allows causal connections between adaptive and anticipatory 

processes and behavioral outcomes to be established.  

The second goal in developing ADAM relates to the assessment and rehabilitation of 

disorders that affect rhythmic   movement   timing   (e.g.,   Parkinson’s   disease   and   stroke-related 

lesions to areas such as the cerebellum and basal ganglia). It is envisaged that assessment can 

be carried out using a strategy that combines behavioral experiments and computer 

simulations. This strategy will allow deficits in specific mechanisms (phase correction, period 

correction, and prediction at short- or long-time scales) and modalities (auditory and visual; 

see below) to be identified and linked to lesions identified in structural brain images. 

Information about specific mechanisms that cause impairment to rhythmic movement timing 

can then be used in targeted interventions during motor rehabilitation.  

 

2.6.5  Extensions of ADAM 

We envision three future extensions of ADAM: (1) ADAM could make use of visual 

information from human participants; (2) ADAM could provide visual information to 

participants; (3) a version of ADAM based on the principles of dynamic systems theory could 

be created.  

Although it is often reported that movements can be synchronized more accurately based on 

auditory information than with other stimuli, SMS is possible with a variety of stimuli in 

different sensory modalities (e.g., auditory, visual, tactile) (Repp and Penel, 2004; Hove and 

Keller, 2010; Hove et al., 2013). Adding spatial variation to the visual stimuli with which 

participants are required to synchronize –for example, by means of apparent or biological 

motion– significantly   improves   participants’ synchronization abilities (Hove et al., 2010; 

Hove et al., 2013), sometimes even leading to performance that is similar to synchronization 

with an auditory metronome (Hove et al., 2012). To address this aspect of SMS, it would be 

useful to provide ADAM with visual information from the movements of the participants.  

This new component of ADAM could deal with within-cycle (the movement trajectory of a 

drum stroke or finger tap) and between-cycle (e.g., body-sway) information (Figure 2.1). SMS 

studies involving finger movements have demonstrated that features of the produced 
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movement trajectories affect timing accuracy (Balasubramaniam et al., 2004; 

Balasubramaniam, 2006; Elliott et al., 2009; Hove and Keller, 2010), and this information is 

presumably available to an individual who intends to synchronize with the observed 

movements. Furthermore, studies of body movements during music performance have shown 

that head motion and body sway play a role in regulating performance timing and achieving 

interpersonal coordination in ensembles (Davidson, 2009; Keller and Appel, 2010).  

We   propose   that   combining   this   visual   module   with   ADAM’s   auditory   module   would   yield  

benefits deriving from the fact that information from different modalities play complementary 

roles during SMS. Consider for example a dyadic drumming task where two individuals 

synchronize their drum strokes under a regime where they start at a moderate tempo, then 

gradually accelerate to a fast tempo, and finally decelerate through the initial moderate tempo 

down to a slow tempo. Each drum stroke –or movement cycle– includes (1) auditory 

information in the form of a discrete sound with a sharp onset when the drumstick impacts 

upon the drum, and (2) visual information about the trajectory of the drumstick and the 

drummer’s   body   movements   (Figure   2.1B). Auditory information (i.e., the onset time of the 

drum sound) is only available at one time point within a movement cycle, and each sound 

alone is not informative about how the next movement cycle should be timed. However, 

sounds associated with successive drum strokes provide between-cycle information –

sequences of inter-onset intervals– that can be used to guide movement timing from cycle to 

cycle. Drumstick and body movement trajectories, on the other hand, are potentially 

informative about within-cycle and between-cycle timing, respectively. Specifically, the 

velocity and acceleration of a drum stroke during its descent provides information about the 

time point of the strike, while body movements –such as head motion and body sway– are 

informative about timing at longer timescales spanning multiple cycles.  

The foregoing suggests that auditory and visual information may assist with different aspects 

of SMS in the context of challenging coordination tasks, such as those that involve systematic 

tempo changes. Another way in which information from several sensory modalities may assist 

SMS is through a multisensory integration process that takes into account the sensory and 

temporal reliability of events (Elliott et al., 2010). Thus, when multiple information streams 

are available and the temporal discrepancy between them is small, the combination of 

information streams in different modalities (e.g., auditory, visual, and tactile timing cues) 

leads to optimal cue integration and hence more accurate synchronization (Elliott et al., 2010; 

Wing et al., 2010).  
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The second proposed extension of ADAM involves using the visual module to drive 

multimodal displays of virtual synchronization partners that comprise dynamic visual 

representations of human body segments that move in time with music according to biological 

kinematic principles. The rationale behind using multimodal displays is that they exploit the 

benefits of auditory-motor coupling (Zatorre et al. 2007) as well as the tendency for visual 

depictions of biological motion to induce movement tendencies in an observer (Saygin et al., 

2004; Press, 2011). Thus, combined auditory information and continuous biological motion in 

a virtual synchronization partner based on ADAM should provide a more potent means of 

driving   the  participant’s   movements   than   either   modality   alone.    

In the context of motor rehabilitation, such multimodal virtual synchronization partners could 

illustrate the movements that should be synchronized with the music, and they could 

accompany the patient in executing these movements. Importantly, as noted above, the virtual 

partner   would   receive   input   concerning   the   patient’s   behavior   via   auditory   and   visual   modules  

of ADAM. It is hypothesized that, by anticipating   and   adapting   to   the   patient’s   movement  

timing and kinematics to varying degrees, the virtual partner would be effective at 

encouraging   as   accurate   and   graceful   movement   as   possible   given   the   individual   patient’s  

specific impairment. Furthermore, the parameter settings of the virtual synchronization 

partner could be adjusted incrementally, leading to different levels of responsiveness and 

variability that affect the predictability and perceived cooperativity of the partner (Vesper et 

al., 2011; Fairhurst et al., 2012). These different settings could be used to challenge the 

patient at later stages of rehabilitation, in order to simulate challenges that arise in complex 

dynamics environments encountered in daily life. 

Finally, we believe that it would be fruitful to develop a version of ADAM based on the 

principles of dynamic systems theory, or a hybrid version in which both the information-

processing theory and the dynamic systems theory are combined. This extension of ADAM 

could potentially inform the ongoing debate about the validity of the information-processing 

and dynamical systems theory in relation to SMS. Given that the focus of dynamic systems 

theory is on continuous, non-linear, and within-cycle coupling (Large, 2008), the envisaged 

visual module of ADAM that deals with continuous within-cycle information, like drum 

stroke trajectories (Figure 2.1), seems especially amenable to the dynamic approach. A virtual 

partner paradigm similar to that used by Kelso and colleagues (2009) could serve as a starting 

point for such an endeavor. Furthermore, the auditory module of ADAM could also be 

instantiated in a dynamical framework. For instance, work on non-linearly coupled oscillators, 

described formally in terms of differential equations (e.g. Schöner and Kelso, 1988; Torre and 
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Balasubramaniam, 2009; Loehr et al., 2011), and period matching (Large et al., 2002) provide 

clear guidance with regard to the steps that could be taken towards a dynamic version of the 

adaptive module of ADAM. The anticipatory module presents a greater challenge, and it 

would be worthwhile to evaluate the degree to which the concept of strong anticipation can 

deal with predictive processes that characterize SMS in challenging contexts that involve 

tempo changes.  

 

2.7 CONCLUSION  

Adaptation (reactive) and anticipatory (predictive) mechanisms are important for precise yet 

flexible sensorimotor synchronization with externally controlled sequential events. To 

investigate the role of temporal adaptation and anticipation in SMS, and the link between both 

classes of mechanism, we introduced ADAM: an ADaptation and Anticipation Model. 

ADAM combines adaptive, error correction processes with an anticipatory, predictive 

temporal extrapolation process inspired by the computational neuroscience concept of internal 

models. ADAM provides a unified framework in which simulations can be combined with 

experimental manipulations, and therefore constitutes a promising tool for exploring 

adaptation and anticipation in SMS. In a next step, ADAM could be extended in several ways 

(e.g., equipped to deal with between-cycle information in the visual modality) to work 

towards a better understanding of the different aspects of SMS that arise in everyday life, 

where coordination takes place via multiple modalities and at multiple time scales. ADAM is 

expected to prove beneficial in advancing our theoretical understanding of basic mechanisms 

that allow healthy individuals to coordinate their actions with events in the dynamic 

environment, as well as in the clinical assessment and rehabilitation of individuals with 

deficits that cause them to struggle with such coordination.  
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3.1 ABSTRACT  

The current study investigated the human ability to synchronize movements with event 

sequences containing continuous tempo changes. This capacity is evident, for example, in 

ensemble musicians who maintain precise interpersonal coordination while modulating the 

performance tempo for expressive purposes. Here we tested an ADaptation and Anticipation 

Model (ADAM) that was developed to account for such behavior by combining error 

correction processes (adaptation) with a predictive temporal extrapolation process 

(anticipation). The fit between behavioral data and computer simulations based on four 

versions of ADAM was assessed. These versions included a model with adaptation only, one 

with independent contributions of adaptation and anticipation, and two models in which 

adaptation and anticipation were linked in a joint internal model. The behavioral experiment 

required participants to tap their finger in time with three auditory pacing sequences 

containing tempo changes that differed in the rate of change and the number of turning points. 

Behavioral results indicated that sensorimotor synchronization accuracy and precision, while 

generally high, decreased with increases in the rate of tempo change and number of turning 

points. Simulations and model-based parameter estimates showed that adaptation mechanisms 

alone could not fully explain the observed sensorimotor synchronization behavior. Including 

anticipation in the model increased the precision of simulated sensorimotor synchronization 

and improved the fit of model to behavioral data, especially when adaptation and anticipation 

mechanisms were linked via a joint internal model. Overall results suggest that adaptation and 

anticipation mechanisms both play an important role during sensorimotor synchronization 

with tempo changing sequences.  

 

Abbreviations: SMS = sensorimotor synchronization; IOI = inter-onset interval; ITI = inter-

tap interval; ADAM = ADaptation and Anticipation Model; ANOVA = analysis of variance; 

bGLS = bounded Generalized Least Squares 

 

Keywords: sensorimotor synchronization – temporal adaptation – error correction – temporal 

anticipation – predictive internal models – computation model 
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3.2 INTRODUCTION 

Music making often involves multiple performers collectively producing actions that vary in 

tempo. This purposeful non-stationarity in tempo, which plays a role in communicating 

musical expression to an audience, places challenges upon interpersonal coordination. 

Sometimes the composer specifies the manner in which the tempo should change by using 

terms   such   as   ‘ritardando’   (slowing   down   gradually)   and   ‘accelerando’   (speeding   up)   in   the  

musical notation. However, performers typically introduce additional planned or spontaneous 

tempo changes to convey their interpretation of a piece (e.g., Keller, 2014; Wing et al., 2014). 

Furthermore, tempo changes might arise unintentionally as a result of the relation between 

musical structure and patterns of performance expression (e.g., Repp, 1998; Repp, 2008; Repp 

and Bruttomesso, 2009) and as a result of the dynamic interplay between musicians (Palmer, 

1997; Madison and Merker, 2005).  

One of the underlying factors that contribute to successful interpersonal coordination is the 

timing   of   one’s   actions   with   an   external   stimulus   (e.g.,   the   tones   produced   by   a   fellow 

musician) (Repp, 2005). Humans have the ability to synchronize their movements 

successfully even with complex timing sequences that contain tempo changes (Repp, 2002a, 

Rankin et al., 2009, Pecenka and Keller, 2011). Synchronizing actions with tempo changing 

sequences is not only important in the music domain. In sports and daily life, people are 

required to synchronize their movements with sequential events at different rates, and to 

negotiate rate changes, in order to fulfill task requirements successfully. An example is the 

Olympic rowing team that in the heat of the moment is instructed by the coxswain to speed up 

the pace in order to overtake a competing team. A daily life example would occur if you 

change pace while walking through the city together with a friend who suddenly speeds up in 

order to be able to cross the street before the light at the pedestrian crossing turns red. The 

current study focuses on how people synchronize their movements with different types of 

ongoing tempo changes, and identifying the underlying mechanisms of this extraordinary 

sensorimotor synchronization skill.  

Individuals’   sensorimotor   synchronization   (SMS)   abilities   and   the   underlying   mechanisms   are  

often investigated by means of a paced finger-tapping task (Michon, 1967; Repp, 2005). 

During such a task, participants are asked to tap with their finger in time with the events (e.g. 

tones) of computer-controlled pacing sequences. The instruction is typically to synchronize 

finger taps as accurately and precisely as possible with the stimulus sequence. The mean 

asynchrony can be used as an inverse measure of SMS accuracy, and the variability (i.e., 
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standard deviation) of the asynchronies can serve an inverse measure of SMS precision. The 

pacing sequences are often isochronous series of tones, but sometimes timing perturbations 

(inter-onset interval lengthening or shortening) are added. These perturbations can be 

predictable or unpredictable and local (i.e., affecting one single event or interval) or global 

(i.e., affecting every event).  

It has been hypothesized that in order to successfully time movements relative to external 

events, humans employ mechanisms that enable adaptation (reactive error correction) and 

anticipation (predictive processes) (e.g., Keller 2008; van der Steen and Keller, 2013). 

Temporal adaptation processes have been studied extensively in the tradition of information-

processing approaches to SMS. According to the information-processing theory, the timing of 

simple movements is the determined by a timekeeping process that generates pulses that in 

turn trigger motor responses (Wing and Kristofferson 1973). Variability in movement timing 

arises due to variance in this central timekeeper but also as a result of variable transmission 

delays in the peripheral motor system (e.g., Vorberg and Wing, 1996). In SMS tasks, these 

two   sources   of   unintentional   timing   variability   (or   ‘noise’)   can   lead   to   large   asynchronies   and  

even tempo drift.  

Adaptation mechanisms reduce the effects of timing variability and therefore contribute to 

successful SMS (e.g., Mates, 1994a, b; Vorberg and Wing, 1996). Two types of adaptation 

mechanism —phase and period correction— have been distinguished (Mates, 1994a, b; 

Vorberg and Wing, 1996; Semjen et al., 1998). Both error correction processes modify the 

timing of the next tap based on a proportion of the asynchrony, the timing error between a tap 

and stimulus event (Figure 3.1). Phase correction is an automatic and local adjustment of the 

interval generated by the internal timekeeper, leaving the interval setting of this timekeeper 

unaffected (Repp, 2001a; 2002b) (Figure 3.1A). Period correction on the other hand changes 

the interval setting of the timekeeper that drives the motor activity (Figure 3.1B). This change 

in timekeeper setting persists until period correction is applied again (Repp, 2001b). 

Successful period correction requires the conscious perception of a tempo change in the 

stimulus sequence (Repp and Keller, 2004). Without these adaptation mechanisms, movement 

timing variability would accumulate from movement cycle to movement cycle. This would 

lead to increasingly large asynchronies, phase drift and eventually the loss of synchronization 

(Vorberg and Wing, 1996). 
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Figure   3.1   Schematic   representation   of   phase   and  period  correction.  Equations  governing  phase  and  period  correction  are:    
𝒕𝒏 𝟏 =   𝒕𝒏 +  𝑻𝒏 − (𝜶 +𝜷) ∗ 𝒂𝒔𝒚𝒏𝒏 +𝒏𝒐𝒊𝒔𝒆   and   𝑻𝒏 𝟏 = 𝑻𝒏 − 𝜷 ∗ 𝒂𝒔𝒚𝒏𝒏.   Where   𝜶   reflects   the   phase   correction  
parameter  and  𝜷   the  period  correction  parameter,  𝒕𝒏   is  the  timing  of  the  next  tap,  and  𝑻𝒏   the  current  timekeeper  setting  (see  
Experimental   procedure).   The   timekeeper   originally   has   an   interval  setting  of  500ms.  In  blue  standard  variable  related  to  a  
finger   tapping  task  are  presented;;  asyn,  asynchrony;;  ITI,  interval  between  successive  actions;;  IOI,  interval  between  the  onsets  
of  the  stimulus  sequence.  Adapted  from  van  der  Steen  and  Keller  (2013). 

 

Insights into how individuals implement phase and period correction during SMS have been 

gained mostly from studies employing local perturbations, in which the timing of a single 

event is altered or the stimulus sequence suddenly changes tempo. One type of perturbation is 

the step-change perturbation, during which the length of all inter-onset intervals (IOIs) 

changes at a certain point (Repp, 2005). These perturbations are designed to engage both 

phase and period correction (Large et al., 2002). Previous results have shown that different 

responses occur depending on the size of the step change (Thaut et al., 1998a). With large step 

changes, which are easy to detect, the subsequent inter-tap intervals (ITIs) initially exceed the 

new sequence IOI, i.e. ITIs display overshoot (Michon, 1967). Small, subliminal step changes 

do not elicit this overshoot (Hary and Moore, 1985). The overshoot in ITIs is thought to be 

the result of a combination of phase and period correction (Repp, 2005). Theoretically, 

implementing only phase correction can lead to adjusted ITIs but the mean asynchrony after 

the step change would converge to a mean asynchrony that is bigger than the size of the step 

change (Repp, 2005). Period correction is sensitive to the attentional requirements of a task 

and can be suppressed, while for automatic phase correction this is not the case (Repp and 

Keller, 2004), although the gain of phase correction can be controlled voluntarily to some 

extent (Repp, 2002b). 

In addition to the adaptation mechanisms, SMS has been found to benefit from anticipation 

mechanisms (Keller, 2008; van der Steen & Keller, 2013). These predictive processes allow 
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the anticipation of the precise time of onset of upcoming stimulus events. Based on the 

anticipated onsets, individuals can initiate their movements early enough to ensure that 

responses coincide with the events (Schmidt, 1968). It has been claimed that anticipatory 

movement control is underpinned by internal models that represent bi-directional   (‘forward’  

and   ‘inverse’)   transformations between movements and their sensory effects (Wolpert and 

Kawato, 1998). Forward models represent the causal relationship between the input and 

output of the action control system and are thereby able to predict the effect of a given motor 

command on the body and the environment. Inverse models serve as a controller for 

intentional movements by providing motor commands that are potentially able to change the 

current state of the body and the environment to the desired end state. Paired inverse and 

forward models facilitate online motor control by allowing potential movement errors to be 

corrected for they occur. In the social domain, it has been claimed that internal models of 

one’s   ‘own’   actions   operate in tandem with models that simulate the   actions   of   ‘others’   (e.g.,  

a stimulus event or another person) (Wolpert et al., 2003) to support joint action (Keller, 

2008). It has been proposed that the   coupling   of   ‘own’   and   ‘other’   internal  models   in   a   ‘joint’  

model facilitates sensorimotor synchronization by allowing the action control system to 

foresee potential errors in timing (asynchronies) and to correct these errors before they occur 

(van der Steen and Keller, 2013).  

Insights into anticipation mechanisms during SMS tasks have mostly been obtained in studies 

employing global perturbations, in which the tempo changes for every event in the stimulus 

sequence. This work has demonstrated that individuals are able to reduce their asynchronies 

when global perturbations are detectable and regular by predicting upcoming fluctuations 

(Michon, 1967; Repp 2005; Pecenka and Keller, 2011). Furthermore, individuals can 

anticipate tempo variations of familiar musical pieces and synchronization performance 

improves as a result of learning (Repp, 2002a; Rankin et al., 2009). Behavioral evidence for 

the prediction of global perturbations can be found in positive dependencies (lag-0 cross-

correlations) between the ITIs and IOIs. Often the lag-0 cross-correlation is compared to the 

lag-1 cross-correlation between ITIs and IOIs, which reflects the tendency to track, or copy, 

rather than to predict the IOIs during synchronization with the tempo changes (Repp, 2002a; 

Rankin et al., 2009). Tracking behavior has been mainly observed during synchronization 

tasks in which the stimulus sequence contains random or barely detectable timing 

perturbations (e.g., Thaut et al., 1998a; Thaut et al., 1998b; Madison and Merker, 2005; Thaut 

et al., 2009). Furthermore, tracking behavior is often observed when participants are unaware 

that the pacing sequence is mirroring the expressive timing profile of a musical performance 
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(e.g. ritardando or accelerando) (Repp, 2002a, 2005). Pecenka and Keller (2011) used the 

ratio between the lag-0 and lag-1 cross-correlations of ITIs and IOIs (PT-ratio) as a measure 

of prediction in SMS with tempo-changing tapping tasks. A PT-ratio larger than 1 reflects the 

individual’s tendency to predict the tempo change, while a ratio smaller than 1 indicates that 

the individual tends to copy (track) the tempo changes. The PT-ratio has been found to 

correlate positively with musical experience, tapping abilities, and neural activation in brain 

networks comprising cortico-cerebellar motor-related areas and medial cortical areas 

(Pecenka and Keller, 2009; 2011; Pecenka et al., 2013).  

Traditionally, adaptation and anticipation mechanisms have been investigated using separate 

paradigms. The ADaptation and Anticipation Model -ADAM- (van der Steen and Keller, 

2013) was proposed as unified framework to investigate the relationship between adaptation 

and anticipation mechanisms. The adaptation module of ADAM combines phase and period 

correction, which compensate for a proportion of each asynchrony, while the anticipation 

module controls a predictive temporal extrapolation process based on a series of intervals. 

One of the envisioned goals of the development of ADAM was to provide a unified platform 

upon which adaptation and anticipation mechanisms, and possible links between these 

mechanisms, can be systematically explored by means of computer simulations and their 

relation to behavioral data. 

The current study aims to understand how individuals synchronize their movements with 

continuously tempo-changing sequences. Participants tapped their finger in synchrony with 

three auditory sequences that differed in the rate of tempo change and the number of turning 

points (Figure 3.2). After a section in which the tempo was stable (to allow synchronization to 

be easily established), the tempo of the stimulus sequences varied between 600 and 400 ms 

IOI. The difference between two successive IOIs ranged between 1 and 14 ms for pattern 1, 

between 4 and 28 ms for pattern 2, and between 10 and 44 ms for pattern 3, the rate of tempo 

change thus increased from pattern 1 to 3. The tempo changes followed sigmoidal patterns 

that resembled musical accelerando and ritardando (Schulze et al., 2005). Standard 

synchronization measures related to the asynchrony   between   the   participants’   taps   and   the  

tones were employed as indices of SMS accuracy and precision. Two approaches were used to 

measure tempo-change prediction, the lagged cross-correlation method (cf., Pecenka & 

Keller, 2009; 2011) and a newer method that deals with autocorrelation in the time series by 

implementing pre-whitening and auto-regressive modeling (Mills et al., submitted). Measures 

of anticipation therefore included cross-correlations at lag-1, lag-0, PT-ratios, and PT-indices. 

Phase and period correction estimates, as indicators of adaption, were obtained by means of 
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the bGLS method, an analytical technique for solving a generalized regression problem (cf., 

Jacoby and Repp, 2012, Jacoby et al. submitted). In addition, simulations with ADAM were 

run to investigate the effect of the different mechanisms on SMS precision in a tempo 

changing synchronization task. We employed four versions of ADAM: a model that only 

included adaptation, one with independent contributions of the adaptation and anticipation 

mechanisms, and two models in which adaptation and anticipation were linked in a joint 

internal model. In order to ascertain the optimal usage of adaptation and anticipation 

mechanisms for successfully fulfilling the task instructions, different parameter settings (such 

as the amount of phase/period correction, amount of anticipation) were varied in the 

simulations (see Experimental procedure). Across the four versions of ADAM, parameter 

estimates were obtained by means of the bGLS-method, and the fit of the model to the 

behavioral data was calculated.  

 

 
Figure 3.2 The three tempo changing patterns. Each trial started with four initiation tones with an IOI of 600 ms. The 
stimulus sequences consisted of 64 tones. The tempo of the first 16 tones was stable (IOI 600 ms) [black dotted box], 
allowing synchrony to be established. The tempo during the following 48 tones varied between 600 and 400 ms IOI, 
following three sigmoidal patterns that resembled musical accelerando and ritardando. Data analyses focus on the tempo 
changing part of the trials [grey dashed box] (see Experimental procedure). 

 
Our hypotheses address how the underlying adaptation and anticipation mechanisms are 

employed to achieve successful SMS with the three tempo-changing patterns. Based on 

previous studies that investigated the mechanisms separately, we hypothesize participants will 

generally show evidence for active adaptation and anticipation mechanisms when 

synchronizing with the tempo changing sequences (e.g., Repp, 2005; Pecenka & Keller, 2009; 
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2011). Accordingly, simulations and the fit of the different versions of ADAM should favor a 

synchronization model that includes both adaptation and anticipation mechanisms. 

Furthermore, we expect that adaptation and anticipation will be affected by the rate of tempo 

change and frequency of turning points. Specifically, we hypothesize that period correction 

will increase with the step size of the continuous tempo changes and that due to the automatic 

nature of phase correction these estimates remain constant. Alternatively, as period correction 

only occurs if the tempo change is perceived, participants might adapt their ITIs in a stepwise 

fashion (Michon, 1967). Since the difference between sequential IOIs is small in continuous 

tempo change, it might take several tones before the perceptual threshold of tempo change is 

passed and period correction can be applied. Between the period adjustments, phase 

correction could be applied to maintain synchronization (Repp, 2005). Stepwise adaptation 

might be an economical approach especially when dealing with frequent tempo changes. This 

follows from the assumption that period correction is effortful and, due to the longer-lasting 

effects of adjusting the timekeeper period, costly to implement, as an incorrect period setting 

would cause continuous impairment to SMS. Finally, we assume that the prediction of the 

tempo changes is more beneficial during the acceleration or deceleration phases of the tempo 

changes than at the transition between these phases, which are difficult to predict. We 

therefore hypothesize that an increasing number of transitions in the tempo changing stimulus 

sequence will decrease SMS accuracy and precision. 

