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Biomimetic and biological membranes consist of molecular bilayers with two leaflets which are
typically exposed to different aqueous environments and may differ in their molecular density or
composition. Because of these asymmetries, the membranes prefer to curve in a certain manner as
quantitatively described by their spontaneous curvature. Here, we study such asymmetric membranes
via coarse-grained molecular dynamics simulations. We consider two mechanisms for the gener-
ation of spontaneous curvature: (i) different lipid densities within the two leaflets and (ii) leaflets
exposed to different concentrations of adsorbing particles. We focus on membranes that experience
no mechanical tension and describe two methods to compute the spontaneous curvature. The first
method is based on the detailed structure of the bilayer’s stress profile which can hardly be measured
experimentally. The other method starts from the intuitive view that the bilayer represents a thin fluid
film bounded by two interfaces and reduces the complexity of the stress profile to a few membrane
parameters that can be measured experimentally. For the case of asymmetric adsorption, we introduce
a simulation protocol based on two bilayers separated by two aqueous compartments with different
adsorbate concentrations. The adsorption of small particles with a size below 1 nm is shown to
generate large spontaneous curvatures up to about 1/(24 nm). Our computational approach is quite
general: it can be applied to any molecular model of bilayer membranes and can be extended to
other mechanisms for the generation of spontaneous curvatures as provided, e.g., by asymmetric
lipid composition or depletion layers of solute molecules. C 2015 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported
License. [http://dx.doi.org/10.1063/1.4906149]

I. INTRODUCTION

The basic building blocks of both biological and biomi-
metic membranes are lipid bilayers consisting of two lipid
monolayers or leaflets.1 Biological membranes are asymmetric
in the sense that their two leaflets differ in their lipid compo-
sition.2 This bilayer asymmetry has been recently mimicked
in synthetic lipid bilayers produced by different preparation
methods.3,4 In addition, the two sides of the bilayer membranes
are typically exposed to aqueous solutions that differ in their
ionic or molecular composition. Any asymmetry between the
two leaflets should induce a preferred or spontaneous curva-
ture in the bilayer membranes which then try to adapt their
shape to this curvature. One mechanism for the generation of
spontaneous curvature is provided by asymmetric adsorption
onto the two surfaces of the bilayer membranes. The latter
mechanism has been theoretically predicted some time ago5

but it has been realized only recently that the same mechanism
should be responsible for the morphological transformations of
membranes as frequently observed during protein adsorption
onto vesicles or liposomes.6

Indeed, the adsorption of proteins onto liposomes often
leads to dramatic changes in the liposome morphologies via
the formation of membrane nanotubes or tubules. Examples

a)Electronic mail: lipowsky@mpikg.mpg.de

are provided by N-BAR proteins such as amphiphysin7,8 and
endophilin,9 F-BAR proteins such as syndapins,10 and other
proteins involved in endocytosis such as epsin.11 In the exper-
imental studies of these adsorption processes, the liposomes
have not been characterized in detail but were typically mul-
tilamellar. More recently, two different unilamellar systems
have also been found to undergo tubulation in the absence of
external mechanical forces. One of these systems is provided
by supported lipid bilayers that were exposed to a variety of
antimicrobial peptides.12–15 The other system consists of giant
vesicles in contact with aqueous solutions of polyethylene
glycol (PEG) and dextran.16

In the latter two systems, the tubules were quite stable
over extended periods of time, which implies that they were
stabilized by constant spontaneous curvatures.6,16 This curva-
ture describes the intuitive notion that thin layers with two
chemically different sides tend to bend or bulge towards one
of these sides. This bending or curvature preference was first
described by Bancroft for surfactant monolayers in water-oil
emulsions17,18 and was included by Frank, as the so-called
“splay term,” in his theory for the curvature elasticity of liquid
crystals.19 In the context of lipid bilayers, spontaneous curva-
ture was first considered by Helfrich,20 in analogy to the liquid
crystal case.

The Bancroft view of spontaneous curvature is based on
the idea that a thin fluid layer is bounded by two interfaces

0021-9606/2015/142(5)/054101/17 142, 054101-1 © Author(s) 2015
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and that these interfaces typically differ in their tensions. Such
a layer should have a tendency to bend or bulge towards the
interface with the lower tension, because the layer can then
reduce the area of the other interface with the higher tension.
Based on this intuitive picture, one can develop an analytical
theory for the preferred or spontaneous curvature of bilayer
membranes when their two leaflets are exposed to different
concentrations of adsorbing particles.5,6 The defining property
of these particles is that they do not permeate the membranes
on experimentally relevant time scales. Thus, the particles may
represent a variety of chemical species such as ions, small
molecules, or peptides. One surprising prediction of the analyt-
ical theory is that the asymmetric adsorption of even fairly
small particles such as ions may induce large spontaneous
curvatures of the order of 1/(20 nm). So far, this prediction has
not been scrutinized by systematic experiments or simulations.

In this paper, we study the spontaneous curvature of
bilayer membranes by computer simulations. We use coarse-
grained molecular dynamics simulations to study generic prop-
erties of the membrane systems21–24 but our computational
approach is general and can be easily applied to any molecular
model of the membranes. We first calculate the stress or
pressure profile across the bilayer from which we determine the
mechanical tension within the membrane. In their natural refer-
ence states, the membranes are tensionless in the sense that
they experience (almost) no mechanical tension.21 Tensionless
states of symmetric bilayers can be used to determine the
bending rigidity from the undulation spectrum25–28 and the
Gaussian curvature modulus from the stress profile.29,30 Here,
we will study tensionless states of asymmetric bilayers and
expand their properties around symmetric and tensionless
reference states.

The spontaneous curvature of the bilayer membranes is
determined using two computational approaches. On the one
hand, we calculate the spontaneous curvature from the first
moment of the stress profile.31–33 This method relies on the
detailed structure of the stress profile which is quite complex
and can hardly be measured experimentally. On the other hand,
we start from the intuitive view of spontaneous curvature aris-
ing from different tensions of the two leaflet-water interfaces.
We reconsider these tensions and define them in terms of the
mechanical tensions acting within the two leaflets of the bilayer
membrane. In this way, we clarify some conceptual issues
related to membrane tension and, at the same time, focus on
quantities that can be easily obtained from the simulations.

We apply our computational approaches to two different
types of asymmetric bilayers as depicted in Fig. 1. First, we
consider bilayers that have a different lipid density within their
two leaflets, see Fig. 1(a). For the flat state of such a bilayer
as shown in the left cartoon of Fig. 1(a), the denser leaflet is
compressed whereas the other leaflet is stretched. Thus, both
leaflets can reduce their free energy if the bilayer bends or
bulges towards the denser leaflet as in Fig. 1(a). Second, we
study bilayers that have a different density of adsorbed particles
at or within their two head group layers, see Fig. 1(b). In this
case, the adsorbate particles increase the pressure in the two-
dimensional head group layer, thereby reducing the mechan-
ical tension in this layer. Because this reduction increases with
increasing adsorbate density, the bilayer bulges towards the

FIG. 1. Two molecular mechanisms for bilayer asymmetry: (a) Different
lipid densities within the two leaflets and (b) different adsorbate densities at
or within the two head group layers. The lipid head groups are shown in blue,
the lipid tails in red, and the adsorbate “particles” in dark gray; the mean
curvature of the membrane patches is denoted by M . In the left cartoon of
(a), the upper leaflet has a higher lipid density and, thus, experiences a lower
mechanical tension than the lower leaflet. In the left cartoon of (b), the upper
head group layer has a higher density of adsorbate particles which then exert
a higher pressure onto the head groups. In both cases, the bilayer should have
a tendency to bulge towards the upper leaflet as in the right cartoons of (a)
and (b), corresponding to positive mean curvature M > 0.

leaflet with the denser adsorbate layer as previously derived5,6

from the Gibbs adsorption equation.
The results of our simulations fully corroborate the predic-

tions of the analytical theory and show explicitly that relatively
large spontaneous curvatures can be induced by the adsorption
of relatively small particles. In fact, we find that the absolute
value of the spontaneous curvature grows up to 1/(24 nm) when
we increase the difference between the particle concentrations
within the two aqueous compartments up to 320 mM. In addi-
tion, our simulations also demonstrate that the Gibbs adsorp-
tion equation does, in fact, apply to the mechanical tensions
within the bilayer leaflets as considered here. The latter result
is rather interesting from a conceptual point of view.

As previously discussed in Refs. 34 and 35, the concept of
membrane tension is somewhat delicate and can easily lead to
confusion. In particular, it is important to note that the tension
of a membrane must be distinguished from the tension of an
interface between two liquid phases. In the latter case, the
tension can be derived both from a mechanical and from a
thermodynamic point of view. In contrast, when we consider
a membrane, we can still define its mechanical tension via the
membrane’s stress profile but the thermodynamic tension does
not represent a meaningful concept because the membrane can
reorganize and adapt different morphologies in the thermody-
namic limit of large membrane area. Indeed, in the latter limit,
tense membranes rupture whereas tensionless or compressed
membranes crumple. Nevertheless, as shown by our present
study, the Gibbs adsorption equation, which follows from the
thermodynamics of liquid-liquid interfaces, can also be applied
to the adsorption onto the two leaflet-water interfaces bounding
the bilayer membrane if we identify the tension of such an
interface with the mechanical tension within the corresponding
bilayer leaflet.

Our paper is organized as follows. In Sec. II, we first
emphasize that membrane curvature should be regarded as
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a collective property of many lipid molecules, describe our
simulation setup, and study the elastic properties of symmetric
bilayers, which provide a useful reference system with vanish-
ing spontaneous curvature. In Sec. III, we introduce a general
computational method to determine the spontaneous curvature
from a few parameters that characterize the two leaflets of the
bilayer membrane. A finite spontaneous curvature is induced
in Sec. IV by preparing bilayers with two leaflets that differ
in their lipid density. In Sec. V, we study the spontaneous
curvature arising from the asymmetric adsorption of particles.
In both cases, the spontaneous curvature can be understood and
quantitatively described via the leaflet parameters. At the end,
we give a brief outlook on the generality of our approach and
on its applicability to other mechanisms for the generation of
spontaneous curvature.

II. COMPUTATIONAL APPROACH

A. Membrane curvature as a collective property

Curvature is a geometric concept, originally developed by
mathematicians to characterize the shape of smooth surfaces.
Membranes appear to be rather smooth when viewed in the
optical microscope but this smoothness does not persist to
molecular scales. Indeed, because membranes are immersed in
liquid water, each lipid and protein molecule within the mem-
brane undergoes Brownian motion, which involves displace-
ments both parallel and perpendicular to the membrane. The
perpendicular displacements represent molecular protrusions
that roughen the two interfaces bounding the membrane, see
Fig. 2.

