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Summary

� Jasmonates regulate plant secondary metabolism and herbivore resistance. How they influ-

ence primary metabolites and how this may affect herbivore growth and performance are not

well understood.
� We profiled sugars and starch of jasmonate biosynthesis-deficient and jasmonate-insensi-

tive Nicotiana attenuata plants and manipulated leaf carbohydrates through genetic engi-

neering and in vitro complementation to assess how jasmonate-dependent sugar

accumulation affects the growth ofManduca sexta caterpillars.
� We found that jasmonates reduce the constitutive and herbivore-induced concentration of

glucose and fructose in the leaves across different developmental stages. Diurnal, jasmonate-

dependent inhibition of invertase activity was identified as a likely mechanism for this phe-

nomenon. Contrary to our expectation, both in planta and in vitro approaches showed that

the lower sugar concentrations led to increased M. sexta growth. As a consequence, jasmo-

nate-dependent depletion of sugars rendered N. attenuata plants more susceptible to

M. sexta attack.
� In conclusion, jasmonates are important regulators of leaf carbohydrate accumulation and

this determines herbivore growth. Jasmonate-dependent resistance is reduced rather than

enhanced through the suppression of glucose and fructose concentrations, which may con-

tribute to the evolution of divergent resistance strategies of plants in nature.

Introduction

Jasmonates regulate plant responses to biotic and abiotic stress
and influence plant growth and development. They are part of
the regulatory networks of plant–symbiont (Pozo & Azc�on-Agui-
lar, 2007; Stein et al., 2008; Jacobs et al., 2011), plant–pathogen
(Landgraf et al., 2012) and plant–herbivore interactions
(reviewed by Wu & Baldwin, 2010), and are involved in the reg-
ulation of seed germination (Corbineau et al., 1988), root growth
and development (Staswick et al., 1992), leaf movement
(Nakamura et al., 2006) and flower development (Li et al.,
2004). Perhaps the best known function of jasmonates is their
stimulatory effect on plant secondary chemistry. Plants impaired
in jasmonate production or perception generally display reduced
levels of constitutive and induced secondary metabolites (Chen
et al., 2006; Paschold et al., 2007; Shoji et al., 2008; Zhang et al.,
2011).

Although our understanding of several aspects of jasmonate
signaling is increasing, knowledge about its possible role as a reg-
ulator of primary metabolism in plants is unclear. Recently, leaf
glucose and fructose concentrations were found to be constitu-
tively higher and less depleted in response to simulated Manduca

sexta herbivory in jasmonate biosynthesis-deficient Nicotiana
attenuata plants, an effect that can be mimicked by the exogenous
application of jasmonic acid (JA; Machado et al., 2013). More-
over, exogenous jasmonate application to the leaves reduced leaf
starch concentration in poplar trees, stem sugars in tulip, leaf sug-
ars in tobacco, and leaf sugars and amino acids in cabbage (Babst
et al., 2005; Skrzypek et al., 2005; van Dam & Oomen, 2008;
Hanik et al., 2010; Tytgat et al., 2013), suggesting that jasmo-
nates might act as negative regulators of plant primary metabo-
lism. By contrast, starch concentrations in jasmonate signaling-
impaired tobacco plants were significantly lower (Wang et al.,
2014) and jasmonate application to the leaves induced amino
acids in tobacco leaves (Hanik et al., 2010), suggesting that jasm-
onates can also promote starch and amino acid accumulation. A
detailed analysis of primary metabolites in jasmonate signaling-
impaired plants is therefore required to clarify the potential role
of endogenous jasmonates in the regulation of plant primary
metabolism. Constitutive and induced jasmonate levels change
over plant development (Abdala et al., 2002; Diezel et al., 2011),
a phenomenon that correlates with a reduction in the magnitude
of induction of jasmonate-dependent secondary metabolites and
defensive proteins (van Dam et al., 2001; Kaur et al., 2010;
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Onkokesung et al., 2012). It is therefore possible that the impact
of jasmonates on leaf carbohydrates is dependent on a plant’s
developmental stage.

Sugars are the dominant soluble leaf carbohydrates of plants.
They are produced through the incorporation of carbon dioxide
(CO2) into ribulose-1,5-bisphosphate (RuBP) by the action of ri-
bulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), fol-
lowed by the spontaneous formation of two molecules of 3-
phosphoglyceric acid (3PGA). RuBisCO activase (RCA) activates
RuBisCO by removing inhibitory sugar phosphates from the
active site. 3PGA is subsequently converted to glucose, fructose,
sucrose and starch via several enzymatic steps. Sucrose and starch
can be stored, transported and/or metabolized further (Braun
et al., 2014). Soluble sugars and starch accumulate during the day
and are catabolized during the night to meet the energy demand
of the plant. Therefore, their concentrations rise and fall in a
diurnal manner. Diurnal patterns therefore need to be taken into
account when studying the impact of jasmonates on leaf carbohy-
drates.