 

3.3 RESULTS 

3.3.1  Experiment 

3.3.1.1  Synchronization measures 

The   mean   asynchrony   and   the   standard   deviation   of   asynchronies   between   participants’   taps  

and pacing sequence tones were examined to investigate differences in synchronization 

accuracy and precision across the three tempo-changing patterns. The repeated measures 

ANOVAs on each of these measures included pattern (1-2-3) as within subject variables. 
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Figure 3.3 The mean s igned asynchrony as a measure of SMS accuracy (A) en the s tandard deviation of the s igned 
asynchrony as a measure of SMS precision (B) separated for the three patterns. Error bars represent s tandard error across 
participants. 
 

The ANOVA on mean asynchrony yielded a significant a main effect of pattern [F(2,32) = 

15.67, p < 0.001]. Post-hoc pairwise comparisons [all p < 0.01] revealed that SMS accuracy 

was lower for pattern 3 compared to patterns 1 and 2 [all p < 0.01], while there was no 

significant difference in accuracy between patterns 1 and 2 (Figure 3.3A). A significant main 

effect of pattern was also found for the standard deviation of asynchronies [F(2,32) = 7.34, p < 

0.005]. Pairwise comparisons confirmed that SMS was less precise for pattern 3 compared to 

pattern 1 and 2 [all p < 0.05] (Figure 3.3B), while differences between patterns 1 and 2 were 

non-significant.  

 

3.3.1.2  Adaptation mechanisms 

The amount of phase and period correction implemented by participants was estimated by 

means   of   the   bGLS   method   following   the   ‘Adaptation   Model’   to   investigate adaptation 

mechanisms. These data were entered into a repeated-measures ANOVA with correction type 

(phase/period) and pattern (1-2-3) as within-subject variables. 

 
Figure 3.4 Estimated amount of phase (A) and period (B) correction reflecting adaptation mechanisms. Error bars represent 
standard error across participants. 
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The ANOVA revealed significant main effects of correction type [F(1,16) = 368.17, p < 

0.001] and pattern [F(2,32) = 5.50, p < 0.01]. The effect of correction type indicated that 

phase correction estimates were generally higher than period correction estimates. The effect 

of pattern was qualified by a significant interaction between pattern and correction type 

[F(2,32) = 57.41, p < 0.001], reflecting the fact that phase correction estimates increased 

while the period correction estimates decreased as the frequency of tempo-change transitions 

increased from pattern 1 to 3. This interaction was explored further by analyzing the estimates 

for phase and period correction separately. A significant main effect of pattern was found for 

phase correction estimates [F(2,32) = 40.02, p < 0.001]. Pairwise comparisons revealed that 

phase correction estimates for pattern 1 were lower than for pattern 2 and 3 [all p < 0.001], 

while patterns 2 and 3 did not differ significantly (Figure 3.4A). A significant main effect of 

pattern was also found for period correction estimates [F(2;32) = 29.12, p < 0.001]. Pairwise 

comparisons revealed that period correction estimates for pattern 1 was higher than for pattern 

2 and 3 [all p < 0.001] and pattern 2 was higher than pattern 3 [p < 0.05] (Figure 3.4B). 

 

3.3.1.3  Anticipation mechanisms 

Anticipation mechanisms were investigated by examining the lag-0, lag-1 cross-correlations, 

the PT-ratio and the PT-index. The repeated measures ANOVAs included pattern (1-2-3) and 

if   applicable   lag   (0/1)   as   within   subject   variables.   Furthermore,   Pearson’s   correlations  

between the PT-ratio and the PT-index were calculated separately for the three patterns across 

participants to assess the degree to which the two measures reflect similar processes. 

The ANOVA on cross-correlation coefficients yielded significant main effects of pattern 

[F(2,32) = 59.94, p < 0.001] and lag for the cross-correlations [F(1,16) = 286.80, p < 0.001]. 

Pairwise comparisons revealed that cross-correlations were generally lower for pattern 3 

compared to pattern 1 and 2, and for pattern 2 compared to pattern 1. Furthermore, the lag-0 

cross-correlation was found to be higher than the cross-correlation at lag-1. This is also 

reflected in the PT-ratios, which were all greater than 1. The interaction between pattern and 

lag also turned out to be significant for the cross-correlations [F(1.13,18.03) = 108.08, p < 

0.001], as pattern had a stronger effect on lag-1 than lag-0 cross-correlation (Figure 3.5A). 
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Figure 3.5 The cross-correlations at lag-0 and lag-1(A), PT-ratio (B), and PT-index (C) reflecting anticipation. PT-ratios 
bigger than 1 and PT-indices bigger than 0 indicate participants are predicting the tempo changes. Error bars represent 
standard error across participants 
 

As already mentioned, all PT-ratios were greater than 1, suggesting that participants were 

predicting the tempo changes (Figure 3.5B). The ANOVA on PT-ratios yielded a significant 

effect of pattern [F(1.11,17.79) = 107.51, p < 0.001]. Pairwise comparisons revealed that the 

PT-ratio was higher for pattern 3 compared to pattern 1 and 2, and that the PT-ratio was 

higher for pattern 2 than for pattern 1 [all p < 0.001].  

All PT-indices were positive indicating that, also according to the auto-regression method, 

participants were predicting the tempo changes in the stimulus sequences (Figure 3.5C). The 

ANOVA on PT-indices yielded a significant effect of pattern [F(2,32) = 4.15, p < 0.05], 

reflecting a decrease in PT-indices (suggesting less prediction) from pattern 1 to pattern 3. 

This effect goes in the opposite direction to the effect found for PT-ratios. Despite this, the 

two measures were positively correlated across participants at the level of each pattern. 

Pearson’s   correlations   between  PT-ratio and PT-index were 0.69, 0.94, and 0.99 for pattern 1, 

2, and 3, respectively [all p < 0.001]. Thus, there was a moderately strong correlation between 

both measures for pattern 1 and a strong correlation for patterns 2 and 3. 
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3.3.2  Models 

3.3.2.1  Simulations 

The results of simulations using the four versions of ADAM are shown in Figure 3.6. For the 

three tempo-changing   synchronization   patterns   the   ‘Adaptation   model’   (Figure   3.6A)  

performed best when both phase correction   (α)   and   period   correction   (β)   were   employed.  

When the rate of tempo change and number of turning points were high [pattern 2 and 3 

compared to pattern 1], SMS precision was best when the model implemented higher levels of 

β.   It   can   also   be   noted that several combinations of parameters, especially border parameters 

[e.g.   α   >   1   in   combination   with   larger   β],   led   to   extremely   large   and  variable   asynchronies   due  

to drift. If the mean phase and period correction estimates of the participants (black boxes in 

Figure 3.6A) are compared with the results of the simulations with the adaptation model, we 

find a simulated SMS precision of 32.35 ms for pattern 1, 55.05 ms for pattern 2, and 57.48 

ms for pattern 3. Participants were found to be more precise than these simulated values 

particularly for patterns 2 and 3 (Figure 3.3B), suggesting that adaptation mechanisms alone 

cannot account for all aspects of SMS behavior when tempo changes are large. 

The   ‘Independent   ADAM’   and   ‘Joint   ADAM   (α   |   β)’   models   included adaptation and 

anticipation mechanisms. Anticipation is reflected in the prediction/tracking parameter m, 

which ranges from 0 to 1. This parameter is based on the assumption that humans engage in 

predictive and tracking behavior at the same time (Pecenka & Keller, 2011). The closer m is 

to 1, the more prediction takes place. When m = 0.5 the model relies equal on prediction and 

tracking behavior to determine the timing of the next tone. An m smaller than 0.5 indicates 

that the model relies more on tracking than prediction. 

Adaptation   in   the   ‘Independent   ADAM’   model   is   restricted   to   phase   correction.   As   can   be  

seen in Figure 3.6B,   negative   phase   correction   settings   (α)   resulted   in   high   variability   of  

asynchronies due to drift (Figure 3.6B). The simulation results illustrate that SMS precision 

increased with increases in the degree to which the models relied on prediction [higher m] to 

determine the timing of the next tone (Figure 3.6B).  

Finally,   in   the   ‘Joint   ADAM   (α   |   β)’   models,   adaptation   and   anticipation mechanisms were 

linked   in   a   joint   internal   module   that   implements   an   anticipatory   phase   correction   process   (γ).  

This process uses the output of adaptation and anticipation modules to simulate what the 

asynchrony would be if the planned tap were to be produced, and then corrects for this 

anticipated   error   by   the   proportion   γ.   Simulations   indicated   that   implementing   more  

anticipatory phase correction had a positive effect on SMS precision (Figure 3.6C-D). For the 
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‘Joint   ADAM   (α   |   β)’   models,   Figure   3.6 (C-D) show the effect of m in the anticipation 

module   and   the   error   correction   component   (α   |   β)   in   the   adaptation   module   for   the   mean  

obtained   γ   estimate   (see   below).   Negative   period   correction   (β)   settings   in   the   adaptation  

module had a deteriorating effect on SMS precision, with settings beyond -0.2 resulting in 

large variability (Figure 3.6D).  
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Figure   3.6  Heat-maps  showing  the  SD  of  the  signed  asynchronies  resulting  from  simulations  across  the  parameter  settings  
for  the  ‘Adaptation  Model’  (A),  ‘Independent  ADAM’  model  (B)  ‘Joint  ADAM  (α)’  model  (C),  and  ‘Joint  ADAM  (β)’  model  
(D).   Dark   blue   represents  the  highest  SMS  precision  (low  standard  deviation  of  asynchronies).  Extreme  values  (larger  than  
three  times  the  mean  of  the  medians  of  the  simulated  standard  deviation  of  asynchronies)  were  replaced  by  the  mean  of  the  
median  for  presentation  purposes.  The  black  boxes  in  panel  A  reflect  the  mean  phase  and  period  estimates  for  the  participants   
from  the  behavioral   experiment. 
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3.3.2.2  Parameter estimates 

Model   parameters   for   the   ‘Independent   ADAM’   and   ‘Joint   ADAM   (α   |   β)’   models   were  

estimated from the behavioral data by means of the bGLS-method. Estimates for the 

‘Adaption’   model   were   already   presented   in   paragraph   3.3.1.2 and Figure 3.3. For each 

parameter type, a separate repeated measures ANOVA with pattern (1, 2, 3) as the within 

subject variable was performed.  

The   ANOVAs   on   estimates   from   the   ‘Independent   ADAM’   model   yielded   a   significant   main  

effects   of   pattern   for   α   [F(1.35,21.60) = 78.03, p < 0.001] and m estimates [F(1.32;21.11) = 

69.02,   p   <   0.001].  Pairwise   comparisons   revealed   that   α   and  m estimates for pattern 1 differed 

from estimates for pattern 2 and 3 (all p < 0.001), while pattern 2 and 3 estimates did not 

differ significantly. Specifically, for pattern 1, estimates of m were low (indicating tracking), 

while   α-estimates were high (phase correction). For pattern 2 and 3, when tempo changes are 

bigger, estimates of m were   high   (indicating   prediction)   and   α   estimates   were   negative 

(suggesting correction in opposite direction) (Figure 3.7). 

 

Figure 3.7 Parameter  estimates  based  on  the  ‘Independent  ADAM’  model.  Where  α  reflects  a  phase  correction  parameter,  
while m indicates the prediction/tracking parameter. Error bars represent standard error across participants. 
 

For   the   ‘Joint   ADAM   (α)’   model2, the ANOVAs yielded significant main effects of pattern 

for   all   three  parameters.      (α:   [F(2,32)  =  8.89,   p  =  0.001],   γ:   [F(2,32) = 70.85, p < 0.001], m: 

[F(1.47,   23.15)   =   56.73,   p   <   0.001]).   Pairwise   comparisons   for   α   revealed   that   estimates   for  

pattern   3   differed   from   the   estimates   of   pattern   1   (p   <   0.005).   For   γ,   pairwise   comparisons  

showed that estimates were lower for pattern 1 compared to pattern 2 and 3, and for pattern 2 

compared to pattern 3 (all p < 0.001). Pairwise comparisons for m revealed that estimates for 

pattern 3 were higher compared to the estimates of pattern 1 (p < 0.001). These results 

                                                                 
2 Due to parameter interdependence, it was necessary to restrict the parameter space of α  between  -0.8 and -.1 in order to 
obtain reliable and unbiased estimates. This range was based on the results of Monte-Carlo simulations. 
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indicate that, compared   to   pattern   1,   α   estimates   were   less   negative   for   patterns   3   (less   phase  

correction   in   opposite   direction   in   the   adaptation   module).   Estimates   of   γ   increased   across  

patterns, indicating that the proportion of the asynchrony that was corrected by means of the 

anticipatory phase correction was smaller. Furthermore, for pattern 1 estimates for m were 

low (indicating tracking), while for pattern 2 and 3, when tempo changes are bigger, estimates 

of m were high (indicating prediction) (Figure 3.8). Note that this is consistent with the 

behavioral results for PT-ratios rather than PT-indices. 

 

Figure 3.8 Parameter   estimates   based   on   the  ‘Joint  ADAM  (α)’  model.  Where  γ  reflects  an  anticipatory  phase  correction  
process   in   the   link   module,   α   reflects   the   phase   correction   parameter   of   the   adaptation  module,   while   m indicates the 
prediction/tracking parameter of the anticipation module. Error bars represent standard error across participants. 
 

The   repeated   measures   ANOVA   on   the   three   parameter   estimates   for   the   ‘Joint  ADAM  (β)’  3 

model      yielded   significant   main   effects   of   pattern   for   γ   estimates   [F(2;;32)   =  49.68, p < 0.001] 

and estimates of m [F(2;32) = 65.79, p < 0.001]. Pairwise comparisons revealed that both the 

γ   and  m estimates for pattern 1 differed from estimates for pattern 2 and 3, and that estimates 

for pattern 2 differed from the estimates of pattern 3 (all p < 0.05). These results suggest that 

                                                                 
3 Due to parameter interdependence, it was necessary to restrict the parameter space of  α  between  0 and 1 (based on the 
results of the simulations) in order to obtain reliable and unbiased estimates. Furthermore, the parameter space for m was 
restricted between 0 and 1, which covers complete tracking to complete prediction. 
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the   γ   estimates   increased   (less   phase   correction   [1- γ]   in   the   joint   model)   and   the   estimate   for  

m increased   (more   prediction)   across   patterns.   Estimates   of   β   did   not   show   significant  

difference across the three patterns (Figure 3.9). 

 

Figure 3.9 Parameter   estimates   based   on   the   ‘Joint   ADAM   (β)  model.  Where  γ reflects an anticipatory phase correction 
process   in   the   link   module,   β   reflects   the   period   correction   parameter   of   the   adaptation  module,   while   m indicates the 
prediction/tracking parameter of the anticipation module. Error bars represent standard error across participants. 
 

3.3.2.3  Comparison of the models  

The fit of the models to the behavioral data was assessed by a likelihood estimation 

procedure. Values that are less negative and smaller in absolute magnitude indicate better fit 

(Figure 3.10). Likelihood estimates were entered into a repeated-measures ANOVA with 

pattern (1-2-3)   and   model   (‘Adaptation   Model’,   ‘Independent   ADAM’   ‘Joint   ADAM   (α)’,  

and  ‘Joint   ADAM  (β)’)   as  within   subject   variables.    

This ANOVA revealed significant main effects of model [F(1.01;16.09) = 211.65, p < 0.001] 

and pattern [F(2;32) = 22.35, p < 0.001], as well as a significant interaction between both 

variables [F(1.88;30.05) = 13.73, p < 0.001]. The larger, more negative likelihood estimates 

observed for adaptation model indicated that its fit was poor compared to the other models, 

especially for pattern 2 and 3 (Figure 3.10A). The fit of the three models that included 

adaptation and anticipation mechanisms was further investigated with a separate repeated-
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measures   ANOVA   per   pattern,   with   model   (‘Independent   ADAM’,   ‘Joint   ADAM   (α)’,   and  

‘Joint   ADAM   (β)’)   as   the   only   within   subject   variable.   For   pattern   1,   no   significant   difference 

between the three models was found [F(1.44;23.14) = 2.29, p > 0.05]. For pattern 2 and 3 a 

significant effect of model was found [pattern 2: F(1.18;18.80) = 27.49, p < 0.001; pattern 3: 

F(1.26;20.16) = 87.38, p < 0.001]. Pairwise comparisons for both   patterns   the   ‘Joint  ADAM  

(β)’   model   had   a   better   fit   compared   to   the   ‘Independent   ADAM’   and   ‘Joint   ADAM   (α)’  

models   (all   p   <   0.001).   Furthermore   the   ‘Joint   ADAM   (α)’   model   was   found   to  have   a   better  

fit   compared   to   the   ‘Independent   ADAM’   model   (all   p   < 0.001). These results indicate that 

for pattern 2 and 3, in which the tempo changes are relatively large, the models in which 

adaptation and anticipation mechanisms are linked via a joint internal module fit the 

behavioral   data   better   than   the   ‘Independent   ADAM’   model.   Overall,   the   ‘Joint   ADAM   (β)’  

model gives the best fit to the behavioral data (Figure 3.10B). 

 

Figure 3.10 Likelihood estimates for the four models for each pattern (A); detail of likelihood estimates for the three models 
including both adaptation and anticipation (B). Error bars represent standard error across participants. 
 

3.4  DISCUSSION 

The aim of the current study was to test the contribution of temporal adaptation and 

anticipation mechanisms to sensorimotor synchronization with tempo-changing sequences. To 

this end, we conducted a behavioral finger tapping experiment along with simulations based 

on ADAM, a model of error correction (adaptation) and predictive processes (anticipation) 

developed by van der Steen and Keller (2013). The investigation centered on three 

continuously tempo changing stimulus sequences that contained global perturbations 

representative of scenarios found in expressively timed music. The sequences differed in the 

rate with which the tempo changed and the number of turning points. Results of the 

behavioral experiment showed that participants were capable of synchronizing their finger 
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taps with the sequences with a high level of SMS accuracy and precision, although 

synchronization was less accurate and precise in pattern 3, which contained the most turning 

points and during which the tempo changes from interval to interval were the largest.  

Four versions of ADAM were tested; a model that only implemented adaptation, one with 

independent contributions of adaptation and anticipation, and two models in which adaptation 

and anticipation were linked in a joint internal model. Applying the ‘Adaptation model’ 

(Schulze et al. 2005; Repp and Keller, 2008) yielded phase correction estimates that were 

larger than 1. This suggests over-correction in the sense that participants adjusted the timing 

of their taps by a larger amount than the asynchrony. If the timekeeper controlling tap timing 

does not adapt to a stimulus sequence that speeds up or slows down, the size of the tempo 

change is also reflected in the asynchrony (Repp, 2005). Over-correction can thus be 

beneficial when dealing with continuous tempo changes. Theoretically it has been argued that 

period correction is relevant when dealing with tempo changes, as changing the interval of the 

timekeeper allows adaptation to the tempo change (Repp, 2001b). In the standard adaptation 

model the timekeeper is adjusted every cycle (Schulze et al. 2005; Repp and Keller, 2008). 

Simulations produced this positive effect of period correction on SMS, but period correction 

estimates   from   participants’   data   were   low   and   decreased   when   the   rate of tempo change was 

large and turning points were frequent. The discrepancy between what the model predicts and 

what participants seem to do is also reflected in the difference of the standard deviation of the 

asynchrony.   Participants’   precision   decreased when the stimulus sequence contained larger 

tempo changes and more turning points, but not by as much as the simulations suggested. The 

relatively small amount of applied period correction and the high amount of phase correction 

might hint at a different role of phase and period in relation to synchronization with 

continuous tempo-changing sequences. An option suggested previously is stepwise or 

intermittent adaptation to the tempo change, in which period correction only updates the 

timekeeper if the tempo change exceeds a certain threshold and in the meantime relies on 

phase correction (Michon 1967; Madison and Merker, 2005; Repp, 2005). This would suggest 

a large contribution of phase correction and a small but crucial role of period correction when 

maintaining synchronization with continuous tempo-changing stimulus sequences. 

Participants were found to anticipate the tempo changes for all three patterns. However, PT-

ratio’s   increased   with   increasing   degree   of   tempo   change   between   successive   intervals,  

indicating that there was a tendency to engage in more predictive behavior when differences 

in tempo were more salient. This is in line with previous research showing that, when tempo 

changes are detectible, humans tend to predict the tempo changes (e.g., Rankin et al., 2009, 
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Pecenka and Keller, 2011). The high correlations between the PT-ratios and the PT-indices 

suggest that both measures generally reflect the tendency to predict tempo changes in a 

similar way. However, the PT-ratios turned out to behave more consistently with the m 

parameter controlling prediction and/or tracking behavior in the anticipation component of the 

models. This might be seen as a reason to favor the PT-ratios over PT-indices, or at least to 

consider both measures, when describing anticipatory behavior in human SMS across 

different types of tempo-changing sequences. 

In the versions of ADAM that combined adaptation and anticipation mechanisms, we 

introduced m as a prediction/tracking parameter. This parameter regulates the balance 

between predictive behavior, implemented as an extrapolation process based on two most 

recent IOIs, and tracking behavior, implemented as a copy of the previous interval. Although 

in our models anticipation is not used explicitly to set the timekeeper, m has some overlap 

with the concept of anticipatory period correction (Repp, 2006). According to Repp (2006), 

expectations and active prediction of learned timing are employed to adjust the timekeeper 

period. On this view, anticipatory period correction improves with exposure to a specific 

pattern due to learning, which results in smaller asynchronies and thus better synchronization.    

The   negative   α   estimates   for   the   ‘Independent   ADAM’   and   especially   the   ‘Joint   ADAM   (α)’  

model   were   unexpected   and   remain   puzzling.   For   the   ‘Joint   ADAM   (α)’   model,   estimates   had  

to be restricted (according to Monte-Carlo simulations) to a negative range in order to obtain 

reliable estimates with the bGLS-method. According to Vorberg and Schulze (2002), phase 

correction in a range between 0 and 2 facilitates the stabilization of asynchronies. Negative 

phase correction suggests a local correction in a direction opposite to the asynchrony, which 

normally does not contribute to successful SMS. However, anticipation mechanisms tend to 

lead to predictions that over- and undershoot at turning points. During synchronization with 

tempo changing sequences that contain turning points, implementing corrections in the 

opposite direction could thus have a positive effect on SMS because it correct for this 

imprecision in predictions.   The   slightly   negative   α   estimates   for   the   ‘Independent   ADAM’  

model, in conjunction with m estimates that indicate prediction, might thus in fact have been 

beneficial. 

Adding timekeeper and motor noise to the simulations influences the variability of the 

simulated asynchrony and the fit of the models to the data. The current simulations included 

motor and timekeeper noise, for which values were drawn from the same distributions for all 

four models. There are, nevertheless, some noise-related issues that our simulations did not 

address. First, we did not take into account that timekeeper variance increases with interval 
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length (Wing, 1980). Such dependence could have led to the scaling of SMS precision as 

intervals became progressively longer or shorter in each pattern. Second, we did not include 

perceptual noise, which affects the perceived time of occurrence of the stimulus, the 

participants’   own   taps,   and   therefore   the   perceived   asynchrony   (Repp   and   Keller,   2004).  

Perceptual variability also increases with interval length (Friberg and Sundberg, 1995; Repp, 

2006). Notwithstanding these issues, it is still possible to determine model fits with respect to 

the behavioral data since we applied noise in a similar way for all four models.  

In terms of fit, the adaptation model turned out to be inferior to the models that combined 

adaptation   and   anticipation   for   the   types   of   tempo   change   that   we   investigated.   The   ‘Joint  

ADAM   (β)   model   was   found   to   have   the   best   fit,   but   due   to   parameter   interdependence   for  

both joint models, the parameter space needed to be restricted in order to be able to obtain 

reliable   estimates   [especially   for   pattern   1].   For   the   ‘Joint   ADAM   (β)   model,   the   m estimate 

for pattern 1 was set to zero (complete tracking) in 63% of the trials, indicating that the m 

estimate reached the restriction. For pattern 2 and 3, this happened in 3% and 1.5% of the 

trials, respectively. This suggests that the joint model had some difficulties when dealing with 

relatively small tempo changes (for pattern 1, where the range between two successive IOIs 

was only 1 - 14 ms) and might suggest that prediction then does not play a big role. 

Furthermore,   for   both   ‘Joint   ADAM  (α   |   β)’   and   the   ‘Independent  ADAM’  model,  m estimates 

close to zero were found for pattern 1. This implied tracking behavior instead of the 

prediction of the tempo changes suggested by the PT-ratios computed from the behavioral 

data. It might be the case that adaptation and anticipation mechanisms are linked differently, 

and that adaptation plays a bigger role, when dealing with small tempo changes than when 

tempo changes are larger and easier to detect. Previous studies have shown that tempo 

changes are not fully predicted if these changes are small enough to be subliminal (Thaut et 

al., 1998b; Madison and Merker 2005). Nevertheless, synchronization can be established in 

these situations most likely as a result of adaptation mechanisms.   

The anticipation module of ADAM contains a temporal extrapolation process that generates 

predictions based on the preceding intervals in the pacing sequence. The number of intervals 

used influences the predictions and can be controlled in the anticipation module by varying 

the parameter k (van der Steen and Keller, 2013). In the current simulations, k was set to 2, 

indicating that the predictions were an extrapolation based on the previous two intervals. 

Although using more intervals would make predictions more robust against outliers, this also 

means it takes longer before a change in direction of the tempo change (i.e., turning point) is 

detected and processed. Since the current patterns followed a clear sigmoidal function, basing 
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predictions on just two intervals led to the most accurate results. If less predictable or more 

variable human sequences were to be used, then a higher value of k might be necessary for 

optimal anticipation.  

Related to the previous point is the current usage of a first-order linear extrapolation process. 