Therefore, in order to characterize a lipid/protein bilayer
by its curvature, one has to consider small membrane patches
and average over the molecular conformations within these
patches. The minimal lateral size of these patches can be deter-
mined from the analysis of molecular dynamics simulations
and was found to be about 1.5 times the membrane thickness,
see Ref. 25 and Fig. 2. For a lipid bilayer with a thickness of
4 nm, this minimal size is about 6 nm.

A lipid bilayer patch with a lateral size of 6 nm contains
about 80 to 100 lipid molecules. Therefore, membrane curva-
ture should be viewed as a supramolecular feature arising from
the collective behavior of a large number of lipid molecules.
The same conclusion applies to the spontaneous curvature of
membranes as studied in Secs. III–V.

FIG. 2. Typical conformation of a lipid bilayer as observed in our simula-
tions. The bilayer has a thickness of about 5 bead diameters and is bounded
by two interfaces that are roughened by molecular protrusions, which displace
the head groups (blue beads) perpendicular to the membrane. In order to
characterize such a membrane by its curvature, one has to average over
membrane segments with a lateral size that exceeds about 1.5 times the
bilayer thickness, as follows from the spectral analysis of the membrane’s
shape fluctuations, see further below.

B. Dissipative particle dynamics (DPD)

DPD is a coarse-grained molecular dynamics technique
with explicit solvent and local momentum conservation. The
DPD particles, or “beads,” represent either a number of iden-
tical molecules or several molecular groups, rather than sin-
gle atoms. The internal degrees of freedom of these mole-
cules or molecular groups are reflected by dissipative forces
and random forces. The chemical nature of the molecules
and molecular groups—for example, their hydrophobicity and
hydrophilicity—is taken into account by conservative forces.
Because all forces conserve momentum, DPD reproduces the
correct hydrodynamics.

1. Basic simulation parameters

Our coarse-grained model includes water, lipid molecules,
and adsorbate particles. Small water volumes are represented
by single W beads, the adsorbate particles by single P beads.
A lipid molecule consists of three hydrophilic H beads and
two hydrophobic chains, each consisting of six C beads, which
extends the chains used in Refs. 21 and 34 by two beads.

All beads have the same diameter d and the same mass
mbe, and these two quantities provide the basic length and mass
units. In order to obtain a complete set of mechanical units,
we also choose the thermal energy kBT to be the basic energy
unit, where kB is the Boltzmann constant and T the absolute
temperature. As a consequence, the basic time scale is given by
τ =


d2 mbe/kBT . Furthermore, in the simulations described
here, the equations of motion were discretized with the time
step ∆t = 0.01 τ.

The standard DPD parametrization of water corresponds
to the bulk density ρ = 3/d3, which matches the water
compressibility at room temperature T = 298 K.36 This choice
for the molar density of water implies the mass density 3mbe/d3

and determines the ratio mbe/d3 in physical units. In order to
determine the length and time scales d and τ in physical units
as well, one has to study certain system properties in the
simulations and compare their values as obtained in units of
d and τ with the experimentally measured values. For a lipid
bilayer, two such properties are provided by the molecular area
per lipid and the lateral diffusion constant of the lipids within
the bilayer as described in Ref. 34. As a result, one obtains
that the bead diameter d is of the order of 1 nm and the basic
time scale τ is of the order of 1 ns. In the following, we will
use a certain definition of the membrane thickness in order to
obtain the specific value d ≃ 0.8 nm.

2. Forces acting on the beads

The DPD force that a bead j exerts on a bead i is the sum
of three pairwise-additive forces: (i) the conservative force F⃗C

i j ,
which arises from bonded and nonbonded interactions of the
beads; (ii) the dissipative or viscous friction force F⃗D

i j ; and (iii)
the random force F⃗R

i j . The dissipative force is related to the
relative velocity v⃗i j = v⃗i− v⃗ j of the beads via

F⃗D
i j = −γi j

�
1−ri j/d

�2�r̂i j · v⃗i j
�
r̂i j for ri j < d

= 0 for ri j > d
(1)
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with friction coefficients γi j = γ j i that depend on the bead type,
the distance ri j = |r⃗i− r⃗ j | between beads i and j, the unit vector
r̂i j = (r⃗i− r⃗ j)/ri j pointing from bead j to bead i, and the bead
diameter d.

The random force F⃗R
i j represents thermal noise and has the

form

F⃗R
i j =


2γi jkBT

�
1−ri j/d

�
ζi jr̂i j for ri j < d

= 0 for ri j > d
(2)

with random forces ζi j. The latter forces are taken to corre-
spond to Gaussian white noise with average value ⟨ζi j(t)⟩= 0
and correlation function ⟨ζi j(t)ζi′j′(t ′)⟩= δii′δ j j′δ(t− t ′).

Adjacent beads in lipid molecules are connected by virtual
springs using harmonic potentials

Vbond(r)= 1
2 kr

�
r−req

�2 (3)

for the separation r between two adjacent beads with the spring
constant kr = 128 kBT/d2 and the equilibrium separation req
= d/2. The two hydrophobic chains of the lipid molecules are
stiffened by the bending potential21

Vbend(θ)= kφ
�
1−cos

�
θ−θeq

��
(4)

that acts between two consecutive bonds along each chain. The
bending constant is kφ = 15 kBT , and the tilt angle θ between
two neighboring bonds attains the equilibrium value θeq= 0 for
collinear bonds.

In addition to the forces arising from the bonded interac-
tions as specified above, all pairs of DPD beads exhibit the soft
repulsive forces

F⃗C
i j = ai j

�
1−ri j/d

�
r̂i j, for ri j < d

= 0 for ri j > d
, (5)

with a repulsion strength ai j that depends on the types of
the two beads i and j, see Table I. The different repulsion
strengths reflect the chemical nature of the beads, i.e., their
hydrophobicity or hydrophilicity.

To simulate adsorption of small molecules onto mem-
branes, we choose the DPD interaction parameters ai j in such
a way that the adsorbate beads partition between the water
and the head group layers, see Table I. To prevent lipid flip-
flops, i.e., the exchange of lipids between the two leaflets
and to sustain the initial bilayer asymmetry, we have modi-
fied the lipid model introduced in Ref. 34 as follows. First,
we increased the head-tail interaction parameter aHC from
35 kBT/d to 50 kBT/d, see Table I. Second, we increased the
chain length from 4 to 6 chain beads per lipid tail. We have

TABLE I. DPD interaction parameters ai j given in units of kBT /d. Here,
H, C, W, and P denote the lipid head beads, the lipid chain beads, the water
beads, and the adsorbate particles, respectively.

ai j H C W P

H 30 50 30 25
C 50 10 75 75
W 30 75 25 35
P 25 75 35 25

checked that, using this parameter set, lipid flip-flops were sup-
pressed in asymmetric bilayers over microsecond time scales.

C. Reference system provided by symmetric bilayers

We performed DPD simulations in the NVT ensemble. To
suppress finite size effects,37 we chose the overall density of
DPD beads in such a way that the water density away from
the bilayer is equal to the bulk water density ρ = 3/d3, see
Fig. 3(a), corresponding to standard DPD conditions for the
water beads.36,37 This choice of the bulk water density implies
the bulk pressure P= 20.7 kBT/d3 arising from the interaction
energy alone, i.e., without the constant contribution ρ kBT
= 3kBT/d3 from the kinetic energy. We set the lateral size of
the simulation box equal to Lx = Ly = 32 d and varied the box
height Lz between 32 d and 48 d.

We then studied single bilayer membranes spanning these
simulation boxes and measured the density profiles of the water
(W), lipid head (H), and lipid chain (C) beads. Examples for
these profiles are shown in Fig. 3(a) for a symmetric and
tensionless bilayer. The hydrophobic core of the bilayer is
characterized by a large maximum in the C density profile.
The position of this maximum defines both the midplane of
the bilayer and the origin of the z-coordinate perpendicular to
it. The H density profile has two smaller peaks which represent
the two leaflet-water interfaces.

1. Stress profiles and mechanical tension

The mechanical tension Σmec within the bilayer was
controlled by varying the number of lipid molecules and,
thus, the projected area per lipid, A, for fixed base area LxLy

= (32 d)2 of the simulation box. We were particularly interested

FIG. 3. Simulation results for symmetric and tensionless bilayers with pro-
jected lipid area A = A0 = 1.218 d2: (a) Density profiles ρ as a function of the
coordinate z perpendicular to the bilayer for water (W), lipid head (H), and
lipid chain (C) beads. For large values of z , the water density ρW attains
the value ρ = 3/d3 corresponding to standard DPD conditions;36 (b) the
corresponding stress profile s(z). The blue, red, and black lines correspond to
box height Lz = 32 d, Lz = 40 d, and Lz = 48 d, respectively; (c) the normal
pressure component PN is equal to the bulk pressure and has the constant
value PN = 20.7 kBT /d3, corresponding to the water density ρ = 3/d3, for
all values of the box height Lz; and (d) mechanical membrane tension Σmec
as a function of the box height Lz which leads to the average value Σmec
= (−0.02 ± 0.06) kBT /d2 (dashed horizontal line), corresponding to a slight
compression of the bilayer.
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in tensionless membranes for which Σmec ≃ 0. In order to
calculate the value of Σmec, we computed the stress profiles

s(z)≡ ΣT(z)−ΣN=−[PT(z)−PN] (6)

as described previously in Refs. 21 and 34. The two quan-
tities PT and PN are the diagonal elements of the pressure
tensor Pi j with PT= Pxx= Py y and PN= Pzz. Because a liquid
material cannot sustain a shear deformation in mechanical
equilibrium, all off-diagonal terms Pi j with i , j must vanish.
Furthermore, the symmetry of our simulation box, with peri-
odic boundary conditions in the x- and y-directions parallel to
the bilayer membrane, implies that the pressure components
can only depend on the coordinate z perpendicular to the mem-
brane. In general, all components of the divergence of the pres-
sure tensor, which is a vector with the Cartesian components

j∂Pi j/∂x j, must vanish.38 In the present situation, the latter
requirement leads to ∂Pzz/∂z = 0 which implies that Pzz= PN
does not depend on z and is constant throughout the simulation
box.

In Fig. 3(b), we display stress profiles s(z) for different
values of the height Lz of the simulation box. Inspection of
this figure shows that these stress profiles are essentially inde-
pendent of Lz and, thus, do not display Lz-dependent finite
size effects. Likewise, the normal pressure component PN does
not depend on Lz and has a constant value equal to the bulk
pressure P = 20.7 kBT/d3, see Fig. 3(c), corresponding to the
bulk water density ρ= 3/d3 far away from the bilayer. Note that
the normal pressure would become Lz-dependent if we chose
the average bead density, including the lipid beads, to be equal
to 3/d3 as in Ref. 37.

