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In nonmonotonic decision problems, the magnitude of outcomes can both increase and decrease over time
depending on the state of the decision problem. These increases and decreases may occur repeatedly and
result in a variety of possible outcome distributions. In many previously investigated sequential decision
problems, in contrast, outcomes (or the probabilities of obtaining specific outcomes) change monoton-
ically in 1 direction. To investigate how and to what extent people learn in nonmonotonic decision
problems, we developed a new task, the Sequential Investment Task (SIT), in which people sequentially
decide whether or not to sell shares at several selling points over the course of virtual days. Across trials,
they can learn which selling point yields the highest payoff in a specific market. The results of 2
experiments suggest that a reinforcement-learning model generally describes participants’ learning
processes best. Learning largely depends on an interaction of the complexity of the stochastic process that
generates the outcome distribution (i.e., whether the peak selling point is early or late in the selling period
and whether there are single or multiple payoff maxima) and the amount of feedback that is available for
learning. Although the risk profile in nonmonotonic decision problems renders exploration relatively
safe, a clear gap persisted between the choices of people receiving partial feedback (thus facing an
exploration–exploitation trade-off) and those of people receiving full feedback: Only the choices of the
latter consistently approximated the peak selling points.

Keywords: sequential decision making, risk taking, reinforcement learning, computational modeling,
exploration–exploitation trade-off

In various domains of life, people face challenging sequential
decision problems that involve risks. In the stock market, for
example, investors sequentially decide whether to buy or sell
particular stock and, in so doing, face the problem of “market
timing” (Benartzi & Thaler, 2007); that is, finding the best time to
buy or sell. Some investors rely on the “sell in May and go away”
strategy, believing that stock markets begin a downward trend in
May and resume growth in October. In fact, whereas data from the

years 1970 to 1998 support this belief (Bouman & Jacobsen,
2002), more recent analyses suggest that investors following this
strategy have missed out on about 50% of returns over the past 10
years (Caldwell, 2013). Whether or not learning about features of
the stochastic processes involved in the stock market can increase
performance is disputed, but investment decisions indeed seem to
be influenced by recent market trends. For example, in bear
markets (when the price trend is down), investors are pessimistic
and the tendency to sell shares is strongest (De Bondt, 1993;
Schachter, Ouellette, Whittle, & Gerin, 1987), causing them to
“buy high but sell low” (Benartzi & Thaler, 2007). One possible
explanation for this observation is that investors who have sold
their shares lack feedback and the experience of a potential trend
reversal, which might have influenced their future selling behav-
ior.

In this article, we investigate how people learn to make sequen-
tial decisions in environments such as the stock market, in which
outcomes can fluctuate over time. In general, sequential decision
problems are challenging, because people are able to learn about
the possible outcomes only through experience. Identifying the
state of the sequential decision problem that yields the highest
outcome may not be trivial for at least two reasons. First, people
may face a trade-off between learning (exploration) and deciding
based on the acquired knowledge (exploitation). Second, sequen-
tial decision problems are difficult because certain outcomes can
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be obtained only by a sequence of interdependent decisions. For
example, people may have to accept momentarily declining trends
to reach subsequent states that in turn yield higher outcomes.
People can use different learning strategies in the context of
sequential decision problems, and which strategy they eventually
adopt may depend on both the structure of the environment and the
information available for learning about the environment.

Given the challenges of sequential decision problems, it is not
surprising that they have attracted attention from a variety of
research fields. Statisticians, mathematicians, and computer scien-
tists have explored the optimal solutions to sequential decision
problems (Ferguson, 1989) and how well different learning models
can solve the respective tasks (Sutton & Barto, 1998). In psychol-
ogy, sequential decision problems have often been employed to
gauge people’s risk attitudes and to predict real-life risk taking
(e.g., Hoffrage, Weber, Hertwig, & Chase, 2003; Pleskac, 2008;
Wallsten, Pleskac, & Lejuez, 2005). Recent work in neuroscience
has also explored interindividual differences in healthy and clinical
populations (Chiu, Lohrenz, & Montague, 2008; Frank, Doll,
Oas-Terpstra, & Moreno, 2009).

Different Environments of Sequential
Decision Problems

In a sequential decision problem, a specific stochastic process
governs how outcomes or the probabilities of obtaining specific
outcomes change as a function of the decision problem’s sequen-
tial state. This stochastic process can adopt a variety of character-
istics, resulting in different environments of sequential decision
problems. A commonly investigated environment is one in which
the outcomes or the probabilities of obtaining outcomes change
monotonically from state to state until the sequential decision
problem ends. An example of such a “monotonic decision prob-
lem” is the game blackjack, in which each draw of a card mono-
tonically increases the current score but, at the same time, also
monotonically increases the risk of going bust (i.e., exceeding a
score of 21). However, many other sequential decision problems in
real life—including the stock market, the progress of a chronic
disease, and the prices of products such as airline tickets—do not
obey such a monotonicity: Outcomes can increase and decrease
over time, and trends may replicate themselves. Furthermore, there
is not necessarily the risk of a sudden and complete loss if too
many states of the decision problem are explored. This article
makes the novel contribution of investigating people’s learning
strategies in such “nonmonotonic decision problems.” As mono-
tonic and nonmonotonic decision problems naturally share certain
similarities, we first review challenges to learning in monotonic
decision problems before turning to the approach we take to study
nonmonotonic decision problems.

Monotonic Decision Problems

At each state of a monotonic decision problem, people face a
choice between (a) proceeding to the next state, which may in-
crease the current payoff by some amount or may terminate the
problem (and often results in the total loss of the accumulated
payoff), and (b) stopping at the current state of the problem and
cashing in the accumulated payoff. A prominent paradigm that
implements such sequential decisions is the Balloon Analogue

Risk Task (BART; Lejuez et al., 2002). In the BART, people pump
up virtual balloons over multiple trials. Each pump linearly in-
creases the payoff by a fixed amount. But with every pump, the
probability also increases that the balloon will burst and the money
accrued will be lost. This risk increases in a monotonic and
nonstationary way, such that the closer the number of pumps is to
a balloon’s maximum capacity (which is initially unknown and has
to be explored), the more likely the risk of an explosion.

Challenges to learning. First, learning in a sequential deci-
sion problem may be difficult depending on the complexity of the
underlying stochastic process. In the BART, the basic features of
this process can be inferred relatively easily from the properties of
real balloons: It is evident a priori that there is only one maximum,
meaning that the probability of an explosion increases steadily up
to a certain state and that exceeding this state terminates the
current trial. The challenge to learning is thus to find the state with
the highest expected outcome, while taking into account the key
properties of the underlying stochastic process, such as how
quickly the probability of an explosion grows. Another challenge
to learning is the required trade-off between exploration and ex-
ploitation. In the BART, for example, people receive only partial
feedback. In particular, they do not learn how many additional
times they could have pumped once they decide to stop pumping.
Thus, there is an asymmetry in error correction (Denrell, 2007;
Denrell & March, 2001; Einav, 2005): The error of pumping too
often results in an explosion, and this experience can help to
reduce the number of pumps in the following trial. The error of
pumping too little, in contrast, does not lead to distinct feedback
from the environment. The second error—pumping to little—is
less costly than the total loss due to an explosion. Nevertheless,
people may use a certain number of trials for exploration (and
pump more than they believe the balloon’s maximum capacity to
be) before they start to exploit their knowledge and pump up to the
state that they believe to yield the highest expected outcome.
Partial feedback in the BART may be one of the reasons why
people generally appear relatively risk averse and pump too little
to maximize their earnings (Lejuez et al., 2002).