This process detects and works with the direction and magnitude of a tempo change in such a 

way that an accelerating sequence (with intervals that decrease in duration) will result in a 

prediction that the next event will occur after an even shorter interval, and vice versa for 

tempo deceleration. It has been demonstrated that recognizing and predicting such tempo 

changes is beneficial during SMS (Pecenka & Keller, 2011; Pecenka et al., 2013). But it is not 

said that humans implement predictions per definition following a first order linear 

extrapolation process. More complex prediction processes —such as higher-order fitting and 

long-range correlations, or, when dealing with music, processes that take into account 

hierarchically nested timescales associated with metrical structure— might be applied during 

synchronization (e.g., Drake et al., 2000; Rankin et al., 2009). 

Overall, we conclude that adaptation mechanisms alone cannot account for all aspects of SMS 

behavior. Both adaptation and anticipation mechanisms contribute to successful SMS, 

specifically for SMS with tempo changes such as those found in expressively performed 

music. How the adaptation and anticipation mechanisms are combined remains a question, but 

our results are consistent with the proposal that joint internal models that evaluate the degree 

of discrepancy between adaptation and anticipation, and allow any error to be compensated 

for before it occurs, play a role in linking these mechanism. ADAM has proven to be a useful 

framework to investigate the role of adaptation and anticipation during SMS, and how these 

mechanisms might interact. It would be fruitful in future research with ADAM to explore 

different types of linkage between the adaptation and anticipation modules (e.g., by include 

phase and period correction in a joint model), focus on the role of the different noise 

components (e.g., perceptual noise) involved with SMS, or include other (visual) 

synchronization cues associated with body movements and hierarchical temporal structures, 

such as those occurring in music performance. 
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3.5 EXPERIMENTAL PROCEDURE 

3.5.1 Experiment 

3.5.1.1  Participants 

Twenty amateur musicians (11 female / 9 male, age: 25.83 ± 4.25 years, musical experience: 

18.15 ± 3.98 years) participated in this study. None of the participants reported any 

neurological or psychiatric disorders. Participants received written descriptions of all 

procedures and signed an informed consent form before the experiment started. Data from 

three participants were excluded from the final sample (N = 17) due to technical problems (n 

= 2) and failure to reach criterion performance (n = 1). 

 

3.5.1.2  Materials 

Three different patterns served as stimulus sequences (Figure 3.2). All patterns started with a 

section in which the tempo was stable, consisting of 16 tones (woodblock, 25 ms duration) 

with IOIs of 600 ms. This section was included in order to allow synchrony to be established 

between   the   stimulus   sequence   and   the   participants’   taps.   The   IOIs   of   the   following   48  

sequence tones gradually changed between 600 ms and 400 ms. The tempo changes were 

designed to resemble musical accelerando and ritardando and followed a sigmoidal function4 

(cf. Schulze et al., 2005). The three patterns differed in the number of steps (𝑁 ) required 

to cover the 200 ms change in IOI. Since the tempo-changing section of all patterns contained 

the same number of beats (48), the number of steps used to cover the change meant that the 

three patterns differed in the number of cycles that contained this tempo change. An 

accelerando phase followed by a successive ritardando phase constituted one cycle of tempo 

change from an IOI of 400 ms to 600 ms and back to 400 ms (Figure 3.2).  

In Pattern 1, the accelerando and ritardando phases of the tempo change each spanned 24 

steps. This led to one cycle per trial that changed tempo smoothly and slowly, with the 

difference between successive IOIs being small (range: 1 - 14 ms). Pattern 2 had 12 steps for 

each accelerando and ritardando phase, and hence contained two cycles (each of 24 steps) of 

speeding up and slowing down (the difference between successive IOIs ranged between 4 and 
                                                                 
4 The sigmoidal function was defined by: 

𝐼𝑂𝐼 =    𝑡𝑒𝑚𝑝𝑜 + 𝑡𝑒𝑚𝑝𝑜 −  𝑡𝑒𝑚𝑝𝑜   ∗   𝑓𝑟𝑎𝑐  eq. 1 

𝑓𝑟𝑎𝑐 =    1 +   cos      

  
𝜋      eq. 2 

For the accelerando part of each cycle 𝑡𝑒𝑚𝑝𝑜   was set to 600 and 𝑡𝑒𝑚𝑝𝑜  was 400. For the ritardando 
part of each cycle 𝑡𝑒𝑚𝑝𝑜  was set to 600 and 𝑡𝑒𝑚𝑝𝑜  was 400. 
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28 ms). In Pattern 3, there were 8 steps for each accelerando and ritardando phase, leading to 

three cycles (consisting of 16 steps each) of rapid and large tempo changes (successive IOI 

differences ranged from 10 to 44 ms) (Figure 3.2).  

 

3.5.1.3  Procedure 

The current dataset was obtained as part of a large-scale   experiment   examining   participant’s  

abilities to learn to tap the three different patterns of tempo change. In the experiment 

participants tapped the three patterns under three conditions that were presented in a fixed 

order.   First,   in   a   ‘Melody’   condition,   participants   tapped   along   with   the   melody   line   of   a  Bach  

chorale presented in a piano timbre5. The tempo of melody line was set to follow the tempo-

changing pattern as described above (Figure 3.2).   Second,   in   a   ‘Pacing   signal’   condition,  

participants synchronized their taps with the tempo-changing stimulus signals that contained a 

woodblock   tone   for   each   note   of   the   chorale.   Third,   in   a   ‘Free’   condition,   participants   tapped  

the tempo-changing pattern by themselves in a self-paced manner without an auditory 

synchronization aid. All conditions started with 4 initiation tones indicating the initial tempo 

(600 ms IOI). During all conditions the musical notation of the chorale including the tempo 

changes was displayed on a computer monitor in front of to the participants. The three 

patterns were presented in a randomized order across participants. Each condition of each 

pattern started with a practice trial, followed by 15 experimental trials, each lasting 35 

seconds.  

Participants were seated in a quiet laboratory room and were instructed to tap the tempo 

changing sequences as accurately and precisely as possible. The experiment was run in 

Presentation (Neurobehavioral Systems, www.neurobs.com) on a Windows computer. 

Participants’   timing   was   registered   using   a   custom   built   tapping   device   that   was   connected   to  

the computer via a serial connection. Auditory information was presented over headphones. 

Participants started each trial by pressing a key on a keyboard and could therefore pace their 

progression through the experiment. Short breaks between patterns were allowed. In total the 

experiment took 1.5-2 hours. The current article is based on the synchronized tapping data 

obtained   in   the  ‘Pacing   signal’   condition. 

  

                                                                 
5 Half, dotted, and 8th notes in the chorale were transformed, using Finale® software, into quarter notes to end up with 64 
events of equal length. 
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3.5.1.4  Data-analyses 

The onset times of taps were aligned offline to the closest tones of the target sequence within 

a ± 200 ms asynchrony window6. 2.6% of the recorded taps fell outside this window and were 

excluded from the analyses. Data analyses focused on the tempo-changing phase of the trials 

(grey dashed box Figure 3.2), the stable phase was used to establish synchrony between the 

stimulus   sequence   and   the   participants’   taps   [mean / standard deviation signed asynchrony 

(mean±sd): -18.4±16.1 / 19.1±3.5 ms (pattern 1), -17.9±16.1 / 19.3±3.8 ms (pattern 2); -

24.3±16.1 / 19.0±3.3 ms (pattern 3)]. The mean signed asynchrony was calculated as an 

inverse measure of SMS accuracy, while the standard deviation of the signed asynchronies 

was used as an inverse measure of SMS precision. SMS accuracy and SMS precision 

measures were calculated for each trial and then averaged across repetitions of each pattern 

for each participant.  

Before measures related to the hypothesized underlying adaptation and anticipation 

mechanisms were calculated, linear interpolation was used to fill missing asynchronies, 

unusually large ITIs, and missing ITIs resulting from skipped taps. This affected less than 1% 

of data. To investigate adaptation while synchronizing with tempo-changing sequences, the 

amount of phase and period correction implemented by the participant was estimated by 

means of the bGLS method (cf., Jacoby and Repp, 2012 see also Jacoby et al. submitted for 

further analysis of the method) based on the adaptation model (Schulze et al. (2005), Repp & 

Keller, 2008). In this model, both correction mechanisms depend on the preceding 

asynchrony. The bGLS method used the interpolated inter-tap intervals and corresponding 

asynchronies as input (A detailed description of the method can be found in Appendix I). 

Anticipation during synchronization with tempo changing sequences was quantified using two 

methods. The first was based on the lag-1 and lag-0 cross-correlations between the inter-

stimulus and inter-tap intervals and the prediction/tracking ratio. The lag-0 cross-correlation 

between the IOIs and ITIs is high to the extent that participants anticipate the tempo changes, 

while the lag-1 cross-correlation   is   high   to   the   extent   that   participants   copy,   or   ‘track’,   the  

tempo changes. This relationship reflected in the PT-ratio (lag-0/lag-1 cross-correlation) used 

by Pecenka and Keller (2009;;   2011).   A   ratio   bigger   than   1   reflects   the   participant’s   tendency  

to predict the tempo change, while ratio smaller than 1 indicates that the participant tend to 

copy (track) the tempo changes. It has been shown that autocorrelations of time series might 

influence cross-correlation estimates (Dean and Bailes, 2010). Therefore, we also investigated 

                                                                 
6 There was a transmission delay of 10 ms between the tapping device and the registration software, which was subtracted 
from the recorded tap times before data analysis 
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the anticipation mechanisms by means of alternative PT-indices (Mills et al., submitted). PT-

indices are based on the difference between the coefficients of two autoregressive components 

of the autoregressive model (Dean and Bailes, 2010; Launay et al., 2013). Prior to applying 

the autoregressive model, IOI and ITI time series were pre-whitened. Pre-whitening consists 

of identifying the autoregressive lag structure of one series, and calculating residuals after the 

influence of the autoregressive structure has been modeled (Dean and Bailes, 2010). The 

autoregressive model was then used to calculate the coefficients representing the strength of 

the relationship between IOIs and ITIs using pre-whitened IOI series at lag-0 and lag-1 as 

predictors for the pre-whitened ITI series. In a final step, the lag-1 coefficient was subtracted 

from the lag-0 coefficient, resulting in an index with values greater than 0 reflecting 

anticipation of the tempo changes in the patterns and values smaller than 0 reflecting tracking 

behavior (Mills et al., submitted).  

The data were processed with MATLAB (The Mathworks Inc, MA, USA R 2011a). 

Statistical analyses were performed with SPSS (IBM SPSS Statistics 21). In addition to 

descriptive statistics, repeated measures ANOVAs were conducted to test for effects of the 

factors (e.g., pattern). If the assumption of sphericity was violated, the Greenhouse–Geisser 

correction was applied. 

 

3.5.2 Simulations 

To investigate the effect of adaptation and anticipation mechanisms on SMS precision, we ran 

simulations with ADAM in which parameter settings were systematically varied. We focused 

on SMS precision because in a previous study adaptation mechanisms were found to 

contribute more to SMS accuracy, while both adaptation and anticipation mechanisms 

predicted SMS precision (Mills et al., submitted). Possible links between the adaption and 

anticipation mechanisms were explored by creating four different versions of ADAM. The 

‘Adaptation   Model’   only   implements   adaptation,   in   the   ‘Independent   ADAM’   model   adaption  

and   anticipation   mechanisms   contribute   independently   of   each   other   to   SMS,   in   the   ‘Joint 

ADAM   (α)’   and   ‘Joint   ADAM   (β)’   models   adaptation   and   anticipation   mechanisms   were  

linked in a joint internal model. Simulations were run using MATLAB (The Mathworks Inc, 

MA, USA R 2011a). 
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3.5.2.1  Background 

ADAM comprises an adaptation and anticipation module (van der Steen and Keller, 2013). 

The adaptation module of ADAM implements phase and period correction following the 

equations7: 

 

𝑡 =   𝑡 +   𝑇 − (𝛼 + 𝛽) ∗ 𝑎𝑠𝑦𝑛 + 𝑇𝐾 + 𝑀 − 𝑀      (1) 

𝑇 = 𝑇 −𝛽 ∗ 𝑎𝑠𝑦𝑛          (2) 

 

The most recent asynchrony (𝑎𝑠𝑦𝑛 ) is multiplied by the sum of the phase (𝛼) and period (𝛽) 

correction parameters and the result is added to the current timekeeper period (𝑇 ) (eq. 1). The 

timing of the next tap (𝑡 ) by ADAM is then determined by adding this to the timing of the 

most recent event (𝑡 ). Timekeeper (𝑇𝐾) and motor noise (𝑀) is added so that ADAM 

produces human-like asynchronies (Repp and Keller, 2008). The current timekeeper period is 

affected by the period correction parameter (𝛽) (eq. 2). The next timekeeper period (𝑇 ) is 

given by the last asynchrony (𝑎𝑠𝑦𝑛 ) multiplied by the period correction parameter (𝛽) added 

to the current timekeeper (𝑇 ). 

The anticipation module of ADAM bases the timing of the next tap on a temporal 

extrapolation process that generates a prediction about the timing of the next tone based on 

the most recent series of IOIs that ADAM receives as input. The predicted time of the next 

tone (𝑡𝑜𝑛𝑒 ) is based on Equation 38, where Equation 49 is used to determine the predicted 

interval (𝐼𝑛𝑡 ): 

 

                                                                 
7 The difference in sign compared to the equations in van der Steen & Keller (2013) is because in this case ADAM  takes the 
role of participant while in the other paper ADAM presents the pacing tones. 
8 Again  since  the  perspective  of  ADAM  is  this  time  from  the  participant’s  point  of  view  the  equations  are  slightly  modified.  
9 Following the method of least squares, the line of the form 𝐼𝑛𝑡 = 𝑎 +𝑏 ∙ 𝑥 has the smallest sum of squared errors if  

𝑎 ∙ 𝑘 + 𝑏 ∙ 𝑥 =    𝐼𝑛𝑡  

and 

𝑎 ∙ 𝑥 + 𝑏 ∙   (𝑥 ) =    (𝑥 ∙ 𝐼𝑛𝑡 )  . 

 
The smallest sum of squared errors is obtained if  

𝑏 =   
𝑘 ∙ ∑ 𝑥 ∙ 𝐼𝑛𝑡 −  ∑ 𝑥    ∙   ∑ 𝐼𝑛𝑡

𝑘 ∙  ∑ 𝑥 −   ∑ 𝑥 ∙   ∑ 𝑥
 

and 

𝑎 =   
1
𝑘
∙   𝐼𝑛𝑡    −  

1
𝑘
∙ 𝑏 ∙ 𝑥   . 
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  𝑡𝑜𝑛𝑒 =   𝑡𝑜𝑛𝑒 +   𝐼𝑛𝑡          (3) 

𝐼𝑛𝑡 = 𝑎 + 𝑏 ∗ (𝑛 + 1)         (4) 

𝑡 =   𝑡𝑜𝑛𝑒 −   𝛼 ∗ 𝑎𝑠𝑦𝑛 + 𝑇𝐾 + 𝑀 − 𝑀      (5) 

 

In equation 4, 𝑎 represents the intercept and 𝑏 stands for the slope of the best fitting line. Both 

parameters 𝑎 and 𝑏 depend on the number in intervals (k) used to determine the best-fitting 

straight line. The onset time of the next tap is set to match the predicted tone onset time. Like 

in the adaptation module the tap is subject to noise (eq. 5).  

 

3.5.2.2  Models 

In   the   ‘Adaptation   Model’,   only   the   adaptation   module   of   ADAM   implementing   phase   and  

period correction is active (eq. 1-2).  

In the ‘Independent   ADAM’   model,   the adaptation and anticipation modules are both present 

but they act independently (Figure 3.11). In this model, the interval of the tap is set by means 

of a prediction with the anticipation module. Because predictions are not necessarily correct 

and the system is subject to noise, a local correction is applied to simulate the process of 

counteracting unintentional variability. Again it is taken into account that humans can engage 

in predictive (eq. 6-8) and tracking behavior at the same time (eq. 9). The interval between the 

current and next tone is based on an extrapolation process (as described above) based on two 

most recent IOIs (k = 2) (eq. 7). The anticipation module is used to determine the timing of 

the next tap but this tap is also subjected to phase correction (eq. 10). 

In the   ‘Joint   ADAM   (α)’   and   ‘Joint   ADAM   (β)’   models,   again   both   the   adaptation   and   the  

anticipation modules of ADAM were active (Figure 3.11).   Within   a   ‘Joint   ADAM’   model   the  

adaptation module simulates the next tap (𝑡′ ) (eq. 11-12).   In   the   ‘Joint   ADAM   (α)’   model  

this   tap   is   only   subjected   to   phase   correction   (α),   while   in   the   ‘Joint   ADAM   (β)’   model,   this  

tap   is   only   subjected   to   period   correction   (β)   (Eq.   11-12). The anticipation module predicts 

when the next tone (𝑡𝑜𝑛𝑒′ ) will occur (eq. 15). This next tone is a combination of 

predictive behavior, i.e., extrapolation based on two most recent IOIs (k = 2) (eq. 13), and 

tracking behavior, which copies of the previous interval (eq. 14). Predictive and tracking 

processes are regulated by the prediction/tracking parameter (m) (eq. 15). Theoretically, this 

parameter ranges from 0 to 1, with m = 0 indicating that the model fully relied on tracking, 

while with an m of 1 the next tone is purely based on the prediction. The link of the adaptation 

and anticipation module simulates what the asynchrony (asyn′ ) between the planned next 
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tap (𝑡′ ) and the predicted next tone (𝑡𝑜𝑛𝑒′ ) would be (eq. 16). This simulated 

asynchrony is then minimized by means of an anticipatory phase correction process (𝛾), that 

influences occurrence of the next tap  (𝑡 ) (eq. 17). The appropriate motor command is then 

selected to execute this next tap(𝑡 ).      In   both   ‘Joint   ADAM’   models   potential   errors   are  

thus predicted and corrected before they could occur. The adaptation and anticipation modules 

are subjected to timekeeper noise (TK), while motor noise (M) affects the next tap in the link 

module of the joint model.  

 

 
Figure 3.11 Equations describing the ‘Independent  ADAM’  and  ‘Joint  ADAM  (α  |  β)’  models. α  =  phase  correction,  β = 
period correction, 𝛾 = anticipatory phase correction, m = prediction/tracking parameter. See text for explanation.  
 

3.5.2.3  Evaluation of the models 

Input values for the simulations were the onset times that correspond to three different tempo-

changing patterns. For each pattern and parameter setting combination, 100 trials are 

simulated in MATLAB (The Mathworks Inc, MA, USA R 2011a). Timekeeper noise was 

sampled from a normal distribution, while motor noise was drawn from a gamma distribution 

(Repp and Keller, 2008). The standard deviation of asynchronies was taken as a measure of a 

SMS precision in simulated data. Asynchronies were computed as the difference between the 

onset times of simulated tones in the tempo-changing pattern and the simulated tap times, and 

were, by convention, negative if the simulated tap preceded the tone onset time. Parameter 
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estimates were obtained by means of the bGLS method (Repp et al., 2012; Jacoby et al., 2013; 

Jacoby et al. submitted). The method is based on re-writing each model in a matrix notation. 

Based on this notation a solution to a generalized regression problem is found, with certain 

constraints imposed on the parameter spaces (Appendix I). Furthermore, we used an adjusted 

asynchrony that is the asynchrony minus the mean asynchrony. Due to parameter 

interdependence in the joint models it was necessary to restrict the parameter space in order to 

obtain reliable and   unbiased   estimates.   For   the   ‘Joint   ADAM   (α)’   model,   α values were 

restricted to the range -0.8< 𝛼 < -0.1.For   the   ‘Joint  ADAM  (β)’   both  β   and  m were restricted 

(0 < 𝛽,𝑚 < 1, see Appendix I). The fit of the model is determined by the likelihood estimate. 

The likelihood of the model is related to the generalized sum of squares and defined as 

LL=log2(p(data|model)), where p is the probability. A less negative and smaller in absolute 

value indicated a better fit between the behavioral data and the model. When calculating the 

likelihood, the same data and number of estimated parameters were included for all models. 

Therefore, for both joint models, the motor noise parameter was set to zero. 

 

3.6 ACKNOWLEDGMENTS 

We thank Felix Haiduk, Kerstin Traeger, and Maria Bader for their help preparing and 

running the behavioral experiment. We thank Twan Dollevoet for his help with re-formulating 

the equations for the bGLS method and his comments on an earlier version of the manuscript.  

This work was supported by funding from the European Community's Seventh Framework 

Programme under the EBRAMUS project - grant agreement n° 238157. The funders had no 

role in study design, data collection and analysis, decision to publish, or preparation of the 

manuscript. 

 

3.7 REFERENCES 

Dean, R.T., Bailes, F., 2010. Time series analysis as a method to examine acoustical 

influences on real-time perception of  music. Empir. Musicol. Rev. 5, 152-175. 

Drake, C., Penel, A., Bigand, E., 2000. Tapping in time with mechanically and expressively 

performed music. Music Percept. 18, 1-23. 

Friberg, A., Sundberg, J., 1995. Time discrimination in a monotonic, isochronous sequence. J. 

Acoust. Soc. Am. 98, 2524-2531. 

Hary, D., Moore, G.P., 1987. Synchronizing human movement with an external clock source. 

Biol. Cybern. 56, 305-311. 



90 
 

Jacoby, N., Repp, B.H., 2012. A general linear framework for the comparison and evaluation 

of models of sensorimotor synchronization. Biol. Cybern. 106, 135-154. 

Jacoby, N., Keller, P.E., Repp, B.H., Ahissar, M., Tishby N., (submitted). Parameter 

estimation of linear sensorimotor synchronization models: phase correction, period 

correction and ensemble synchronization. 

Keller, P.E., 2008. Joint action in music performance, in: Morganti, F., Carassa, A., Riva, G. 

(Eds.), Enacting intersubjectivity: a cognitive and social perspective to the study of 

interactions. IOS Press, Amsterdam, the Netherlands, pp. 205-221.  

Large, E.W., Fink, P., Kelso, J.A.S., 2002. Tracking simple and complex sequences. Psychol. 

Res. 66, 3-17. 

Launay, J., Dean, R.T., Bailes, F., 2013. Evidence for multiple strategies in off-beat tapping 

with anisochronous stimuli. Psychol. Res. doi: 10.1007/s00426-013-0513-9 [Epub 

ahead of print]. 

Madison, G., Merker, B., 2005. Timing of action during and after synchronization with 

linearly changing intervals. Music Percept. 22, 441–459. 

Mates, J., 1994a. A model of synchronization of motor acts to a stimulus sequence: I. Timing 

and error corrections. Biol. Cybern. 70, 463-473. 

Mates, J., 1994b. A model of synchronization of motor acts to a stimulus sequence: II. 

Stability analysis, error estimation and simulations. Biol. Cybern. 70, 475-484. 

Michon, J.A., 1967. Timing in temporal tracking. Van Gorcum, Assen, the Netherlands. 

Mills, P.F., Van der Steen, M.C., Schultz, B.G., Keller, P.E. (submitted). The relationship 

between temporal anticipation and adaptation during sensorimotor synchronization. 

Palmer, C. (1997). Music performance. Annu. Rev. Psychol. 48, 155-138. 

Pecenka, N., Keller, P.E., 2009. Auditory pitch imagery and its relationship to musical 

synchronization. Ann. NY. Acad. Sci. 1169, 282-286. 

Pecenka, N., Keller, P.E., 2011. The role of temporal prediction abilities in interpersonal 

sensorimotor synchronization. Exp. Brain Res. 211, 505-515. 

Pecenka, N., Engel, A., Keller, P.E., 2013. Neural correlates of auditory temporal predictions 

during sensorimotor synchronization. Front. Hum. Neurosci. 7:380. doi: 

10.3389/fnhum.2013.00380 

Rankin, S.K., Large, E.W., Fink, P.W., 2009. Fractal tempo fluctuation and pulse prediction. 

Music Percept. 26, 401-413. 



91 
 

Repp,   B.H.,   1998.   A   microcosm   of   musical   expression.   I.   Quantitative   analysis   of   pianists’  

timing in the initial measures of Chopin’s   Etude   in   E   major.   J.   Acoust.   Soc.   Am.   104,  

1085-1100. 

Repp, B.H., 2001a. Phase correction, phase resetting, and phase shifts after subliminal timing 

perturbations in sensorimotor synchronization. J. Exp. Psychol. Hum. Percept. Perform. 

27, 600-621. 

Repp, B.H., 2001b. Processes underlying adaptation to tempo changes in sensorimotor 

synchronization. Hum. Movement Sci. 20, 277-312. 

Repp, B.H., 2002a. The embodiment of musical structure: Effects of musical context on 

sensorimotor synchronization with complex timing patterns, in: Prinz, W., Hommel, B. 

(Eds.), Common mechanisms in perception and action: Attention and Performance XIX. 

Oxford University Press, Oxford, U.K., pp. 245-265. 

Repp, B.H., 2002b.  Automaticity and voluntary control of phase correction following event 

onset shifts in sensorimotor synchronization. J. Exp. Psychol. Hum. Percept. Perform. 

28, 410-430. 

Repp, B.H., 2005. Sensorimotor synchronization: A review of the tapping literature. Psychon. 

B. Rev. 12, 969-992. 

Repp, B. H., 2006. Musical synchronization, in: Altenmüller, E., Wiesendanger, M., 

Kesselring, J. (Eds.), Music, motor control, and the brain. Oxford University Press, 

Oxford, UK, pp. 55–76. 

Repp, B.H., 2008. Metrical subdivision results in subjective slowing of the beat. Music 

Percept. 26, 19-39. 

Repp, B.H., Bruttomesso, M., 2009. A filled duration illusion in music: Effects of metrical 

subdivision on the perception and production of beat tempo. Adv. Cogn. Psychol. 5, 

114-134. 

Repp, B. H., Keller, P.E., 2004. Adaptation to tempo changes in sensorimotor 

synchronization: Effects of intention, attention, and awareness. Q. J. Exp. Psychol. 57A, 

499-521. 

Repp, B.H., Keller, P.E., 2008. Sensorimotor synchronization with adaptively timed 

sequences. Hum. Movement Sci. 27, 423-456. 