The overall form of the stress profiles in Fig. 3(b) is similar
to those obtained in earlier MD21 and DPD22 simulations:
The hydrocarbon tail region is characterized by a negative
stress applied from the outside in order to balance the internal
pressure of the hydrocarbon tails. In contrast, the head group
region is characterized by a positive stress that has to be applied
from the outside in order to compensate the tendency of the
head groups to decrease their contact area with the water.

Inspection of the head group region in Fig. 3(b) shows that
this region is characterized by a double-peak structure. This
feature can be understood by comparing the stress profile with
the density profiles in Fig. 3(a). The inner peak of the stress
profile close to the hydrophobic core of the bilayer corresponds
to the interface between the lipid chain (C) and lipid head
(H) beads whereas the outer peak close to the aqueous phase
reflects the interface between the H and water (W) beads. The
stress minimum between the two peaks arises from the pressure
between the H beads, which may be viewed as a 2-dimensional
liquid. This double-peak structure of the stress profile within
the head group region persists to asymmetric membranes as
discussed further below.

The mechanical tension Σmec of the membrane is obtained
from the integral

Σmec=

 +∞

−∞
dz s(z)≃

 +Lz/2

−Lz/2
dz s(z), (7)

i.e., from the zeroth moment of the stress profile. As shown in
Fig. 3(d), this quantity is found to be independent of the box
height Lz, within the statistical error.

FIG. 4. Mechanical properties of symmetric bilayer membranes: (a) The me-
chanical tension Σmec of the membrane increases linearly with the projected
area per lipid, A; (b) the membrane thickness ℓme decreases linearly with the
membrane tension Σmec; (c) the average volume per lipid, Vlip, remains essen-
tially constant as the tension Σmec is changed; and (d) fluctuation spectrum S
as a function of the wavenumber q for the tensionless state. The solid line
represents Eq. (12) with κ = 15 kBT and provides a good fit to the simulation
data (squares) for small values of q. This line describes the long-wavelength
behavior of the spectrum S as described by ∼ kBT /(κq4) for a tensionless
membrane.

The mechanical properties displayed in Fig. 4 correspond
to an essentially tensionless membrane with tension Σmec
= (−0.02± 0.06) kBT/d2. The dependence of the membrane
tension Σmec on the projected area per lipid, A, is displayed in
Fig. 4(a). As shown in this figure, the membrane tension Σmec
increases linearly with the projected area per lipid, A, whereas
the membrane thickness ℓme decreases linearly with the tension
Σmec, see Fig. 4(b). While both the projected lipid area A
and the membrane thickness ℓme vary with the membrane
tension Σmec, the average volume per lipid, Vlip, is found to be
essentially independent of Σmec, see Fig. 4(c), in agreement
with experimental results on the large volume compressibility
modulus of lipid bilayers.39

2. Possible definitions of membrane thickness

The thickness displayed in Fig. 4(b) was determined by the
following “grid method.” The base area was partitioned into
a square lattice with 16 ×16 equally sized squares. For each
square, we determined the average values, Z1 > 0 and Z2 < 0,
of the terminal head beads in the upper and lower leaflet of the
bilayer, respectively. The local membrane thickness was then
obtained by averaging |Z1|+ |Z2| over all squares of the lattice.
The resulting thickness is equal to the distance between the two
peaks of the density profile for the head groups.

The mechanical tension Σmec of the symmetric bilayer
membrane vanishes at a certain projected lipid area A= A0. For
the DPD parameters in Table I, we obtained A0≃ 1.22 d2 in our
simulations. The corresponding membrane thickness ℓme was
found to be ℓme= 5 d, as given by the distance between the two
peaks of the head group density profile in Fig. 3(a).

The definition of the membrane thickness in terms of the
head group densities is convenient in order to analyze the shape
fluctuations of the bilayers. In general, the membrane thickness
can be defined in a variety of ways using different density
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profiles. Thus, instead of the head group density profile, we
may consider the water density profile and determine the
z-coordinates z = ℓ1 > 0 and z = ℓ2 < 0 for which the local water
density is equal to half its bulk value, i.e., for which ρW(zi)
= 1

2 ρ= 3/(2d3). The W density profile in Fig. 3(a) then leads
to the membrane thickness ℓme ≡ (ℓ1 − ℓ2) = 6 d, which is
somewhat larger than the value 5 d based on the head group
density profile. On the other hand, we could also define the
membrane thickness via its hydrophobic core as provided by
the z-range for which the lipid chain density exceeds half its
peak value at z = 0. Using the latter definition, we obtain the
membrane thickness ℓme = 4 d as follows from the C density
profile in Fig. 3(a).

The membrane thickness can be used to determine the
bead size d in physical units. For real lipid bilayers, the separa-
tion of the two head group layers is about 4 nm which implies
that the bead diameter d ≃ 4 nm/5= 0.8 nm.

3. Compressibility modulus and bending rigidity

Based on the data in Fig. 4(a), we determine the area
compressibility modulus KA from the linear relation

Σmec≈KA
A− A0

A0
(8)

which represents the leading order term in the area stretching
parameter (A − A0)/A0. As a result, we obtained KA

= 28 kBT/d2. Using the relationship25

κ =KAℓme
2/48 (9)

between the membrane bending rigidity κ and the area
compressibility modulus KA as well as the measured mem-
brane thickness ℓme= 5 d, we obtain the value κ ≃ 15 kBT for
the bending rigidity.

To corroborate this result for the bending rigidity, we
analyzed the thermally excited shape fluctuations or undula-
tions of the bilayer membranes. First, we performed simula-
tions of a tensionless membrane in a cubic box of size Lx

= Ly = Lz = 48 d, and computed the fluctuation spectrum
S(q)= ⟨|hq |2⟩ directly from the Fourier components hq of the
membrane displacement field h(x,y). The fluctuation spec-
trum obtained in this way is shown in Fig. 4(d). Next, we
compare these simulation data for S(q) with the expression

S(q)= kBT
L2(Σfluq2+ κq4) (10)

with L ≡ Lx = Ly which depends on the fluctuation tension
Σflu. Numerical simulations provided some evidence that this
latter tension may be slightly different from the mechanical
tension Σmec

40–42 whereas symmetry arguments and simula-
tions of 1+1-dimensional membranes (or worm-like chains)
supported the equality Σflu = Σmec,43,44 an equality that we
assumed implicitly in our original study of the fluctuation
spectrum.25,35 We will not address this issue here but focus on
the intermediate range

Σmec/κ≪ q≪ 1/ℓme (11)

of q-values for which the fluctuation spectrum attains the sim-
ple form

S(q)≈ kBT
L2 κq4 (12)

even if the fluctuation tension Σflu were somewhat different
from the mechanical tension Σmec. When we compare the sim-
ple expression (12) with the low q-range of our simulation
data, we obtain good agreement provided we choose the value
κ = 15 kBT for the bending rigidity, see Fig. 4. This value agrees
with the estimate for the bending rigidity as obtained above us-
ing the relation (9). For wave vectors that are comparable to or
larger than qmax= 2π/ℓme, the fluctuation spectrum reflects the
small-scale roughness of the bilayer/water interfaces25–28,45,46

arising from molecular protrusions as in Fig. 2.

III. BILAYER ASYMMETRY
AND SPONTANEOUS CURVATURE

In this section, we discuss the related concepts of bilayer
asymmetry and spontaneous curvature from a general point
of view. As emphasized in Subsection II A, the spontaneous
curvature should be regarded as a nanoscopic, coarse-grained
quantity that applies to length scales that exceed twice the
membrane thickness. The stress profile, on the other hand,
reflects the molecular architecture of the lipids, see, e.g., the
double-peak structure in Fig. 3(b). In the following, we first
review the formal relation between the spontaneous curva-
ture and the first moment of the stress profile as proposed
by Helfrich in Ref. 31. This relation generalizes concepts as
developed in classical elasticity theory for solid bodies47 to
fluid layers and has been confirmed by mean field theories for
surfactant bilayers.32,33 In addition, we reconsider the theoret-
ical approach described in Refs. 5 and 6 based on the Ban-
croft view of spontaneous curvature,17,18 in which the bilayer
membrane is regarded as a thin fluid layer bounded by two
leaflet-water interfaces. The tensions of the upper-leaflet-water
and the lower-leaflet-water interfaces are now identified with
the mechanical tensions, Σ1 and Σ2, within the corresponding
leaflets. If the bilayer is asymmetric with Σ1 , Σ2, the corre-
sponding interfacial free energy can be decreased by bending
but this decrease is balanced by an increase in the membrane’s
bending energy. This free energy balance can be obtained
by expanding the interfacial free energy of the leaflet-water
interfaces and the bending energy of the neutral surface to
first order in the mean curvature M . In this way, we obtain a
simple and explicit expression for the spontaneous curvature
m in terms of the tensions Σ1 and Σ2, the bending rigidity κ,
and the thicknesses ℓ1 and ℓ2 of the two leaflets of the bilayer.
Finally, we show that this expression becomes even simpler
when we consider the case of small asymmetries and expand
the leaflet parameters around the symmetric and tensionless
bilayer state.

A. Spontaneous curvature from stress profile

First, we review the relation between the spontaneous
curvature m and the first moment of the stress profile s(z) as
proposed in Ref. 31. This relation is based on several assump-
tions. First, in analogy to the bending of solid beams and plates,
the microscopic torque (or bending moment) acting onto a

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

141.14.233.147 On: Tue, 24 Feb 2015 11:54:59



054101-7 B. Różycki and R. Lipowsky J. Chem. Phys. 142, 054101 (2015)

cross-section of a planar bilayer is taken to be

Tmic=

 +∞

−∞
dz s(z) z, (13)

where pure bending implies no stretching and, thus, a tension-
less membrane with Σmec =


dz s(z) = 0. This relation em-

bodies the usual assumption of classical elasticity theory that
the stresses within an elastic body can be defined with respect
to the coordinates of the undeformed body.47 Second, one
can also derive a nanoscopic torque based on the spontaneous
curvature model for the shape of the membrane. Within this
model, the bending energy of the membrane has the form20,48

Ebe=


dA 2κ (M−m)2=


dA κ

2
(C1+C2−2m)2 (14)

with the membrane areaA and the mean curvature M = 1
2 (C1

+C2), which represents the arithmetic mean of the two prin-
cipal curvatures C1 and C2. The form of the nanoscopic torque
depends on the choice of the coordinate system and becomes
particularly transparent if one uses a tangent, principal frame.49

For the special case of a minimal surface with vanishing mean
curvature, the nanoscopic torque Tnan is then found to be31,49

Tnan=
∂

∂Ci
2κ(M−m)2����M=0

=−2κm. (15)

This relation for M = 0 applies, in particular, to a flat mem-
brane. If we identify the nanoscopic and the microscopic
torque and set Tnan=Tmic, we obtain the simple relation31

−2κm=
 +∞

−∞
dz s(z) z (16)

between the spontaneous curvature m and the first moment of
the stress profile. The same relation has also been obtained
in Refs. 32 and 33 starting from local density functionals for
surfactant bilayers. The approach in Ref. 32 used an expansion
of the free energy around the planar state of the bilayer and
showed explicitly, in the context of a mean field theory, that
the relation as given by Eq. (16) involves the stress profile of
the planar bilayer.