Phytophagous insects feed on plants to acquire nutrients to
fuel growth, development and reproduction, and are therefore
affected directly by the metabolic make up of their food source.
Both primary and secondary metabolites influence insect perfor-
mance (Roeder & Behmer, 2014). Secondary metabolites are
directly toxic or reduce the digestibility of the plant material in a
quantitative manner (Bennett & Wallsgrove, 1994). The influ-
ence of primary metabolites on herbivores is more context depen-
dent (Behmer, 2008). The ratio between carbohydrates and
protein, for instance, determines insect growth in a nonlinear
fashion, with suboptimal ratios leading to a rapid reduction in
growth rates (Thompson & Redak, 2000; Simpson & Rauben-
heimer, 2009; Roeder & Behmer, 2014). Furthermore, protein
and carbohydrate ratios influence the toxicity of plant secondary
metabolites (Raubenheimer & Simpson, 1990; Raubenheimer,
1992; Simpson & Raubenheimer, 2001). Most studies on insect
nutrition have been carried out in chemically defined artificial
environments. However, plants as food sources in nature are
inherently variable. Herbivore attack, for instance, alters nitrogen
and carbon dynamics (Arnold & Schultz, 2002; Babst et al.,
2005; G�omez et al., 2010; Appel et al., 2012), which often results
in dramatic changes in primary and secondary metabolite pools
(Babst et al., 2005; Skrzypek et al., 2005; Schwachtje et al., 2006;
Steinbrenner et al., 2011; G�omez et al., 2012; Machado et al.,
2013) that might affect the nutritional quality of foliar tissue and
could potentially affect herbivore nutrition. If we are to under-
stand the importance of carbohydrates for insect nutrition, com-
bining in vitro assays with experiments in planta would therefore
be a promising approach.

One approach to manipulate plant chemistry is to target
defensive signals. Jasmonates, for instance, have been silenced in
a number of plant species, and the susceptibility of the jasmonate
signaling-impaired plants to herbivores has subsequently been
attributed to deficiencies in secondary metabolite production and
accumulation (Steppuhn et al., 2004; Paschold et al., 2007; Step-
puhn & Baldwin, 2007; Heiling et al., 2010). Given that jasmo-
nates also regulate primary metabolites in plants (Machado et al.,

2013; Wang et al., 2014) and that the primary metabolites can be
equally important for insect performance (Fernstrom, 1987; Co-
hen et al., 1988; Waldbauer & Friedman, 1991; Thompson &
Redak, 2000; Simpson & Raubenheimer, 2009; Roeder & Beh-
mer, 2014), the question arises as to whether they could be
responsible for the observed susceptibility of jasmonate-deficient
plants. We investigated this potentially overlooked aspect of
plant–herbivore interactions by studying the role of jasmonates
in the regulation of carbohydrate accumulation in N. attenuata
leaves, including potential underlying mechanisms, and the con-
tribution of jasmonate-dependent carbohydrate depletion to her-
bivore resistance. To answer the first question, we measured
sugar concentrations and invertase activity in N. attenuata geno-
types that are impaired to different degrees in their jasmonate
biosynthesis, signaling and/or perception. To answer the second
question, we evaluated M. sexta growth when feeding on plants,
artificial and semi-artificial diets with different sugar concentra-
tions. Our results reveal that soluble sugar concentrations reduce
rather than enhance jasmonate-dependent plant resistance.

Materials and Methods

Plant material

Transgenic inverted repeat (ir) and empty vector (EV) control
(A-03-9-1) Nicotiana attenuata Torr. Ex. Watson plants were
used in this study. The characteristics of these previously charac-
terized different genotypes are summarized in Table 1. In addi-
tion, we produced a hemizygous cross between inverted repeat
allene oxide cyclase (irAOC; line A-07-457-1) and inverted
repeat ribulose-1,5-bisphosphate carboxylase/oxygenase activase
(irRCA; line A-03-462-7-1) lines by removing anthers from flow-
ers of irRCA plants before pollen maturation and pollinating the
stigmas with pollen from irAOC plants.

Planting conditions

Before planting, all seeds were surface sterilized and germinated
on Gamborg’s B5 medium (Kr€ugel et al., 2002). Ten-day old
seedlings were transferred to Teku pots for another 10 d (P€oppel-
mann GmbH & Co. KG, Lohne, Germany) before planting
them into 1-l pots filled with washed sand or standard substrate.
Plants were grown at 45–55% relative humidity and 24–26°C
during days and 23–25°C during nights under 16 h of light
(06:00–22:00 h). Plants were watered twice every day.

Soluble sugar, starch and protein concentrations in
jasmonate signaling-impaired lines across different
developmental stages

To investigate the possible role of jasmonates in the regulation of
primary metabolism in N. attenuata, we measured glucose, fruc-
tose, sucrose, starch and soluble protein concentrations in the
rosette leaves of jasmonate biosynthesis-deficient irAOC and
jasmonate perception-impaired inverted repeat coronatine insen-
sitive 1 (irCOI1) plants. As endogenous jasmonate levels change

New Phytologist (2015) 207: 91–105 � 2015 The Authors

New Phytologist� 2015 New Phytologist Trustwww.newphytologist.com

Research

New
Phytologist92



over plant development (Abdala et al., 2002), we measured sugar
concentrations at four different developmental stages: early
rosette (32 d after germination; DAG), rosette (38 DAG), elon-
gation (44 DAG) and early flowering (50 DAG). Sugar and
starch concentrations were quantified as described by Machado
et al. (2013). Briefly, soluble sugars were extracted from plant tis-
sue using 80% (v/v) ethanol, followed by an incubation step
(20 min at 80°C). Pellets were re-extracted twice with 50% (v/v)
ethanol (20 min at 80°C). Supernatants from all extraction steps
were pooled together, and sucrose, glucose and fructose were
quantified enzymatically as described by Velterop & Vos (2001).
The remaining pellets were used for an enzymatic determination
of starch (Smith & Zeeman, 2006). In addition, total soluble
protein was quantified (Bradford, 1976). As protein solubility is
affected by pH, total soluble protein levels may be underesti-
mated by this method. Five independent replicates of each
genotype and developmental stage were analyzed. Plant leaves
were harvested at 13:00 h and flash frozen in liquid nitrogen for
analysis.