Repp, B.H., Keller, P.E., Jacoby, N., 2012. Quantifying phase correction in sensorimotor 

synchronization: empirical comparison of three paradigms. Acta Psychol. 139, 281-290. 

Schulze, H.-H., Cordes, A., Vorberg, D., 2005. Keeping synchrony while tempo changes: 

accelerando and ritardando. Music Percept. 22, 461-477. 



92 
 

Schmidt, R.A. 1968. Anticipation and timing in human motor performance. Psychol. Bull. 70,  

631-646. 

Semjen, A., Vorberg, D., Schulze, H.-H., 1998. Getting synchronized with the metronome: 

Comparisons between phase and period correction. Psychol. Res. 61, 44-55. 

Thaut, M.H., Miller, R.A., Schauer, L.M., 1998a. Multiple synchronization strategies in 

rhythmic sensorimotor tasks: phase vs period correction. Biol. Cybern. 79, 241-250. 

Thaut, M.H., Tian, B., Azimi-Sadjadi, 1998b. Rhythmic finger tapping to cosine-wave 

modulated metronome sequences: Evidence of subliminal entrainment. Hum. Mov. Sci. 

17, 839-863. 

Thaut, M.H., Stephan, K.M., Wunderlich, G., Schicks, W., Tellmann, L., Herzog, H., 

McIntosh, G.C., Seitz, R.J., Hömber, V., 2009. Distinct cortico-cerebellar activations in 

rhythmic auditory motor synchronization. Cortex. 45, 44-53. 

Van der Steen, M.C., Keller, P.E., 2013. The Adaptation and Anticipation Model (ADAM) of 

sensorimotor synchronization. Front. Hum. Neurosci. 7:253. doi: 10.3389/fnhum. 

2013.00253 

Vorberg, D., Wing, A., 1996. Modeling variability and dependence in timing, in Heuer, H., 

Keele, S.W. (Eds.), Handbook of perception and action Vol. 2.  Academic Press, 

London, UK, pp. 181-262. 

Vorberg, D., Schulze, H-H., 2002. A two-level timing model for synchronization. J. Math. 

Psychol. 46, 56-87. 

Wing, A.M., 1980. The long and short of timing in response sequences, in: Stelmach, G.E., 

Requin, J. (Eds.), Tutorials in motor behavior. North-Holland, Amsterdam, pp. 469-486. 

Wing, A.M., Kristofferson, A.B., 1973. Response delays and the timing of discrete motor 

responses. Percept. Psychophys. 14, 5-12. 

Wing, A.M., Endo, S., Bradbury, A., Vorberg, D., 2014. Optimal feedback correction in 

string quartet synchronization. J. R. Soc. Interface, 11, 20131125. 

http://dx.doi.org/10.1098/rsif.2013.1125 

Wolpert, D. M., Doya, K., Kawato, M., 2003. A unifying computational framework for motor 

control and social interaction. Philos. T. Roy. Soc. B. 358, 593-602.  

Wolpert, D. M., Kawato, M., 1998. Multiple paired forward and inverse models for motor 

control. Neural Networks. 11, 1317-1329. 

  



93 
 

Appendix I – estimating the model parameters with the bGLS method. 
We   used   the   bGLS  method   to   estimate   the  models’   parameters (Repp et al., 2012; Jacoby et al., 
2013; Jacoby et al. submitted).  The method is based on re-writing the model in matrix notation. 
Based on this notation a generalized regression problem is solved, with certain constraints imposed on 
the parameter space. 
In order to match the notation of Jacoby et al. (submitted) we will introduce slightly different notation 
to that used in the main body of the article. 
We denote by S(n), R(n) the stimulus and response onsets at time n, respectively. We denote by s(n) 
and r(n) the inter-stimulus and inter-response intervals, respectively. We denote by e(n) the 
asynchrony: e(n)=R(n)-S(n). This leads to the following relations: 
 
A1)   𝑡𝑜𝑛𝑒 = 𝑆(𝑛), 
A2) 𝐼𝑂𝐼 =   𝑠(𝑛), 
A3) 𝑡 = R(n), 
A4) 𝐼𝑇𝐼 = 𝑟(𝑛), 
A5) 𝑎𝑠𝑦𝑛 = 𝑒(𝑛). 
 
We denote by z(n) the noise at time n. The assumption is that z has two components: a motor and a 
time keeper variance, similar to the model of Vorberg and Wing (1996). 
 
A6)  𝑧(𝑛) = 𝑇𝐾(𝑛) +𝑀(𝑛)−𝑀(𝑛 − 1), 
 
where 𝑇𝐾(𝑛) and 𝑀(𝑛) are the timekeeper and motor noises with variance 𝜎  and  𝜎 , respectively. 
 
We will focus on the model where the prediction is based on the two recent intervals (k=2). In this 
case it follows that the slope the best fit equals 𝑠(𝑛) − 𝑠(𝑛 − 1). Hence,  
 
A7)  𝐼𝑛𝑡 = 𝑠(𝑛) + 𝑠(𝑛)− 𝑠(𝑛 − 1) = 2 ∗ 𝑠(𝑛) − 𝑠(𝑛 − 1). 
 
In  what  follows  we  rewrite  Joint  ADAM  (α),  Joint  ADAM  (β),  and  Independent  ADAM  as  a  bGLS  
regression model. 
 
Joint  ADAM  (α) 
ADAPTATION module: 
𝑡_𝑎𝑑𝑎𝑝 =  𝑡 +  𝑇 − (𝛼 + β) ∗ 𝑎𝑠𝑦𝑛 + TK1   
𝑇 = 𝑇 − β ∗ 𝑎𝑠𝑦𝑛   
 
We assume [𝛽 = 0], thus 𝑇 =  𝑇 =   𝑇  
 
ANTICIPATION module: 
𝐼𝑂𝐼_𝑝𝑟𝑒𝑑 =  𝐼𝑛𝑡 = 𝑎 + 𝑏 ∗ (𝑛 + 1)  
𝐼𝑂𝐼_𝑡𝑟𝑎𝑐𝑘 =   𝑡𝑜𝑛𝑒 −  𝑡𝑜𝑛𝑒   
𝑡𝑜𝑛𝑒_𝑎𝑛𝑡𝑖 =   𝑡𝑜𝑛𝑒 +  (𝑚 ∗ 𝐼𝑂𝐼_𝑝𝑟𝑒𝑑 +  (1−𝑚) ∗ 𝐼𝑂𝐼_𝑡𝑟𝑎𝑐𝑘 )+ TK2  
  
LINK module: 
asyn = 𝑡_𝑎𝑑𝑎𝑝 −  𝑡𝑜𝑛𝑒_𝑎𝑛𝑡𝑖     
𝑡 =    t − ((1−   𝛾) ∗   asyn )+𝑀  
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Using the new notation and 𝑇 = 𝑇  for all 𝑛,  we write: 
 
ADAPTATION module: 
A8) 𝑡_𝑎𝑑𝑎𝑝 =   𝑅(𝑛) +  𝑇 − α ∗ 𝑒(𝑛) + 𝑇𝐾1(𝑛)  
 
ANTICIPATION module: 
A9) 𝐼𝑂𝐼_𝑝𝑟𝑒𝑑 =  𝐼𝑛𝑡 = 𝑎 + 𝑏 ∗ (𝑛 + 1) = 2𝑠(𝑛) − 𝑠(𝑛 − 1) 
A10)  𝐼𝑂𝐼_𝑡𝑟𝑎𝑐𝑘 =   𝑡𝑜𝑛𝑒 −  𝑡𝑜𝑛𝑒 = 𝑠(𝑛) 

A11)  𝑡𝑜𝑛𝑒_𝑎𝑛𝑡𝑖 =   S(n) +   𝑚 ∗ 2𝑠(𝑛) − 𝑠(𝑛 − 1) +  (1−𝑚) ∗ 𝑠(𝑛) + 𝑇𝐾2(𝑛) 
= 𝑆(𝑛) +  (𝑚 + 1)𝑠(𝑛) − 𝑚∗ 𝑠(𝑛 − 1) + 𝑇𝐾2(𝑛) 

 
LINK module:  
A12) asyn = 𝑡 −  𝑡𝑜𝑛𝑒  

=  [𝑅(𝑛) +  𝑇 − 𝛼 ∗ 𝑒(𝑛) + 𝑇𝐾1(𝑛)] 
        −[𝑆(𝑛) +  (𝑚 +1)𝑠(𝑛) − 𝑚∗ 𝑠(𝑛 − 1) + 𝑇𝐾2(𝑛)]  
=  (1 − 𝛼)𝑒(𝑛) + 𝑇 − (𝑚 +1)𝑠(𝑛) +𝑚 ∗ 𝑠(𝑛 − 1) + 𝑇𝐾1(𝑛) − 𝑇𝐾2(𝑛) 

 

A13)  𝑡 =    t − (1 −   𝛾) ∗   asyn +𝑀  
                      =  [𝑅(𝑛) +  𝑇 − α∗ 𝑒(𝑛) + 𝑇𝐾1(𝑛)] +   𝑀(𝑛)− 𝑀(𝑛 − 1) 

                                      − (1− 𝛾)
∗ [(1− 𝛼)𝑒(𝑛) + 𝑇 − (𝑚 +1)𝑠(𝑛) +𝑚 ∗ 𝑠(𝑛 − 1) + 𝑇𝐾1(𝑛) − 𝑇𝐾2(𝑛)]  

 
This can be written as: 
A14)  𝑟(𝑛 + 1)+ (−𝛾)T  

= (−1+ 𝛾 −αγ)e(n) + [(1− γ)(1+𝑚)]s(n)                                                                                                                                                     
+[(−1 + 𝛾)𝑚] ∗ 𝑠(𝑛 − 1)   + [𝛾  𝑇𝐾1(𝑛) + (1 − 𝛾)  𝑇𝐾2(𝑛) +𝑀(𝑛) −𝑀(𝑛 − 1)] 

              =(1 − 𝛾)𝑚 ∗ [𝑠(𝑛) − 𝑠(𝑛 − 1)] + (1− 𝛾)  [𝑠(𝑛) − 𝑒(𝑛)] + (𝛼𝛾) −𝑒(𝑛) + 𝑧(𝑛), 
 
where  𝑧(𝑛) = [𝛾𝑇𝐾1(𝑛) + (1− 𝛾)𝑇𝐾2(𝑛) +𝑚(𝑛)] = 𝑇𝐾3(𝑛) +𝑚(𝑛). 
 
Define now: 
A15) 𝑥 = (1 − γ)𝑚, 
A16) 𝑥 = (1− γ), 
A17) 𝑥 = 𝛼𝛾, 
A18) 𝜎 = (1 + 2𝛾 − 2𝛾)𝜎 . 
 

From this it follows that: 

A19) 𝛾 = (1 − 𝑥 ), 
A20) 𝑚 = = 𝑥 /𝑥 , 

A21) 𝛼 = = , 

A22) 𝜎 = 𝜎 /(1+ 2𝛾 − 2𝛾). 
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In this model it is essential to assume that mean(e)=0 and that mean(s)=mean(r)=T0. To ensure that 
this holds we subtract the empirical mean of e from e before we start. 
 
Now we can write the Joint ADAM (α) with the new parameterization as: 
 

𝑏 =
𝑟′(3)
⋮

𝑟′(𝑛 + 1)
= 𝐴 ∗ 𝑥 + 𝑧 =

𝑠′(2) − 𝑠′(1) 𝑠′(2) − 𝑒′(2) −𝑒′(2)
⋮ ⋮ ⋮

𝑠′(𝑛) − 𝑠′(𝑛 − 1) 𝑠′(𝑛)− 𝑒′(𝑛) −𝑒′(𝑛)

𝑥
𝑥
𝑥

+
𝑧(2)
⋮

𝑧(𝑛)
 

 
In this equation we assume that we reduced the empirical mean from the vectors so that: 
mean(e’)=mean(s’)=mean(r’)=0. 
We can solve this model using the bGLS method, and then project back to original parameters space 
using equations (A19)-(A22). 
Note that in the bGLS method we use the assumption that: 𝜎  >𝜎 . This assumption is essential 
because otherwise parameter interdependence deteriorate the estimation accuracy (Jacoby et al. 
submitted). 
However, for this model, this assumption is not enough to avoid parameter interdependence. This 
causes relatively large estimation errors for the parameter alpha. The negative effect of this problem 
can be reduced using further assumptions on the parameter space, similar to the assumption that 𝜎  
>𝜎    used in the original bGLS method (e.g Repp, Keller and Jacoby 2012). The idea is to restrict the 
possible   α  values  to  a  smaller  range  for  example: 
 

𝐿 < 𝛼 < 𝐻, 
 
where L=-0.8 and H=-0.1. This range is determined based on simulations. This, therefore, implies that: 

𝐿 <
𝑥

1 − 𝑥
< 𝐻. 

 
Within the bGLS iterations, if  < L or > 𝐻, we change 𝑥  so that the result is in the right 

range. This of course imposes further restrictions on the parameters that the estimation method can 
detect, but significantly reduces the estimation error variance. 
 
Joint  ADAM  (β) 
ADAPTATION module: 
𝑡_𝑎𝑑𝑎𝑝 =  𝑡 +  𝑇 − (𝛼 + β) ∗ 𝑎𝑠𝑦𝑛 + 𝑇𝐾1   
𝑇 = 𝑇 − β ∗ 𝑎𝑠𝑦𝑛  
  
We assume [𝛼 = 0]. 
 
ANTICIPATION module: 
𝐼𝑂𝐼_𝑝𝑟𝑒𝑑 =  𝐼𝑛𝑡 = 𝑎 + 𝑏 ∗ (𝑛 + 1)  
𝐼𝑂𝐼_𝑡𝑟𝑎𝑐𝑘 =   𝑡𝑜𝑛𝑒 −  𝑡𝑜𝑛𝑒    
𝑡𝑜𝑛𝑒_𝑎𝑛𝑡𝑖 =   𝑡𝑜𝑛𝑒 +  (𝑚 ∗ 𝐼𝑂𝐼_𝑝𝑟𝑒𝑑 +  (1−𝑚) ∗ 𝐼𝑂𝐼_𝑡𝑟𝑎𝑐𝑘 )+ 𝑇𝐾2  
LINK module: 
asyn = 𝑡_𝑎𝑑𝑎𝑝 −  𝑡𝑜𝑛𝑒_𝑎𝑛𝑡𝑖     
𝑡 =    t − ((1−   𝛾) ∗   asyn )+𝑀  
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Using the new notation, we write: 
 
ADAPTATION module: 
A23)   𝑡_𝑎𝑑𝑎𝑝 =   𝑅(𝑛) +  𝑇 − (α+ β) ∗ 𝑒(𝑛) + 𝑇𝐾1(𝑛), 
A24) 𝑇 = 𝑇 − β ∗ ∑ 𝑒(𝑁) 
 
ANTICIPATION module: 
A25) 𝐼𝑂𝐼_𝑝𝑟𝑒𝑑 =  𝐼𝑛𝑡 = 𝑎 + 𝑏 ∗ (𝑛 + 1) = 2𝑠(𝑛) − 𝑠(𝑛 − 1) 
A26) 𝐼𝑂𝐼_𝑡𝑟𝑎𝑐𝑘 =   𝑡𝑜𝑛𝑒 −  𝑡𝑜𝑛𝑒 = 𝑠(𝑛)  

A27) 𝑡𝑜𝑛𝑒_𝑎𝑛𝑡𝑖 =   𝑆(𝑛) +   𝑚 ∗ 2𝑠(𝑛) − 𝑠(𝑛 − 1) +  (1− 𝑚)∗ 𝑠(𝑛) + 𝑇𝐾2(𝑛) 

= 𝑆(𝑛) +  (𝑚 + 1)𝑠(𝑛) − 𝑚∗ 𝑠(𝑛 − 1) + 𝑇𝐾2(𝑛) 
 
LINK module:  
A28) asyn = 𝑡 −  𝑡𝑜𝑛𝑒  
                          = [R(n) +  𝑇 − (α + β) ∗ e(n) + TK (𝑛)] − [𝑆(𝑛) +  (𝑚 +1)𝑠(𝑛) −𝑚 ∗ 𝑠(𝑛 − 1) +
𝑇𝐾2(𝑛)]  
            =  (1 − 𝛼)𝑒(𝑛) + 𝑇 −   β𝑒(𝑛) −  (𝑚 +1)𝑠(𝑛) + 𝑚∗ 𝑠(𝑛 − 1)+ 𝑇𝐾1(𝑛) − 𝑇𝐾2(𝑛) 
            =(1 − 𝛼)𝑒(𝑛) + 𝑇 − β ∗∑ 𝑒(𝑁) −   β𝑒(𝑛) −  (𝑚 +1)𝑠(𝑛) +𝑚 ∗ 𝑠(𝑛 − 1) 

+𝑇𝐾1(𝑛) − 𝑇𝐾2(𝑛)                                                                                                                                                                                                                                                     
 

A29) 𝑡 =    t − ((1−   𝛾) ∗   asyn )+𝑀  
                      =    𝑅(𝑛) +  𝑇 − 𝛽 ∗∑ 𝑒(𝑁)− (𝛼 +𝛽) ∗ 𝑒(𝑛) + 𝑇𝐾1(𝑛) +   𝑀(𝑛) −𝑀(𝑛 − 1) 
                              −((1− 𝛾) ∗  (1 − 𝛼)𝑒(𝑛) + 𝑇 − 𝛽 ∗ ∑ 𝑒(𝑁) −   𝛽𝑒(𝑛) 
                                                          −(𝑚 + 1)𝑠(𝑛) +𝑚 ∗ 𝑠(𝑛 − 1)   + 𝑇𝐾1(𝑛) − 𝑇𝐾2(𝑛))   
 
This can be written as: 
A30) 𝑟(𝑛 + 1)+ (−𝛾)𝑇 = (1 − 𝛾)𝑚 ∗ [𝑠(𝑛) − 𝑠(𝑛 − 1)] + (1 − 𝛾)  [𝑠(𝑛) − 𝑒(𝑛)] +
(𝛼𝛾) −𝑒(𝑛)  

−𝛾𝛽 𝑒(𝑁) + 𝑧(𝑛),                                                                                       

 
where 𝑧(𝑛) = [𝛾  𝑇𝐾1(𝑛) + (1− 𝛾)𝑇𝐾2(𝑛) +𝑚(𝑛)] = 𝑇𝐾3(𝑛) +𝑚(𝑛). 
 
Define now 
A31) 𝑥 = (1 − γ)𝑚, 
A32) 𝑥 = (1− γ), 
A33) 𝑥 = β𝛾, 
A34) 𝜎 = (1 + 2𝛾 − 2𝛾)𝜎 . 
 
 
From this it follows that: 
A35) 𝛾 = (1 − x ), 
A36) 𝑚 = =   𝑥 /𝑥 , 

A37) β = = , 

A38) 𝜎 = 𝜎 /(1+ 2𝛾 − 2𝛾). 
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In this model it is essential to assume that mean(e)=0 and that mean(s)=mean(r)=T0. To ensure that 
this holds we reduce the empirical mean of e from e before we start. 
 
Now we can write the Joint  ADAM  (β)  with  the  new  parameterization  as: 

𝑏 =
𝑟′(3)
⋮

𝑟′(𝑛 + 1)
= 𝐴 ∗ 𝑥 + 𝑧 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑠′(2) − 𝑠′(1) 𝑠′(2) − 𝑒′(2) − 𝑒′(𝑛)

⋮ ⋮ ⋮

𝑠′(𝑛) − 𝑠′(𝑛 − 1) 𝑠′(𝑛)− 𝑒′(𝑛) − 𝑒′(𝑛)
⎦
⎥
⎥
⎥
⎥
⎥
⎤
𝑥
𝑥
𝑥

+
𝑧(2)
⋮

𝑧(𝑛)
 

In this equation we assume that we reduced the empirical mean from the vectors so that: 
mean(e’)=mean(s’)=mean(r’)=0. 
We can solve this model using the bGLS method, and then project back to original parameters space 
using equations (A35)-(A38). Unfortunately this gives relatively large estimation error for the 
parameter  β  (as  was  the  case  with  α).  
 
Again, this problem is generated because of the parameter interdependence of the model. The negative 
effect   of   this   problem   can   be   reduced   by   restricting   the   possible   β   values   to   a   smaller   range   for  
example: 
 

𝐿 < 𝛽 < 𝐻, 
where L = 0 and H = 1 
 
This, therefore, implies that: 

𝐿 <
𝑥

1− 𝑥
< 𝐻 

Within the bGLS iterations, if  < L or > 𝐻, we change 𝑥  so that the result is in the right 

range. Furthermore, we restrict 𝑚  to the same range. 
 

𝐿 < 𝑚 < 𝐻 
𝐿 < 𝑥 /𝑥 < 𝐻 

If x2 is positive: 
𝑥 𝐿 < 𝑥 < 𝑥 𝐻 

 
This of course imposes further restrictions on the parameters that the estimation method can detect but 
significantly reduces the estimation error variance. 
Note that like any bGLS estimates we also assume that 𝜎  >𝜎 . 
 
Independent ADAM  
Interval prediction:      Interval tracking: 
𝐼𝑛𝑡 = 𝑎 + 𝑏 ∗ (𝑛 + 1)     𝑇𝑅𝐴𝐶𝐾 =  𝑡𝑜𝑛𝑒 −  𝑡𝑜𝑛𝑒  
𝑃𝑅𝐸𝐷 =  𝑡𝑜𝑛𝑒′ −  𝑡       
𝑡𝑜𝑛𝑒′ =   𝑡𝑜𝑛𝑒 +  𝐼𝑛𝑡       
           
𝑡 =    𝑡 +   (𝑚∗ 𝑃𝑅𝐸𝐷 +  (1 −𝑚) ∗ 𝑇𝑅𝐴𝐶𝐾 )−   𝛼 ∗ 𝑎𝑠𝑦𝑛 +𝑇𝐾 +𝑀 −𝑀  
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Using the new notation we write: 
 
A39) 𝑃𝑅𝐸𝐷 =  𝑡𝑜𝑛𝑒′ −  𝑡 = 𝑆(𝑛) + 2𝑠(𝑛) − 𝑠(𝑛 − 1) − 𝑅(𝑛) = 2𝑠(𝑛) − 𝑠(𝑛 − 1) −
𝑒(𝑛) 
A40) 𝑡𝑜𝑛𝑒 =   𝑡𝑜𝑛𝑒 +  𝐼𝑛𝑡  =  𝑆(𝑛) + 2𝑠(𝑛) − 𝑠(𝑛 − 1) 
A41) 𝑇𝑅𝐴𝐶𝐾 =  𝑡𝑜𝑛𝑒 −  𝑡𝑜𝑛𝑒 = 𝑆(𝑛) − 𝑆(𝑛 − 1) =  𝑠  
 
A42) 𝑡 =    𝑡 +   (𝑚∗ 𝑃𝑅𝐸𝐷 +  (1 −𝑚) ∗ 𝑇𝑅𝐴𝐶𝐾 )−   𝛼 ∗ 𝑎𝑠𝑦𝑛 + 𝑛𝑜𝑖𝑠𝑒 
                      =  𝑅(𝑛) +  (𝑚∗ (2𝑠(𝑛) − 𝑠(𝑛 − 1)− 𝑒(𝑛)) +  (1−𝑚) ∗ 𝑠(𝑛)) −   𝛼 ∗ 𝑒(𝑛) + 𝑧(𝑛) 
 
This can be written as: 
A43) 𝑟(𝑛 + 1) = 𝑚  [𝑠(𝑛) − 𝑠(𝑛 − 1) − 𝑒(𝑛)] + 𝛼(−𝑒(𝑛)) + 𝑠(𝑛) + 𝑧(𝑛) 
 
The hybrid model can be written therefore in matrix notation as: 

𝑏 =
𝑟(3) − 𝑠(2)

⋮
𝑟(𝑛 + 1) − 𝑠(𝑛)

= 𝐴 ∗ 𝑥 + 𝑧 =
𝑠(2) − 𝑠(1) − 𝑒(1) −𝑒(2)

⋮ ⋮
𝑠(𝑛) − 𝑠(𝑛 − 1) − 𝑒(𝑛) −𝑒(𝑛)

𝑚
𝛼 +

𝑧(2)
⋮

𝑧(𝑛)
 

 
This formulation can be again solved with the bGLS method. 
For one block of the experiment, the method provided unbiased estimates for large values of m. For 
small values of m more  bias  is  observed  in  the  α  parameters  and  the  estimation  error  is  relatively  large.  
We increased the accuracy of estimates by averaging over the 15 repetitions for each pattern. 
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4.1 ABSTRACT 

Task-specific   focal   dystonia   is   a   movement   disorder   that   is   characterized   by   the   loss   of  

voluntary   motor   control   in   extensively   trained   movements.   Musician’s   dystonia   is   a   type   of  

task-specific   dystonia   that   is   elicited   in   professional   musicians   during   instrumental   playing.  

The   disorder   has   been   associated   with   deficits   in   timing.   In   order   to   test   the   hypothesis   that  

basic   timing   abilities   are   affected   by   musician's   dystonia,   we   investigated   a   group   of   patients  

(N=15)   and   a   matched   control   group   (N=15)   on   a   battery   of   sensory   and   sensorimotor  

synchronization   tasks.   Results   did   not   show   any   deficits   in   auditory-motor   processing   for  

patients   relative   to   controls.   Both   groups   benefited   from   a   pacing   sequence   that   adapted   to  

their   timing   (in   a   sensorimotor   synchronization   task   at   a   stable   tempo).   In   a   purely   perceptual  

task,   both   groups   were   able   to   detect   a   misaligned   metronome   when   it   was   late   rather   than  

early   relative   to   a   musical   beat.   Overall,   the   results   suggest   that   basic   timing   abilities   stay  

intact   in   patients   with   musician’s   dystonia.   This   supports   the   idea   that   musician’s   dystonia   is   a  

highly   task-specific   movement   disorder   in   which   patients   are   mostly   impaired   in   tasks   closely  

related   to  the  demands  of   actually   playing   their   instrument. 