B. Spontaneous curvature from leaflet parameters

Now, we consider a large membrane segment and view it
as a thin fluid layer, which is bounded by two membrane-water
interfaces. In the planar state of the asymmetric bilayer, the
upper leaflet has thickness ℓ1 and interfacial areaA1=A while
the lower leaflet has thickness ℓ2 and interfacial area A2=A,
see Fig. 5. The interfacial areas A1 and A2 are related to the
projected area A per lipid molecule byA1= N1A andA2= N2A
where N1 and N2 are the number of lipid molecules within the
upper and the lower leaflet, respectively.

We now bend this membrane segment into a cylindrical or
spherical segment, taking into account that the average volume
per lipid and, thus, the volume of each leaflet is conserved
during bending. If we further assume that the contact surface
between the two leaflets has the same area before and after
bending, i.e., that this contact surface represents the neutral
surface (or surface of inextension), we find that the leaflets

FIG. 5. Bilayer membranes with two leaflets that differ in their (a,b) lipid
densities and (c,d) coverage by adsorbate particle (dark gray). In both cases,
the geometry of the planar state in (a,c) is compared with the geometry of
the curved state in (b,d). The simulations probe the planar state which is
enforced by the periodic boundary conditions. In the latter state, the upper
leaflet has thickness ℓ1 and interfacial area A1 = A while the lower leaflet
has thickness ℓ2 and interfacial area A2 = A. In the curved state, the upper
leaflet has thickness ℓ′1 and interfacial area A′1 > A while the lower leaflet
has thickness ℓ′2 and interfacial area A′2 < A.

attain the thicknesses

ℓ′1≈ ℓ1 (1−ℓ1M) and ℓ′2≈ ℓ2 (1+ℓ2M) (17)

up to first order in the mean curvature M of the membrane
segment. In fact, when we expand the thicknesses ℓ′1 and ℓ′2
of the weakly curved leaflets in powers of the mean curvature
M , dimensional analysis implies that

ℓ′1≈ ℓ1 (1+α1ℓ1M) and ℓ′2≈ ℓ2 (1+α2ℓ2M) (18)

up to first order in M with dimensionless coefficients α1 and
α2, irrespective of the precise position of the neutral surface.

The area of the upper-leaflet-water interface then behaves
as

A ′1≈A(1+2ℓ′1 M)≈A(1+2ℓ1 M) (19)

up to first order in M whereas the area of the lower-leaflet-
water interface is asymptotically equal to

A ′2≈A(1−2ℓ′2 M)≈A(1−2ℓ2 M) (20)

up to first order in M . Thus, to leading order in the mean
curvature M , the interfacial areas A ′1 and A ′2 do not depend
on the changes ℓ′i−ℓi of the interfacial thicknesses and, thus,
do not depend on the precise position of the neutral surface.

We now assume, first in a somewhat heuristic manner,
that we can characterize the two leaflet-water interfaces by two
leaflet tensions, Σ1 and Σ2. As the bilayer is bent, the interfacial
free energy is changed according to

∆Fint= Σ1(A ′1−A1)+Σ2(A ′2−A2) (21)

which has the asymptotic behavior

∆Fint≈ 2(ℓ1 Σ1−ℓ2 Σ2) MA (22)

up to first order in M .
We now want to relate this change in the interfacial free en-

ergy of the two leaflets to the bending energy of the neutral sur-
face. In the spontaneous curvature model as given by Eq. (14),
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the bending energy of the neutral surface is given by

Ebe= 2κ(M−m)2A≈ (2κm2−4κmM)A (23)

up to first order in M which depends on the bending rigidity κ
and the spontaneous curvature m. If we identify the terms of
order M in Eqs. (22) and (23) or use the equivalent relation

∂Ebe

∂M
����M=0
=
∂∆Fint

∂M
����M=0

, (24)

we obtain the identity

2κm= Σ2 ℓ2−Σ1 ℓ1 (25)

which expresses the product 2κm in terms of four leaflet
parameters, namely, the two leaflet thicknesses ℓ1 and ℓ2 as
well as the two leaflet tensions Σ1 and Σ2.

C. Leaflet tensions and thicknesses

In order to define the tensions of the two leaflet-water
interfaces, one could decompose the stress profile, as displayed
in Fig. 3(b) for a symmetric bilayer, into a hydrophobic core
region and two head group layers. However, this decomposi-
tion is not unique and requires the introduction of somewhat
arbitrary boundaries between the hydrophobic core and the
head group layers. We therefore did not utilize such a decom-
position into three distinct layers. Instead, we made use of
the fact that all simulations, both for the symmetric and for
the asymmetric bilayers, led to a pronounced maximum for
the density profile of the C beads and defined the midplane of
the bilayer membrane by the position of this maximum. Here
and below, we choose the z-coordinate in such a way that this
midplane is located at z = 0. This midplane is then used to
decompose the stress profile for the whole bilayer into two
stress profiles for the two leaflets. Using this decomposition,
we define the leaflet tensions Σ1 and Σ2 by

Σ1≡
 Lz/2

0
dz s(z) and Σ2≡

 0

−Lz/2
dz s(z), (26)

i.e., by integrating the stress profile s(z) over each leaflet sepa-
rately. These tensions do not involve any additional parameter
and lead to the simple decomposition

Σmec=

 Lz/2

−Lz/2
dz s(z)= Σ1+Σ2 (27)

of the mechanical tension Σmec as given by Eq. (7). Note
that a positive mechanical tension leads to a stretched bilayer
membrane whereas a negative mechanical tension leads to a
compressed membrane. Likewise, positive values of the leaflet
tension Σi imply that the corresponding leaflet is stretched
whereas negative values of Σi correspond to a compression of
this leaflet.

The calculation of the stress profile involves a relatively
large computational effort and its precise z-dependence is diffi-
cult to calculate with high precision. The leaflet tensions Σ1
and Σ2 as given by Eq. (26) involve half-space integrals over
the stress profile for which the noise in the data is smoothened
out in a uniform manner. In contrast, the first moment of the
stress profile, which determines the spontaneous curvature via
Eq. (16), leads to an amplification of the noise within the head

group region where the stress profile has a particularly complex
structure. This computational advantage of Eq. (26) compared
to Eq. (16) is further enhanced if we express the leaflet tensions
Σ1 and Σ2 in terms of the coverages by adsorbate particles, see
Sec. V below, because the coverages are obtained from density
profiles which can be calculated with much higher precision.

The whole line of arguments used to derive the relation
(25) for the spontaneous curvature did not depend on any
specific definition of the leaflet thicknesses ℓ1 and ℓ2. In fact,
using the leaflet tensions Σ1 and Σ2 as given by Eq. (26), we can
define these thicknesses in such a way that the two relations
(25) and (16) become identical. These definitions are provided
by

ℓ1≡
 Lz/2

0 dz s(z)z Lz/2
0 dz s(z)

=
1
Σ1

 Lz/2

0
dz s(z)z (28)

and

ℓ2≡

 0
−Lz/2dzs(z)|z | 0
−Lz/2dzs(z)

=
1
Σ2

 0

−Lz/2
dz s(z)|z |. (29)

D. Small asymmetries between the two leaflets

As emphasized in Sec. II A, large values of the sponta-
neous curvature m that exceed the value 1/(1.5 ℓme) are not
physically meaningful because the membrane cannot attain a
mean curvature of this size without severe distortions of its
bilayer structure. It turns out that relatively small asymmetries
already lead to unphysically large values of m. Therefore, it
is sufficient to focus on small asymmetries and to expand the
leaflet parameters for the asymmetric bilayers around their
values for the symmetric case.

For a symmetric bilayer, the stress profile s(z) = ssy(z)
satisfies the symmetry relation ssy(−z)= ssy(z) which implies

Σ2= Σ1=
1
2

 Lz/2

−Lz/2
dz ssy(z)= 1

2 Σmec≡ Σsy. (30)

Furthermore, for a symmetric and tensionless bilayer with
stress profile s(z) = ssy,0(z), the relation (30) simplifies and
becomes

Σsy=

 Lz/2

0
dz ssy,0(z)=

 0

−Lz/2
dz ssy,0(z)= 0. (31)

We now consider small asymmetries and write the leaflet
thicknesses in the form

ℓi = ℓsy+δℓi for i = 1, 2, (32)

where ℓsy is the thickness of one leaflet in the absence of
the asymmetry. Likewise, the leaflet tensions are decomposed
according to

Σi = Σsy+δΣi for i = 1, 2, (33)

where Σsy is the tension of both leaflets for the symmetric
bilayer, as in Eqs. (30) and (31). Because the asymmetric
bilayers considered here are taken to be tensionless as well, we
also have Σmec= Σ1+Σ2= 0 for these bilayers which implies

δΣ2=−δΣ1 (asymmetric, tensionless). (34)
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When we insert the expansions around the symmetric
bilayer as given by Eqs. (32) and (33) into the right hand side
of Eq. (25), we obtain

2κm≈ ℓsy(δΣ2−δΣ1)+Σsy(δℓ2−δℓ1) (35)

to leading order in the deviations from the symmetric state.
If we now take the reference state to be both symmetric and
tensionless, the leaflet tension Σsy vanishes, see Eq. (31), and
so does the second term on the right hand side of Eq. (35). As
a result, we are then left with the simpler relation

2κm≈ ℓsy(δΣ2−δΣ1)=−2ℓsy δΣ1 (36)

between the product κm of bending rigidity and spontaneous
curvature, the leaflet thickness ℓsy of the symmetric reference
state, and the deviations δΣ1 and δΣ2 of the leaflet tensions
from their values in the symmetric state where the identity δΣ2
=−δΣ1 for asymmetric and tensionless bilayers as in Eq. (34)
has been used.