Learning strategies. Various computational models have
been proposed to describe learning in sequential decision problems
such as the BART. The target model (Wallsten et al., 2005)
assumes that people ignore the underlying stochastic process in the
BART and simply choose a specific state to pump to (i.e., the
target). Learning occurs by adjusting this target upward or down-
ward, depending on the outcome of the previous trial. A successful
Bayesian model (Wallsten et al., 2005) assumes that people have
a prior belief about the expected payoff of different numbers of
pumps and update this belief on the basis of the observed feedback.
A main result from these cognitive modeling efforts is that peo-
ple’s performance in sequential decision problems appears to
hinge on which assumptions they make about the underlying
stochastic processes. To date, however, only stochastic processes
leading to monotonic changes have been implemented. In the
present article, we will thus investigate how and to what extent
people learn in nonmonotonic decision problems.

Nonmonotonic Decision Problems

Nonmonotonic decision problems imply two key differences for
learning relative to monotonic decision problems. First, repeated
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increases and decreases in outcomes can result in a large number
of different outcome distributions. For example, there could be a
single maximum across the sequential states, or there could be
multiple maxima with one being the global maximum and others
being local maxima. Prior to learning, people are thus unaware of
even the most basic properties of the underlying stochastic process
in a nonmonotonic decision problem. In a monotonic decision
problem, in contrast, it is evident a priori that there is only one
maximum up to which the outcome will increase. Learning in
nonmonotonic decision problems can therefore be expected to be
challenging.

Yet, there is also a property conducive to learning. In particular,
the repeated increases and decreases in outcomes lead to gradual
changes in potential gains and losses, and people do not (neces-
sarily) face the risk of a sudden and total loss but rather the risk of
a gradual loss. The absence of the risk of a total loss may facilitate
exploration. Assuming that people indeed explore extensively in
nonmonotonic decision problems, one may expect them to make
similar decisions in situations in which they receive partial feed-
back (i.e., thus facing an exploration–exploitation trade-off) and in
situations with full feedback (thus rendering exploration unneces-
sary; see below).

The properties of nonmonotonic decision problems enable peo-
ple to adopt one of several different learning strategies. Before
explicating three of these learning strategies and the learning
models representing them, we introduce a novel task called the
Sequential Investment Task (SIT). We have designed this task
such that it (a) can implement stochastic processes that lead to
nonmonotonically changing outcomes and (b) permits the com-
plexity of the underlying stochastic process as well as the amount
of feedback provided to be varied.

The Sequential Investment Task

In the SIT, people sell shares in hypothetical stock markets.
They initially “receive” 48 shares (each belonging to one of three
stock markets; i.e., 16 shares per market), which they can sell over
the course of virtual days. Each day represents one trial and offers
the possibility to sell a share at one of 16 sequential selling points
(see Figure 1). Thus, people need to decide whether to keep or sell
a share at each specific time of a day, depending on the share’s
current price. If they do not sell a share over the course of a full
day, the share will be automatically sold at the final selling point.
The SIT can be parameterized on the following dimensions.

First, we can manipulate the complexity of the stochastic pro-
cesses. In our experiments, we used Gaussian random walks to
generate nonmonotonically changing outcomes. We varied com-
plexity by implementing two types thereof: In “unimodal markets”
(low complexity), the price of a share increases for some time
before it decreases. Thus, on average, there is one selling point per
market that yields the highest selling price—a market’s “peak
selling point.” In “bimodal markets” (high complexity), the price
of a share increases and decreases twice. Thus, two maxima exist
per market, one being the global maximum that, on average, yields
the highest selling price (i.e., the peak selling point) and one being
a local maximum, which yields a lower selling price. In bimodal
markets, it is thus arguably more difficult to discriminate the peak
selling point from other selling points.

Second, irrespective of the type of market (unimodal vs. bi-
modal), we can manipulate the degree of exploration that is re-
quired to observe the peak selling point. The three markets we
implement in each of our experiments differ regarding whether the
peak selling point is early, in the middle, or late in the selling
period. The degree of exploration describes the number of selling
points a person explores within one trial: For instance, only up to
selling point 10 or all the way up to selling point 16. Note that
another level of exploration in the SIT refers to how many of the
16 trials (i.e., the 16 shares per market) serve either as exploration
trials (in which a person sells a share at a later selling point than
he or she currently believes to be the subjectively best selling
point) or as exploitation trials (in which a person sells the share at
the subjectively best selling point).

Third, the SIT permits to provide either partial or full feedback.
In the partial-feedback condition, people receive feedback about
the prices of the shares only up to the point at which a share is sold.
In the full-feedback condition, they also receive information about
the development of a share’s prices after it is sold. With partial
feedback, people thus face an exploration–exploitation trade-off
that is removed with full feedback.

Three Possible Learning Strategies

In nonmonotonic decision problems such as the SIT, there are at
least three different learning strategies that people may apply. The
first is to merely learn the state that yields the highest outcome,
regardless of the outcomes of the other observed states. Learning
occurs by updating the subjectively best state from trial to trial,
depending on which of the observed states yielded the highest
outcome in the previous trial. This strategy does not imply that

 

PRICE: CHF 73.75 

KEEP SELL 

SELLING POINT 

Figure 1. Screen displaying the Sequential Investment Task (SIT): At the
top, a bar displayed progress across the 16 selling points in the virtual day.
In the middle, participants saw the current price of the share, overlaid on
a colored area that represented one of the three markets. At the bottom, the
two choice options were displayed: to keep the share (left) or to sell the
share (right). Participants indicated their choices by pressing a key marked
with the respective color on the left or right of the keyboard. CHF � Swiss
francs. See the online article for the color version of this figure.
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people assume the outcomes to be sequentially interdependent, and
it does not build a full representation of the outcome distribution
across the observed states. Therefore, it may be considered rela-
tively parsimonious and cognitively not overly taxing. To repre-
sent this learning strategy, we use a target model as previously
suggested for the BART (Wallsten et al., 2005); for similar mod-
els, see also Busemeyer and Myung (1992); Rieskamp, Buse-
meyer, and Laine (2003); and Selten and Stoecker (1986).