 

Keywords:   musician’s   dystonia   –  timing   abilities   –  sensorimotor   synchronization   –  

perceptual   timing   –  machine   learning 
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4.2 INTRODUCTION 

Task-specific   focal   dystonia   is   a   movement   disorder   that   manifests   itself   as   a   loss   of   voluntary  

motor   control   in   extensively   trained   movements   [1-4].   Although   this   type   of   dystonia   clearly  

impairs   patients’   ability   to   perform   certain   movements,   it   has   been   suggested   that   movement  

processing,   planning,   somatosensory   functions   and   aspects   of   timing   are   also   affected   [5-6].  A  

well-known   example   of   task-specific   focal   hand   dystonia   is   writer’s   cramp.   When   picking   up  

a   pen   or   writing   some   words,   dystonic   postures   of   the   hand   occur   that   disrupt   the   speed   and  

accuracy   of   writing   [7].   Another   form   of   task-specific   dystonia   is   musician’s   dystonia   (MD),  

which   is   characterized   by   impairments   related   to   instrumental   playing   in   professional  

musicians.   With   an   estimated   one   percent   of   professional   musicians   being   affected   by   MD,  

the   prevalence   of   MD   is   much   higher   compared   to   other   forms   of   focal   dystonia   in   the  general  

population   [1].   This   article   focusses   on   the   form   of   MD   that   affects   the   fingers   and/or   hand,  

leaving   aside   embouchure   dystonia   that   affect   the   coordination   of   lips,   tongue,   facial   and  

cervical   muscles   of   brass   and   wind   players.   Typically   the   cramping,   co-contractions   of  

antagonist   muscle   groups   that   accompany   the   loss   of   motor   control,   as   well   as   the   dystonic  

postures   during   instrumental   playing,   occur   without   pain   (although   muscle   aching   can   occur  

after   lasting   spasms)   [1,   8].   In   piano   playing  MD   disrupts   the   fluidity   of   movements   related   to  

instrumental   playing   [9].   Furthermore,   MD   affects   individuated   finger   movements,   as  

evidenced   by   more   forceful   keystrokes   and   abnormal   temporal   control   of   the   keystrokes   [10].  

For   the   affected   musicians   the   disorder   is   very   disabling   and   often   signifies   the   end   of   a  

musical   career   [8].   Furthermore,   as   time   passes,   MD   patients   may   show   overflow   of  

impairments   to   other   tasks,   such   as   hand   writing   or   typing   on   a   keyboard   [11-13].   Several  

therapies   are   available   to   MD   patients   such   as   botulinum   toxin   injections   [14]   and   behavioural  

retraining   [13].   These   therapies   seem   to   have   positive   effect   in   about   half   of   the   patients   but,  

unfortunately,   the  disorder   often   forces  musicians   to  change   profession   [14]. 

The   pathophysiology   of   MD   is   still   unclear   but   both   functional   and   structural   abnormalities  

(i.e.,   maladaptive   plasticity)   in   motor-related   cortical   and   subcortical   regions   (e.g.,   primary  

motor   cortex,   supplementary   motor   area,   basal   ganglia   and   cerebellum)   have   been   linked   with  

focal   hand   dystonia   [15-18].   For   example,   blurred   or   even   overlapping   somatosensory  

representations   of   the   single   fingers   have   been   found   in   MD-patients   [1].   Functional  

abnormalities   have   been   shown   both   in   relation   to   task-specific   movements   (guitar   playing,  

writing)   [19-20]   and   more   general   tasks,   like   finger   tapping   [21].   Furthermore,   focal   hand  

dystonia   (MD   and   writer’s   cramp)   patients   showed   reduced   central   nervous   surround  

inhibition   in   the   finger   muscles   when   investigated   with   motor   cortex   stimulation   [22-23].   In  
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addition   to   these   altered   inhibition   patterns   at   different   levels   of   the   central   nervous   system,  

alterations   in   sensorimotor   integration   play   a  role   in   focal   hand  dystonia   [24-26].   

The   brain   areas   that   show   abnormalities   in   MD   patients   have   previously   been   shown   to   be  

critical   for   different   aspects   of   timing.   Extensive   networks   of   brain   regions   have   been   linked  

with   sensorimotor   synchronization,   temporal   processing,   and   the   evaluation   of   temporal  

structures.   Brain   areas   typically   implicated   with   these   types   of   timing   behavior   are   the  

primary   sensorimotor   cortices,   the   inferior   parietal   cortex,   supplementary   motor   area,   the  

cerebellum,   and   the   basal   ganglia   [e.g.,   27-28].   Problems   due   to   disorders   (e.g.   Parkinson’s  

disease)   and   lesions   in   these   areas   (e.g.,   the   basal   ganglia)   have   shown   to   compromise   timing  

behavior   [29-30].   The   overlap   in   brain   areas   that   show   abnormalities   in   focal   hand   dystonia  

patients   and   the   brain   areas   involved   in   sensorimotor   synchronization-timing   tasks   made   us  

hypothesize   that  MD  patients   might   show   impaired   timing   abilities. 

Indeed,   some   previous   studies   found   that   focal   hand   dystonia   patients   have   impaired  

perceptual   timing   and   temporal   processing   abilities.   For   example,   Lim   and   colleagues   [3]   had  

healthy   controls,   writer’s   cramp   and   MD   patients,   away   from   their   instrument,   judge   whether  

a   sequence   of   six   brief   pulses   (auditory   and   tactile   stimuli)   appeared   to   be   regular   or   not.   The  

interval   between   the   fifth   and   sixth   pulse   varied,   creating   regular   and   irregular   sequences.  

Results   showed   that   compared   to   controls,   MD   patients   were   less   sensitive   to   these   timing  

irregularities,   both   in   the   tactile   and   auditory   domain.   The   writer’s   cramp   patients   did   not  

show   this   impairment.   A   large   study   investigated   somatosensory   temporal   discrimination   in  

patients   with   various   forms   of   focal   dystonia   by   means   of   paired   stimuli   with   an   increasing  

inter-stimulus   interval   to   the   skin   on   different   body   parts.   Like   other   groups   of   patients   with  

focal   dystonia,   the   patients   with   writer’s   cramp   showed   higher   discrimination   thresholds  

compared   to   healthy   control   subjects   [31].   Further   abnormalities   of   tactile   temporal  

discrimination   have   been   reported   in   writer’s   cramp   patients   [32].   However,   it   remains  

unclear   what   aspects   of   timing   are   affected   by   dystonia.   Especially   considering   that   timing   is  

a   multifaceted   capacity   that   ranges   from   purely   perceptual   discrimination   abilities   to  

sensorimotor   synchronization   [33].    

The   extent   to   which   dystonia   is   task-specific   is   a   matter   of   debate.   On   the   one   hand,   writer's  

cramp   and   MD   patients   have   been   found   to   show   impairments   in   fine   motor   control   tasks  

other   than   instrumental   playing   [11-13,   34,   35].   Furthermore,   differences   in   brain   activations  

have   been   found   without   the   occurrence   of   dystonic   movements   [21].   On   the   other   hand,   MD  

is   mainly   seen   as   a   task-specific   disorder   that   impairs   instrumental   playing   severely   [1].   The  

disturbed   temporal   accuracy   found   in   MD-patients   during   piano   playing   is   most   likely   due   to  
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dystonic   movements   and   not   due   to   timing   errors   in   temporal   processing   [9].   Furthermore,  

significant   different   activations   between   writer’s   cramp   patients   and   healthy   controls   in  

writing   with   a   pencil   have   been   shown;;   whereas   no   difference   between   the   patients   and  

controls   during   writing   with   their   finger   were   found   [36].   This   finding   shows   that   dystonic  

symptoms   may  only   be  evoked  during   particular   tasks.    

The   foregoing   raises   two   mutually   exclusive   hypotheses.   Firstly,   if   MD   is   also   characterized  

by   basic   timing   problems,   then   these   problems   should   also   occur   when   we   test   patients’  

timing   abilities   away   from   the   instrument.   Alternatively,   if   MD   patients’   impairments   are  

mostly   related   to   instrumental   playing,   then   their   basic   timing   perception   and   production  

capacities   should   be   intact.   The   current   study   employs   a   battery   of   auditory-motor   tasks   to  

investigate   basic   timing-abilities   of   MD   patients   away   from   their   instrument.   If   MD   patients  

do   not   show   impaired   behavior   on   these   tasks,   this   would   support   the   task-specific   nature   of  

MD. 

To   test   these   hypotheses,   we   employed   battery   of   auditory-motor   tasks   focusing   on   basic  

perceptual   and   action   aspects   of   timing   relevant   for   music   making.   The   battery   aims   to  

separate   purely   perceptual   timing   capacities   from   timing   production.   Although   the   tasks  

included   in   the   battery   are   not   standard   in   clinical   practice,   all   of   them   have   been   successfully  

employed   in   basic   research   on   individual   differences   in   perceptual   and   action   aspects   of  

sensorimotor   timing   in   musicians   [37-42].   

Sensorimotor   synchronization   is   the   temporal   coordination   of   an   action   with   events   in   a  

predictable   external   rhythm.   This   fundamental   human   skill   contributes   to   successful   motor  

control   in   daily   life   and   is   important   for   musicians,   because   it   plays   an   important   role   during  

ensemble   music   production.   Precise   and   flexible   sensorimotor   synchronization   requires  

mechanisms   that   enable   an   individual   to   adapt   to   timing   variations   and   to   anticipate   tempo  

changes   [43-45].  These  underlying   mechanisms   were  assessed  in   our  task  battery.    

Furthermore,   we   used   machine   learning   techniques   to   investigate   whether   MD   patients   are  

characterized   by   non-linear   combinations   of   the   timing   abilities   assessed   in   the   battery.   It   has  

been   suggested   previously   that   instrument-specific   performance   differences   between   dystonia  

and   control   participants   exist   in   particular   combinations   of   timing   variables   instead   of  

individual   variables   [10].   We   extend   this   result   to   non-instrument-specific   timing   variables,  

investigating   whether   (non-linear)   combinations   of   the   timing   variables   measured   here   would  

identify   patients   and   controls.   To   this   end,   we   tested   various   supervised   machine   learning  

approaches   in   order   to   ascertain   whether   we   could   recognize   patients   by   a   signature   consisting  

of   various   timing   ability   scores.   If   patients   show   the   hypothesized   timing   impairments,   the  
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present   battery   of   tests   would   enable   us   to   pinpoint   at  what   stage  of   auditory-motor  processing  

the   deficit   occurs.   Furthermore,   the   machine   learning   approaches   should   be   able   to  

differentiate   between   MD   patients   and   healthy   controls   based   on   the   hypothesized  

pathological   behaviors.   If,   on   the   contrary,   no   differences   between   MD   patients   and   the  

matched   control   group   are   found,   this   would   be   in   favor   of   the  view   that  MD   is  mostly   a   task-

specific   motor   impairment. 
 

4.3 METHODS 

4.3.1 Participants 

Fifteen   patients   (age   36.47   ±   12.01   yrs.,   four   females)   with   musicians’   dystonia   participated   in  

the   study.   Patients   were   recruited   from   the   outpatient   clinic   of   the   Institute   of   Music  

Physiology   and   Musicians’   Medicine   at   the   Hannover   University   of   Music,   Drama,   and  Media  

between   February   and   June   2013.  All   patients   were   professional   musicians   between  18   and  65  

years   old.   Inclusion   criteria   were   right-handed   patients   with   focal   hand   dystonia   and   isolated  

curling   of   the   thumb,   middle,   ring   or   little   finger   when   playing   their   instruments.   Excluded  

were   patients   with   embouchure   dystonia,   additional   neurological   problems   or   patients   in  

which   the   right   index   finger   was   affected.   All   patients   were   diagnosed   by   a   neurologist  

(author   E.A.)   specialised   in   movement   disorders   of   musicians.   For   those   patients   who,   prior   to  

the   experiment,   received   a   botulinum   toxin   treatment   (n   =   6),   the   last   injection   was   two   to   24  

months   ago   (8.6   ±   8.3   months).   This   amount   of   time   suggests   that   the   effect   of   the   injection  

had   worn   off   by   time   the   experiment   took   place.  A   description   of   the   patients   can   be   found   in  

Table   4.1.   The   control   group   of   15   professional   musicians   without   musicians’   dystonia   (age  

36.13   ±   12.59   yrs.,   five   females)   were   matched   to   the   patients   as   closely   as   possible   for   age,  

gender,   handedness   and  musical   instrument   (Table   4.1).   

According   to   the   laterality   score   from   the   Edinburgh   Handedness   Inventory   all   participants  

except   one   control   participant   (-100,   fully   left   handed)   were   right   handed   (patients:   75.33   ±  

13.98   /   controls:   79.90   ±  18.77).  The   study  was   approved  by   the   local   ethics   committee  of   the  

Hannover   Medical   University.   Following   the   Declaration   of   Helsinki,   experimental  

procedures   were   explained   to   all   participants   and   written   informed   consent   was   obtained   prior  

to   participation   in   the   experiment.   Control   participants   received   a   compensatory   fee   for   their  

participation   in   the   study. 
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4.3.2 Tasks,  procedures  &  measures 

A   battery   of   five   auditory-motor   tasks   was   employed   to   investigate   at   what   stage   of   auditory-

motor   processing   deficits   occurs.   The   battery   includes   sensorimotor   synchronization   and  

perceptual   tasks.   The   tasks   were   presented   to   the   participants   in   a   randomized   order.  

Participants   received   oral   and   written   instructions   before   each   task.   After   the   experiment,  

participants   filled   in   a  short   questionnaire.   In   total   the   experiment   took  about   1-1.5  hours.    

 

4.3.2.1  Sensorimotor  synchronization   tasks:  Adaptive  tapping 

The   adaptive   tapping   task   contained   both,   fixed   and   adaptive   trials   [46].   During   the   fixed  

trials   participants   synchronized   their   taps   with   a   non-responsive   metronome.   During   the  

adaptive   trials   the   sequences   responded   to   the   participants’   tap   timing   by   implementing   error  

correction   [45-46].   In   brief,   the   pacing   sequence   adjusted   its   timing   during   each   trial   based   on  

the   registered   asynchrony   between   its   previous   tone   and   the   participants'   tap   (phase  

correction).   Two   levels   of   error   correction   (α)   were   employed:   0.3   and   0.7.   Each   value  

indicates   the   proportion   of   each   asynchrony   that   is   corrected   for   by   local   adjustments   to   the  

timing   of   pacing   events   (Figure   4.1),   resulting   in   an   adaptive   pacing   sequence   with   which   the  

participants   synchronized   their   taps.   The   two   levels   of   α   were   chosen   to   result   in   a  

hypothesized   helpful   (α=0.3)   metronome,   that   has   previously   been   shown   to   boost  

sensorimotor   synchronization   and   a   hypothesized   unhelpful   (α=0.7)   metronome,   leading   to   a  

more   challenging   synchronization   task   [46-47].   The   non-responsive   metronome   in   the   fixed  

trials   could   be  referred   to  as  an  adaptive   metronome   of  which   alpha   is   set  to  0.   

Stimulus   presentation   and   tap   recording   was   controlled   by   a   MaxMSP   program   running   PC  

with   Windows.   Participants   tapped   with   their   right   index   finger   on   a   custom   built   tapping  

device,   which   was   connected   to   PC   and   MaxMSP   via   a   MIDI-connection.   Stimulus   sounds,  

sampled   as   a   woodblock   sound,   were   generated   by   a   Roland   SPD-S   sampling   pad.   Sounds  

were  presented  over   headphones   and  participants’   taps  did  not  trigger   sounds. 

The   different   conditions   of   the   stable   tapping   task   (α=0   [fixed],   α=0.3,   and   α=0.7)   were  

presented   in   a   randomized   block   of   10   trials.   All   trials   had   a   base   inter-onset   interval   of   500  

ms   and   consisted   of   42   tones.   Participants   were   instructed   to   start   tapping   from   the   third   tone  

onwards   and   to   synchronize   their   taps   as   accurately   as   possible   with   the   pacing   signal,   while  

maintaining   the   initial   tempo.   Prior   to   the   experimental   blocks   participants   performed   one   trial  

for   each  of  the   three   conditions   to  familiarize   themselves   with   the   experimental   procedure. 

As   a   measure   of   sensorimotor   synchronization   accuracy   the   mean   signed   asynchrony   between  

the   metronome’s   tones   and   the   participants’   taps   was   calculated.   The   standard   deviation   of   the  
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signed   asynchrony   functioned   as   a   measure   of   sensorimotor   synchronization   precision,  

indicating   how   consistent   the   taps   were   in   relation   to   the   tones   [48].   The   standard   deviation  of  

the   signed   asynchrony   is   also   used   as   a   measure   of   coupling-strength   [46-47].   A   lower  

standard   deviation   of   the   signed   asynchrony   reflects   a   stronger   coupling   between   the   pacing  

signal’s   tones   and   the   participant’s   taps.   Based   on   the   stable   tapping   task,   the   amount   of   phase  

correction   implemented   by   the   participant   was   estimated   as   a   measure   of   adaptation   during  

sensorimotor   synchronization   [39].   The   amount   of   human   alpha   can   be   determined   based   on  

the   lag   1   autocorrelation   of   asynchronies   in   the   conditions   of   stable   tapping   (α=0   [fixed],  

α=0.3,   and   α=0.7).   Based   on   a   regression   line,   the   alpha   corresponding   to   a   lag-1  

autocorrelation   of   0   was   determined.   To   obtain   an   estimate   of   the   amount   of   phase   correction  

implemented   by   the   participant   this   alpha   value   was   subtracted   from   the   hypothesized   optimal  

amount   of  error  correction,   namely   0.9  [46,  49].     

 

 

Figure  4.1  Pacing  signal  for  the  adaptive  tapping  task.  The  timing  of  the  pacing  signal  was  determined  by  the  following  
equation:  tn+1  =  tn  +  500  +  α  ×  asynn.  In  the  current  experiment  α  was  set  to  0,  0.3  or  0.7,  thus  the  pacing  signal  corrected  0  
(non-  responsive  metronome  in  fixed   trials),  30  or  70  %  of  the  asynchrony  by  shifting  the  next  tone  in  the  opposite  direction. 

 

4.3.2.2  Sensorimotor  synchronization   tasks:  Tempo  changing  tapping 

During   the   tempo   changing   tapping   task   participants   were   instructed   to   tap   in   synchrony   with  

the   tempo   changing   stimulus   sequence.   Twelve   tempo   changing   sequences   were   employed  

[38].   The   stimulus   sequences   consisted   of   68   tones,   starting   with   five   tones   with   an   inter-onset  

interval   of   600   ms   followed   by   tempo   changes   of   which   the   inter-onset   interval   varied  

between   600   and   387   ms   inter-onset   interval.   Tempo   changes   proceeded   over   the   course   of  

five   to   nine   intervals,   resulting   in   12   slightly   different   sequences   with   nevertheless   a   similar  

character.   All   sequences   contained   eight   continuous   tempo   changes   resembling   those   found   in  

performed   music   (i.e.,   accelerando   and   ritardando).   Stimulus   presentation   and   tap   recording  

were   controlled   in   the   same   way   as   during   the   stable   tapping   task.   The   order   of   the   12  

sequences   was   randomized   across   participant.   Participants   performed   two   randomly   chosen  

sequences   as  practice   and  to  familiarize   themselves   with   the   experimental   procedure.    
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The   absolute   mean   asynchrony   and   the   standard   deviation   of   the   signed   asynchrony   were  

calculated   as   measures   of   sensorimotor   synchronization   accuracy   and   precision,   respectively  

[38].   The   cross   correlations   between   the   inter-stimulus   and   inter-tap   intervals   at   lag   0   and   lag  

1   and   the   prediction/tracking   ratio   (PT-ratio)   were   calculated   as   indicators   of   anticipation  

mechanisms   during   sensorimotor   synchronization.   The   PT-ratio   is   computed   by   dividing   the  

lag   0   by   the   lag   1   cross   correlation   between   inter-tap   and   inter-stimulus   interval   [38,   50].   If  

this   ratio   is   greater   than   1,   it   reflects   the   participant’s   tendency   to   predict   the   tempo   change,  

while   a   ratio   smaller   than   1   indicates   the   participants   tend   to   copy   (track)   the   tempo   changes.  

The   PT-ratio   has   been   shown   to   classify   individual   differences   reliably   and   has   been   found   to  

correlate   positively   with   musical   experience,   tapping   abilities   and   neural   activation   in  

different   brain   networks   [38,  40,  50].   

 

4.3.2.3  Perceptual  task:  Beat  Alignment  Test 

The   Beat   Alignment   Test   was   an   adapted   version   of   the   Beat   Alignment   Test   developed   by  

Iversen   &   Patel   [37].   Since   our   participants   were   professional   musicians,   the   adjustments  

were   made   to   make   the   task   more   challenging   (see   supplementary   materials   for   details).   We  

chose   five   extracts   (10-20   sec   each)   of   musical   recordings   of   various   styles   from   Iversen   and  

Patel's   stimuli.  After   five   seconds,   a   metronome   was   superimposed   on   the   music.   In   half   of   the  

trials,   the   metronome   was   aligned   with   the   beat   of   the   musical   piece.   In   the   other   trials,   the  

metronome   was   phase-shifted   to   be   either   too   late   or   too   early   by   10   or   15%   of   the   average  

metronome   click   interval.   A   total   of   40   stimuli   (20   aligned,   20   misaligned)   were   randomly  

presented   in   four   blocks   of   10   trials.   In   between   blocks,   participants   could   take   a   short   break.  

Participants   were   instructed   to   judge   if   the   metronome   was   aligned   with   the   beat   of   the  

musical   piece  or  not. 

The   stimuli   were   generated   offline   and   saved   as   wave   files.   A   python-pygame   graphical  

interface   presented   the   instructions   and   stimuli   and   collected   key   press   responses.   Stimuli  

were   presented   through   headphones.   This   task   was   used   as   a   purely   perceptual   task   to   probe  

patients’   capacity   to   align   a   metronome   with   the   beat   of   a   musical   extract   independently   of  

their   motor   capacities   [37].   Therefore,   participants   were   explicitly   instructed   not   to   move   or  

tap  along   while   they  were  listening.    

Prior   to   the   experimental   blocks,   participants   were   presented   an   example   with   aligned  

metronome   and   one   during   which   the   metronome   was   shifted,   i.e.   misaligned   trial.   Next,  

participants   completed   a   training   block   with   four   training   trails   (two   aligned   and   two   in   which  

the   metronome   was   shifted;;   +15%   and   -15%   of   the   metronome   interval).   Participants  
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responded   whether   the   metronome   was   aligned   or   not.   During   the   training   block,   but   not  

during   the  experimental   blocks,   participants   received   accuracy   feedback.    

The   summed   correct   responses   divided   by   the   total   number   of   responses   across   extracts   for  

each   metronome   shift   (-15,   -10,   0,   +10,   +15%)   was   calculated   as   an   accuracy   score   for   each  

participant. 

 

4.3.2.4  Perceptual  task:  Keystroke-sound  delay  detection  task  

At   each   trial,   the   participant   pressed   the   “zero”   key   on   the   keypad   at   a   time   of   her/his  

choosing   and   heard   a   tone.   This   tone   was   either   played   at   the   same   time   of   the   keystroke   or  

delayed   by   a   number   of   milliseconds   [42].   The   Maximum   Likelihood   Procedure   (MLP)  

algorithm   [51-52]   was   used   to   detect   the   threshold   for   the   detection   of   the   asynchrony  

between   movement   (keystroke)   and   the   tone.   The   algorithm   is   designed   to   adaptively   select  

the   stimulus   level   (tone   delay)   on   each   trial   so   as   to   converge   to   the   participant’s   threshold.  

For   each   block,   the   algorithm   outputs   an   estimate   for   the   participant's   threshold.   In   short,   the  

applied   MLP   algorithm   works   as   follows:   A   set   of   candidate   psychometric   curves   are  

maintained   in   parallel   and   for   each,   the   likelihood   of   the   set   of   the   participants'   responses   is  

calculated.   The   psychometric   curve   that   makes   the   participant's   responses   maximally   likely   is  

used   to   determine   the   stimulus   level   (the   delay   between   the   keystroke   and   the   sound)   on   the  

next   trial.   We   used   600   candidate   psychometric   curves   with   midpoints   linearly   spread  

between   0   and  600  ms  delay,   each   combined  with   the   five   false   alarm   rates   (0,   10,   20,   30,   and  

40%).   Hence,   a   total   of   3000   candidate   psychometric   curves   were   used.   The   source   code   for  

the  MLP  is   freely   available   online   on  https://github.com/florisvanvugt/PythonMLP. 

A   USB   keypad   (Hama   Slimline   Keypad   SK110)   interfaced   through   HDI   protocols   with   a  

python   script   was   used   to   detect   the   keystroke   onset   and   playing   a   woodblock   wave   sound  

(duration:   63  ms)   through   headphones.    

Three   experimental   blocks   were   administered.   These   blocks   consisted   of   36   trials   and  

contained   six   catch   trials.   Catch   trials   are   trials   on   which   the  delay  was   set   to   0  ms   (regardless  

of   the   delay   that   was   suggested   by   the   MLP   algorithm).   The   function   of   catch   trials   is   to  

prevent   participants   from   always   responding   “delayed”   (which   would   cause   the   MLP  

algorithm   to   converge   to   a   zero   threshold).   Catch   trials   were   inserted   randomly   with   the  

following   constraints:   the   first   12   trials   of   each   block   contained   2   catch   trials   and   the   next   24  

trials   contained   4  catch   trials. 