In Secs. IV–V, we will study the spontaneous curvatures
as generated by asymmetric lipid densities and asymmetric
adsorbate layers. We will then consider the term 2ℓsy in Eq. (36)
as an effective membrane thickness ℓme. The value of this thick-
ness turns out to be close to what one would obtain from a naive
estimate. Furthermore, in the case of asymmetric adsorption,
we can replace the excess tension δΣ1, which can hardly be
measured experimentally, by the coverage of the adsorbate
particles, which represents a measurable quantity, see Sec. V
below.

IV. BILAYERS WITH ASYMMETRIC LIPID DENSITIES

A. Control parameter for density asymmetry

We now consider asymmetric bilayers with N1 lipids in
the upper leaflet and N2 lipids in the lower leaflet, see Fig. 6.
The associated bilayer asymmetry is characterized by the mole
fraction

φ≡ N1/(N1+N2) (37)

of the upper leaflet. For symmetric bilayers, one has N1= N2,
i.e., φ = 1/2. Without loss of generality, we take N1 ≥ N2 and
thus consider membranes with mole fractions φ ≥ 1/2. The
projected area per lipid is now defined as

A≡ 2LxLy/(N1+N2). (38)

FIG. 6. Simulation snapshots (side and oblique view) of a bilayer membrane
with asymmetric lipid densities. Lipid head groups are shown in blue and lipid
chains in red. The water beads are not shown for clarity. The upper leaflet
contains N1 = 920 lipids, the lower leaflet N2 = 738 lipids. As previously
mentioned, the maximum of the lipid chain (C) density defines the midplane
of the bilayer as well as the origin z = 0 of the z-coordinate perpendicular to
it. The mean curvature is taken to be positive if the membrane bulges towards
the upper leaflet, i.e., towards positive z-values.

We performed DPD simulations in the NVT ensemble at
different mole fractions φ and lipid areas A. In our simulations,
we used a simulation box with the base area Lx × Ly = 32 d
× 32 d and studied the three values Lz = 32 d, Lz = 40 d, and
Lz = 48 d for the box height. In each case, we adjusted the
overall density of the DPD beads in such a way that the water
density away from the bilayer was equal to the bulk water
density ρ= 3/d3. The normal pressure PN is then equal to the
pressure of pure water at standard DPD conditions, which is
given by P = 20.7 kBT/d3 as mentioned before. The time of
a single simulation was 2 × 105∆t = 2 × 103τ, which corre-
sponds to about 2 µs because the basic time scale τ in the DPD
simulations is of the order of 1 ns.34

We have checked that the lipid numbers N1 and N2 in the
upper and lower leaflet remain constant throughout our simula-
tion runs if the mole fractions φ satisfy the inequality φ < 0.58.
For membranes with larger initial asymmetry, φ > 0.58, we
could observe flip-flops of lipids from the upper to the lower
leaflet, which leads to a reduction of the lipid fraction φ in the
course of the simulations. Therefore, we only studied mem-
branes with mole fractions φ < 0.58 for which the membrane
asymmetry remains unchanged during the simulation time of a
few µs. One should note, however, that flip-flops are expected
to occur for any value of φ on sufficiently long time scales.
The limiting value φ= 1/2 corresponds to an optimal packing
of the lipids for which flip-flop times of the order of half an
hour or longer have been observed experimentally. Therefore,
the spontaneous curvatures that we compute here apply to
time scales that are small compared to the typical flip-flop
times. In this sense, we consider the constrained equilibrium of
bilayers without flip-flops. For phospholipid bilayers with flip-
flop times of the order of half an hour, this type of equilibrium
is certainly accessible to experimental studies.

B. Spontaneous curvature from stress profile

We first increased the fraction φ by flipping groups of
lipids from the lower to the upper leaflet. These flips were
performed while keeping both the total number of lipid mole-
cules, N1+ N2, and the lateral box dimensions, Lx and Ly,
fixed. In this way, we increased the fraction φ for a constant
value of the projected area per lipid, A, as defined in Eq. (38).
The associated mechanical tensions are displayed in Fig. S1.50

Inspection of this figure shows that such an increase of the frac-
tion φ, for a given molecular area A> A0, leads to a decrease
of the mechanical membrane tension Σmec, until this tension
vanishes at a certain threshold value φ = φ0 of the lipid mole
fraction in the upper leaflet. The computed values of φ0 are
given in Table II for different lipid areas A. Stress profiles of
asymmetric and tensionless membranes with different mole
fractions φ= φ0, corresponding to different molecular areas A,
are displayed in Figs. 7 and S2.50 These stress profiles can be
understood as follows. The increased density of lipids in the
upper leaflet acts to decrease the mechanical tension Σ1 within
the upper leaflet. On the other hand, when we focus on the
contribution of the head group region to Σ1, the decrease of
Σ1 can be understood in terms of the increased density of the
upper headgroup layer which provides a better shielding of the
hydrophobic tails from the water. In contrast, the decreased
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TABLE II. Molecular area A, mole fraction φ0, mechanical tension Σmec, and
the product 2κm for asymmetric and tensionless bilayers. The product 2κm
was determined via Eq. (16) from the first moment of the stress profiles in
Figs. 7 and S2.50 The spontaneous curvature m in the last column was then
calculated from 2κm using the value κ = 15 kBT for the bending stiffness.
All quantities are given in units of the bead diameter d, which provides the
basic length scale for our system, and of the basic energy scale kBT .

A (d2) φ0 Σmec (kBT /d2) 2κm (kBT /d) m (1/d)
1.221 0.514 0.004 ± 0.059 2.07 ± 0.64 0.069 ± 0.021
1.222 0.522 0.009 ± 0.074 3.41 ± 0.44 0.114 ± 0.015
1.225 0.532 0.020 ± 0.026 4.61 ± 0.35 0.154 ± 0.012
1.230 0.545 −0.004 ± 0.046 5.77 ± 0.18 0.192 ± 0.006
1.235 0.555 −0.004 ± 0.022 7.31 ± 0.38 0.244 ± 0.013
1.240 0.570 −0.004 ± 0.021 9.19 ± 0.68 0.306 ± 0.023
1.245 0.576 0.018 ± 0.032 9.90 ± 0.46 0.330 ± 0.015

density of lipids in the lower leaflet acts to reduce this shielding
and, thus, to increase the contribution of the lower headgroup
layer to the leaflet tension Σ2.

Inspection of Fig. 7 also shows that the double-peaks of the
stress profile within the two head group regions are deformed
in a characteristic manner as we increase the lipid density
in the upper leaflet. For the latter leaflet, the pressure of the
head groups increases and the stress minimum between the
two peaks moves towards negative stress values. For the lower
leaflet, on the other hand, the head group pressure decreases
and the stress minimum between the two peaks moves towards
positive stress values and eventually disappears.

Using the stress profiles in Figs. 7 and S2,50 we deter-
mined the spontaneous curvature m using the two computa-
tional approaches described in Sec. III. First, we used Eq. (16)
and determined the spontaneous curvature m directly via the
first moments of these stress profiles. As a result, we obtain
the spontaneous curvature m as a function of the asymmetry
parameter φ0 as summarized in Table II and plotted in Fig. 8(a).
As shown in the latter figure, the spontaneous curvature m is
found to increase linearly with the mole fraction φ0 of the lipids
in the upper leaflet, as one would expect intuitively.

FIG. 7. Stress profiles s(z) (upper panels) and density profiles for water (W),
lipid head (H), and lipid chain (C) beads (lower panels) of two asymmetric
and tensionless bilayers, which differ in their projected area per lipid, A, and
the adjusted mole fraction φ = φ0. The blue, red, and black lines correspond
to the box height Lz = 32 d, Lz = 40 d, and Lz = 48 d, respectively.

FIG. 8. (a) Spontaneous curvature m of tensionless bilayers as a function of
the mole fraction φ = φ0. The data points represent the simulation results
given in Table II and obtained from the first moment of the stress profiles
in Figs. 7 and S2.50 The dashed line represents a guide to the eye; and (b)
comparison of the parameter combination ℓme∆Σ21 ≡ 1

2 ℓme(δΣ2 − δΣ1) as
obtained from the excess tensions, see Eq. (36) with ℓme ≡ 2ℓsy, with the
product 2κm as computed from the first moment of the stress profile via
Eq. (16). The effective membrane thickness ℓme of the symmetric reference
state is found to be ℓme ≃ 4 d ≃ 3.2 nm.

C. Spontaneous curvature from leaflet parameters

We now estimate the spontaneous curvature via the leaflet
parameters as described in Secs. III C and III D. We expand
the leaflet parameters around the symmetric and tensionless
reference state as studied in Sec. II C and denote the corre-
sponding stress profile by ssy,0(z). The stress profile s0(z) of
the asymmetric and tensionless bilayers considered here is then
decomposed according to

s0(z)= ssy,0(z)+δs0(z), (39)

where the deviation δs0(z) vanishes in the limit of small asym-
metries. As a result, we obtain the excess tensions

δΣ1=

 Lz/2

0
dz δs0(z)=

 Lz/2

0
dz s0(z)= Σ1 (40)

and

δΣ2=

 0

−Lz/2
dz δs0(z)=

 0

−Lz/2
dz s0(z)= Σ2, (41)

where the second equalities follow from Eq. (31).
Because the reference state is provided by a symmet-

ric and tensionless membrane with Σsy = 0, the second term
on the right hand side of Eq. (35) vanishes and we obtain
the asymptotic equality (36) between the product 2κm and
the parameter combination 1

2 ℓme(δΣ2−δΣ1) with the effective
membrane thickness ℓme ≡ 2ℓsy of the symmetric reference
state. As shown in Fig. 8(b), very good agreement between this
parameter combination and the product 2κm as calculated from
the first moment of the stress profile, see Eq. (16), is obtained
for the effective membrane thickness ℓme≃ 4 d ≃ 3.2 nm.

D. Magnitude of spontaneous curvature

In Table II, the spontaneous curvature m is given in units
of 1/d because the bead diameter d represents the basic length
scale. As explained above, this length scale is estimated to be
d = ℓme/5= 0.8 nm using the typical value 4 nm for the separa-
tion of the two head group layers. The spontaneous curvature m
in Table II then varies from 1/(2.9 ℓme)= 1/(11.6 nm) (top row)
to 1/(0.6 ℓme) = 1/(2.4 nm) (bottom row). The smaller value
1/(2.9 ℓme) is physically meaningful whereas the larger value
1/(0.5 ℓme) is too large because the membrane cannot attain
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a mean curvature of the order of 1/(0.6 ℓme) without severely
distorting its bilayer structure. If we assume that the membrane
can attain mean curvatures up to 1/ℓme and if we allow the
bilayer to curve towards both sides, Table II implies that the
physically meaningful range for the asymmetry parameter φ0
as defined by Eq. (37) is given by 0.468 . φ0 . 0.532. It would
be instructive to study the free energy barriers for flip flops as
a function of φ0 but such a study would be computationally
expensive and has not been attempted here.