The second learning strategy is to learn a full representation of
the outcome distribution across all observed states. Learning oc-
curs by updating the subjective values (SVs) of the observed states
on the basis of the feedback received. This strategy may be
plausible in nonmonotonic decision problems for at least two
reasons: On the one hand, it is not clear a priori that there is a
single maximum, because the outcomes can increase and decrease
repeatedly. Thus, people may aim to learn how attractive the
different states are relative to each other, which requires a separate
representation of all of them. On the other hand, the outcomes at
each specific state in the SIT vary continuously because they are
generated incrementally by a Gaussian random walk. Unlike in the
BART, in which a specific state always results in exactly the same
outcome (unless the balloon explodes at this particular state and
the trial ends, resulting in a payoff of 0), in the SIT a specific state
leads to a distribution of outcomes across trials. Therefore, people
may represent each state as an independent random variable rather
than as a state in a series of interdependent states. Like the first
strategy, this strategy does not imply that people assume the
outcomes to be sequentially interdependent, but it builds a full
representation of the outcomes of all observed states. We imple-
ment a reinforcement-learning (RL) model to represent this second
strategy, inspired by models that have received substantial support
in the learning literature, such as in repeated-choice and n-armed
bandit paradigms (Ahn, Busemeyer, Wagenmakers, & Stout, 2008;
Erev & Roth, 1998; Rieskamp, 2006; Yechiam & Busemeyer,
2005).

Finally, the third learning strategy is to evaluate the actions
available at the different states of the sequential decision problem
(i.e., whether to proceed to the next state or to stop at the current
state). When evaluating a specific action, people may take into
account not only the short-term consequences (i.e., the outcome
that can be achieved in the next state) but also the long-term
consequences (i.e., the outcomes that can be achieved in subse-
quent states). Such a learning strategy seems particularly plausible
in nonmonotonic decision problems, where success may require
learning that it is worth enduring a short-term decrease in out-
comes and wait for outcomes to increase in subsequent states.
Thus, this strategy not only builds a full representation of all
observed states and the respective actions but also implies that
people assume the outcomes to be sequentially interdependent. To
represent the third learning strategy, we implement a variant of a
Q-learning (QL) model (i.e., a temporal-difference learning model;
Lohrenz, McCabe, Camerer, & Montague, 2007; Sutton & Barto,
1998), which has been proposed for sequential decision making, in
particular.

The three models we implement are attractively simple but, at
the same time, allow us to discriminate between learning strategies
that are fundamentally different. Nevertheless, this set of models is
not exhaustive and should be extended in future research (e.g., to

include models that make detailed assumptions about human mem-
ory processes; see Gonzalez & Dutt, 2011).

Target model. According to the target model, people do not
form SVs for all available selling points. Instead they focus on a
single selling point (i.e., the target T) that they assume to yield the
highest outcome. Learning takes place by using the feedback from
the previous trial to update the target. In the SIT, the target is
updated by shifting the current target in the direction of the selling
point with the highest payoff in the previous trial.

We assume that people start with an initial target of selling the
share in the middle of the selling period; that is, at selling point 8
(out of 16). Although the model assumes a single target, the choice
of a selling point is probabilistic, so that all selling points may be
chosen with a certain probability. The probability of choosing a
specific selling point is a function of the distance of the selling
point to the target. More specifically, we use a normal distribution
with a mean of the target and a standard deviation as a free
parameter to determine the choice probabilities. The probability of
selling a share at selling point s (in market M and trial t), given the
current target T, is defined as

pM,t(s, T) � N(s � .5; T, �) � N(s � .5; T, �), (1)

where N() is the cumulative normal distribution function with a
mean of T and a standard deviation of � as a free parameter of the
model specifying the sensitivity in the choice process.

After a person has experienced the optimal target of the current
share (i.e., the selling point with the highest outcome), the target
for the next trial t � 1 is updated by

TM,t�1 � TM,t � � · (TM,t,optimal � TM,t), (2)

where TM,t is the current target, � a learning rate parameter and
TM,t,optimal is the selling point with the highest payoff in trial t.

The following example illustrates the target model: In the first
trial, a person decides to sell a share at selling point 8. It turns out
that the highest outcome within selling points 1 to 8 would have
been obtained at selling point 4. In this case, the person would shift
the current target (selling point 8) toward selling point 4 and—
assuming a learning rate of .5—set selling point 6 as the target for
the next trial. In the next trial, the person would most likely sell the
share at selling point 6. The target model assumes that people
make a decision at the beginning of each trial, which is then carried
out sequentially.

Reinforcement-learning model. The RL model assumes that
people form SVs for each selling point in each market, which are
updated on the basis of feedback. The probability of selling a share
at a specific selling point is a probabilistic function of its SV
relative to the SVs of the other selling points. The probability of
selling a share at selling point s in market M and trial t is
determined by an exponential choice rule defined as

pM,t(s) �
exp(�RL · SVM,t(s))

�j�n
N�16 exp(�RL · SVM,t(j))

, (3)

where �RL is a sensitivity parameter that determines how sensi-
tively a person responds to differences in the SVs and N is the
number of available choice options (i.e., the 16 selling points).
After a decision, the feedback is used to update the SVs of all
observed selling points as follows:
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SVM,t�1(s) � SVM,t(s) � �RL · (rM,t(s) � SVM,t(s)), (4)

where �RL is the learning rate parameter and rM,t(s) is the experi-
enced or observed potential reward of selling the share at selling
point s.

For instance, if a person decides to sell the first share at selling
point 8 in the first trial (in which all SVs � 0), all the SVs of
selling points 1 to 8 are updated with the observed potential selling
prices. For example, if the price increased from CHF 72 (the initial
price) to CHF 74.4 (the price at selling point 1; i.e., a gain of CHF
2.4), a person would update the SV for selling point 1 from 0 to 1.2
(assuming a learning rate of .5). Due to the updated SVs, different
choice probabilities will result for the next trial. The RL model—
like the target model—assumes that people select a selling point at
the beginning of each trial and then sequentially implement the
respective decision.

Q-learning model. This model assumes a sequential process
in a narrower sense. It evaluates the choice options; that is, the
action to “keep” or to “sell” a share at each state of the decision
problem. The states are defined as the different selling points. Each
state–action pair within one market is assigned a SV (i.e., a
Q-value). At each state of the sequence, the model then chooses
one action probabilistically as a function of the actions’ Q-values.

A main characteristic of the QL model is that an action is
evaluated not only in terms of its immediate consequences but also
of its future consequences. Nevertheless, the immediate conse-
quences are used directly after a decision to update the Q-values of
the state–action pairs. In problems that permit backward and
forward transitions (e.g., in networks), Q-learning benefits from
this feature in terms of increased learning speed. We initialize the
Q-values for all state–action pairs such that the initial probability
of selling a share in a given market is equal for all 16 selling
points.