Prior   to   the   experimental   blocks,   participants   first   performed   four   training   trials   (two   with   no  

delay   and   two   with   a   delay   of   600   ms)   to   make   clear   the   difference   between   when   the   sound  
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came   immediately   and   when   it   was   delayed.   During   these   practice   trails   participants   received  

accuracy   feedback   about   the   given   answers.   Next,   they   performed   a   training  block  of   10   trials,  

starting   at   600   ms   delay   but   then   using   MLP   to   determine   the   stimulus   levels   of   the   following  

trials.    

This   task   measured   participants'   sensitivity   to   asynchronies   between   motor   (keystroke)   and  

auditory   (tone)   events   [42].    

 

4.3.2.4  Perceptual  task:  Anisochrony  detection 

Participants   heard   a   five-tone   sequence   over   headphones.   The   base   sequence   consisted   of   five  

isochronous   sine   wave   tones   (100   ms   duration)   presented   with   an   IOI   of   350   ms.   In   some  

trials,   the   fourth   tone   was   delayed   by   a   certain   amount   but   the   fifth   tone   was   always   on   time  

[53-54].   That   is,  when   the   tone  was  delayed  by   an   amount  d,   the   third   interval  was   longer   by   d  

ms   and   the   fourth   interval   was   shorter   by   d   msec.   The   amount   of   delay   depended   on   the  

participant’s   threshold,   which   was   established   adaptively   using   the   MLP.   The   basic   procedure  

was   the   same   as   for   the   delay   detection   task   but   for   this   task   200   logistic   psychophysical  

curves   were   used.   Midpoints   of   these   curves   were   linearly   spread   over   the   0   to   200  ms  delay  

range   (0%   to   57%   of   the   inter-tone   intervals)   and   combined   with   the   five   false   alarm   rates   (0,  

10,   20,   30,   and   40%).   A   python-pygame   graphical   interface   presented   the   instructions   and  

stimuli   and   collected   keystroke   responses.    

Three   experimental   blocks   of   36   trials,   including   six   catch   trials,   were   presented   to   the  

participants. 

Participants   were   instructed   to   judge   if   the   five-tone   sequence   was   regular   or   irregular.   Prior  

to   the   experimental   blocks,   four   example   stimuli   (two   regular,   two   irregular)   were   presented.  

For   these   trials   participant   received   accuracy   feedback.   Next,   a   training   block   with   10   trials  

was  administered.    

The   obtained   threshold   was   used   as   an   estimator   of   the   precision   of   participants’   auditory  

temporal   perception   [42,  53-54]. 

 

4.3.3 Machine   learning 

4.3.3.1  Non-linear  classification  of  patients  and  controls 

In   order   to   investigate   whether   the   patient   group   was   characterized   by   particular   non-linear  

combinations   of   scores   on   the   variables   measured   in   this   study,   we   performed   supervised  

machine   learning   analyses   as   follows   [for   a   similar   procedure,   see   10].   The   variables   that  

were   fed   into   these   analyses   are   outcome   measures   of   the   five   tasks.   From   the   stable   tapping  
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task   we   used   the   following   variables.   The   mean   signed   asynchronies   (ms)   and   the   standard  

deviation   of   the   asynchronies   (ms)   on   the   different   levels   of   alpha   (α=0   [fixed],   α=0.3,   and  

α=0.7)   were   used,   amounting   to   6   data   points   (2   variables   for   each   of   the   3   levels   of   alpha)  

per   participant.   Furthermore,   the   error   correction   estimate   (unit-less;;   see   stable   tapping  

methods)   was   used.   From   the   tempo   changing   tapping   task   the   mean   absolute   asynchrony  

(ms),   the   standard   deviation   of   the   signed   asynchronies   (ms),   and   the   PT-ratio   (unit-less)   were  

included.   For   the   perceptual   tasks   the   score   on   the  beat   alignment   test   (%),   the  delay  detection  

threshold   (ms),   and   the   anisochrony   threshold   (%   of   IOI)   were   fed   into   the   supervised  

machine   learning   analyses. 

Prior   to   running   the   machine   learning   analyses,   each   of   the   variables   was   rescaled   and   centred  

so   that   their   mean   was   zero   and   standard   deviation   equal   to   one.   Three   established   machine  

learning   algorithms   were   tested   (details   below):   Naive   Bayesian   classification,   Linear  

Discriminant   Analysis   (LDA)   and   Support   Vector   Machines   (SVM).   Each   model   was   given  

the  variables   as  predictors   and  is  trained   to  categorise   participants   as  patient   or  control.    

We   first   trained   the   models   on   the   entire   dataset,   then   removed   the   labels,   and   asked   the  

model   to   predict   which   participants   are   patients   and   which   are   controls.   We   expected   the  

models   to   do   very   well   on   this   classification   task,   because   the   models   have   a   large   number   of  

degrees   of   freedom.   The   risk   of   this   great   number   of   degrees   of   freedom   is   that   we   could  

over-fit   the   data,   essentially   fitting   noise.   In   order   to   assess   the   models   without   risking   over-

fitting,   we   used   leave-one-out-cross-validation   (LOOCV).   In   this   procedure,   we   trained   each  

of   the   three   models   on   all   the   data   (training   data)   except   one   participant.   The   model   is   then  

tested   on   classifying   this   one   participant   (the   test   data).   By   repeating   this   procedure   for   each  

participant   in   the   sample,   we   get   an   overall   classification   accuracy   which   is   corrected   for  

over-fitting.   We  then   tested  its   overall   success   rate  using   binomial   testing. 

To   perform   naive   Bayesian   classification,   the   naiveBayes   function   from   the   e1071   machine  

learning   package   as   part   of   the   R   package   for   statistical   computing   (version   3.0.2)   was   used.  

This   function   implements   the   standard   Bayes   classifier.   To   perform   LDA,   we   used   the   lda  

function   from   the   MASS   package   as   part   of   the   R   package   for   statistical   computing   (version  

3.0.2).   Finally,   SVM   was   implemented   using   the   svm   function   from   the   e1071   machine  

learning   package   as   part   of   the   R   package   for   statistical   computing.   We   performed   C-

classification   using   a   radial   basis   SVM   kernel.   Hyperparameter’s   cost   and   gamma   were   set   to  

10000   and   1e-4,   respectively.   These   hyperparameter   values   were   chosen   from   a   range   of  

possible   values   as   those   minimising   the   classification   error.   The   machine   used   22   support  

vectors. 
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4.3.4 Data-analyses 

The   tapping   data   were   processed   with   MATLAB   (The  Mathworks   Inc,  MA,  USA  R2011a).   In  

addition   to   descriptive   statistics,   we   performed   mixed   design   ANOVAs   (see   below).   If   the  

assumption   of   sphericity   was   violated,   the   Greenhouse–Geisser   correction   was   applied.   To 

interpret   the   significant   effects   of   the   ANOVAs,   the   generalized   η2 effect size was used. The 

effect   sizes   were   interpreted   according   to   Cohen’s   recommendation   of   0.02   for   a   small   effect,  

.13 for a medium effect, and .26 for a large effect [55]. The   analyses   were   performed   with  

SPSS  (IBM  SPSS  Statistics   21)  and  R  package  for  Statistical   Computing   (version   2.15.1).    

 

4.4 RESULTS 

Across   the   different   tasks,   no   differences   between   left   and   right   hand   affected   patients   were  

observed.   Therefore,   in   the   analyses   reported   below   all   fifteen   patients   were   included   as   a  

single   level   of   the  group   factor.    

 

4.4.1 Sensorimotor   synchronization   tasks 

4.4.1.1  Adaptive  tapping 

Two-way   mixed   design   ANOVAs   with   group   (patient   or   control)   as   between-participant  

factor,   and   level   of   alpha   (three   levels:   α=0   [fixed],   α=0.3,   and   α=0.7)   as   within-participant  

factor   were   run   to   investigate   differences   between   groups   and   the   effect   of   the   adaptive  

metronome   on   the   mean   and   standard   deviation   of   the   signed   asynchrony.   In   order   to  

investigate   whether   the   estimated   amount   of   human   phase   correction   differed   between   groups,  

an  ANOVA  with   group   (patient   or  control)   as  between-participant   factor   was  run.    

For   the   mean   signed   asynchrony   there   was   no   main   effect   of   group   [F(1,28)=1.76,   p=0.20].  

One   control   participant   had   unusual   positive   mean   asynchrony,   which   was   further   than   2.5   SD  

away   from   the   sample   mean,   for   two   of   the   three   levels   of   alpha.   When   the   analysis   was  

repeated   without   this   outlier   a   moderate   significant   main   effect   of   group   was   found  

[F(1,27)=4.61,   p=0.04,   η2=0.15],   indicating   that   the   patients   were   more   accurate   in  

synchronizing   their   taps   with   the   pacing   sequence.   In   the   analysis   without   the   outlier,   a  

moderate   main   effect   of   alpha   was   also   found   [F(1.63;;44.05)=9.31,   p=0.001,   η2=0.25].  

Pairwise   comparisons   revealed   that   synchronization   was   more   accurate   when   the   metronome  

implemented   70%   phase   correction   compared   to   the   fixed   metronome   (p<0.001)   and   the  

metronome   that   implemented   30%   phase   correction   (p=0.029).   No   significant   interaction  

effect   between  group   and  alpha   was  found   [F(1.63;;44.05)=0.41,  p=0.66]  (Figure   4.2). 
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For   the   standard   deviation   of   the   signed   asynchrony   no   significant   main   effects   of   group  

[F(1.28)=0.10,   p=0.75]   or   alpha   [F(2,56)=2.75,   p=0.07],   nor   interaction   effects   [F(2,56)=1.11,  

p=0.33]   were   found.   This   indicates   that   the   precision   of   synchronization   did   not   differ  

between  groups   or  levels   of  alpha   (Table   4.2). 

There   was   also   no   significant   difference   in   the   estimated   amount   of   error   correction  

implemented   by  the  patients   and  controls   [F(1;;28)=2.60,  p=0.12]  (Table   4.2). 

 

 

Figure   4.2   Adaptive   tapping   task   accuracy   results.   Mean   signed   asynchronies   as   a   measure   of   sensorimotor  
synchronization   accuracy   separated   for   group   and   levels   of   alpha.   By   convention   negative   values   indicate   that   the   tap  
preceded  the  tone.  Error  bars  indicate  standard  error  of  the  mean. 

 

4.4.1.2  Tempo  changing  tapping 

Group   differences   between   patients   and   controls   for   the   absolute   mean   asynchrony,   the  

standard   deviation   of   the   signed   asynchrony   and   PT-ratio   were   statistically   investigated   by  

means   of   separate  ANOVAs   with   the   mentioned   outcome   measures   as   dependent   variable   and  

as   between-factor   group   (patient   or   control).   For   all   three   measures   no   significant   main   effect  

of   group   was   found   (mean   asynchrony   [F(1;;28)=0.30,   p=0.59],   standard   deviation   of  

asynchronies   [F(1;;28)=0.01,   p=0.93];;   PT-ratio   [F(1;;28)=0.94,   p=0.34])   (Table   4.2).  

Furthermore,   PT-indices   estimated   based   on   an   autoregressive   method   [56]   did   not   show   a  

significant   group   difference   [F(1;;28)=0.80,   p=0.38].   The   correlation   between   the   PT-index  
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and   PT-ratio   was   ρ=0.97,   p<0.001.   These   findings   indicate   that   patients’   synchronization  

abilities   did   not   differ   from   controls   for   tempo   changing   sensorimotor   synchronization  

accuracy   and   precision.   Furthermore,   both   groups   predicted   the   tempo   changes   to   a   similar  

degree   (able   4.2). 

 

4.4.2 Perceptual   tasks 

4.4.2.1. Beat  Alignment  Test 

In   order   to   investigate   whether   beat   alignment   performance   was   different   between   groups,   a  

mixed   design   ANOVA   with   between-participant   factor   group   (patient   or   control)   and   within-

participant   factor   metronome   alignment   (aligned   or   misaligned)   was   performed.   The   two  

groups   had   identical   overall   accuracy   scores   (84.3%).   Therefore   the   main   effect   of   group   was  

not   significant   [F(1,28)=0.00,   p=1.00].   The   main   effect   of   metronome   alignment   was   not  

significant   [F(1,28)=0.17,   p=0.68],   which   indicated   that   participants   were   equally   good   at  

detecting   aligned   and   misaligned   metronomes.   The   interaction   between   metronome   alignment  

and  group  was  also  not   significant   [F(1,28)=0.07,  p=0.79]  (Figure   4.3A). 

In   order   to   test   whether   the   different   metronome   shifts   differentially   influenced   performance,  

we   proceeded   to   analyze   the   misaligned   stimuli   as   follows.   A   mixed   design   ANOVA   with  

within-factors   shift   direction   (metronome   lead   or   metronome   lag),   shift   amount   (10%   or   15%  

of   the   inter-beat-interval)   and   between-factors   group   (patient   or   control)   was   performed.   The  

dependent   variable   was   the   proportion   “aligned”   responses.   The   main   effect   of   group   was   not  

significant   [F(1,28)=0.04,   p=0.85].   Shift   direction   revealed   a   small   significant   main   effect  

[F(1,28)=22.02,   p<0.0001,   η2=0.09],   which   indicated   that   participants   responded   “aligned”  

more   often   (erroneously)   when   the   metronome   preceded   the   beat   (M=23%,   SD=21%)   than  

when   the   metronome   came   after   the   beat   (M=10%,   SD=14%).   That   is,   participants   more  

readily   detected   a   metronome   as   misaligned   when   it   came   late   than   when   it   came   early  

relative   to   the   underlying   musical   beat.   There   was   a   moderate   main   effect   of   shift   magnitude  

[F(1,28)=30.86,   p<0.001,   η2=0.19],   which   revealed   that   participants   judged   the   metronome  

aligned   less   often   when   it   was   shifted   by   15%   of   the   inter-beat-interval   (M=7%,   SD=8%  

“aligned”   responses)   than   when   it   was   shifted   by   10%   (M=26%,   SD=25%   “aligned”  

responses).   The   interaction   between   shift   magnitude   and   direction   was   not   significant  

[F(1,28)=1.17,   p=0.29].   The   interactions   between   group   and   shift   magnitude   or   shift   direction  

were   not   significant   and   there   was   no   significant   three-way   interaction   [all   interactions  

F(1,28)<1.34,  p>0.26]  (Figure   4.3B). 
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Figure   4.3   Beat   alignment   test   results   (A)   Overall   accuracy  scores.  Error  bars  indicate  standard  error  of  the  mean.  (B)  
Aligned   responses  according  to  relative  metronome  shifts.  Error  bars  indicate  standard  error  of  the  mean. 

 

4.4.2.2  Keystroke-sound  delay  detection  task 

Blocks   in   which   participants   responded   “delayed”   to   more   than   30%   of   catch   trials   were  

classified   as   invalid   and   eliminated   from   the   analysis.   This   was   the   case   of   14.9%   of   all  

blocks.  A   further   4.2%   of   blocks   were   discarded   because   they   had   not   properly   converged  on  

a   threshold.   The   criterion   for   non-convergence   was   if   threshold   estimates   varied   more   than   2  

ms/trial   over   the   last   ten   trials   (based   on   previous   datasets   [42]).   After   discarding   blocks,  

participants   had   on   average   2.5   (SD=0.73)   valid   blocks   remaining.   The   average   threshold   (in  

ms)   for   these   remaining   blocks  was  calculated.    

In   order   to   investigate   whether   keystroke-sound   delay   detection   differed   between   groups,   we  

performed   an   ANOVA   with   delay   detection   threshold   as   dependent   variable   and   between-

factor   group   (patient   or   control).   There   was   no   effect   of   group   [F(1,28)=0.55,   p=0.46],  which  

indicated   that   delay   detection   thresholds   did   not   differ   between   patients   and   controls.   One  

participant   (control   group)   had   an   unusually   high   delay   detection   threshold   (314.5   ms),   which  

was   further   than   3   SD   away   from   the   mean   of   the   sample.   Repeating   our   analysis   without   this  

participant,   we   still   found   no   effect   of   group   [F(1,27)=0.02,   p=0.90]   on   delay   detection  

threshold   (Table   4.2).   The   thresholds   for   both   controls   and   patients   were   comparable   to  

previously   observed  thresholds   for   delay   detection   in   musician   populations   [42]. 
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4.4.2.3  Anisochrony  detection 

Blocks   in   which   participants   responded   “irregular”   to   more   than   30%   of   catch   trials   were  

eliminated.   This   was   the   case   in   all   three   blocks   of   one   participant   (3.2%   of   all   blocks).   This  

control   participant   was   eliminated   from   further   analysis.   All   blocks   had   properly   converged  

according   to   the   non-convergence   criterion   (less   than   1.18   ms/trial   threshold   change   over   the  

last   ten   trials).   After   discarding,   all   remaining   participants   had   all   3   blocks   remaining.   The  

average   threshold   (in   %  of   the  inter-tone-interval)   was  calculated   for   these  remaining   blocks.    

In   order   to   investigate   whether   anisochrony   detection   differed   between   groups,   an   ANOVA  

with   anisochrony   threshold   as   dependent   variable   and   between-factor   group   (patient   or  

control)   was   performed.   There   was   no   significant   main   effect   of   group   [F(1,27)=0.07,   p=0.80]  

which   revealed   that   anisochrony   thresholds   were   identical   for   patients   and   controls   (Table  

4.2).   The   thresholds   for   both   controls   and   patients   were   comparable   to   previously   found  

thresholds   for  anisochrony   in  musician   populations   [42,  53]. 

 
Table  4.2  Mean  (SD)  of  the  non-significant  results  for  the  different  tasks  and  outcome  measure  separated  per  group  

and  if  applicable  level  of  alpha.   

Task Measure Patient  group Control  group 
Adaptive  tapping   task Precision  SD  signed  asyn  (ms) 

alpha  =  0  [fixed] 
15.93  (3.05) 16.59  (4.45) 

 Precision  SD  signed  asyn  (ms) 
alpha  =  0.3 

15.36  (2.58) 14.90  (3.23) 

 Precision  SD  signed  asyn  (ms) 
alpha  =  0.7 

15.26  (2.03) 16.15  (4.65) 

 Error  correction  estimate 0.61  (0.15) 0.53  (0.13) 

Tempo  changing    
tapping   task 

Accuracy  mean  abs  asyn  (ms) 
 

36.47  (5.83) 37.90  (8.38) 

 Precision  SD  sign  asyn  (ms) 36.67  (4.61) 36.50  (6.58) 
 PT-ratio 1.04  (0.04) 1.05  (0.03) 
Keystroke-sound  delay   
detection  task 

Keystroke-sound  delay  detection  
threshold  (ms) 

86.8  (43.7) 104.3  (79.6) 

Anisochrony  detection Anisochrony  threshold 
(%  of  inter-tone-interval) 

4.5  (2.2) 4.7  (2.7) 

 

4.4.3 Machine   Learning 

4.4.3.1  Non-linear  classification  of  patients  and  controls 

One   participant   from   the   control   group   was   not   included   in   this   analysis   due   to   a   lack   of   valid  

blocks   for  anisochrony   threshold   (see  anisochrony   results   above). 
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All   three   methods   of   machine   learning   (Naive   Bayes,   LDA   and   SVM)   were   able   to   classify  

participants   as   patient   or   control   above   chance   level   (all   binomial   test   p<=0.001;;   Table   4.3)  

when   they   were   trained   on   the   entire   dataset.   However,   when   controlling   for   over-fitting   using  

leave-one-out-cross   validation   (LOOCV),   all   models   performed   at   chance   level   (all   binomial  

test   p>0.36;;   Table   4.3).   This   indicated   that   combinations   of   variable   scores   that   separated  

patients   and   controls   could   be   identified,   but   that   these   combinations   were   based   on   individual  

differences   unrelated   to  MD. 
 

Table  4.3  Classification  accuracy  for  each  of  the  machine  learning  approaches:  Naive  Bayesian,  Linear  Discriminant  
analysis  (LDA)  and  Support  Vector  Machines  (SVM). 

Method 
 
 

  Accuracy 
 
 

Patient  
predictive  
value  

Control  
predictive  
value  

Sensitivity 
 
 

Specificity 
 
 

Binomial  
test  p-value 
 

SVM.all 86.2% 86.7% 85.7% 86.7% 85.7% <0.001* 
SVM.LOOCV 44.8% 47.1% 41.7% 53.3% 35.7% 0.771 
LDA.all 82.8% 85.7% 80.0% 80.0% 85.7% <0.001* 
LDA.LOOCV 55.2% 55.6% 54.5% 66.7% 42.9% 0.356 
NaiveBayes.all 79.3% 76.5% 83.3% 86.7% 71.4% 0.001* 
NaiveBayes.LOOCV 51.7% 52.9% 50.0% 60.0% 42.9% 0.500 
 

For  each  approach,  the  classification  rate  for  the  model  that  was  trained  on  all   data  (all)  and  the  model  that  was  tested  using  
leave-one-out-cross   validation   (LOOCV)   is   reported.   We   report   accuracy   (number   correct   divided   by   total   number   of  
participants),   patient-predictive-value   (the   proportion   of   true   patients   among   those   classified   as   patients   by   the  model),  
control-predictive-value   (the   proportion   of   true   controls   among  those  classified  as  controls  by  the  model),  sensitivity  (the  
proportion   of   participants   classified   as   patients   relative   to   the   total   number   of   patients),   specificity   (the   proportion   of  
participants  classified  as  controls  relative  to  the  total  number  of  controls),  binomial  test  p -value. 

 

4.5 DISCUSSION 

This   study   investigated   MD   patients’   timing   perception   and   production   capacities   away   from  

their   instrument.   Previous   studies   showed   that   beside   the   task   specific   problems,   MD   patient  

are   also   impaired   in   more   general   tasks   and   processes   [5,   12].   Results   of   the   current   study  

suggest   that   basic   movement   and   timing   capacities   relevant   for   music   making   are   unaffected  

in   MD   patients.   Both   for   purely   auditory   perception   tasks   as   well   as   for   the   sensorimotor  

synchronization   tapping   tasks,   no   impairments   were   found   in   MD-patients.   Furthermore,  

state-of-the-art   machine   learning   algorithms   could   not   separate   patients   and   controls   based   on  

the   outcome   measures   of   the   five   timing   tasks.   Overall,   these   results   suggest   that   MD-patients  

show   intact   auditory-motor   processing   related   to   the   basic   timing   tasks   studied   here.  

Therefore,   the  present   results   support   the  claim   that  MD  is  a  task-specific   movement   disorder. 

The   finding   that   patients   are   more   accurate   in   synchronizing   their   taps   with   the   tones   in   the  

stable   tapping   task   is   most   likely   related   to   their   amount   of   practice.   Patients   reported   on  

average   a   higher   amount   of   accumulated   hours   of   practice   [patients:   32.7   (23.0)   /   controls:  
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26.6   (22.4)   x103   hours],   indicating   that   they   practiced   more   than   the   tested   controls.   It   has  

been   shown   that   practice   is   associated   with   high   sensorimotor   synchronization   accuracy   [50,  

57].   The   positive   effect   of   the   adaptive   timing   of   the   pacing   signal   on   sensorimotor  

synchronization   was   only   visible   for   sensorimotor   synchronization   accuracy.   The   coupling  

between   the   pacing   signal   and   the   participants’   taps   was   very   high,   indicated   by   the   small  

asynchronies.   This   tight   coupling   is   not   very   surprising   considering   we   tested   professional  

musicians   but   also   did   not   leave   much   room   for   improvement   in   sensorimotor   synchronization  

behavior.   This   might   also   be   the   reason   why   the   hypothesized   unhelpful   metronome  

(alpha=0.7)   did   show   a   positive   effect   of   sensorimotor   synchronization   accuracy   but   the  

hypothesized   helpful   metronome   (alpha=0.3)   did   not   reveal   a   difference   compared   to   the  

unresponsive   metronome   (alpha=0   [fixed]).   On   the   small   asynchronies   only   a   70%   correction  

led   to  a  meaningful   adjustment   of   the  timing   of  the  metronome’s   tones. 

The   Beat   Alignment   Test   was   used   to   measure   participants’   perceptual   precision   in   detecting  

whether   a   metronome   was   aligned   with   a   musical   beat.   Humans   perceive   a   regular   pulse   of  

the   rhythm   of   the   musical   pieces   [58].   Not   surprisingly   the   bigger   (15%)   metronome  

misalignments   were   easier   to   detect   for   participants   than   the   more   subtle   10%   phase-shifted  

metronome.   Furthermore,   the   finding   that   late,   positive   shifts   are   easier   to   detect   than   early,  

negative   shifts   might   be   explained   by   means   of   the   oscillator-based   dynamic   theory   of  

attending   [59].   According   to   this   theory,   regular   sequences   establish   internal   oscillators   that  

resonate   in   phase   with   the   regular   external   stimulus.   The   attention   of   the   listener   is   not   equally  

distributed   of   the   entire   time   span   but   follows   attentional   cycles   that   are   linked   to   the   internal  

oscillators.   The   perception   (and   production)   of   events   is   more   accurate   when   the   event  

coincides   with   the   peak   of   the   attentional   cycle   [59-60].   In   case   of   the   phase-shifted  

metronome   the   clicks   do   not   coincide   with   the   expected   pulse   of   the  music.   In case of the late 

shifted metronome, the narrowed focus around anticipated events may increase attention as 

time progresses, because the expected click has not yet occurred [59, 61]. Furthermore,   in  

trials   where   the   metronome   was   shifted   earlier   the   internal   oscillator   is   disturbed   by   one   cue.  

This   cue   is   the   result   of   the   pulse   of   the   too   early   occurring   metronome   click.   Trials   during  

which   the   metronome   was   shifted   later   two   cues   are   available,   namely   the   missing   click   when  

a   click   was   expected   and   then   the   click   that   happens   after   the  perceived  pulse   [62].  Late   shifts  

might   therefore   be   easier   to   detect   and   classify   as   misaligned,   than   early   shifts   [59,   62].  