V. BILAYERS EXPOSED TO ADSORBING PARTICLES

A. Single bilayers with symmetric adsorption

In order to study the spontaneous curvature induced by
adsorbing particles, we first consider a symmetric reference
system as provided by a single bilayer and small molecules
or “particles” that adsorb onto this bilayer, see Fig. 9. The
adsorbate particles are represented as single DPD beads, de-
noted by P in Table I. The DPD interaction parameters for
the adsorbate beads are chosen in such a way that these beads
localize preferentially at the lipid head groups.

We performed DPD simulations for different numbers of
the adsorbate particles corresponding to different bulk concen-
trations, C, of these particles far away from the bilayer. As
before, we used a simulation box that had the dimensions
Lx = Ly = Lz = 32 d, and the bilayer spanned the box in the
x- and y-directions. As a consequence, the projected area per
lipid, A, was also kept constant and had the value A= 1.23 d2.
In addition, for each bulk concentration C of the adsorbate
particles, we adjusted the water densities in such a way that the
bulk pressure P and thus the normal pressure component PN
had the constant value PN= P= 20.7 kT/d3, as for pure water
at standard DPD conditions, see Fig. S3,50 which displays the
number of W beads as a function of the number of P beads. In
this way, we varied the adsorbate concentration C keeping the
normal pressure PN constant as shown in Fig. 10(a). The latter
figure covers the concentration range 0.01/d3 . C . 0.1/d3.
Using the value d ≃ 0.8 nm for the bead diameter, this range
corresponds to the molar concentration range 32 mM . C
. 320 mM which is physically meaningful.

Several density profiles ρP(z) of the adsorbate particles,
corresponding to different values of the bulk concentration
C of the adsorbate, are depicted in Fig. 10(b). We note that
these densities are much smaller than the overall bead den-

FIG. 9. Simulation snapshots of a lipid bilayer in the presence of small
adsorbate particles (gray beads). Lipid head groups are shown in blue and
lipid chains in red. The water beads are transparent and not visible. The
bilayer consists of N = 1664 lipids, which are in contact with 2041 adsorbate
particles. As in Fig. 6, the maximum value of the lipid chain (C) density
defines the origin of the z-coordinate and the mean curvature is taken to be
positive if the bilayer bulges towards the upper leaflet.

FIG. 10. Symmetric adsorption of small particles onto a symmetric bi-
layer: (a) The normal pressure component PN has the constant value
PN = 20.7 kT /d3, irrespective of the bulk concentration C of the ad-
sorbate particles; (b) density profiles of the adsorbate particles for C
= 0.023, 0.046, 0.069, and 0.101/d3 (bottom to top). These profiles directly
demonstrate that the particles adsorb at the two leaflet-water interfaces; (c)
adsorbate coverage Γ as a function of C , calculated from the particle density
profiles ρP(z) via Eq. (42); and (d) density profiles of water (W), head groups
(H), and lipid chains (C) for the different concentrations C corresponding to
panel (b). The bulk water density is slightly reduced with increasing C but
the H and C density profiles remain practically unchanged.

sity away from the membrane, which was always close to ρ
= 3/d3 irrespective of the adsorbate particle concentration C.
In Fig. 10(d), we display the density profiles for the W, H,
and C beads. The water density profile away from the bilayer
is slightly reduced as we increase the particle concentration
but both the H bead and the C bead density remain practically
unchanged for all particle concentrations C considered here.

B. Leaflet coverage and leaflet tension

Because of the periodic boundary conditions in the z-
direction, we may shift the z-coordinate in such a way that the
simulation box is located at 0 < z < Lz and view the system
as a slab with thickness Lz with one leaflet at z & 0 and the
other leaflet at z . Lz. The density profile ρP(z) then satisfies
the symmetry relation ρP(L− z)= ρP(z).

The coverage Γ of the leaflets by the adsorbate particles
describes the deviation of the actual particle density ρP(z) from
its bulk value C. Because of the symmetry of the system, each
leaflet has the same coverage as given by

Γ= 1
2

 Lz

0
dz [ρP(z)−C]. (42)

This coverage vanishes for a uniform profile with ρP(z) =C
and becomes independent of Lz for large Lz (as long as the
deviation ρP(z)−C decays to zero faster than 1/z for large z).
The dependence of the coverage Γ on the bulk concentration
C is shown in Fig. 10(c); the coverage increases linearly with
C as expected for small values of C. Therefore, the data follow
the linear relation

Γ= Γ′0 C with Γ
′
0≡

dΓ
dC

����C=0
(43)

over the whole range of concentrations C explored in the simu-
lations. In Fig. 10(c), the coverage Γ is smaller than 0.2/d2,
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FIG. 11. Symmetric adsorption of small particles onto a symmetric bi-
layer: (a) Density profiles of the adsorbate particles for C = 0.012/d3

(lower red curve) and 0.101/d3 (upper blue curve); (b) stress profiles
for the same two concentration values (more negative stress profile for
larger concentration); (c) leaflet tension Σsy as defined by Eq. (44) as a
function of coverage Γ. The solid line represents the relationship Σsy(Γ)
= Σsy(0) − kBT Γ as given by Eq. (45); and (d) mechanical tension Σmec as a
function of Γ. The solid line corresponds to Σmec(Γ) = 2 Σsy(0) − 2kBT Γ. In
order to estimate the error bars for the mechanical tension, this quantity has
been recorded every 50 DPD steps. Note that the tensionless reference state
is obtained for finite coverage Γ = Γ0 ≃ 0.1/d3. The corresponding particle
density profile is given by the upper blue curve in panel (a). For Γ > Γ0, the
mechanical tension Σmec is negative and the bilayer membrane is compressed
by the adsorbate particles.

which implies that the average separation of the adsorbed
particles on one of the membrane leaflets is larger than 2.2 d.
Therefore, the whole Γ-range displayed in Fig. 10(c) is physi-
cally meaningful.

Two examples for the particle density ρP and the cor-
responding stress profile ssy(z,Γ) are shown in Figs. 11(a)
and 11(b). Because symmetric adsorption implies ssy(−z,Γ)
= ssy(z,Γ), the leaflet tensions Σ1(Γ) and Σ2(Γ) as defined by
Eq. (26) have the same value as given by

Σsy(Γ)= 1
2

 Lz/2

−Lz/2
dz ssy(z, Γ). (44)

The dependence of the leaflet tension Σsy on the coverage Γ
is displayed in Fig. 11(c). The data in this figure are in good
agreement with the linear relation

Σsy(Γ)≈ Σsy(0)− kBT Γ for small Γ (45)

which was previously derived from the Gibbs adsorption
equation (∂Σi/∂C)T ≈ −kBT Γ/C for dilute solutions of the
adsorbate particles.6 Indeed, if we use this latter equation for
Σi = Σsy together with Eq. (43), we obtain the linear rela-
tion in Eq. (45). Furthermore, because the mechanical ten-
sion Σmec(Γ) = Σ1(Γ)+Σ2(Γ) = 2 Σsy(Γ), we also have Σmec(Γ)
≈ 2 Σsy(0)−2kBT Γ for small Γ as shown in Fig. 11(d). Thus,
we conclude that the Gibbs adsorption equation applies to the
derivatives (∂Σi/∂C)T of the mechanical leaflet tensions Σi as
defined in Eq. (26).

C. Two bilayers with asymmetric adsorption

So far, we have discussed symmetric membrane-adsorbate
systems for which the adsorbing particles have the same

concentration on both sides of the bilayer membrane. The
latter geometry is easy to simulate: we only need one bilayer
immersed in a single water compartment, which is then in
contact with both leaflet-water interfaces because of the peri-
odic boundary conditions in the z-direction. We now turn to
a somewhat more complex situation in which the two leaflet-
water interfaces are exposed to different concentrations Cex and
Cin of the adsorbate particles.

1. Simulation box and concentration differences

In order to simulate such asymmetric lipid-adsorbate sys-
tems, we introduce a new simulation protocol based on two
lipid bilayers that partition the simulation box into two separate
compartments with two different particle concentrations, see
Fig. 12. The two compartments have equal volumes but contain
different numbers of adsorbing particles. Both bilayers are, on
average, parallel and span the simulation box in the x- and
y-directions. We use the same sign convention for the mean
curvature of both the upper and the lower bilayer: they both
have positive mean curvature when they bulge towards their
own upper leaflet.

Because of the periodic boundary condition in the z-
direction, both bilayers are exposed to the same asymmetric
environment, see Fig. 12. More precisely, both the lower leaflet
of the lower bilayer Blow and the upper leaflet of the upper
bilayer Bupp are exposed to the “exterior” particle concentra-
tion Cex whereas both the upper leaflet of the lower bilayerBlow

and the lower leaflet of the upper bilayer Bupp are exposed to
the “interior” particle concentration Cin. We then define the
concentration difference ∆C by

∆C =∆Cupp≡Cex−Cin for bilayer Bupp (46)

FIG. 12. Simulation snapshots (side view and oblique view) of two bilayers,
the lower bilayer Blow and the upper one Bupp, exposed to two aqueous
solutions with particle concentrationsCex andCin. The lower leaflet of bilayer
Blow is exposed to the same particle concentration as the upper leaflet of
bilayer Bupp and vice versa. The simulation box extends from z = −32 d
to z = 32 d. The midplane of the lower bilayer is located at z = −16 d, the
midplane of the upper one at z = 16 d. Thus, the two bilayers partition the
simulation box into two compartments of equal volume. For each bilayer, the
mean curvature is taken to be positive if the bilayer bulges towards its upper
leaflet, i.e., towards the positive z-direction.
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and by

∆C =∆Clow≡Cin−Cex for bilayer Blow. (47)

These definitions are consistent with our convention for the
mean curvature of the two bilayers.

For the simulations reported here, the simulation box had
the same lateral dimensions Lx = Ly = 32 d as for the symmet-
ric adsorbate-lipid systems, but the perpendicular dimension
was now Lz = 64 d, i.e., twice as large as for the symmetric
case. Both bilayers contained the same number N = 1664 of
lipids corresponding to the same projected area A = 1.23 d2

per lipid. The water densities were adjusted in such a way that
the normal pressure had the standard value PN = 20.7kBT/d3

irrespective of the particle concentrations.
Real lipid bilayers are observed to be essentially imperme-

able to ions and to all molecules apart from water. Therefore,
on the time scales of typical experiments, the concentrations
Cex and Cin,Cex within the exterior and interior compartments
can be considered to be constant and time-independent. In
order to ensure that this constrained equilibrium also applies
to our simulations, we first performed extended simulations of
the two-bilayer system for about 2 µs and confirmed that the
number of the adsorbing particles remained constant in each
aqueous compartment on the time scales of the simulations. We
also checked that the special case with identical concentration
Cex = Cin in the two aqueous compartments reproduced the
results for a single bilayer as described in Subsection V A and
V B.