Constitutive jasmonate and soluble sugar concentrations in
jasmonate-deficient plants

To assess the importance of jasmonates for sugar accumulation,
we evaluated eight different genetically engineered lines that dif-
fer in their capacity to produce jasmonates because they are defi-
cient in either jasmonate biosynthesis or in the upstream
signaling network. We measured glucose, fructose and sucrose
concentrations, as well as constitutive JA and jasmonoyl-L-isoleu-
cine (JA-Ile), in the leaves of rosette stage plants of all genotypes.
Phytohormone measurements were carried out as described by
Machado et al. (2013). Plants were harvested at 10:00 h (n = 5).
Sugars were then correlated with phytohormone levels.

Diurnal changes in invertase activity and soluble sugar
concentrations in jasmonate-deficient irAOC and EV plants

Invertases cleave sucrose into glucose and fructose following a
diurnal pattern (Sturm & Tang, 1999; N€agele et al., 2010).

Higher invertase activity might therefore lead to higher glucose
and fructose pools. To investigate whether the higher glucose and
fructose concentrations observed in jasmonate biosynthesis-defi-
cient irAOC plants can be attributed to higher invertase activity,
we measured the activity of soluble and insoluble invertases and
correlated the ratio of sucrose (precursor) to glucose and fructose
(products) with the measured enzyme activities. Invertase activi-
ties and sugar concentrations were measured from leaf extracts of
rosette stage EV and irAOC plants at five times of the day: 07:00,
10:00, 13:00, 17:00 and 21:00 h. Five independent replicates
(plants) of each genotype were harvested per time point. Enzyme
activities (Ferrieri et al., 2013) and sugar concentrations were
measured as described by Machado et al. (2013).

Effect of soluble sugars on caterpillar growth

Low secondary metabolite levels are generally assumed to be
responsible for the increased larval growth of herbivores on jasm-
onate signaling-impaired plants (Halitschke & Baldwin, 2003;
Rayapuram & Baldwin, 2006; Paschold et al., 2007). To deter-
mine whether the higher soluble sugar concentrations in jasmo-
nate-deficient plants contribute to the increased M. sexta larval
growth, we manipulated sugar concentrations in planta and
in vitro and measured caterpillar growth in five different experi-
ments as follows.

Caterpillar growth on sugar-restored, jasmonate biosynthesis-
deficient plants To decrease soluble sugars in irAOC plants, we
produced a hemizygous irAOC9 irRCA line by crossing an irA-
OC line with an irRCA line. Silencing RCA slightly impairs pho-
tosynthetic activity in N. attenuata (Mitra & Baldwin, 2008),
and we therefore hypothesized that a reduction in the photosyn-
thetic capacity should reduce sugar concentrations and, conse-
quently, the hemizygous jasmonate-deficient plants should have
restored wild-type (WT) sugar concentrations. To test the valid-
ity of this assumption, sugar concentrations were measured in the
leaves of EV, irRCA, irAOC and irAOC9 irRCA plants at
05:00 h (end of the dark period) and 13:00 h (middle of the light
period). As M. sexta herbivory has been shown to reduce sugar

Table 1 Characteristics of the inverted repeat (ir) Nicotiana attenuata transgenic lines used in the present study

Genotype Gene silenced Impaired function Phenotype Reference

irSIPK Salicylic acid-induced protein kinase Early jasmonate signaling Reduced levels of jasmonates Meldau et al. (2009)
irWIPK Wound-induced protein kinase
irGLA1 Glycerolipase A1 Jasmonate biosynthesis Bonaventure et al. (2011)
irAOS Allene oxide synthase Kallenbach et al. (2012)
irAOC Allene oxide cyclase
irOPR3 12-oxo-phytodienoic acid reductase
irJAR4/6 JA-Ile synthetase Reduced levels of JA-Ile Wang et al. (2008)
irCOI1 Coronatine-insensitive 1 JA-Ile perception Reduced JA-Ile perception Paschold et al. (2007)
irRCA Ribulose-1,5-bisphosphate

carboxylase/oxygenase activase
Photosynthesis Reduced photosynthetic activity Mitra & Baldwin (2008)

irAOC9 irRCA Allene oxide cyclase and
ribulose-1,5-bisphosphate
carboxylase/oxygenase activase

Jasmonate biosynthesis
and sugar metabolism

Reduced sugar concentrations
compared with irAOC plants

Present study

JA-Ile, jasmonoyl-L-isoleucine.
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concentrations in N. attenuata (Machado et al., 2013), we also
measured sugar concentrations after simulated (wounding and
M. sexta oral secretion treatments, W +OS) and actual (three
neonates per plant for 6 d) M. sexta herbivory. Intact plants
served as controls (n = 5). Manduca sexta herbivory (W +OS)
was simulated by rolling a fabric pattern wheel three times on
each side of the midvein of fully developed rosette leaves. The
wounds were immediately treated with 20 ll of a 1 : 5 (v/v) mil-
liQ water-diluted M. sexta oral secretion solution. The treatments
were repeated three times every other day. Following the valida-
tion of this in vivo approach, we determined caterpillar growth
on the different genotypes. Two M. sexta neonates were placed
on rosette stage plants and allowed to feed freely (n = 25). Seven
and 9 d later, their mass was determined using a microbalance
(Sartorius TE214S; Data Weighing Systems Inc., Elk Grove, IL,
USA). Manduca sexta eggs were derived from an in-house colony
and reared as described by Grosse-Wilde et al. (2011).