Surprisingly,   Lim   and   colleagues   [3]   showed   that   if   the   last   tone   in   a   five   tone   sequences  

occurred   earlier   this   was   more   easily   detectable   than   if   the   fifth   tone   was   delayed.  

Furthermore,   they   concluded   that   this   difference   was   bigger   in   MD   patients.   The   anisochrony  
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task   employed   here,   with   an   adaptively   delayed   tone,   has   strong   resemblances   with   the   task  

employed   by   Lim   and   colleagues   [3].   However,   the   anisochrony   task   did   not   reveal   this  

difference   in   detecting   delayed   tones   between   the   MD   patients   and   healthy   controls.   The  

effect   found   by   Lim   and   colleagues   [3]   might   arise   because   musicians   perhaps   link   delays   at  

the   end   of   the   five   tone   sequence   to   the   final   tone   of   a   musical   phrase.   In   expressively   timed  

musical   performances   this   final   tone   is   often   delayed.   It   was   previously   found   that   detecting  

delays   at   the   end   of   a   musical   phrase   is   difficult,   because   musicians   expect   delays   at   this   point  

[63-64].   In   the   anisochrony   task   the   one-but-last   tone  was  delayed   instead  of   the   last   tone,   this  

phrase-final   lengthening   effect   did   not   occur.   Here,   we   aimed   to   purely   measure   participants’  

auditory   temporal   perception   and   there   we   eliminated   potential   interference   from   high-level  

musical   processing   by   measuring   sensitivity   to   the   fourth   (i.e.   one-but-last)   instead   of   fifth  

(last)   tone. 

In   summary,   the   observed   significant   effects   are   all   related   to   the   applied   experimental  

manipulations   but   did   not   differ   between   patients   and   controls.   Furthermore,   even   state-of-

the-art   machine   learning   algorithms   were   not   able   to   pick   up   pathological   behaviors   that  

would   tease   apart   patients   and   controls.   The   results   suggest   that   basic   timing   abilities,   both  

perception   and   production,   are   intact   in   patients   that   suffer   from   MD.   Although   this   finding  

supports   the   claim   that   MD   is   a   task-specific   movement   disorder   our   main   hypothesis   was  

that,   due   to   the   assumed   maladaptive   plasticity   in   brain   areas   that   are   highly   relevant   for  

timing,   patients   would   show   impaired   timing   abilities   compared   to   a   matched   healthy   control  

group.    

A   possible   explanation   for   the   lack   of   the   effect   of   MD   on   timing   might   be   related   to   the  

nature   of   the   task.   The   tasks   employed   in   the   current   study   are   less   complex   than   the  

movements   involved   in   music   making.   The   tasks   were   specifically   developed   and  

successfully   employed   in   previous   studies   addressing   basic   perceptual   and   action   aspects   of  

timing   that   are   important   for   playing   music   [37-42].   Although   differences   in   brain   activations  

have   been   shown   by   very   basic   tasks   that   did   not   evoke   dystonic   symptoms   (e.g.,   finger  

tapping),   the   functional   maladaptive   plasticity   underlying   focal   hand   dystonia   was   more  

pronounced   in   more   complex   tasks   (e.g.,   Luria   apposition   task)   [21,   26].   It  would   therefore  be  

interesting   to  test  MD-patients’   timing   abilities   using   more   complex   tasks. 

A   second   explanation   might   be   found   in   the   role   of   the   affected   finger.   In   the   current  

experiment,   focussing   on   basic   timing   abilities,   participants   of   whom   the   right   index   finger  

was   affected   were   excluded   from   the   study.   The   reason   to   do   this   was   to   be   sure   that   no  

dystonic   movements   would   be   evoked   during   the   tasks,   which   often   required   participants   to  



120 
 

use   their   right   index   finger.   Dystonic   movements   most   likely   would   disturb   the   temporal  

accuracy.   Previous   studies   reporting   timing   anomalies   in   MD-patients   during   piano   playing  

[9]   and   individuated   finger   movements   [10]   indicated   the   role   of   the   affected   finger(s).  

Jabusch   and   colleagues   [9]   found   no   difference   in   timing   parameters   between   the   unaffected  

hands   of   the   MD   patients   and   the   reference   hands   of   the   healthy   controls.   Obviously,   in   the  

affected   hands   of   the   tested   pianists,   dystonic   cramping   was   present   during   the   task.   The  

results   by   Furuya   and   Altenmüller   [10]   were   also   obtained   by   means   of   a   finger-tapping   task.  

But   in   this   case   participants   were   instructed   to   depress   the   piano   keys   with   all   fingers,   while  

tapping   with   one   of   the   fingers.   This   made   the   task   more   complex,   but   more   importantly   also  

included   the   affected   finger   in   the   position   of   the   hand,   like   during   real   piano   playing.  

Furthermore,   patients   were  directly   tested  at  their   instrument   (like   in   [9]). 

The   latter   two   points   brought   up   in   relation   to   the   Furuya   and  Altenmüller   [10]   study   link   to   a  

final   and   most   likely   reason   why   no   general   basic   timing   deficits   were   found   in   MD-patients,  

namely   the   task-specific   nature   of   this   movement   disorder.   Hu   and   colleagues   (2006)   found  

differences   in   brain   activation   in   writer’s   cramp   patients   compared   to   healthy   controls   only   for  

writing   with   a   pencil.   However,   no   differences   between   patients   and   controls   were   found   for  

the   same   writing   task   when   performed   with   the   finger   [36].   This   finding   pin-points   the  

specific   role   of   the   task   in   task-specific   hand   dystonia.   The   problems   patients   suffering   from  

MD   encounter   are   most   strongly   related   to   instrumental   playing   [1].   However,   a   recent   study  

found   that   98%   of   the   patients   also   report   problems   with   other   fine   motor   control   daily   life  

activities,   such   as   computer   keyboard   typing   and   hand   writing   [13].   Similarly,   in   our   sample   9  

out   of   15   patients   reported   (subtle)   problems   with   non-musical   fine   motor   tasks.   But   the   loss  

of   voluntary   motor   control   in   MD-patients   is   most   pronounced   in   the   over-practiced   task,   for  

these   professional   musicians   playing   their   instrument.   The   timing   abilities   of   MD-patients  

were   tested   away   from   their   instrument,   since   we   were   interested   in   the   basic   aspect   of   timing.  

The   question   remains   if   problems   with   timing   are   present   in   MD-patients   when   basic   features  

of   timing   are   investigated   at   the   instrument   without   evoking   dystonic   movements   that   disturb  

temporal   aspects  of  the  movement.    

Furthermore,   we   did   not   measure   brain   activation   patterns   during   the   tasks.   Therefore,   it  

remains   unclear   whether   the   previously   found   maladaptive   plasticity   [20-21]   played   a   role  

during   the   experiment.   Moreover,   a   recent   study   found   that   focal   hand   dystonia   patients  

exhibited   decreased   activations   and   increased   connectivity   in   different   brain   regions   (e.g.,  

cerebellum,   putamen,   and   sensorimotor   cortex).   Nevertheless,   identical   motor   performance   in  

the   patient   and   the   healthy   control   group   was   found,   suggesting   that   differences   in   activation  
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and   connectivity   may   reflect   beneficial   compensatory   processes   [65].   The   tasks   employed   in  

the   current   experiment   focus   on   basic   perceptual   and   action   aspects   of   timing   that   have   been  

found   to   be   important   for   playing   music   and   ensemble   music   making   [42,   48].   Due   to  

importance   of   movement   timing   for   musicians,   it   might   be   that   MD   patients   have   developed  

compensatory   mechanisms   to   maintain   their   extraordinary   level   of   timing.   We   addressed   this  

issue   by   examining   the   amount   of   phase   correction   and   the   PT-ratio,   as   indicators   of   the  

underlying   mechanisms   of   successful   sensorimotor   synchronization   [45].   The   finding   that  

these   measures   also   did   not   differ   between   groups   speaks   against   the   use   of   compensatory  

processes  by  patients,   but   further   research   is   necessary   to  definitively   exclude   this   possibility. 

The   timing   of   movements   is   obviously   a   complex   multifaceted   capacity   that   entails   both  

perceptual   and   action   components,   also   seems   to   differ   between   types   of   movements   (e.g.,  

continuous   vs   discrete   tasks).   Although   the   employed   battery   of   auditory-motor   tasks   covers   a  

wide   range   of   processes   relevant   to   motor   timing,   it   is   impossible   to   test   all   aspects  

exhaustively.   The   aspects   that   we   investigated   are   mostly   relevant   to   discrete   movement   tasks,  

such   as   finger   tapping.   It   is   therefore   unknown   whether   our   findings   generalize   to   timing  

abilities   most   relevant   in   other   tasks,   such   as   emergent   timing   in   continuous   movements   [   66-

67]. 

Further   experiments   could   further   clarify   the   task-specific   nature   of   MD   and   the  

generalizability   of   our   results   to   other   types   of   timing   tasks.   In   these   experiments   the   above-

mentioned   points   could   be   tested.   For   example,   sensorimotor   synchronization   abilities   of   right  

index   finger   affected   pianists   could   be   addressed   via   a   similar   paradigm   both   at   the   piano   as  

well   as   using   the   current   experiment   set   up.   Also   more   complex   tasks,   such   as   tapping   tasks  

that   include   multiple   fingers   or   even   both   hands,   and   continuous   tasks   could   be   administrated  

while   timing   measures   are   recorded.   The   tasks   could   be   administrated   in   an   fMRI   scanner   to  

reveal   the  brain   activation   patterns  of   patients   and   controls   during   the   tasks.    

Overall,   results   of   the   current   study   suggest   that   basic   timing   abilities   stay   intact   in   patients  

that   suffer   from   MD.   This   finding   supports   the   idea   that   MD   is   a   task-specific   movement  

disorder   and   that   problems   in   this   patient   population   are   most   pronounced   in   relation   to  

instrumental   playing.   The   current   study   raises   the   question   how   patients’   basic   timing  

capacities   can   be   intact   although   they   are   impaired   at   a   variety   of   fine  motor   tasks.  Our   results  

suggest   that   MD   patients   may   maintain   their   musical   timing   skills   by   practicing   sensorimotor  

timing   tasks   away   from   their   instrument.   Also,   the   finding   that   these   basic   musical   skills   are  

intact   might   suggest   that   if   musical   instruments   are   adapted   in   such   a   way   as   to   not   evoke  

dystonic   movements,   musical   performance   in   these  patients   may  be  restored. 



122 
 

4.6 ACKNOWLEDGMENTS 

The   authors   thank   Caroline   Seer,   Matthias   Klaus,   Marlehn   Lübbert,   and   Johann   Schneider   for  

their   help   running   the   experiment.   This   work   was   supported   by   funding   from   the   European  

Community’s   Seventh   Framework   Programme   under   the   EBRAMUS   project   -   grant  

agreement   n◦  238157. 

 
4.7 REFERENCES 

1. Altenmüller   E,   Jabusch   HC   (2010)   Focal   dystonia   in   musicians:   phenomenology,  

pathophysiology,   triggering   factors,   and  treatment. Med  Probl  Perform   Art, 25:  3-9. 

2. Hallett   M  (1995).  Is  dystonia   a  sensory   disorder?  Ann   Neurol   38:  139-140. 

3. Lim   VK,   Bradshaw   JL,   Nicholls   MER,   Altenmüller   EA   (2003)   Perceptual   differences   in  

sequential   stimuli   across   patients   with   musician’s   and   writer’s   cramp.   Mov   Disord   18:  

1286-1293. 

4. Tinazzi   M,   Rosso   T,   Fiaschi   A   (2003)   Role   of   the   somatosensory   system   in   primary  

dystonia.   Mov  Disord   18:   605-622. 

5. Avanizo   L,   Martine   D,   Martine   I,   Pelosin   E,   Vicario   CM,   Bove   M,   Defazio   G,  

Abbruzzese   G  (2013)  Temporal   expectation   in   focal   hand  dystonia.   Brain   136:  444-454. 

6. Stamelou   M,   Edwards   MJ,   Hallett   M,   Bhatia,   KP   (2012)   The   non-motor   syndrome   of  

primary   dystonia:   clinical   and  pathophysiological   implications.   Brain   135:   1668-1681. 

7. Marsden  CD,  Sheehy  MP  (1990)  Writer’s   cramp.  Trends   Neurosci   13:   148-153. 

8. Jankovic   J,  Shale   H  (1989)  Dystonia   in  musicians.   Seminars   in  Neurol   9:  131-135. 

9. Jabusch   HC,   Vauth   H,   Altenmüller   E   (2004)   Quantification   of   focal   dystonia   in   pianists  

using   scale   analysis.   Mov  Disord  19:   171-180.   

10. Furuya   S,   Altenmüller   E   (2013)   Finger-specific   loss   of   independent   control   of   finger  

movements   in  musician’s   dystonia.   Neuroscience   247C:  152-163. 

11. Chang   FCF,   Frucht   SJ   (2013)   Motor   and   sensory   dysfunction   in   musician’s   dystonia.  

Curr  Neuropharmacol   11:   41-47.   

12. Rosset-Llobet   J,   Candia   V,   Fàbregas   S,   Ray   W,   Pascual-Leone   Á   (2007)   Secondary  

motor   disturbances   in   101   patients   with   musician’s   dystonia.   J   Neurol   Neurosurg  

Psychiatry   78:  949-953.   

13. van   Vugt   FT,   Boullet   L,   Jabusch   HC,   Altenmueller   E   (2013)   Musician’s   dystonia   in  

pianists:   long-term   evaluation   of   retraining   and   other   therapies.   Parkinsonism   Relat   D  

doi:   10.1016/j.parkreldis.2013.08.009. 

14. Jabusch   HC,   Zschucke   D,   Schmidt   A,   Schuele   S,   Altenmüller   E   (2005)   Focal   dystonia  



123 
 

in   musicians:   Treatment   strategies   and   long-‐term   outcome   in   144   patients. Mov  

Disord 20:  1623-1626. 

15. Breakefield   XO,   Blood   AJ,   Li   Y,   Hallett   M,   Hanson   PI,   Standaert,   DG   (2008)   The  

pathophysiological   basis   of  dystonias.   Nat  Rev  Neurosci   9:   222-234. 

16. Delmaire   C,   Vidailhet   M,   Elbaz A, Bourdain   F,   Bleton   JP,   Sangla   S,   Meunier   S,   Terrier  

A,   Lehéricy   S   (2007)   Structural   abnormalities   in   the   cerebellum   and   sensorimotor  

circuit   in  writer’s   cramp.  Neurology   69:   376-380. 

17. Granert   O,   Peller   M,   Jabusch   HC,   Altenmüller   A,   Siebner   HR   (2011)   Sensorimotor  

skills   and   focal   dystonia   are   linked   to   putaminal   grey-matter   volume   in   pianists.   J  

Neurol  Neurosurg   Psychiatry   82:   1225-1231. 

18. Quartarone   A,   Siebner   HR,   Rothwell   JC   (2006)   Task-specific   hand   dystonia:   can   too  

much   plasticity   be  bad  for   you?   Trends   Neurosci,   29:  192-199. 

19. Preibisch   C,   Berg   D,   Hofmann   E,   Solymosi   L,   Naumann   M   (2001)   Cerebral   activation  

patterns   in   patients   with   writer’s   cramp:   a   functional   magnetic   resonance   imaging   study.  

J  Neurol   248:  10-17. 

20. Pujol   J,   Roset-Llobet   J,   Rosine´s-Cubells   D,   Deus   J,   Narberhaus   B,   Valls-Sole´   J,  

Capdevila   A,   Pascual-Leone   A   (2000)   Brain   Cortical   Activation   during   Guitar-Induced  

Hand  Dystonia   Studied   by  Functional   MRI.  NeuroImage   12:   257-267. 

21. Kadota   H,   Nakajima   Y,   Miyazaki   M,   Sekiguchi   H,   Kohno   Y,   Amako   M,   Arino   H,  

Nemoto   K,   Sakai   N   (2010)   An   fMRI   study   of   musicians   with   focal   dystonia   during  

tapping   tasks.  J  Neurol   257:  1092-1098. 

22. Beck   S,   Hallett   M   (2010)   Surround   inhibition   in   the   motor   system.   Exp   Brain   Res   210:  

165-172. 

23. Rosenkranz   K,   Williamon   A,   Butler   K,   Cordivari   C,   Lees   AJ,   Rothwell   JC   (2005)  

Pathophysiological   differences   between   musician’s   dystonia   and   writer’s   cramp.   Brain  

128:  918-931. 

24. Abbruzzese   G,   Marchese   R,   Buccolieri   A,   Gasparetto   B,   Trompetto   C,   (2001)  

Abnormalities   of   sensorimotor   integration   in   focal   dystonia:   a   transcranial   magnetic  

stimulation   study.   Brain   124:   537-45. 

25. Lim   VK,   Bradshaw   JL,   Nicholls   MER,   Kirk   IJ,   Hamm   JP,   Grossbach  M,  Altenmüller   E  

(2003)   Aberrant   sensorimotor   integration   in   patients   with   musicians’   cramp.   J  

Psychophysiol   17:   195-202. 

26. Wu   CC,   Fairhall   SL,   McNair   NA,   Hamm   JP,   Kirk   IJ,   Cunnington   R,  Anderson   T,   Lim  

VK   (2010)   Impaired   sensorimotor   integration   in   focal   hand   dystonia   patients   in   the  



124 
 

absence  of  symptoms.   J  Neurol   Neurosurg   Psychiatry   81:   659-665. 

27. Coull   JT,   Cheng   R,   Meck  WH   (2011)   Neuroanatomical   and   neurochemical   substrates   of  

timing.   Neuropsychopharmacol   36:  3-25. 

28. Witt   ST,   Laird   AR,   Meyerand   ME   (2008)   Functional   neuroimaging   correlates   of   finger-

tapping   task  variations:   an  ALE  meta-analysis.   NeuroImage   42:  343-356.   

29. Grahn   JA,   Brett   M   (2009).   Impairment   of   beat-based   rhythm   discrimination   in  

Parkinson’s   disease.  Cortex  45:  54-61. 

30. Schwartze   M,   Keller   PE,   Patel  AD,   Kotz   SA   (2011)   The   impact   of   basal   ganglia   lesions  

of   sensorimotor   synchronization,   spontaneous   motor   tempo   and   the   detection   of   tempo  

changes.   Behav  Brain   Res  216:  685-691. 

31. Scontrini   A,   Conte  A,   Defazio   G,   Fiorio   M,   Fabbrini   G,   Suppa  A,   Tinazzi   M,   Berardelli  

A.   (2009)   Somatosensory   temporal   discrimination   in   patients   with   primary   focal  

dystonia.   J  Neurol   Neurosurg   Psychiatry   80:  1315-1319. 
32. Sanger  TD,  Tarsy   D,  Pascual-Leone   A  (2001)  Abnormalities   of  spatial   and  temporal  

sensory   discrimination   in   writer’s   cramp.  Mov  Disord  16:   94-99. 

33. Fujii   S,  Schlaug   G  (2013)  The  Harvard  Beat  Assessment   Test  (H-BAT):   a  battery   for  

assessing   beat  perception   and  production   and  their   dissociation.   Front  Hum   Neurosci  

7:771.  doi:10.3389/fnhum.2013.00771 

34. Sheehy   MP,   Marsden   CD   (1982).   Writers’   cramp   –   a   focal   dystonia.   Brain,   105:   461-

480. 

35. Jedynak  PC,  Tranchant   C,  de  Beyl   DZ  (2001)  Prospective   clinical   study   of  writer’s  

cramp.  Mov  Disord   16:  494-499. 

36. Hu   XY,   Wang   L,   Liu   H,   Zhang   SZ   (2006)   Functional   magnetic   resonance   imaging   study  

of  writer's   cramp.  Chin   Med  J  (Engl)   119:   1263-1271. 

37. Iversen   JR,   Patel  AD   (2008)   The   Beat  Alignment   Test   (BAT):   Surveying   beat   processing  

abilities   in   the   general   population.   In:   Miyazaki   K,   Hiraga   Y,   Adachi   M,   Nakajima   Y,  

Tsuzaki   M,   editors.   Proceedings   of   the   10th   International   Conference   on   Music  

Perception   &   Cognition   (ICMPC10)   Sapporo,   Japan.  Adelaide:   Causal   Productions.   pp.  

465-468. 

38. Pecenka   N,   Keller   PE   (2011)   The   role   of   temporal   prediction   abilities   in   interpersonal  

sensorimotor   synchronization.   Exp  Brain   Res  211:   505-515. 

39. Repp   BH,   Keller   PE,   Jacoby   N   (2012)   Quantifying   phase   correction   in   sensorimotor  

synchronization:   empirical   comparison   of  three  paradigms.   Acta  Psychol   139:  281-329. 

40. Pecenka   N,   Engel   A,   Keller   PE   (2013)   Neural   correlates   of   auditory   temporal  



125 
 

predictions   during   sensorimotor   synchronization.   Front   Hum   Neurosci   7:380.   doi:  

10.3389/fnhum.2013.00380 

41. Fairhurst   MT,   Janata   P.,   Keller   PE   (2014) Leading   the   follower:   An   fMRI   investigation  

of   dynamic   cooperativity   and   leader-follower   strategies   in   synchronization   with   an  

adaptive   virtual   partner.  NeuroImage   84:   688-697.   

42. van Vugt FT, Tillmann B (2014) Thresholds of auditory-motor coupling measured with 

a simple task in musicians and non-musicians: was the sound simultaneous to the key 

press? PLoS ONE 9(2): e87176. doi:10.1371/journal.pone.0087176 

43. Keller   PE   (2008)   Joint   action   in   music   performance.   In:   Morganti   F,   Carassa   A,   and  

Riva   G,   editors.   Enacting   Intersubjectivity:   a   Cognitive   and   Social   Perspective   to   the  

Study  of   Interactions.   Amsterdam:   IOSPre.  pp.  205-221. 

44. Konvalinka   I,Vuust   P,  Roepstorff   A,  Frith   CD  (2010)  Follow   you,   follow   me:  

continuous   mutual   prediction   and  adaptation   in   joint   tapping.   Q  J  Exp  Psychol   63:  

2220-2230. 

45. van   der   Steen   MC,   Keller   PE   (2013)   The  Adaptation   and  Anticipation   Model   (ADAM)  

of   sensorimotor   synchronization.   Front   Hum   Neurosci   7:253.   doi:   10.3389/fnhum.  

2013.00253 

46. Repp   BH,   Keller   PE   (2008)   Sensorimotor   synchronization   with   adaptively   timed  

sequences.   Hum  Mov  Sci  27:  423-456. 

47. Fairhurst   MT,   Janata   P,   Keller   PE   (2012)   Being   and   feeling   in   sync   with   an   adaptive  

virtual   partner:   Brain   mechanisms   underlying   dynamic   cooperativity.   Cereb   Cortex   67:  

313-321. 

48. Repp   BH,   Su   Y-H   (2013)   Sensorimotor   synchronization:   a   review   of   recent   research  

(2006–   2012).   Psychon   Bull   Rev   doi:   10.3758/s13423-012-0371-2.   [Epub   ahead   of  

print].    

49. Vorberg  D,  Schulze   HH  (2002)  A  two-level   timing   model   for   synchronization.   J  Math  

Psychol   46:  56-87. 

50. Pecenka   N,   Keller   PE   (2009)   Auditory   pitch   imagery   and   its   relationship   to   musical  

synchronization.   Ann   NY  Acad  Sci   1169:   282-286. 

51. Green   DM   (1995)   Maximum-likelihood   procedures   and   the   inattentive   observer.   J  

Acoust  Soc  Am  97:   3749-3760. 

52. Gu   X,   Green   DM   (1994)   Further   studies   of   a   maximum-likelihood   yes–no   procedure.   J  

Acoust  Soc  Am  96:   93-101.   

53. Ehrlé   N,   Samson   S   (2005)   Auditory   discrimination   of   anisochrony:   influence   of   the  



126 
 

tempo  and  musical   backgrounds   of  listeners.   Brain   Cognition   58,  133-147.   

54. Hyde   KL,   Peretz   I   (2004)   Brains   that   are   out   of   tune   but   in   time.  Psychol  Sci   15,   356-

360.   

55. Bakeman R (2005) Recommended effect size statistics for repeated measures designs. 

Behav Res Methods 37: 379-384. 

56. Launay   J,   Dean   RT,   Bailes   F   (2013)   Evidence   for   multiple   strategies   in   off-beat   tapping  

with   anisochronous   stimuli.   Psychol   Res   doi:   10.1007/s00426-013-0513-9   [Epub   ahead  

of  print]. 

57. Repp   BH   (2010)   Sensorimotor   synchronization   and   perception   of   timing:   Effects   of  

music   training   and  task  experience.   Hum  Mov  Sci  29:  200-213. 

58. Large   EW   (2008)   Resonating   to   musical   rhythm:   Theory   and   experiment.   In.   Grondin   S,  

editors.   Psychology   of   time.   Bingley,   U.K.:  Emerald   Group.  pp.  189-232. 

59. Large   EW,   Jones   MR   (1999)   The   dynamics   of   attending:   How   people   track   time-

varying   events.   Psychol   Rev  106:   119-159. 

60. Jones   MR,   Moynihan   H,   MacKenzie   N,   Puente   J   (2002)   Temporal   aspects   of   stimulus-

driven   attending   in   dynamic   arrays.  Psychol   Sci  13:   313-319. 

61. McAuley JD, Kidd GR (1998) Effect of deviations from temporal expectations on 

tempo discrimination of isochronous tone sequences. J Exp Psychol Human 24: 1786-

1800. 

62. Lebrun-Guillaud   G,   Tillmann   B   (2007)   Influence   of   a   tone’s   tonal   function   on   temporal  

change   detection.   Percept  Psychophys   69:   1450-1459. 

63. Repp   BH   (1999)   Detecting   deviations   from   metronomic   timing   in   music:   Effects   of  

perceptual   structure   on  the  mental   timekeeper.   Percept  Psychophys   61:  529-548. 