At each selling point, the model applies the exponential choice
rule described above (Equation 3, using the sensitivity parameter
�QL) to decide whether to keep or sell a share at the current state,
with the two available Q-values of the current state used as an
input. After a decision, the model immediately updates the
Q-values of the respective actions: If the decision was to continue
(i.e., to keep the share), the Q-values for both continuing and
stopping are updated (because, by then, the potential outcome of
stopping is known). If the decision was to stop, only the Q-value
for stopping is updated. The updating of the Q-values occurs
according to

QM,t�1(s, a) � QM,t(s, a) � �QL · (rM,t(s)

� 	 · max(QM,t�1) � QM,t(s, a)), (5)

where QM,t�s, a� are the SVs of the actions a (to keep or sell the
share) in market M at selling point s, �QL is a learning parameter,
r is the immediate reward from selling the share or from keeping
it (in the later case, the immediate reward is 0), and � is a
prospective discounting parameter for max�QM, t�1�, which is the
best possible Q-value available in the next state. In order to keep
the number of free parameters over the models constant, we fix
� � 1.

To illustrate, let us assume that at selling point 1 the evaluation
of the action “keep” is higher than that of the action “sell.” Thus,
the model may probabilistically predict that the person proceeds to

selling point 2. The action of keeping the share at selling point 1
is then immediately updated by taking into account the new price
of the share (i.e., the action is rewarded if the new price is higher
but punished if the new price is lower). Similarly, the action of
selling the share at selling point 1 is updated with the previously
observed selling price. This process continues sequentially until
the evaluation of a “sell” action is higher than the evaluation of a
“keep” action at a specific selling point, and the share is sold.

For all selling points greater than 1, the QL model makes more
choice predictions than the target model or the RL model. For
example, to sell the share at selling point 10, the QL model first
has to make nine “keep” decisions and then one “sell” decision.
Models that assume such a step-by-step process generally have the
following caveat: If the underlying stochastic process exhibits an
early local maximum, the model may get stuck and stop. The
reason is that the incremental rewards after a local maximum
temporarily become smaller or even negative (until the next, global
maximum approaches and the incremental rewards start to become
positive again). In other words, step-by-step decision models may
stop at a local maximum because continuing does not appear
promising in the short term. The QL model aims to “look into the
future,” however, and takes into account the Q-values that will be
available in the next state when making a decision. It thus reduces
the probability of getting stuck at early local maxima.

Summary of model characteristics. The three learning mod-
els differ in various respects: First, the representation of the avail-
able options (i.e., the selling points in the SIT) differs substantially
between the models. The target model represents only the subjec-
tively best option, along with a measure of imprecision. It does not
take different outcome distributions into account and could, for
example, be misled in a bimodal market because it cannot directly
compare the global and the local maximum. The RL model builds
a representation of the full distribution of the options’ outcomes,
and every single selling point is updated independently. The RL
model is thus able to represent different stochastic processes
underlying the markets’ outcomes and should be able to capture
both the unimodal and bimodal markets’ outcome distributions
adequately. Reinforcement-learning models have been shown to
successfully describe learning strategies in n-armed bandit prob-
lems (Ahn et al., 2008; Busemeyer & Stout, 2002; Erev & Roth,
1998; Yechiam & Busemeyer, 2005). Yet, it has not yet been
shown whether people can also rely on such a learning strategy in
the context of nonmonotonic decision problems. Finally, the QL
model does not build representations of the options at all but rather
representations of the actions available in each state (i.e., to keep
or to sell a share at a specific selling point). Nevertheless, this
mechanism can also lead to a representation of the full distribution
of outcomes provided enough learning experience.

Second, the target model and the RL model update expectancies
only after a final decision is made (i.e., when a share in the SIT is
sold), whereas the QL model involves an immediate updating
process that occurs after every single decision in the sequence. The
more frequent updating process of the QL model leads to high
performance in situations where each state offers multiple actions;
that is, where several different transitions between states are pos-
sible (e.g., forward and backward transitions between different
nodes of a network). In the case of the SIT, however, where only
binary forward transitions are possible, the frequent updating pro-
cess of the QL model could also imply a cost: To update the
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expectancies of all state–action pairs, the QL model may require
relatively extensive learning opportunities, relative to the RL and
target models with their simpler updating processes.

Taking into account the different representations that the models
can adopt, as well as the different updating frequencies they imply,
we assume that the target model describes the learning strategy
that is cognitively the least demanding, followed by the RL model
and the QL model. Which learning strategy people eventually
adopt, however, may depend not only on how cognitively demand-
ing a strategy is but also on whether it successfully solves the
decision problem. Specifically, in the environment of unimodal
markets, all strategies may perform similarly, because there is only
a global maximum. However, in the environment of a bimodal
market, a strategy able to compare several maxima may perform
better. In addition, how people learn may depend on the amount of
feedback they receive about the environment. For example, full
feedback may make the properties of an environment more evident
and could thus increase the chance that people select a learning
strategy that is better suited for an environment.

Experiment 1

In Experiment 1, we investigated three questions: First, to what
extent can people improve their performance in nonmonotonic
decision problems by learning? Specifically, do people learn to sell
the shares at the selling points that on average yield the highest
outcomes in the different markets of the SIT (i.e., at the peak
selling points)? Second, does partial as compared to full feedback
pose similar challenges to exploration as in monotonic decision
problems (due to asymmetric error correction), or does the differ-
ent risk profile (i.e., the risk of a gradual rather than a sudden loss)
in nonmonotonic decision problems attenuate this gap? Third,
which of the proposed computational models best describes the
possible learning strategies in nonmonotonic decision problems,
and does the selection of learning strategies depend on the type of
feedback?

To keep complexity relatively low in Experiment 1, we imple-
mented stochastic processes that generate a single maximum in
each of three markets (“unimodal markets”). The peak selling
points in the three markets were 4, 11, and 14, respectively. Thus,
the three markets required increasing degrees of exploration within
the selling period to find the peak selling points. Half of the
participants were provided with partial feedback and thus faced an
exploration–exploitation trade-off; the other half were provided
with full feedback and thus faced no such trade-off.

Method

We recruited 63 participants from a subject pool at the Univer-
sity of Basel and randomly assigned them to one of two between-
subjects conditions: partial and full feedback. Participants’ age
ranged from 18 to 54 years, with a mean of 24.4 years (SD � 7.2
years); 58 (92%) of them were female, and 5 (8%) were male.
They received a voucher of CHF 15 (CHF 1 � US$1.14) for
participating plus a performance-contingent bonus: Starting with
an initial credit of CHF 3, participants were paid according to their
mean performance. For every percentage point increase or de-
crease in the share price, they earned or lost CHF 0.2 (e.g., if the
initial price of a share was CHF 100 and a participant sold the
share for CHF 110, the increase of 10% led to a bonus of CHF 2).

Participants were instructed that they were going to sell shares
in three different, color-coded stock markets. They were informed
that each market had a specific selling point that, on average,
yielded the highest selling price. We explained that the prices of all
shares in each market followed a similar price pattern due to an
external event. Participants were further informed that they would
receive 16 shares for each of the three markets (i.e., a total of 48
shares) and that they could sell each of these shares during a virtual
day. Each day consisted of 16 selling points that required a binary
decision on whether to keep or to sell the current share. If not sold
earlier, a share was automatically sold at selling point 16.