Caterpillar growth on plants with reduced photosynthetically
active radiation (PAR) As an alternative means of reducing sol-
uble sugars in irAOC plants, we reduced the amount of PAR by
covering rosette leaves with a green filter (Roscolux #4430; Rosco
Laboratories Inc., Stamford, CT, USA). We hypothesized that
reducing PAR supply should reduce sugar concentrations in the
leaves. Plants covered with a clear filter (Roscolux #000; Rosco
Laboratories Inc.) were used as controls. Sugar concentrations
were quantified 3 d after the start of the PAR reduction treatment
as described by Machado et al. (2013). Plants for the sugar mea-
surements were harvested at 09:00 h. Head space temperature
and humidity, red to far-red ratios, starch (Machado et al.,
2013), soluble proteins (Bradford, 1976), average internode
length and number of flowers were also quantified to assess
whether the filters elicited shade avoidance responses and other
secondary effects. To evaluate caterpillar growth, two M. sexta
neonates were placed on rosette stage plants (n = 30) and allowed
to feed freely. Seven and 9 d later, larval mass was determined as
described earlier.

Caterpillar growth on semi-artificial diets Manduca sexta-
induced jasmonate signaling depletes soluble sugars and induces
secondary defensive metabolites in the leaves of N. attenuata
plants; in contrast with EV plants, sugars are not depleted and
secondary defensive metabolites are not induced in response to
M. sexta simulated herbivory in jasmonate biosynthesis-deficient
irAOC plants (Machado et al., 2013). To understand whether
the better M. sexta growth on jasmonate-deficient plants is a
result of their increased sugar concentration and/or their
decreased levels of secondary metabolites, we performed an
experiment with semi-artificial diets in which sugars were com-
plemented to match those of WT and control plants. The diets
were prepared as described later, but the wheat germ was replaced
with 25 g of dried N. attenuata leaves. To generate the necessary
plant material, we treated irAOC and EV plants with M. sexta
oral secretions (W +OS induction) as described by Machado
et al. (2013). These treatments induce plant defenses and deplete
sugars in the leaves of N. attenuata in a JA-dependent manner

(Machado et al., 2013). After the treatments, we collected and
dried the leaves (24 h at 50°C). Plants were harvested at 13:00 h.
Diets prepared with untreated plant material served as controls.
Sugar concentrations in the semi-artificial diets were determined,
and subsets of diet cubes were complemented with pure sugars to
match WT and control levels. Manduca sexta growth on the dif-
ferent diets was then measured over 12 d. Forty-four neonates
per diet type (four larvae per plate; 11 plates per diet type) were
fed ad libitum and the diet cubes were replaced every other day.
In addition, caterpillar survivorship was recorded. As sugar com-
plementation of plants may induce secondary responses (Rolland
et al., 2006), the above approach allowed us to test the direct con-
tribution of soluble sugars to herbivore growth in a plant matrix.

Caterpillar growth on artificial diets enriched in glucose and
fructose To evaluate the individual effect of glucose and fruc-
tose on M. sexta growth, we prepared artificial diets with different
concentrations of glucose and/or fructose (see later, Fig. 7, for
treatment combinations) and measured M. sexta growth. The
diets were prepared essentially as described by Pohlon & Baldwin
(2001) without sucrose, plant material and antibiotics. Briefly,
17 g of agar were dissolved in 500 ml of water at 50°C and mixed
with 55 g wheat germ, 12 g yeast extract, 9 g Wesson salt mixture,
3.5 g ascorbic acid, 2.5 g cholesterol, 1.5 g sorbic acid, 5 ml raw
linseed oil, 1.5 ml formalin and 9 ml vitamin mixture (100 mg
nicotinic acid, 500 mg riboflavin, 233.5 mg thiamine, 233.5 mg
pyridoxine, 233.5 mg folic acid and 20 mg l�1 biotin in water).
The produced food was aliquoted into small plastic boxes and
kept at 8°C until use. Glucose and fructose were dissolved in
water and added to the diet cubes. Diets were freshly prepared
and replaced every other day. Forty caterpillars (four larvae per
plate; 10 plates per diet type) were fed ad libitum in a climate
chamber (45–55% relative humidity, 24–26°C during days and
23–25°C during nights under 16 h of light). Larval mass was
determined as described earlier, 7 and 9 d after the beginning of
the experiment (n = 40).

Interaction between protein and soluble sugars The perfor-
mance of insect herbivores depends, among other factors, on pro-
tein : carbohydrate ratios (Raubenheimer et al., 2005; Simpson &
Raubenheimer, 2009; Roeder & Behmer, 2014). To investigate
whether the observed negative effect of increased dietary soluble
sugars on M. sexta growth changes with the amount of available
protein, we prepared artificial diets with variations in sugar and
protein concentration and measured M. sexta larval mass and the
amount of ingested diet, and calculated the efficiency of conver-
sion of ingested food (Waldbauer, 1968). Diets were prepared
according to Pohlon & Baldwin (2001). Sucrose was replaced by
increasing concentrations of glucose and fructose (1, 6 and
12 mg g�1 of diet) to mimic the actual differences in soluble
sugar profiles between jasmonate biosynthesis-deficient irAOC
and WT plants. To increase the protein concentration of the
diets, casein was added at concentrations of 50 or 150 mg g�1

FW. Soluble protein concentrations in plants estimated by the
Bradford method can reach 14.47 mg g�1 in the leaves of some
plant species (Ruiz & Romero, 1999). Thirty neonates (three
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larvae per plate; 10 plates per diet type) were fed ad libitum and
the above parameters were determined 9 d after the beginning of
the experiment (n = 30).