64. Penel   A,   Drake   C   (1998)   Sources   of   timing   variations   in   music   performance:   a  

psychological   segmentation   model.   Psychol   Res  61:  12-32. 

65. Moore   RD,   Gallea   C,   Horovitz   SG,   Hallett   M   (2012)   Individuated   finger   control   in  

focal   hand  dystonia:   An  fMRI   study.   NeuroImage   61:  823-831. 

66. Zelaznik   HN,   Spencer   RM,   Ivry   RB   (2002)   Dissociation   of   explicit   and   implicit   timing  

in   repetitive   tapping   and   drawing   movements.   J   Exp   Psychol   Hum   Percept   Perform   28:  

575-588. 

67. Zelaznik   HN,   Spencer   RM,   Ivry   RB,   Baria   A,   Bloom   M,   Dolansky   L,   Justice   S,  

Patterson   K,   Whetter   E   (2005)   Timing   variability   in   circle   drawing   and   tapping:   probing  

the   relationship   between   event   and  emergent   timing.   J  Mot  Behav   37:   395-403. 

 



127 
 

Summary of the dissertation         

Temporal adaptation and anticipation mechanisms in sensorimotor 

synchronization 
Dissertation submitted to Faculty of Biosciences, Pharmacy and Psychology 

University of Leipzig 

Submitted by Maria Christine van der Steen, M.Sc. 

Leipzig, 10 July 2014 
             

INTRODUCTION 

A constantly changing environment requires precise yet flexible timing of movements. 

Sensorimotor synchronization (SMS) is the temporal coordination of an action with an 

external event. This basic and fundamental human skill contributes to optimal sensory-motor 

control in daily life. SMS can occur more or less spontaneously, for example when our steps 

become synchronized to the steps of the person with whom one is walking. On the other hand, 

SMS can also be the goal of extensive practice, for example a musical ensemble practices to 

reach an extraordinary level of SMS among co-performers. Adaptive error correction 

mechanisms that support synchronization have traditionally been the focus of research 

investigating SMS. Recently, an emerging line of research has highlighted the additional 

importance of anticipatory mechanisms for SMS. The goal of this dissertation was to gain a 

better understanding of the underlying temporal adaptation (reactive error correction 

processes) and anticipation (predictive processes) mechanisms that are hypothesized to play a 

role in the precise yet flexible nature of SMS. To this end, an Adaptation and Anticipation 

Model (ADAM) was developed and experiments focusing on different aspects of timing with 

healthy participants and patients were performed.  

 

CHAPTER 2 

In chapter 2, an overview of the existing literature on adaptation and anticipation mechanisms 

in SMS is given and ADAM is introduced. Humans are normally highly capable of 

synchronizing their movements with auditory sequences. Nevertheless, during 

synchronization, timing errors (asynchronies) between the action and the stimulus sequence 

occur due to biological noise and because of intentional deviations from regularity (as in 

expressive timed musical performances). Error correction processes, including phase and 

period correction, compensate for timing errors in a reactive fashion. Without these adaptation 
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mechanisms, asynchronies would increase over time, which in turn could eventually lead to 

the loss of synchrony between the stimulus sequence and the movement. Although successful 

SMS requires adaptation mechanisms, phase and period correction alone are not capable of 

accounting for all aspects of SMS, for example, the ability to move precisely in synchrony 

with a tempo-changing sequence. In such situations, anticipatory mechanisms enable the onset 

of stimulus events to be predicted, therefore allowing the movement to start in time so that it 

coincides with the actual stimulus event.  

Anticipation mechanisms have been linked with internal models. Internal (forward and 

inverse) models represent the sensorimotor transformations that mediate intentions, motor 

commands, and behavioral effects and can be run without actually performing the action. 

Forward models predict the outcome of a motor command based on the current state of the 

action control system and therefore represent the causal relationship between input and output 

of the system. Inverse models, on the other hand, serve as a controller by providing the motor 

command that is necessary to change the system from the current state to the desired end 

state. Paired forward and inverse internal models facilitate successful SMS by allowing 

potential errors to be corrected before they actually occur.  

Typically, the involvement of adaptation and anticipation mechanisms in SMS has been 

investigated with separate paradigms. Here it is argued that it is desirable to consider both 

mechanisms within a unified framework in order to develop a more complete understanding 

of these mechanisms, how they are linked, and how they influence each other. Such a unified 

framework was pursued by creating ADAM, an Adaptation and Anticipation Model that 

combines reactive error correction processes (adaptation) with predictive temporal 

extrapolation processes inspired by the notion of internal models (anticipation). One goal in 

creating ADAM is to shed light on adaptation and anticipation mechanisms involved in SMS 

by means of simulations, during which parameters can systematically be varied and by using 

ADAM to drive a virtual partner, with which participants can interact directly. 

   

CHAPTER 3 

A common paradigm to investigate SMS and its underlying mechanisms involves a paced 

finger tapping task. During this simple task participants are asked to tap their finger in 

synchrony with a pacing stimulus, often consisting of an auditory sequence. The study 

presented in chapter 3 aimed to understand how participants synchronize their movements 

with sequences containing continuous tempo changes. To this end, the results of a behavioral 

experiment were combined with simulations with ADAM. Seventeen healthy participants 
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synchronized their finger taps with three auditory tempo changing stimulus sequences. The 

pattern of the stimulus sequences differed in the rate with which the tempo changed and the 

number of turning points. The tempo changes were designed to resemble musical accelerando 

and ritardando. The mean asynchrony and the standard deviation of the signed asynchrony 

were calculated as measures of SMS accuracy and precision, respectively. Furthermore, 

measures pertaining to the underlying adaptation and anticipation mechanisms were derived. 

The simulations focused on the effect of adaptation and anticipation mechanisms underlying 

SMS and possible links between both mechanisms. Four models were created: one with 

adaptation only, one with independent contributions of adaptation and anticipation, and two 

models in which adaptation and anticipation were linked in a joint internal model. Results of 

the behavioral experiment indicated that sensorimotor synchronization accuracy and 

precision, while generally high, decreased with increases in the rate of tempo change and 

number of turning points. Simulations and model-based parameter estimates showed that 

adaptation mechanisms alone could not fully explain the observed sensorimotor 

synchronization behavior. Including the anticipation process in the model increased the 

precision of simulated sensorimotor synchronization and improved the fit of model to 

behavioral data. Overall, the results suggested that both adaptation and anticipation 

mechanisms play an important role during sensorimotor synchronization with tempo changing 

sequences. While the exact link between adaptation and anticipation remains an open 

question, joint internal models provide a possible mechanism that might play a role in this 

link. 

 

CHAPTER 4 

Chapter 4 describes a study investigating timing abilities in patients with musician’s   dystonia.  

Musician’s   dystonia   is   a   form   of   focal   dystonia and is characterized by a loss of voluntary 

motor control of skilled hand movements during instrumental playing. The pathophysiology 

of this movement disorder is still unclear but research suggests that in addition to altered 

inhibition patterns at different levels of the central nervous system, maladaptive plasticity in 

areas that are important for timing (e.g. basal ganglia and sensorimotor cortices), as well as 

alterations in sensorimotor integration play a role in this disorder. Several studies have 

reported that besides the loss of control of movements necessary to successfully play their 

instrument, patients also show impaired perceptual timing and temporal processing abilities. 

The current study employed a battery of tasks aiming to separate the purely perceptual 

capacity from production abilities necessary for SMS, and thereby to provide a picture of the 
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timing abilities of musician’s   dystonia   patients.   Participants   (15   patients / 15 matched 

controls) synchronized their tapping with tempo changing and adaptive auditory sequences, so 

as to address SMS abilities and underlying anticipation and adaptation mechanisms. In 

addition, precision of beat synchrony perception was examined with an adjusted version of 

the Beat Alignment Test. Performance on these tasks was compared with elementary 

perceptual tasks, namely anisochrony detection and auditory-motor delay detection. Results 

did not show any deficits in auditory-motor processing for patients relative to controls. Both 

groups benefited from a pacing sequence that adapted to their timing during SMS. 

Furthermore, in the Beat Alignment Test both groups were able to detect a misaligned 

metronome when it was late rather than early relative to a musical beat. In sum, the results 

suggest that timing abilities are intact   in   patients   with   musician’s   dystonia.   This   supports   the  

idea   that   musician’s dystonia is a highly task-specific movement disorder in which patients 

are mostly impaired in tasks closely related to the demands of actually playing their 

instrument. 

 

CONCLUSION 

The research presented in this dissertation investigated the timing of movements during SMS, 

focusing on the underlying adaptation and anticipation mechanisms. ADAM was found to be 

a useful framework to investigate adaptation and anticipation mechanisms and possible links 

between these mechanisms. Hypothesized relationships between adaptation and anticipation 

were investigated by comparing computer simulations based on ADAM with data from 

behavioral experiments, leading to novel insights into SMS. Notably, it was shown not only 

that both adaptation and anticipation mechanisms play a role during SMS with tempo 

changing sequences, but also that internal models may provide a link between the 

mechanisms. The research in this dissertation was motivated by the assumption that, once a 

better understanding of the mechanisms underlying temporal sensorimotor synchronization 

and related deficits in patient populations is acquired, it will be possible to set up targeted 

rehabilitation programs focusing on the timing of movements. Musician’s   dystonia   patients 

did not display impaired SMS but nevertheless benefited from synchronizing with adaptive 

stimulus sequences. This finding is generally promising for the development of rehabilitation 

programs. Musician’s   dystonia   patients   could   maintain   their   timing   skills   by   practicing  

sensorimotor timing tasks away from their instrument. For this and other clinical populations 

(e.g., stroke patients), challenging synchronization tasks could be developed involving 

adaptive virtual partners that could be driven by ADAM.  
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EINLEITUNG 

Eine   sich   ständig   ändernde   Umwelt   erfordert   die   präzise   und   doch   flexible   zeitliche  

Koordination   (Timing)   von   Bewegungen.   Sensomotorische   Synchronisation   (SMS)   ist   die  

zeitliche   Koordination   einer   Handlung   mit   einem   externalen   Ereignis.   Diese   basale   und  

fundamentale   menschliche   Fähigkeit   trägt   zu   optimaler   sensorisch-motorischer   Kontrolle   im  

Alltag   bei.   SMS   kann   mehr   oder   weniger   spontan   auftreten,   beispielsweise   wenn   sich   unsere  

Schritte   mit   der   Person   synchronisieren,   die   neben   uns   läuft.   SMS   kann   aber   auch   Ziel  

ausgiebigen   Übens   sein;;   z.B.   übt   ein   Musikensemble,   um   ein   sehr   hohes   Niveau   an   SMS  

zwischen   den   Musikern   zu   erreichen.   Im   Fokus   der   Forschung   zu   SMS   standen   traditionell  

adaptive   Fehlerkorrekturmechanismen,   die   Synchronisation   unterstützen.   Seit   Kurzem   hat  

eine   wachsende   Zahl   von   Studien   die   zusätzliche   Wichtigkeit   antizipatorischer   Mechanismen  

für   SMS   hervorgehoben.   Ziel   dieser   Dissertation   war   es,   ein   besseres   Verständnis   dieser  

zugrundeliegenden   Mechanismen   zeitlicher   Adaptation   (Prozesse   reaktiver   Fehlerkorrektur)  

und   Antizipation   (prädiktive   Prozesse)   zu   gewinnen,   von   denen   angenommen   wird,   dass   sie  

bei   der   für   SMS   charakteristischen   Verknüpfung   von   Präzision   und   Flexibilität   eine   Rolle  

spielen.   Dazu   wurde   ein   Adaptations-   und   Antizipationsmodell   (ADAM)   entwickelt   sowie    

Experimente   mit   Fokus   auf   verschiedene   Aspekte   von   Timing   sowohl   mit   gesunden  

Probanden,   als   auch  mit   Patienten   durchgeführt. 

 

KAPITEL   2 

Kapitel   2   gibt   einerseits   eine   Übersicht   über   existente   Literatur   zu   Adaptations-   und  

Antizipationsmechanismen   der   SMS   und   stellt   zum   Anderen   ADAM   vor.   Menschen   sind  

normalerweise   in   hohem   Grad   dazu   fähig,   ihre   Bewegungen   mit   auditiven   Sequenzen   zu  

synchronisieren.   Aufgrund   biologischen   Rauschens   und   intentionaler   Abweichungen   von  
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Regelhaftigkeit      (etwa   in   Musik,   die   zeitliche      Variationen   wie   Verlangsamung   oder  

Tempoerhöhung   als   expressives   Mittel   nutzt)   treten   nichtsdestotrotz   während   der  

Synchronisation   zwischen   Handlung   und  Stimulus   Fehler   im  Timing   auf         (Asynchronitäten). 

Prozesse   der   Fehlerkorrektur,   einschließlich   Phasen-   und   Periodenkorrektur,   kompensieren  

Fehler   im   Timing   auf   reaktive   Art   und   Weise.   Ohne   diese   Adaptationsmechanismen   würden  

Asynchronitäten   über   die   Zeit   zunehmen,   was   wiederum   schließlich   zum   Verlust   von  

Synchronität   zwischen   Stimulussequenz   und  Bewegung   führen   würde. 

Obwohl   erfolgreiche   SMS   Adaptationsmechanismen   voraussetzt,   können   Phasen-   und  

Periodenkorrektur   nicht   alle   Aspekte   von   SMS   erklären,   beispielsweise   die   Fähigkeit,   präzise  

und   synchron   einer   Sequenz      zu   folgen,   die   sich   im   Tempo   ändert.   In   solchen   Situationen  

ermöglichen   Antizipatorische   Mechanismen   die   Vorhersage   des   Auftretens   der  

Stimulusereignisse   (Stimulus   Onset),   und   damit   der   Bewegung,   rechtzeitig   zu   beginnen,   so  

dass   sie   mit   dem   eigentlichen   Stimulusereignis   zusammenfällt.   Antizipationsmechanismen  

wurden   und   werden   mit   internalen   Modellen   verbunden.   Internale,   nämlich   vorwärtsgerichtete  

und   inverse   Modelle,      repräsentieren   die   sensomotorischen   Transformationen,   welche  

Intentionen,   motorische   Befehle   und   Verhaltenseffekte   vermitteln,   und   können   ausgeführt  

werden,   ohne   die   Handlung   tatsächlich   durchzuführen.   Vorwärtsgerichtete   Modelle   sagen   das  

Ergebnis   eines   motorischen   Befehls   auf   Grundlage   des   momentanen   Zustand   des   Systems  

vorher   und   repräsentieren   somit   den   kausalen   Zusammenhang   zwischen   Input   und   Output   des  

handlungskontrollierenden   Systems. 

Inverse   Modelle   andererseits   dienen   als   Kontrollinstanz,   indem   sie   den   motorischen   Befehl  

zur   Verfügung   stellen,   der   nötig   ist,   um   das   System   vom   momentanen   auf   den   angestrebten  

Endzustand   zu   ändern.   Gepaarte   vorwärtsgerichtete   und   inverse   internale   Modelle  

ermöglichen   erfolgreiche   SMS,   indem      durch   sie   potentielle   Fehler   bereits   vor   ihrem  

eigentlichen   Auftreten   korrigiert   werden  können. 

Typischerweise   wurden   die   Rollen   von   Adaptations-   und   Antizipationsmechanismen   in   SMS  

mit   getrennten   Paradigmen   untersucht.   In   dieser   Dissertation   werden   Argumente   dafür  

angeführt,   dass   es   erstrebenswert   ist,   beide   Mechanismen   innerhalb   eines   gemeinsamen  

theoretischen   Rahmens   zu   betrachten,   um   ein   vollständigeres   Verständnis   dieser  

Mechanismen,   ihrer   Verbindung   und   ihres   wechselseitigen   Einflusses   entwickeln   zu   können.  

Solch   ein   gemeinsamer   Rahmen   wurde   mit   der   Entwicklung   des   ADAM   verfolgt,   einem  

Adaptations-   und   Antizipationsmodell,   dass   reaktive   Fehlerkorrekturprozesse   (Adaptation)  

mit   prädiktiven   zeitlichen   Extrapolationsprozessen,   entsprechend   dem   Konzept   internaler  

Modelle   (Antizipation),   verbindet.   Durch   Simulationen,   während   derer   Parameter  
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systematisch   variiert   werden   können,   und   durch   die   Nutzung   von   ADAM   zur   Erstellung   eines  

virtuellen   Partners,   mit   dem   Probanden   direkt   interagieren   können,   soll   ADAM   Erkenntnisse  

über  die   an  SMS  beteiligten   Adaptations-   und  Antizipationsmechanismen   bereitstellen. 

 

KAPITEL   3 

Ein gängiges Paradigma zur Untersuchung von SMS und ihrer zugrunde liegenden 

Mechanismen beinhaltet eine Tapping-Aufgabe. Während dieser einfachen Aufgabe werden 

Probanden darum gebeten, ihren Finger synchron mit einer Stimulussequenz, oft einer 

auditiven Sequenz, zu bewegen.  Das Ziel der in Kapitel 3 vorgestellten Studie war, zu 

verstehen wie Probanden ihre Bewegungen mit Sequenzen synchronisieren, die konstant ihr 

Tempo ändern. Zu diesem Zweck wurden die Ergebnissen eines Verhaltensexperiments mit 

Simulationen mittels ADAM verglichen. 17 gesunde Probanden synchronisierten ihr Tapping 

mit auditiven, ihr Tempo ändernden Stimulussequenzen.  

Die Muster dieser Stimulussequenzen unterschieden sich hinsichtlich der  Schnelligkeit der 

Tempowechsel und der Anzahl der Wendepunkte. Die Tempowechsel wurden so konzipiert, 

dass sie musikalischem Accelerando und Ritardando ähnelten. 

Die durchschnittliche Asynchronität (arithmetisches Mittel) und die Standardabweichung der 

Asynchronität wurden als Maße für die Genauigkeit und Präzision der SMS verwendet. 

Weiterhin wurden  Maße abgeleitet, welche die zugrunde liegenden Adaptations- und 

Antizipationsmechanismen betreffen. Die Simulationen fokussierten auf den Effekt dieser 

Mechanismen, sowie auf mögliche Verbindungen zwischen beiden Mechanismen.  

Es wurden vier Modelle entwickelt: eines, das nur Adaption beinhaltete, eines mit 

voneinander unabhängigen Beiträgen der Adaption und Antizipation, und zwei Modelle, in 

denen Adaption und Antizipation in einem gemeinsamen internalen Modell gekoppelt waren. 

Ergebnisse des Verhaltensexperiments deuteten darauf hin, dass die Genauigkeit und 

Präzision der sensomotorischen Synchronisation, auch wenn sie durchgehend hoch waren, mit 

Zunahme der Schnelligkeit der Tempowechsel und der Anzahl der Wendepunkte abnahmen. 

Auf Simulationen und dem Modell basierende Parameterschätzungen zeigten, dass 

Adaptionsmechanismen alleine das beobachtete sensomotorische Synchronisationsverhalten 

nicht vollständig erklären können. Die Berücksichtigung des Antizipationsprozesses im 

Modell erhöhte die Präzision der simulierten sensomotorischen Synchronisation und 

verbesserte den Fit des Modells auf die Verhaltensdaten. Insgesamt legten die Ergebnisse 

nahe, dass sowohl Adaptations-  als auch Antizipationsmechanismen während der 

sensomotorischen Sycnhronisation mit Tempowechseln eine wichtige Rolle spielen. Obwohl 
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die exakte Verbindung zwischen Adaption und Antizipation eine offene Frage bleibt, bieten 

internale Modelle, die beide Prozesse verbinden, einen möglichen Mechanismus, der eine 

Rolle in dieser Verbindung spielen könnte. 

 

KAPITEL   4 

Kapitel   4   beschreibt   eine   Studie   zu   Timing   bei   Musikern   mit   fokaler   Dystonie  

(Musikerdystonie,   Musician’s   Hand   Dystonia),   gekennzeichnet   durch   Verlust   willentlicher  

motorischer   Kontrolle   über   geübte   Handbewegungen   beim   Instrumentalspiel.   Die  

Pathophysiologie   dieser   Bewegungseinschränkung   ist   noch   unklar,   aber   Studien   deuten   darauf  

hin,   dass   neben   veränderten   Inhibitionsmustern   auf   verschiedenen   Ebenen   des  

Zentralnervensystems   auch   fehladaptive   Plastizität   in   Timing      verarbeitenden   Arealen   (z.B.  

Basalganglien,   Sensomotorische   Cortices),   sowie   Änderungen   der   sensomotorischen  

Integration   eine   Rolle   spielen.   Verschiedene   Studien   haben   dargelegt,   dass   neben   dem   Verlust  

über   die   Kontrolle   von   für   das   Instrumentalspiel   notwendigen   Bewegungen      die   Patienten  

auch   eingeschränkte   Fähigkeiten   in   der   Wahrnehmung   und   Verarbeitung   zeitlicher  

Koordination   zeigen.   Die   aktuelle   Studie   gab   eine   Vielzahl   von   Aufgaben   vor   mit   dem   Ziel,  

die   rein   perzeptuelle   Kapazität   von   für   SMS   notwendigen   produktiven   Fähigkeiten   zu   trennen  

und   dadurch   ein   Bild   des   Timings   von   Patienten   mit      Musikerdystonie   zu   gewinnen.   Die  

Probanden   (15   Patienten   und   15   angepasste   Kontrollprobanden)   synchronisierten   ihr   Tapping  

mit   sich   im   Tempo   ändernden   und   adaptiven   auditiven   Sequenzen,   um   SMS-Fähigkeiten   und  

zugrundeliegende   Adaptations-   und   Antizipationsmechanismen   anzusprechen.   Eine  

angepasste   Version   des   Beat   Alignment   Tests   wurde   benutzt,   um   die   Präzision   in   der  

Wahrnehmung   der   Synchronizität   eines   Metrums   zu   untersuchen.   Die   Performanz   in   diesen  

Aufgaben   wurde   mit   elementaren   Wahrnehmungsaufgaben   verglichen,   namentlich  

Anisochroniedetektion   und   Entdeckung   auditiv-motorischer   Verzögerungen   (Auditory-motor  

delay   detection).   Die   Ergebnisse   zeigten   keine   Defizite   in   auditorisch-motorischer  

Verarbeitung   zwischen   Patienten-   und   Kontrollgruppe.   Beide   Gruppen   profitierten   von   einer  

Stimulussequenz,   die   sich   an   ihr   Timing   während   einer   stabilen   SMS-Aufgabe   (ohne  

Änderung   des  IOI)  anpasste. 

 

Weiterhin   waren   beide   Gruppen   im   Beat   Alignment   Test   in   der   Lage,   ein   zeitlich   falsch  

ausgerichtetes   Metronom   zu   detektieren,   wenn   dieses   relativ   zum   musikalischen   Schlag   zu  

spät   (gegenüber   zu   früh)   war.   Insgesamt   lassen   die   Resultate   darauf   schließen,   dass   Timing-

Fähigkeiten   in   Patienten   mit   Musikerdystonie   intakt   sind.   Das   weist   darauf   hin,   dass  
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Musikerdystonie   eine   hoch   aufgabenspezifische   Bewegungseinschränkung   ist,   die   Patienten  

am   meisten   bei   Aufgaben   einschränkt,   die   denen   beim   Spielen   ihres   Instrumentes   ähnlich  

sind. 

 

SCHLUSSFOLGERUNG 

Die   in   dieser   Dissertation   präsentierte   Forschung   untersuchte   das   Timing   von   Bewegungen  

während   SMS   mit   Fokus   auf   die   zugrunde   liegenden   Adaptations-   und  

Antizipationsmechanismen...   ADAM   erwies   sich   bei   der   Untersuchung   der   Adaptions-   und  

Antizipationsmechanismen,   sowie   der   möglichen   Verbindung   dieser   Mechanismen,   als  

nützlicher   Rahmen.   Angenommene   Beziehungen   zwischen   Adaption   und   Antizipation   wurden  

durch   Vergleiche   von   auf   ADAM   basierenden   Computersimulationen   mit   Verhaltensdaten  

untersucht,   was   zu   neuen   Erkenntnissen   hinsichtlich   SMS   führte.      Insbesondere   konnte   nicht  

nur   gezeigt   werden,   dass   sowohl   Adaptations-   als   auch   Antizipationsmechanismen   eine   Rolle  

während   SMS   mit   Sequenzen,   die   das   Tempo   verändern,   spielen,   sondern   auch,   dass   internale  

Modelle   eine   Verbindung   zwischen   diesen   Mechanismen      bieten   könnten.   Die  

Untersuchungen   in   dieser   Dissertation   waren   durch   die   Annahme   motiviert,   dass   es   möglich  

sein   wird   ein   zielgerichtetes   Rehabilitationsprogramm   mit   Fokus   auf   das   Timing   von  

Bewegungen   zu   erstellen,   sobald   ein   besseres   Verständnis   der   zugrunde   liegenden  

Mechanismen   von   zeitlicher   sensomotorischer   Synchronisation   und   entsprechenden   Defiziten  

bei   Patienten   erlangt   wurde.   Patienten   mit   fokaler   Dystonie   zeigten   keine   beeinträchtigte  

SMS,   profitierten   aber   trotzdem   von   der   Synchronisierung   mit   adaptiven   Stimulussequenzen.  

Dieses   Ergebnis   ist   aussichtsreich   im   Hinblick   auf   die   Entwicklung   von  

Rehabilitationsprogrammen.   Patienten   mit   fokaler   Dystonie   konnten   ihre   Timing-Fähigkeiten  

erhalten,   indem   sie   sensomotorische   Timing-Aufgaben   ohne   ihr   Instrument   übten.   Es   könnten  

anspruchsvolle   Synchronisationsaufgaben   entwickelt   werden,   die   adaptive   virtuelle   Partner  

einbeziehen,   welche   von  ADAM  gesteuert   werden  könnten.  
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