After a practice trial, participants were presented with the first of
the 48 shares. They were asked to sequentially decide whether to
keep or to sell the share for the current price at the 16 different
selling points in the hypothetical day (see Figure 1) and had 2
seconds to make each decision (by pressing two different keys on
the keyboard). Informed by a short pilot study, we set this time
limit such that participants were neither under particular time
pressure nor bored. At 1353 ms, the average response time proved
to be substantially below this limit. After each decision, the price
remained visible until a total of 4 seconds had elapsed so that
participants had enough time to register the current price. If par-
ticipants did not press a key for 2 seconds, this was interpreted as
a “keep decision” and the program moved on to the next selling
point. When participants in the partial-feedback condition sold a
share, the trial was over and a new share was randomly drawn from
one of the three markets. When participants in the full-feedback
condition sold a share, the prices of the remaining selling points
were sequentially displayed (each price for 2 seconds), without the
participant taking any action, before a new share was randomly
drawn.

The initial price of each share was defined as a random draw
from a Gaussian distribution with M � 70 and SD � 5, and a
Gaussian random walk determined the increments of the share’s
price per selling point. Specifically, the increments were random
draws from a Gaussian distribution with M � 2 and SD � 2.3.
After the peak selling point of the market had been reached, these
increments were multiplied by –1 to produce decreasing prices.
Figure 2 shows the resulting prices of the 16 shares in each market.

Results

Learning curves and selling points. Figure 3 shows partici-
pants’ learning curves over the course of the trials (i.e., the 16
shares participants could sell in each market), separately for the
three markets and the two feedback conditions. On average, par-
ticipants sold the first shares per market approximately in the
middle of the selling period (i.e., around selling point 8). Over the
course of trials, however, they learned to sell closer to the peak
selling points of the markets. In market 1 with a peak selling point
of 4, participants in both conditions (partial and full feedback)
approximated this point closely. In markets 2 and 3 with peak
selling points of 11 and 14, respectively, only participants in the
full-feedback condition—and not those in the partial-feedback
condition—approximated the peak selling point across trials.

To compare the learning curves on a quantitative level between
conditions and markets, we determined the absolute deviation of
participants’ selling points from the peak selling points. To distin-
guish between levels of learning opportunity, we created four
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blocks of four consecutive shares. Figure 4 (top panel) shows the
mean absolute deviations separately for the two conditions and the
three markets over the four blocks of shares. In a three-way
analysis of variance with two within-subject factors (market [1–
3] � block [1–4]) and one between-subjects factor (condition
[partial vs. full feedback]), there was a main effect for block, with
F(1, 744) � 14.5, p 	 .001. That is, over the course of trials,
participants in both conditions learned substantially. As can be
seen in Figure 4, overall the absolute deviations from the peak
selling points became increasingly smaller across blocks. We also
found a significant main effect for condition, F(1, 744) � 46.3,
p 	 .001, with smaller deviations in the full-feedback condition.
Finally, there was a significant interaction between condition and
market, F(1, 744) � 44.2, p 	 .001, implying that the advantage
of participants in the full-feedback condition over those in the
partial-feedback condition was distinct to specific markets. For
example, in market 1, where the peak selling point was early,
deviations in both conditions were comparably small. However, in
markets 2 and 3, where the peak selling points were late, devia-
tions were smaller in the full-feedback condition (see Figure 4).

In sum, it made a substantial difference whether participants
experienced partial or full feedback in the markets with late peak
selling points, in which more exploration was needed to observe
them. Next, we investigated the learning processes in more detail,
in particular which of the proposed models captured them best.

Model comparison. The free parameters of the three models
were separately estimated for each participant using maximum
likelihood techniques. The models were used to predict partici-
pants’ choices in the next trial, and the feedback they received was
used to update the expectancies of the models. Thus, we used a
one-step-ahead estimation method. Figure 3 shows the average
learning curves that resulted from the medians of the estimated
model parameters. The target model performed well in the full-
feedback condition but did not describe the learning processes
accurately in the partial-feedback condition. The RL model cap-
tured the empirical learning processes reasonably well in both the
partial and the full-feedback conditions. The QL model was, on
average, relatively poor in describing the learning processes, par-

ticularly in markets 2 and 3 with partial feedback. Participants’
learning processes were quicker than the QL model was able to
describe them, given the available learning opportunity. In addi-
tion, the QL model learned that it is not worth waiting until the end
of the sequence.

Next, we evaluated the models against a baseline model that
predicts each selling point with equal probability using the Bayes-
ian information criterion (BIC; Schwarz, 1978). The BIC takes a
model’s goodness-of-fit and complexity in terms of adjustable
parameters into account. The learning models can do better than
the baseline model only if they are able to make sensible use of the
feedback in describing the observed learning processes. As can be
seen from the distributions of model fits across participants (see
Figure 5), all models performed better than the baseline model,
especially in the full-feedback condition. The estimated model
parameters are displayed in Table 1. Due to the different nature of
the models, these parameters cannot be compared directly across
the models; however, they can be compared between conditions
within each model. The learning rates can be interpreted as the
extent to which people adjust their target (target model), their SVs
of the different selling points (RL model), or their SVs of the
available actions at each state (QL model) from trial to trial. High
learning rates imply a high degree of adjustment, which leads to
fast learning at the beginning of the learning process but could
result in “overadjustment” in the long run (i.e., the learning process
could switch too strongly between different options). Low learning
rates, in contrast, imply slower but more fine-grained adjustment
and learning. Across all three models, learning rates were higher in
the partial-feedback condition than in the full-feedback condition.
In other words, the adjustment process in the full-feedback con-
dition was more fine-grained, whereas in the partial-feedback
condition it was more sensitive to the most recent trial (and may
thus have resulted in overadjustment).

The choice sensitivity parameter implied higher sensitivity in
the full-feedback condition than in the partial-feedback condition
for all models (note that the target model’s sensitivity parameter
has to be interpreted inversely; see Table 1). High choice sensi-
tivity means that participants selected the subjectively best option
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Figure 2. The prices of the 16 shares in the three markets of Experiment 1, as a function of the 16 selling
points. The dashed vertical lines depict the peak selling point in each market (defined as the selling point that
on average yields the highest outcome). Dots represent the highest selling price for each of the shares.
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with high probability. Thus, participants in the full-feedback con-
dition made more deterministic decisions given their learning
experience.

Participant classification. Next, we examined which learning
model performed best in describing the learning process of each
participant, separately for the two feedback conditions. To this
end, we used Bayesian model weights based on the models’ BICs
(Lewandowsky & Farrell, 2010; Raftery, 1995), which indicate the
strength of evidence for the best model relative to the other
models. When none of the three learning models were better than
the baseline model, the respective participants remained unclassi-
fied. As Figure 6 shows, in the condition with partial feedback,
each of the three models best described the learning processes of
a comparable proportion of participants: 41% were best described
by the target model, 31% by the QL model, and 25% by the RL
model. A small proportion of participants (3%) remained unclas-
sified. In the condition with full feedback, the learning processes
of the majority of participants (i.e., 68%) were assigned to the RL

model, followed by the target model with 16%, and the QL model
with 6%. A proportion of 10% of participants remained unclassi-
fied. In sum, although no model clearly performed best in the
partial-feedback condition, the RL model best described the learn-
ing processes of most participants in the full-feedback condition.