Statistics

Unless otherwise stated, statistical tests were carried out with
Sigma Plot 12.0 (Systat Software Inc., San Jose, CA, USA)
using analysis of variance. Levene’s and Shapiro–Wilk tests were
applied to determine error variance and normality. Holm–Sidak
and Dunn’s post hoc tests were used for pairwise or multiple
comparisons. Datasets from experiments that did not fulfill the
assumptions for ANOVA were natural log-, root square- or
rank-transformed before analysis. The effect of semi-artificial
diets on caterpillar survivorship was analyzed in R (R Develop-
ment Core Team, 2012) using generalized linear models
(GLMs), under a quasibinomial distribution with F-test. Resid-
ual analysis was carried out to verify the suitability of error dis-
tribution and model fitting. Details on specific tests carried out
in each experiment are provided in Supporting Information
Notes S1.

Results

Jasmonate signaling negatively affects leaf glucose and
fructose concentrations

Leaf soluble protein levels of jasmonate perception-impaired ir-
COI1 and jasmonate biosynthesis-deficient irAOC plants were
similar to those observed in jasmonate-competent EV plants
across different developmental stages (Fig. 1a–d). Starch did not
differ between genotypes at early rosette (Fig. 1e), rosette
(Fig. 1f) and elongated (Fig. 1g) stages. Early flowering irCOI1,
but not irAOC, plants contained higher leaf starch concentra-
tions than EV plants (Fig. 1h). Glucose and fructose concentra-
tions were higher in jasmonate signaling-impaired plants
compared with EV controls at early rosette (Fig. 1i), elongated
(Fig. 1k) and early flowering (Fig. 1l) stages. At the rosette stage,
only fructose concentrations in irAOC plants were elevated
compared with EV controls (Fig. 1j). Sucrose concentrations
did not differ between genotypes at any of the evaluated devel-
opmental stages (Fig. 1i–l).

JA concentrations are negatively correlated with leaf
soluble sugars across different jasmonate-deficient
genotypes

Across eight jasmonate-deficient transgenic lines (Fig. 2a), we
found significant variations in soluble sugar, JA and JA-Ile con-
centrations (Fig. 2b,c). A significant negative correlation between
soluble sugar and constitutive JA concentrations (P < 0.001) was
observed (Fig. 2b). By contrast, no significant correlation
between soluble sugar and JA-Ile concentrations (P = 0.213) was
found (Fig. 2c). Together, the above experiments demonstrate
that jasmonates negatively affect soluble sugar concentrations in
N. attenuata leaves.

Jasmonate-dependent sugar suppression is correlated with
decreased invertase activity

Over the course of the day, we found that leaves of jasmonate
biosynthesis-deficient irAOC plants accumulated less sucrose
from 13:00 to 17:00 h, but more glucose and fructose from
10:00 to 21:00 h, compared with EV controls (Fig. 3a,b). More-
over, soluble invertase activity was increased in jasmonate biosyn-
thesis-deficient irAOC plants compared with EV plants from
13:00 to 21:00 h (Fig. 3c), an effect which correlated negatively
with the ratios of sucrose to fructose and glucose across the differ-
ent samples and time points (Fig. 3d). By contrast, insoluble
invertase activity was not altered by jasmonates and not corre-
lated with soluble sugar ratios (Fig. 3e,f).

Jasmonate-dependent sugar suppression improves
herbivore weight gain

To understand whether higher leaf sugar concentrations in jasm-
onate biosynthesis-deficient irAOC plants improve M. sexta
growth, we reduced sugar concentrations in irAOC plants by
silencing RCA activity. A reduction in RCA activity did not
affect soluble sugars in EV plants, but decreased glucose and fruc-
tose concentrations in irAOC plants (Fig. 4, S1). The partial res-
toration of WT sugar concentrations in the irAOC9 irRCA
crosses was even more pronounced in herbivory-induced plants
(Fig. 4). Sucrose and soluble protein concentrations remained
largely unchanged (Figs 4, S2), apart from a slight increase in
constitutive sucrose concentrations in irAOC9 irRCA plants.
From these results, we deduced that silencing RCA partially
restored WT sugar concentrations in jasmonate biosynthesis-defi-
cient irAOC plants, and these lines could be used to test the
influence of soluble sugars on M. sexta growth in planta. Our ini-
tial expectation was that increased glucose and fructose concen-
trations would increase M. sexta growth. In contrast with this
hypothesis, we found that the reduced sugar concentrations in
irAOC9 irRCA plants increased M. sexta growth even beyond
the highly increased mass gain in the irAOC plants (Fig. 4j). This
result suggests that jasmonate-dependent sugar depletion reduces
rather than enhances plant resistance.

Manduca sexta gains more weight on PAR-limited, sugar-
deprived plants

As a second approach to manipulate plant sugar concentrations,
we reduced PAR supply by 43% (Fig. 5a). As expected, reduc-
ing PAR significantly reduced sugar concentrations in both EV
and irAOC plants (Fig. 5b). Although the green filters slightly
changed the red : far-red ratios (Fig. S3a), we found little pheno-
typic evidence for the activation of shade avoidance responses in
PAR-reduced plants (Fig. S4a,b). We also found no changes in
head space temperature and humidity (Fig. S3b,c). Starch and
soluble protein concentrations also remained unaltered
(Fig. S3c,d). Overall, M. sexta larvae gained more weight on irA-
OC plants than on EV plants (Fig. 5c). PAR reduction signifi-
cantly increased caterpillar weight gain independent of the
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plant’s capacity to produce jasmonates (Fig. 5c). As irAOC
plants contain higher sugar levels, but also lower secondary
metabolites, compared with EV plants, both factors potentially
contribute to the observed caterpillar growth rates.