2. Tensionless membranes with Cex,Cin

After these initial test runs, we identified and studied
pairs of concentrations Cex and Cin for which the two mem-
branes experienced very low mechanical tensions. We then
determined, for each such concentration pair, the density and
stress profiles as illustrated in Fig. 13, where these profiles
are displayed for the concentrations Cex = 0.102/d3 and Cin
= 0.012/d3. The density profiles of the lipid tails and heads,
see Fig. 13(a), appear to be unaffected by the presence of the
adsorbing particles. The water density away from the bilayers
is somewhat smaller than ρ = 3/d3 because of the adsorb-
ing particles in the aqueous compartments and the require-
ment to keep the normal pressure at its standard value PN

= 20.7kBT/d3, see Fig. S3.50 From the density profile for the
adsorbate particles, see Fig. 13(b), we can determine both the
bulk concentrations Cex and Cin of the adsorbing particles away
from the bilayers and the particle coverages of the two leaflets,
arising from the increased particle density close to the bilayers.
The corresponding stress profile is displayed in Fig. 13(c).

Because both bilayers have the same lateral size and
contain the same number of lipid molecules, they experience,
on average, the same mechanical tension. We calculated the
tension of each bilayer separately by partitioning the simula-
tion box shown in Fig. 12 into two subvolumes of equal size.
Each subvolume contained one bilayer and its tension was then
obtained by integrating the stress profile over the z-coordinate
of the corresponding subvolume, compare Eq. (7).

We considered 16 pairs of concentrations Cex and Cin with
Cex >Cin as depicted in Fig. 14(a). According to Eqs. (46) and

FIG. 13. Density and stress profiles for two bilayer membranes that partition
the simulation box into two aqueous compartments with equal volumes but
different particle concentrations Cex and Cin <Cex: (a) Density profiles of
water (solid line), lipid chains (dashed line), and lipid heads (dotted line).
The water density away from the bilayers is somewhat smaller than 3/d3

(horizontal red dashed line) because this density was adjusted in such a way
that the water-particle mixture always had the standard normal pressure PN

= 20.7 kBT /d3, see Fig. S3;50 (b) density profile ρP(z) of adsorbate particles
with the bulk densities Cex = 0.102/d3 and Cin = 0.012/d3 as indicated
by the horizontal red and blue dashed lines; and (c) lateral stress profile
s(z). The adsorbing particles act to increase the pressure within the head
group layers and to move the corresponding double-peak structure of the
stress profile towards negative stress values. In this example, the left bilayer
Blow and the right bilayer Bupp experience the mechanical tension Σmec =

(0.08 ± 0.06) kBT /d2 and Σmec = (0.07 ± 0.06) kBT /d2, respectively.

(47), the upper bilayer is then exposed to the concentration
difference ∆C =Cex−Cin whereas the lower bilayer is exposed
to the concentration difference ∆C =Cin−Cex. Therefore, the
16 two-bilayer systems provide data for 32 different single
bilayers.

For each concentration pair, we performed eight simula-
tion runs of 2 µs and, thus, studied the corresponding two-

FIG. 14. Asymmetric adsorption of particles onto bilayer membranes: (a)
Concentrations Cex and Cin for which the density and stress profiles have
been computed; (b) coverage difference ∆Γ and (c) the product 2κm as
a function of concentration difference ∆C . The coverage difference was
obtained by integration of the particle density, the product 2κm from the first
moment of the stress profile, see main text; and (d) the product Y ≡ 2κm
as obtained from the stress profile plotted against the parameter combination
X ≡ 1

2 kBT ℓme∆Γ with effective membrane thickness ℓme = 2ℓsy = 7.2 d,
see Eq. (59). The dashed line represents the diagonal line Y = X , the dotted
lines are shifted lines with Y = X ± 0.5.
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bilayer system for a total run time of 16 µs. For each run,
we determined the mechanical tensions Σlow

mec and Σupp
mec of the

two bilayers Blow and Bupp from the stress profiles in the two
subvolumes. We selected those runs for which both bilayers
were tensionless in the sense that their mechanical tensions
satisfied −0.1 kBT/d2 < Σlow

mec < 0.1 kBT/d2 and −0.1 kBT/d2

< Σ
upp
mec < 0.1 kBT/d2. For all concentration pairs, the latter

condition applied to at least four of the eight simulation runs.

3. Coverage differences ∆Γ between the two leaflets

The selected runs with two tensionless bilayers were then
used to calculate the coverages Γlow

i and Γupp
i with i = 1, 2 for

the four leaflets of the two bilayers in Fig. 12. Because of the
periodic boundary conditions, we have the identities

Γ
upp
1 = Γ

low
2 ≡ Γex (48)

and

Γ
low
1 = Γ

upp
2 ≡ Γin. (49)

The different coverages were calculated from the particle
density profiles within the two subvolumes using Eq. (42) with
integration limits as given by the midplanes of the two bilayers.
We then defined the coverage differences

∆Γ=∆Γupp≡ Γupp
1 −Γ

upp
2 = Γex−Γin for Bupp (50)

and

∆Γ=∆Γlow≡ Γlow
1 −Γ

low
2 = Γin−Γex for Blow (51)

in accordance with our sign convention for the mean curvature
of the two bilayers and with the definition of the concentration
difference ∆C in Eqs. (46) and (47).

In Fig. 14(b), the coverage difference ∆Γ as defined by
Eqs. (50) and (51) is plotted against the concentration differ-
ence ∆C as defined by Eqs. (46) and (47). Inspection of this
figure shows that both quantities are linearly related over the
whole range of∆C-values that has been studied here. As shown
in Fig. 14(b), the explored range of concentration differences
∆C varied from −0.1/d3 . ∆C . +0.1/d3 which is equivalent,
for bead diameter d ≃ 0.8 nm, to the molar concentration range
−320 mM . ∆C . +320 mM.

4. Spontaneous curvature from stress profile

For a single bilayer with vanishing mechanical tension, the
first moment


dz s(z)z of the stress profile s(z) is proportional

to the spontaneous curvature m, see Eq. (16). For the two
bilayer systems in Fig. 12, the up-down asymmetry of the upper
bilayer is opposite to the up-down asymmetry of the lower
bilayer, see Fig. 13. Therefore, for a “tensionless” two-bilayer
system, the first moment


dz s(z)z of the stress profile s(z)

vanishes if the integral is taken over the whole simulation box,
and we have to integrate over only half the box in order to
determine the spontaneous curvature of a single bilayer.

Thus, we determined the spontaneous curvatures mupp and
mlow of the upper and lower bilayer via

2κmupp=−
 32d

0
dz s(z) z (52)

and

2κmlow=−
 0

−32d
dz s(z) z, (53)

compare Fig. 13. The result of these calculations is displayed
in Fig. 14(c) where the negative and positive values of m
were obtained for the lower and upper bilayers, Blow and Bupp,
respectively. The data in Fig. 14(c) are more noisy than those
in Fig. 14(b) reflecting the deviations of the low but nonzero
mechanical tensions Σmec from Σmec = 0, but the relationship
between 2κm and ∆C is clearly linear again.

5. Spontaneous curvature from leaflet parameters

Next, we again estimate the spontaneous curvatures of the
bilayers via the leaflet parameters as described in Secs. III C
and III D. For notational simplicity, we discuss only the upper
bilayer Bupp and suppress the superscript “upp” in this subsec-
tion. We start from the stress profiles ssy(z,Γ) for symmetric
adsorption as introduced in Sec. V B. Inspection of Figs. 11(c)
and 11(d) shows that the mechanical tension Σmec vanishes for
a certain, intermediate coverage Γ= Γ0≃ 0.1/d2. We now take
the corresponding stress profile ssy(z,Γ0) as our symmetric and
tensionless reference state. The stress profile of the asymmetric
and tensionless upper bilayer is decomposed according to

s1(z, Γ1)= ssy(z, Γ0)+δs1(z, Γ1) for 16 d < z < 32 d (54)

and

s2(z, Γ2)= ssy(z, Γ0)+δs2(z, Γ2) for 0 < z < 16 d, (55)

where the profiles δs1(z,Γ1) and δs2(z,Γ2) vanish in the limit
of small Γ1−Γ0 and small Γ0−Γ2, respectively. We then obtain
the excess tensions

δΣ1(Γ1)=
 32d

16d
dz δs1(z, Γ1)=

 32d

16d
dz s1(z, Γ1)= Σ1(Γ1) (56)

and

δΣ2(Γ2)=
 16d

0
dz δs2(z, Γ2)=

 16d

0
dz s2(z, Γ2)= Σ2(Γ2), (57)

where the second equalities follow from

Σsy=

 16d

0
dz ssy(z, Γ0)=

 32d

16d
dz ssy(z, Γ0)= 0

as in Eq. (31).
Because the reference state is provided by a symmetric and

tensionless bilayer with Σsy = 0, the second term on the right
hand side of Eq. (35) vanishes and the asymptotic equality in
Eq. (36) with ℓsy=

1
2 ℓme now becomes

2κm≈ 1
2 ℓme[δΣ2(Γ2)−δΣ1(Γ1)]. (58)

Using the equalities δΣi(Γi) = Σi(Γi) and the linear relation-
ships Σi(Γi) ≈ Σi(0)− kBTΓi as in Eq. (45) with Σ1(0) = Σ2(0)
= Σsy(0), we can rewrite Eq. (58) in the more transparent form

2κm≈ 1
2 kBTℓme (Γ1−Γ2)= 1

2 kBT ℓme∆Γ (59)

as previously derived in Ref. 6. In order to scrutinize this rela-
tionship, we now combine the data in Fig. 14(b) and 14(c) and
plot the quantity 2κm as calculated from the first moment of the
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stress profile against the parameter combination 1
2 kBTℓme∆Γ

using the coverage ∆Γ as computed from the particle den-
sity profile. The best agreement between these two quantities
is obtained for the effective membrane thickness ℓme = 7.2 d
≃ 5.8 nm. It is important to note that this effective thickness
applies to a symmetric and tensionless bilayer with the same
particle coverage Γ0≃ 0.1/d2 on both leaflets, see Fig. 11(d).
Note also that the specific value ℓme≃ 7.2 d found here applies
to a certain particle size and to certain intermolecular interac-
tions of the particles with water and lipid molecules. In general,
the effective membrane thickness is expected to vary as we
change these parameters of the adsorbing particles.