Discussion

Despite several challenges to learning (e.g., the different markets
were presented in alternating order; see Lejuez et al., 2002), we found
that participants learned to adjust their selling points toward the peak
selling points over the course of the trials. The feedback conditions
had a substantial influence on participants’ learning processes, how-
ever. That is, when the peak selling points were late in the selling
period, participants in the partial-feedback condition did not manage
to closely approximate the peak selling point. One reason is that they
did not explore the full range of the selling period and therefore never
experienced the peak selling points in these markets. It was only in the
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Figure 3. Learning curves in Experiment 1: The thick lines represent participants’ average selling points, the
dashed horizontal lines depict the peak selling points in each market, and the remaining three thin lines represent
the models’ learning curves resulting from using the medians of the estimated parameters. The top row displays
participants’ learning curves in the partial-feedback condition; the bottom row displays those in the full-feedback
condition. TAR � target model; RL � reinforcement-learning model; QL � Q-learning model. See the online
article for the color version of this figure.
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full-feedback condition that participants adjusted their selling points
toward the peak selling points in all three markets. Given that explo-
ration in a nonmonotonic decision problem such as the SIT is not
overly risky, it is surprising that the feedback condition affected
participants’ choices so strongly.

Our modeling analysis suggests that learning was qualitatively
and quantitatively influenced by the two feedback conditions. On
a qualitative level, each model best described the learning pro-
cesses of about a third of the participants in the partial-feedback
condition. In the full-feedback condition, in contrast, the RL model
best described the learning processes of most of the participants.
The good performance of the RL model in the full-feedback
condition suggests that participants absorbed the additional infor-
mation that was presented. Specifically, a crucial feature of this

model is that it leads to a complete representation of all selling
points. The QL model could also have led to a full representation,
but it would apparently have required more learning opportunities,
given the relatively complex updating process. A potential reason
why the RL model’s performance was poorer in the partial relative
to the full-feedback condition is that the unobserved states cannot
be updated. Therefore, the model tends to predict earlier selling
points with much higher likelihood, whereas the target model
predicts later selling points with some likelihood even in the case
of partial feedback. On a quantitative level in terms of the esti-
mated parameters, participants in the full-feedback condition ad-
opted a more fine-grained learning process (smaller learning rates)
and, at the same time, were more deterministic when making their
decisions (higher choice sensitivity).
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Figure 4. Mean deviations of participants’ selling points from the peak selling points, separately for the two
conditions and the three markets. The top row shows the results of Experiment 1; the bottom row shows the
results of Experiment 2. Each block represent four consecutive shares; namely, shares 1–4 (Block 1), shares 5–8
(Block 2), shares 9–12 (Block 3), and shares 13–16 (Block 4). Error bars show 95% confidence intervals.
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Figure 5. Distribution of model fits in Experiment 1: Box plots depict the distributions of fits per model and
feedback condition, measured with the Bayesian information criterion (BIC). The dashed horizontal line depicts
the BIC of a baseline model choosing a selling point with equal probability. TAR � target; RL � reinforcement
learning; QL � Q-learning. See the online article for the color version of this figure.
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Experiment 2

In the unimodal markets with a single maximum in Experiment
1, the same performance could theoretically be achieved either by
learning a full representation of all selling points (as described by
the RL or QL model) or by learning only the subjectively best
selling point (as described by the target model). In Experiment 2,
we increased the complexity of the stochastic processes and im-
plemented bimodal markets with two maxima, one being a global
maximum (the peak selling point) and one being a local maximum.

In a bimodal market, the target learning strategy might be
expected to perform worse because it could be misled by the local
maximum. In contrast, the RL model and the QL model can solve
learning problems with several maxima as they result in a com-
plete representation of all states. Thus, if people select learning
strategies by the anticipated performance, they may rely more on

the RL or QL model in situations with several maxima, which they
may detect at an early learning state. This prediction should in
particular hold in learning situations with full feedback, in which
it is easy to detect that several maxima exist. In Experiment 2, we
will test this prediction and the extent to which people adapt their
decision strategies to the type of environment (Rieskamp, 2006;
Rieskamp & Otto, 2006).

Method

We recruited 63 participants from a subject pool at the Univer-
sity of Basel and randomly assigned them to one of two between-
subjects conditions: partial and full feedback. Their age ranged
from 17 to 49 years, with a mean of 24.34 years (SD � 6.5 years);
53 (84%) of them were female, and 10 were male. The procedure
of Experiment 2 was identical to that of Experiment 1. The only
difference was that the stochastic processes used in the three
markets resulted in a global as well as a local maximum. The initial
price of each share in Experiment 2 was defined as a random draw
from a Gaussian distribution with M � 75 and SD � 5, and a
Gaussian random walk determined the increments of the share’s
price per selling point. The increments were random draws from a
Gaussian distribution such that the global maxima for the three
markets were at selling points 13, 3, and 15, whereas the local
maxima were at the selling points 4, 14, and 5. Figure 7 shows the
resulting prices of the 16 shares in each market.

Results

Learning curves and selling points. Figure 8 shows partici-
pants’ learning curves over the course of the trials (i.e., the 16
shares participants could sell in each market), separately for the
three markets and the two feedback conditions. On average, par-
ticipants again sold the first shares per market approximately in the
middle of the selling period (i.e., around selling point 8). In the

Table 1
Parameter Estimates of the Learning Models (Medians)

Model Parameter

Experiment 1 Experiment 2

Partial
feedback

Full
feedback

Partial
feedback

Full
feedback

Target model
Learning rate � .39 .33 .50 .45
Sensitivitya � 3.6 2.7 4.5 5.6

RL model
Learning rate 
RL .34 .18 .37 .18
Sensitivity �RL .20 .50 .12 .19

QL model
Learning rate 
QL .09 .02 .45 .03
Sensitivity �QL .34 2.76 .33 .25

Note. RL � reinforcement learning; QL � Q-learning.
a The target model’s sensitivity parameter has to be interpreted inversely,
as � stands for the imprecision of the choice. Thus, lower values represent
higher sensitivity.
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Figure 6. Classification of participants’ learning processes in Experiment 1 according to Bayesian model
weights (Lewandowsky & Farrell, 2010; Raftery, 1995). The left (right) chart shows the number of participants
in the partial (full) feedback condition whose learning processes were best described by each of the three models,
including the relative evidence for the best fitting model over the other models. TAR � target model; RL �
reinforcement-learning model; QL � Q-learning model.
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partial-feedback condition, participants shifted their selling points
to the peak selling point only in market 2, where the global
maximum was early in the selling period. In the other two markets,
they did not shift their selling points toward the peak selling points.
In the full-feedback condition, in contrast, participants shifted their
selling points toward the peak selling point in all markets. Yet,
compared with the corresponding condition in Experiment 1 (e.g.,
market 3, full-feedback condition, where the peak selling point
was also late in the selling period), the learning process seemed
slower in Experiment 2. The local maximum evidently influenced
whether and how closely participants approximated the peak sell-
ing points.