Manduca sexta grows better on low secondary metabolite
and low sugar-containing semi-artificial diets

In a third approach, we complemented semi-artificial diets with
soluble sugars. This resulted in seven different diets with different
sugar concentrations and added plant materials (Fig. 6a). Sugar
complementation effectively increased control EV sugar

concentrations to match those of control irAOC plants, and her-
bivory-suppressed EV sugar concentrations to match those of
control EV and herbivory-induced irAOC concentrations
(Fig. 6a).Manduca sexta weight gain did not differ between larvae
that fed on uninduced EV and irAOC diets (Fig. 6b, bars A, C).
When sugar concentrations in uninduced EV diets were comple-
mented to uninduced irAOC concentrations, M. sexta growth
was reduced (Fig. 6b, bar B). When feeding on W +OS-induced
plant material, M. sexta growth was lower on EV than on irAOC
diet (Fig. 6b, bars D, G). When sugar concentrations of W +OS-
induced EV plant material were complemented to uninduced EV
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was further reduced (Fig. 6b, bars E, F). A similar pattern was
observed for caterpillar survival (Fig. 6c). Taken together, these
results show that the W +OS-triggered induction of defense
reduces M. sexta growth and survival in a jasmonate-dependent
manner, but that the jasmonate-dependent W +OS-induced
sugar depletion increases M. sexta growth and thereby compro-
mises induced resistance.

Manduca sexta grows better on low sugar-containing artifi-
cial diets

To disentangle the individual contribution of glucose and fruc-
tose to M. sexta growth suppression, we complemented artificial
diets with different combinations of the two sugars at physiologi-
cally relevant concentrations. Manduca sexta growth strongly
decreased with increasing amounts of glucose and fructose in a
dose-dependent manner, independent of the combination of sug-
ars (Fig. 7). On an individual basis, increased fructose decreased
M. sexta growth to a greater extent than did increased glucose
(Fig. 7).

Excess protein reverses the negative effect of soluble sugars
onM. sexta weight gain

At a protein supply of 50 mg g�1 FW, M. sexta grew less well on
higher soluble sugar diets in a dose-dependent manner (Fig. 8a).
However, when excess protein at a concentration of 150 mg g�1

FW was offered, the opposite effect was observed: M. sexta now
gained more weight on sugar-rich diets (Fig. 8a). We also found
that the amount of ingested diet decreased with increasing sugar
concentrations in a protein-independent manner (Fig. 8b). The

efficiency of conversion of ingested food did not change under
normal protein supply, but tended to increase with sugar con-
centrations under excess protein (Fig. 8c). These results demon-
strate that the negative effect of soluble sugars on M. sexta
growth depends on the protein content of the food source.
Under natural conditions, the amount of available protein in the
leaves would result in a negative effect of sugars on M. sexta
growth, as protein concentrations in plant leaves are below
50 mg g�1 FW.

Discussion

Our experiments demonstrate that jasmonates inhibit soluble in-
vertases and reduce glucose and fructose concentrations in
N. attenuata leaves, and that this reduction directly compromises
plant resistance by increasingM. sexta growth and survival.

Across different developmental stages, times of day, and trans-
genic events, jasmonate signaling negatively influenced the con-
centrations of glucose and fructose in N. attenuata leaves, whereas
only minor changes in starch and sucrose were found. This sug-
gests that jasmonates specifically influence soluble monosaccha-
ride concentrations. The differences between WT and jasmonate
signaling-impaired plants were weaker at the late rosette stage
than in younger and older plants. It remains to be determined to
what extent this variation is a result of variation in jasmonate bio-
synthesis or downstream signaling. Constitutive and induced
jasmonate levels are reduced in flowering N. attenuata plants, an
effect that is correlated with the lower expression of jasmonate-
dependent defenses (van Dam et al., 2001; Kaur et al., 2010; Die-
zel et al., 2011; Onkokesung et al., 2012). The fact that jasmo-
nate-dependent sugar regulation did not follow this pattern
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suggests a role of downstream signaling, rather than a direct effect
of jasmonate biosynthesis, on the observed developmental pat-
terns.

We found that the total soluble protein remained constant in
the leaves of N. attenuata plants across different developmental
stages, times of day, transgenic events and plant treatments. It is
important to note that we measured protein concentration by the
Bradford method. As this method requires acidic conditions, and
as the solubility of RuBisCO, one of the most abundant proteins,
is decreased under low pH, we may have underestimated the total
protein concentrations. However, using 15N labeling and LC-
MSE, it was demonstrated that investment into RuBisCO biosyn-
thesis is not changed in jasmonate-deficient inverted repeat

lipoxygenase (irLOX3) N. attenuata plants (Ullmann-Zeunert
et al., 2013). However, herbivore attack decreased RuBisCO lev-
els in WT and, albeit to a lesser extent, irLOX3 plants (Ullmann-
Zeunert et al., 2013). A detailed analysis of the most abundant
soluble proteins in jasmonate signaling-impaired plants using
similar approaches might help us to understand whether and how
jasmonate signaling regulates soluble protein levels in plants in
more detail.