6. Magnitude of spontaneous curvature

The product 2κm as depicted in Fig. 14(c) and 14(d)
varies in the range −kBT/d . 2κm . +kBT/d. Using the bead
diameter d = ℓme/5 ≃ 0.8 nm and the bending stiffness κ ≃
15kBT , we obtain the physically meaningful range−(1/24 nm)
.m . +(1/24 nm) for the spontaneous curvature m as induced
by asymmetric adsorption for the adsorbate particles consid-
ered in this study.

VI. SUMMARY AND OUTLOOK

In the present paper, we have used coarse-grained molec-
ular dynamics simulations to determine the spontaneous curva-
ture of bilayer membranes. We considered two mechanisms
for the generation of spontaneous curvature: (i) different lipid
densities within the two leaflets were studied in Sec. IV and
(ii) leaflets exposed to different concentrations of adsorbing
particles, which may be ions, small molecules, or peptides,
were discussed in Sec. V C.

In both cases, we used two computational methods to
determine the spontaneous curvature. The first method uses the
relation (16) between the spontaneous curvature m and the first
moment of the stress profile across the bilayer membrane.31–33

This relation relies on detailed knowledge about the complex
structure of the stress profile. The other method starts from
the intuitive view that the two leaflet-water interfaces can be
characterized by certain leaflet tensions, Σ1 and Σ2, which we
defined here in terms of the mechanical tensions within the
two leaflets. The sum of these two leaflet tensions is equal to
the mechanical tension of the whole bilayer, see Eqs. (26) and
(27). Expanding the leaflet parameters around symmetric and
tensionless states, we then arrive at the linear relationship (36)
between the spontaneous curvature and the excess tensions δΣi
of the two leaflets. It is important to note that these excess
tensions are defined for the planar state of the membrane and
are, thus, accessible to simulations with periodic boundary
conditions.

The relationship (36) involves the effective membrane
thickness of the symmetric and tensionless reference state. For
asymmetric lipid densities in the two leaflets of the bilayer, we
found the effective membrane thickness ℓme = 4 d ≃ 3.2 nm,
see Fig. 8(b). For asymmetric adsorption of a certain species
of adsorbing particles, we obtained the effective membrane
thickness ℓme= 7.2 d ≃ 5.8 nm, see Fig. 14(d). In the latter case,

the symmetric reference state is already covered by adsorbing
particles leading to the coverage Γ0≃ 0.1/d2 as in Fig. 11. We
thus conclude that the two computational methods, which were
based on two different views about the molecular mechanism
for spontaneous curvature generation, are completely consis-
tent with each other.

For bilayers with asymmetric lipid densities, our main
results are summarized in Table II and Fig. 8. In Fig. 8(a), the
spontaneous curvature is plotted as a function of the lipid asym-
metry φ0 which describes the mole fraction of lipid molecules
within the upper leaflet of tensionless bilayers. A symmet-
ric bilayer with vanishing spontaneous curvature is described
by φ0 = 1/2. The physically meaningful range of the control
parameter φ0 is provided by 0.468 < φ0 < 0.532 for which the
spontaneous curvature varies from −1/ℓme .m . +1/ℓme.

For symmetric adsorption, i.e., for bilayers exposed to two
aqueous solutions with equal adsorbate concentrations Cex and
Cin on both sides of the bilayers, the leaflet tensions Σ1 and Σ2
are equal and decrease linearly with increasing coverage of the
adsorbate particles, see Fig. 11(c) and Eq. (42), as derived in
Ref. 6 from the Gibbs adsorption equation. Thus, we conclude
that the Gibbs adsorption equation applies to the adsorption
onto the bilayer leaflets provided one considers the derivatives
(∂Σi/∂C)T of the mechanical leaflet tensions Σi as defined in
Eq. (26).

In order to study bilayers exposed to different adsorbate
concentrations Cex and Cin, we introduced a novel simulation
protocol based on two bilayers separated by two aqueous
compartments with different adsorbate concentrations, see
Fig. 12. We used this system to explore concentration differ-
ences ∆C within the molar concentration range −320 mM
. ∆C . +320 mM. The main results for these systems with
asymmetric adsorption are displayed in Fig. 14. The functional
dependence of the spontaneous curvature on the concentration
difference ∆C is shown in Fig. 14(c), the agreement between
the two computational methods in Fig. 14(d). Our simulation
results confirm the linear relation between spontaneous curva-
ture and coverage asymmetry ∆Γ, described by Eq. (59) and
predicted in Ref. 6. These results also demonstrate that rather
small adsorbate particles with a size below 1 nm can generate
large spontaneous curvatures m in the range −(1/24 nm) . m
. +(1/24 nm).

The relationship (59) between the spontaneous curvature
and the coverage of the adsorbate particles does not involve the
stress profile but only the effective membrane thickness ℓme.
For spherical particles of size d as studied here, this thickness
ℓme was found to be 7.2 d which is quite close to what one
would expect naively. Indeed, in the absence of the adsorbate
particles, the separation of the two head group layers is 5 d as
in Fig. 3(a). A monolayer of adsorbate particles has a thickness
comparable to the size of the particles. For spherical particles
with diameter d, the thickness ℓme of a membrane with two
layers of adsorbate particles is then expected to be about 5 d
+2 d = 7 d.

Using the relationship (59) for asymmetric adsorption,
one can deduce the spontaneous curvature from a naive esti-
mate of the membrane thickness ℓme together with some data
on the adsorbate coverages Γ1 and Γ2. Such a deduction method
that does not involve the stress profile is quite valuable from
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an experimental point of view because, with available exper-
imental techniques, one can measure the coverages but not
the stress profiles. Furthermore, the simulation data in Fig. 14
imply that, depending on the bulk concentrations of the
adsorbate particles, the spontaneous curvature m can vary
over three orders of magnitude from about 1/(20 nm) down
to the inverse size of giant vesicles, which is of the order of
1/(20 µm). Because of this large range of possible m-values,
the deduction method based on Eq. (59) is quite useful even
if the naive estimate of the membrane thickness involves an
uncertainty of 10% or 20%.

Our simulation protocol for calculating the spontaneous
curvature induced by asymmetric adsorption is quite gen-
eral and can be applied to any molecular model of the
lipid/adsorbate system. In particular, it can be applied to
atomistic simulations of specific lipids and specific ions
or peptides that adsorb onto the bilayers. Using our pro-
tocol, one could also study the asymmetric adsorption of
Bin/Amphiphysin/Rvs (BAR)-domain proteins or other rigid
macromolecules that bind to membranes and generate local
membrane curvature via their molecular shape. One now has
to distinguish this local, protein-induced curvature from the
spontaneous curvature which governs the membrane shape on
larger length scales and depends both on the local, protein-
induced curvature and on the coverage by the adsorbed
proteins.51,52 Thus, to determine the spontaneous curvature
induced by BAR-domains or other macromolecules will be
computationally demanding because one should simulate
membrane segments that are large compared to the average
separation between the adsorbed proteins or macromolecules.

Our protocol can be easily extended to other mecha-
nisms for spontaneous curvature generation such as (i) to
lipid bilayers with different lipid species and compositional
asymmetries between the two leaflets and (ii) to solute particles
that form depletion layers in front of the leaflet-water inter-
faces. As shown in Ref. 5, such depletion layers should also
induce a spontaneous curvature. Likewise, analytical theories
have recently predicted that the spontaneous curvature has a
strong effect on the engulfment of nanoparticles,53 another
process that can be studied by molecular simulations.54–58

Finally, because of recent experimental developments,16,59 it
now seems feasible to measure the spontaneous curvatures
induced by ions, small molecules, or peptides using fluores-
cence microscopy of giant unilamellar vesicles.
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NOMENCLATURE

A projected area per lipid molecule.
A0 molecular area of tensionless membrane.
A membrane area.
A1 area of upper-leaflet-water interface.
A2 area of lower-leaflet-water interface.
ai j DPD force parameter.

Blow lower bilayer membrane.
Bupp upper bilayer membrane.
C lipid chain bead.
C concentration of adsorbate particles.
Cex concentration within exterior compartment.
Cin concentration within interior compartment.
C1,C2 two principal curvatures of membrane surface.
d bead diameter.
∆Fint change in interfacial free energy.
∆Γ difference in adsorbate coverage.
δΣ1 excess tension within upper leaflet.
δΣ2 excess tension within lower leaflet.
Ebe bending energy of membrane.
F⃗i j force exerted by particle j onto particle i
F⃗C
i j conservative force.

F⃗D
i j dissipative force.

F⃗R
i j random force.
Γ adsorbate coverage.
Γex adsorbate coverage from exterior compartment.
Γin adsorbate coverage from interior compartment.
Γ1 adsorbate coverage of upper leaflet.
Γ2 adsorbate coverage of lower leaflet.
Γlow
i coverage of leaflet i = 1,2 of lower bilayer Blow.
Γ

upp
i coverage of leaflet i = 1,2 of upper bilayer Bupp.

H lipid head bead.
kB Boltzmann constant.
KA area compressibility modulus.
κ bending rigidity of bilayer membrane.
ℓme membrane thickness, ℓme= ℓ1+ℓ2.
ℓ1 thickness of upper leaflet.
ℓ2 thickness of lower leaflet.
Lx,Ly lateral dimensions of simulation box.
Lz height of simulation box.
m spontaneous curvature of membrane.
M mean curvature of membrane.
N1 number of lipid molecules in upper leaflet.
N2 number of lipid molecules in lower leaflet.
P adsorbate particle bead.
P bulk pressure.
PN normal pressure component.
PT tangential pressure component.
φ mole fraction of upper leaflet.
φ0 mole fraction of tensionless bilayer.
q wave number of shape fluctuations.
ρ particle density in the bulk.
ρP(z) density profile of adsorbate particles.
ρW(z) density profile of water beads.
Σmec mechanical tension of bilayer membrane.
ΣN normal stress component.
ΣT tangential stress component.
Σ1 mechanical tension within upper leaflet.
Σ2 mechanical tension within lower leaflet.
Σsy leaflet tension for a symmetric bilayer.
s(z) stress profile.
ssy(z) stress profile of symmetric bilayer.
ssy,0(z) stress profile of symmetric and tensionless bilayer.
T temperature.
Tmic microscopic torque acting on bilayer cross-section.
Tnan nanoscopic torque acting on neutral surface.
W water bead.
x,y coordinates parallel to bilayer.
z coordinate perpendicular to bilayer.
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