We next determined the absolute deviation of participants’
selling points from the peak selling points. As we did in in
Experiment 1, we created four blocks of shares to distinguish
between levels of learning opportunity. Figure 4 (bottom panel)
shows the mean absolute deviations, separately for the two con-
ditions and the three markets over the four blocks of shares. In a
three-way analysis of variance with two within-subject factors
(market [1–3] � block [1–4]) and one between-subjects factor
(condition [partial vs. full feedback]), there was a main effect for
condition, F(1, 744) � 63.7, p 	 .001, with smaller deviations
from the peak selling points in the full-feedback condition. There
was also a significant interaction between condition and block,
F(1, 744) � 4.9, p � .03, implying that the learning differences
between participants in the partial versus full-feedback condition
were not the same over the four blocks of trials. This reflects the
fact that participants in the full-feedback condition mainly learned
from the first to the second block; that is, their deviations shrank
early but did not change any further. The participants in the
partial-feedback condition, however, barely learned anything over
the full course of blocks (see Figure 4).

Model comparison. As we did in Experiment 1, we estimated
the free parameters of the three models using maximum likelihood
techniques, separately for each participant. Figure 8 shows the
average learning curves that resulted from the medians of the
estimated model parameters. The RL model captured the average
learning curves reasonably well in almost all markets and condi-

tions. In market 1 of the partial-feedback condition, it described a
slightly more pronounced shift to the local maximum as compared
to the actual data. Overall, the target model described a very
similar pattern; however, it captured the observed learning pro-
cesses less precisely. The QL model had a tendency to shift toward
the beginning of the selling period in all markets in the partial-
feedback condition, and in the full-feedback condition, learning
was slow and did not succeed in capturing the observed learning
processes well. As Figure 9 shows, the RL model achieved the best
fit (in terms of BICs), in both the partial and the full-feedback
conditions. The target model and the QL model were less accurate
but still better than the baseline model. Thus, at least on the
aggregate level, the distribution of model fits suggests that the RL
model outperformed the other two models in the more complex
learning environment of Experiment 2.

The estimated model parameters are displayed in Table 1. As in
Experiment 1, learning rates were higher in the partial-feedback
condition, suggesting stronger (and possibly over-) adjustment
during the learning process, whereas the lower learning rates in the
full-feedback condition suggest a more fine-grained adjustment
process. Overall, the learning rates matched the estimated param-
eters of Experiment 1 relatively closely, in particular for the RL
model. However, presumably because of the bimodal outcome
distributions, choice sensitivity in all models decreased markedly,
describing more random choices (note that the target model’s
sensitivity parameter has to be interpreted inversely; see Table 1).
That is, participants in Experiment 2 were not able to exploit their
acquired knowledge as well as participants in Experiment 1 did.

Participant classification. We next examined which learning
model was best able to describe the learning process of each
participant, separately for the two conditions and using Bayesian
model weights as in Experiment 1. In both the partial and the
full-feedback conditions, the RL model best described the learning
processes of the vast majority of participants (see Figure 10). In the
partial-feedback condition, the RL model best described the learn-
ing processes of 85% of participants, followed by the QL model
(9%) and the target model (3%). Another 3% of participants
remained unclassified. In the full-feedback condition, the learning
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on average yields the highest outcome). Dots represent the highest selling price for each of the shares.
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processes of all participants were best described by the RL model.
The evidence for this classification in terms of Bayesian model
weights was overall very strong (Raftery, 1995; Lewandowsky &
Farrell, 2010). As predicted, the bimodal markets led participants
to rely more frequently on a learning strategy that builds a full
representation of all observed states.

Discussion

Experiment 2 introduced a more complex environment with a
global and a local maximum. Participants in the partial-feedback
condition did not adjust their selling points toward the peak selling
points in markets where these occurred late in the selling period.
Instead, they seemed to get stuck between the global maximum (at the
end of the selling period) and the local maximum (at the beginning of
the selling period). In the full-feedback condition, in contrast, partic-
ipants approximated the peak selling points in all three markets.

The main goal in Experiment 2 was to investigate whether more
complex stochastic processes lead people to adopt learning strategies
that result in a full representation of all selling points. Although on the
aggregate level, the differences between the RL model and the target
model appeared relatively small, the classification analysis clearly
indicated that participants’ learning processes were best described by
the RL model, in both the partial and the full-feedback condition. In
addition, the proportion of participants best described by the target
model decreased markedly from Experiment 1 to Experiment 2 (see
partial-feedback condition, Experiment 1). Thus, participants in both
conditions seem to have realized that the underlying stochastic pro-
cesses can be better grasped with a learning strategy that represents all
selling points. In the full-feedback condition, in which it was arguably
easier to learn about the environment and which strategy was appro-
priate, the evidence for the RL model was even stronger than in the
partial-feedback condition.
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Figure 8. Learning curves in Experiment 2: The thick lines represent participants’ average selling points, the
dashed horizontal lines depict the peak selling points in each market, the dotted horizontal lines depict the local
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General Discussion

In two experiments, we examined people’s learning processes in
nonmonotonic decision problems. Learning is challenging in this
environment because no contextual information is provided about
how the outcomes change across the sequence of decision options.
We investigated how the complexity of the environment and
different types of feedback affected people’s decisions and their
learning processes. We found that people chose selling points
much closer to the markets’ peak selling points with full feedback
than with partial feedback. With partial feedback, participants
faced an exploration–exploitation trade-off and their performance
suffered, especially in an environment with high complexity. The
cognitive modeling analysis showed that, in the majority of cases,
a reinforcement-learning model best described participants’ learn-
ing processes. This model assumes that people build a full repre-
sentation of all options (selling points). Only in environments with
low complexity and with partial feedback did a substantial pro-
portion of participants seem to follow a simple learning process

that focuses on acquiring the subjectively single best option. These
findings suggest two key conclusions.

The Role of Feedback in Nonmonotonic
Decision Problems

The extent to which people approximate the “sweet spot” in a
nonmonotonic decision problem appears to depend largely on an
interaction between the degree of exploration required to find this
spot (e.g., a peak selling point later in the selling period requires
more exploration in the SIT) and the amount of information
provided via feedback (i.e., partial vs. full feedback). In particular,
with a late peak selling point and only partial feedback, partici-
pants did not manage to postpone their selling decision long
enough in the SIT. This effect was even more pronounced when
outcome distributions were bimodal and involved (early) local
maxima (Experiment 2). When participants experienced full feed-
back, however, they took advantage of the available information
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Figure 9. Distribution of model fits in Experiment 2: Box plots depict the distribution of fits per model and
feedback condition, measured with the Bayesian information criterion (BIC). The dashed horizontal line depicts
the BIC of a baseline model choosing a selling point with equal probability. TAR � target model; RL �
reinforcement-learning model; QL � Q-learning model. See the online article for the color version of this figure.
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and, with increasing learning experience, were able to postpone
their selling decision.