Over the course of the day, we observed that deficiencies in
jasmonate signaling increased glucose and fructose concentra-
tions, as well as invertase activity, in the leaves of rosette stage
N. attenuata plants during the light phase. We also noted a slight
suppression in sucrose concentrations around midday. Based on
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the positive correlation between invertase activities and precursor
to product ratios of the different sugars, we propose that jasmo-
nates might regulate sugar concentrations through the suppres-
sion of invertase activity. Invertases are well known to control the
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ratio of glucose and fructose to sucrose (Zrenner et al., 1996;
Ohyama & Hirai, 1999; Tang et al., 1999; Jin et al., 2009; Bhas-
kar et al., 2010). Silencing of a vacuolar invertase gene in potato,
Solanum tuberosum, was found to decrease vacuolar invertase
activity, increase sucrose and reduce glucose and fructose (Bhas-
kar et al., 2010). Similarly, Zrenner et al. (1996) found a positive

correlation between the ratio of hexoses to sucrose and acid-solu-
ble invertase activity in different potato cultivars. Silencing of a
soluble acid invertase resulted in lower ratios of hexoses to
sucrose. It is noteworthy to mention that other studies in poplar
and thale cress have documented that exogenous jasmonate appli-
cation increases invertase activity (Arnold & Schultz, 2002; Boga-
tek et al., 2002; Arnold et al., 2004; Ferrieri et al., 2013; Horibe
et al., 2013). The fact that constitutive jasmonate deficiency led
to higher invertase activity in N. attenuata leaves suggests that the
outcome of induced jasmonates on invertase activity might be
determined by their endogenous concentrations.

Although alteration in invertase activity can change the ratio of
glucose and fructose to sucrose, the increase in glucose and fruc-
tose is not always proportional to the decrease in sucrose concen-
tration (Tang et al., 1999; Bhaskar et al., 2010), indicating that
total sugar pools might also be regulated by other factors, includ-
ing, for example, changes in photosynthetic efficiency, carbon
assimilation, glycolytic activity, sucrose synthase activity, sucrose
transporter activities and mechanisms of phloem loading/unload-
ing. Indeed, reducing the activity of RCA, which modulates the
activity of RuBisCO, the enzyme that carries out the first major
step of CO2 fixation in plants (Raines, 2003), in jasmonate bio-
synthesis-deficient irAOC plants reduced glucose and fructose
concentrations by 54% and 57%, respectively, suggesting that
jasmonate deficiency might affect sugar accumulation via the reg-
ulation of this enzyme. Although we have no evidence for
changes in glycolytic enzyme activity, sucrose synthase activity,
sucrose transporter activities and mechanisms of phloem loading/
unloading, future studies might investigate their contribution to
the higher accumulation of glucose and fructose in jasmonate sig-
naling-impaired plants.

Given the importance of jasmonates for plant–herbivore inter-
actions, we were interested in understanding whether and how
the jasmonate-dependent reduction of soluble sugars influences
the resistance of N. attenuata to M. sexta caterpillars. Through
four orthogonal lines of evidence, we show that M. sexta growth
is reduced, rather than enhanced, through increased dietary
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carbohydrates, an effect that is associated with a reduction in the
amount of ingested food. First, reducing sugar concentrations
through RCA silencing in jasmonate-deficient plants significantly
improved M. sexta growth. irAOC plants are almost completely
deficient in many defensive secondary metabolites (Machado
et al., 2013; Fragoso et al., 2014). Therefore, this result points to
a secondary metabolite-independent growth effect of soluble sug-
ars on M. sexta. The better growth of M. sexta on nonhemizygous
irRCA plants has been attributed to the reduced levels of second-
ary metabolites, an effect driven by the RCA-mediated redirec-
tion of the bioactive oxylipin JA-Ile to the inactive methyl
jasmonate (Mitra & Baldwin, 2008, 2014). However, it is possi-
ble that this effect is also the result of reduced sugar

concentrations in this line at certain times of the day (see Sup-
porting Information, Fig. S1). Second, reducing sugars by limit-
ing PAR supply also improved M. sexta growth independent of
the plant’s capacity to produce jasmonates. Although PAR reduc-
tion may have additional effects on plant physiology, we did not
find any evidence for either the shade avoidance response or
changes in starch and protein production in plants growing under
PAR-reduced conditions. Furthermore, the fact that we observed
similar PAR effects on caterpillar growth in EV and irAOC
plants allows us to exclude secondary effects on plant secondary
metabolites as key determinants of insect growth (Paschold et al.,
2007). Third, supplementing minimal artificial diets containing
dried plant material with sugars reduced M. sexta growth and sur-
vival. Artificial diets containing plant material have been used in
previous studies to assess the contribution of jasmonate-induced
changes in plant metabolism to M. sexta growth (Pohlon & Bald-
win, 2001). Manduca sexta grows less well on artificial diets con-
taining jasmonate-treated N. attenuata plant material than on
diets containing nontreated plant material, an effect that is posi-
tively correlated with the jasmonate-dependent induction of
protease inhibitors (PIs) and nicotine (Pohlon & Baldwin,
2001). The fact that caterpillars grew less well on induced EV
than irAOC plants confirms that this assay can be used to repro-
duce natural resistance patterns, whilst allowing for the comple-
mentation of semi-artificial diet with soluble sugars without the
confounding effect of sugar signaling on plant physiology.
Fourth, complementing artificial diets with physiologically rele-
vant concentrations of individual soluble sugars confirmed their
negative, dose-dependent effect on M. sexta growth at physiologi-
cally relevant protein concentrations.

Carbohydrate-rich artificial diets have been shown to reduce
insect performance (Raubenheimer & Simpson, 1997; Lee et al.,
2003; Raubenheimer et al., 2005; Babic et al., 2008; Merkx-Jac-
ques et al., 2008) and survival (Raubenheimer et al., 2005) in ear-
lier studies, effects that are associated with a greater propensity to
store the excess of ingested carbohydrate as body fat (Chippindale
et al., 1996; Simpson et al., 2004; Warbrick-Smith et al., 2006).
Although we did not determine lipid concentrations in the cater-
pillars, the fact that the semi-artificial diet experiment showed
that larval survival and weight gain were positively correlated
indicates that the heavier caterpillars are not necessarily fatter,
but also fitter. Direct measurements of body fat would be neces-
sary to confirm this hypothesis. The post-ingestion mechanisms
that insects use to cope with an excess of dietary carbohydrates
include the down-regulation of carbohydrate-catabolizing
enzymes (Kotkar et al., 2009; Clissold et al., 2010), the increase
in respiration rates (Zanotto et al., 1997), the up-regulation of
glucose-oxidizing enzymes (Merkx-Jacques & Bede, 2005) and
the increase in carbohydrate egestion (Telang et al., 2003; Babic
et al., 2008). In addition to the storage of excess dietary carbohy-
drates as body fat, the earlier mentioned mechanisms might result
in metabolic costs for caterpillars that potentially reduce their
optimal growth and development.

Insect guts host an enormous and phylogenetically diverse
group of microorganisms (Engel & Moran, 2013). Although
their beneficial roles are increasingly being recognized (Salem
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et al., 2013, 2014), they are also potentially deleterious (Basset
et al., 2000; Nehme et al., 2007; Buchon et al., 2013). Alteration
in the gut microbial homeostasis is known to influence insect
behavior (Sharon et al., 2010) and probably also affects insect
performance. We hypothesize that increasing dietary carbohy-
drates could negatively impact M. sexta growth in two ways. The
ingestion of high levels of carbohydrates might increase the size
of microbial communities to levels that first outcompete M. sexta
for limiting nutrients, such as nitrogen, and, second, alter the
microbial community homeostasis so as to increase the preva-
lence of pathogenic microorganisms. Consistent with the first
hypothesis, we found that the negative effects of ingesting an
excess of dietary carbohydrates on M. sexta growth were reversed
by increasing the amount of dietary protein. It remains to be
investigated to what extent this process might be driven by
changes in theM. sexta gut microbial community.

We found that the efficiency of conversion of ingested food
tended to increase with increasing dietary protein concentration
and, as a consequence, M. sexta might have been able to cope bet-
ter with excess dietary carbohydrates. Protein quality and quan-
tity are subject to considerable variation (Bloem & Duffey, 1990;
Felton, 1996), and proteins can interact with plant secondary
chemistry to affect digestibility (Zucker, 1983). Trypsin protein-
ase inhibitors (TPIs) could also modulate the effect of dietary
protein content on tissue digestibility. It is worth mentioning
that locusts have been shown to perform better on low-nitrogen
plants (Cease et al., 2012), indicating species-specific responses to
this nutritional parameter. An experimental approach to manipu-
late protein levels in planta is to target RuBisCO, one of the most
abundant leaf proteins (Felton, 1996; Taiz & Zeiger, 1998) and
one of the main dietary proteins for herbivores (Felton, 1996,
2005). Mitra & Baldwin (2008) reduced the transcript levels of
RuBisCO in N. attenuata by an Agrobacterium-mediated trans-
formation, resulting in a decrease in this protein of up to 1.5-
fold. Silencing the expression of this gene, together with reducing
PAR and RCA transcripts, and/or sugar supplementation to
semi-artificial diets, may allow for a better understanding of the
contribution of protein, carbohydrates and their ratios to insect
performance in a plant secondary chemistry context. It is impor-
tant to note that the negative effect of sugars on caterpillar
growth was only inverted when protein levels were increased sig-
nificantly beyond those typically found in leaves. We therefore
expect the magnitude, but not the direction, of the jasmonate-
dependent sugar depletion effect to change with more modest
changes in protein levels.

The results of our study are of potential significance for the
evolution of plant defense syndromes. Natural N. attenuata pop-
ulations exhibit high phenotypic plasticity in herbivory-induced
jasmonate production (Machado et al., 2013), which is posi-
tively correlated with secondary metabolite biosynthesis (Gaqu-
erel et al., 2009) and might therefore be correlated with
herbivore resistance (Royo et al., 1999; Halitschke & Baldwin,
2003; Li et al., 2004; Kallenbach et al., 2012). We found that
jasmonate deficiency leads to higher sugar concentrations in
leaves which may, in turn, reduce M. sexta performance. There-
fore, this jasmonate-dependent sugar depletion might lead to

trade-offs that contribute to natural variation in jasmonate
signaling in nature and may favor jasmonate-independent
resistance mechanisms.
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Supporting Information

Additional supporting information may be found in the online
version of this article.

Fig. S1 Silencing RuBisCO activase (RCA) reduces sugar
concentrations in the leaves at the end of the dark phase.

Fig. S2 Soluble protein concentrations remain unaltered in
response to simulated and actual Manduca sexta herbivory in
empty vector (EV), inverted repeat allene oxide cyclase (irAOC),
inverted repeat RuBisCO activase (irRCA) and irAOC9 irRCA
plants.

Fig. S3 Photosynthetically active radiation (PAR) reduction does
not alter temperature and humidity in the plant headspace, but
slightly reduces red : far-red ratios.

Fig. S4 No evidence of shade avoidance responses in photosyn-
thetically active radiation (PAR)-reduced plants.

Notes S1 Detailed statistical tests.
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