Full information does not always translate into better perfor-
mance, however: If people experience full feedback about op-
tions that are better most of the time but worse on average (i.e.,
skewed distributions), they will be attracted to suboptimal
choice options (Yechiam & Busemeyer, 2006). Also, research
on a related task has shown that people can make successful
inferences from selective feedback using constructivist coding,
equaling the performance of others receiving full feedback
(Elwin, Juslin, Olsson, & Enkvist, 2007). However, in non-
monotonic decision problems as implemented in the SIT, hy-
pothetical outcomes (i.e., forgone payoffs) clearly helped peo-
ple to adjust their selling points toward the peak selling points.
Similar observations have been made in other domains (Cam-
erer & Ho, 2003; Chiu et al., 2008; Grosskopf, Erev, & Ye-
chiam, 2006; Lohrenz et al., 2007).

In a nonmonotonic decision problem, there is not necessarily
the risk of a sudden loss during exploration (unlike, for in-
stance, in the BART); therefore, it is not trivial that a clear gap
persisted between the choices in the partial- and full-feedback
conditions. A possible reason for this gap is that risk aversion
may play a role not only in paradigms such as the BART but
also to some degree in the SIT. That is, participants may have
been satisfied with a small initial increase in the selling price
and did not want to run the risk of gradually losing what they
had just gained. They therefore stopped exploration after find-
ing a sufficiently attractive price (Einav, 2005). A lack of desire
to explore has also been shown in other experienced-based
decision tasks (Hau, Pleskac, & Hertwig, 2010; Hertwig, Bar-
ron, Weber, & Erev, 2004; Hertwig & Pleskac, 2010).

What assumptions people in the partial-feedback condition may
have made about the unobserved states remains an open question.
Elwin et al. (2007) suggested that people deal with unobserved
states by either using “positivist coding” or “constructivist cod-
ing.” With positivist coding, people have no assumptions about the
unobserved states, and decisions are exclusively based on the
observed states. With constructivist coding, in contrast, people
form some assumptions and expectations about the remaining
states based on a particular rule. For the SIT, it is currently unclear
what form such a rule would take. In future studies, one way to
explore such rules would be to ask people to predict the prices that
subsequent states will yield. On the basis of these predictions, it
would be possible to infer people’s expectations and some of the
rules they may use for constructivist coding in nonmonotonic
decision problems.

In sum, although the risk profile in the nonmonotonic deci-
sion problem of the SIT should render exploration less risky,
people who faced an exploration– exploitation trade-off seemed
to get stuck at early states of the decision problem during
exploration—particularly if outcomes showed an early (mo-
mentary) downtrend.

Learning Strategies in Nonmonotonic
Decision Problems

The results of the model comparison suggest that people tend to
rely on a reinforcement-learning strategy in nonmonotonic deci-
sion problems; that is, that they learn a representation of all

observed states. In the SIT, it was only in the partial-feedback
condition of Experiment 1, in which complexity was relatively
low, that other learning strategies best described the learning
processes of a sizable proportion of participants. Unlike the target
model, the QL model is also capable of building a full represen-
tation of all decision options. However, its learning and updating
processes were too slow to adequately describe participants’ learn-
ing curves. The QL model might perform well with more learn-
ing opportunities or in sequential decision problems that permit
more than just two actions at each state (i.e., to sell or to keep
the share).

Further, the modeling results suggest that the estimated param-
eters may capture two different aspects: On the one hand, the
feedback conditions had a substantial quantitative influence on
people’s learning processes. We compared the fitted parameters
across the two conditions in each of the two experiments and found
systematic differences regarding learning speed and choice sensi-
tivity. On the other hand, there was variability within the separate
conditions, reflecting interindividual differences. Future research
may benefit from relating measures of cognitive abilities, such as
working memory span (Lewandowsky, Oberauer, Yang, & Ecker,
2010) or processing speed (Wechsler, 1981), to the estimated
model parameters and to the specific model by which a person is
best described. In addition, it seems promising to adapt models that
make additional assumptions about human memory processes in
learning, such as instance-based learning models (e.g., Gonzalez &
Dutt, 2011).

Limitations and Future Research

In some of the conditions (see Figures 3 and 8), the amount of
learning observed was modest. Of course, learning in nonmono-
tonic decision problems is generally more demanding than it is in
monotonic decision problems. But two other design aspects may
also have hampered learning. First, in line with the procedure used
in the BART (Lejuez et al., 2002), we presented shares from three
different markets in a random, alternating order. This approach
may have made learning even more challenging. Second, the
drift-to-noise ratio in the Gaussian random walk, which determines
the sequential changes in a share’s price, may also directly influ-
ence learning. We aimed to set this ratio so that participants would
have a reasonable chance to learn, without making learning too
simple or too difficult. Other ratios may be examined in future
studies.

The SIT can be easily parameterized, and future research could
also adapt it to represent a true dynamic decision problem such that
the prices of a share change dynamically as a function of the
participant’s (or even other participants’) previous decisions across
trials. This would allow researchers to investigate, for instance, the
influence of competition as it occurs in the stock market, where
individuals learn and make decisions in parallel.

Conclusions

Many real-world nonmonotonic decision problems (e.g., the
stock market) do not rest on stable stochastic processes that people
can easily learn about. Nevertheless, people may often aim to do
so, and our stylized task illustrated some of the circumstances
under which learning succeeds or is impeded. It has been argued
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that people are able to adapt their decision strategies to the type of
the environment (Pleskac, 2008; Rieskamp, 2006; Rieskamp &
Otto, 2006). Our results suggest that people also adopt appropriate
learning strategies in the context of nonmonotonic decision prob-
lems, depending on the complexity of the environment.

Yet, a challenging property of many sequential decision prob-
lems is that they require a trade-off between exploration and
exploitation. Exploration in nonmonotonic decision problems such
as the SIT does not carry the risk of a sudden and total loss.
Nevertheless, our participants did not engage in extensive explo-
ration; consequently, they did not find out about peak selling
points occurring late in the sequence. This observation may partly
explain why people tend to “buy high and sell low” (Benartzi &
Thaler, 2007) in real stock markets: As positions typically disap-
pear from a portfolio when they are sold, investors—unless they
actively seek this information—lack feedback on prices that could
have been obtained at later selling points. This asymmetric feed-
back may also prompt an asymmetry in error correction, reinforc-
ing the tendency to sell earlier than later. If positions remained
visible in the portfolio after a selling decision, investors could
more easily learn about foregone gains and losses—and about
potential trend reversals. Such modifications to the architecture of
investment decisions may help some investors to hone their market
timing skills by making them aware of the possibly undue influ-
ence of recent market trends.
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