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4 Exploratory Data Mining
with Structural Equation
Model Trees

Andreas M. Brandmaier, Timo von Oertzen,
John J. McArdle, and Ulman Lindenberger

Introduction

Structural Equation Model Trees (SEM Trees) combine Structural Equation
Models (SEM) and decision trees. SEM Trees are tree structures that
partition a dataset recursively into subsets with significantly different sets
of parameter estimates, The method allows the detection of heteroge'nelty
observed in covariates and thereby offers the possibility to automatl'cally
discover non-linear influences of covariates on model parameters 1 a
hierarchical fashion. The methodology allows an exploratory approach. to
SEM by providing a data-driven but hypothesis—constrained expliora.tlon
of the model space. We summarize the methodology, show applications
on empirical data, and discuss Hybrid SEM Trees, an extension of SEM
Trees that allows the finding of subgroups that differ with respect to model
Parameters and model specification. o

In this chapter, we present an overview and selected applications
of a multivariate statistical framework, Structural Equation Model Trees
(SEM Trees; Brandmaier, von Oertzen, McArdle, & Lindenberger, 2013),
that combines benefits from confirmatory and exploratory approaches
‘0 data analysis. SEM Trees allow a data-driven refinement of models
reflecting prior hypotheses about the data. Confirmatory aspects are
Provided by using Structural Equation Modeling as the framework,
and exploratory aspects arise from the incorporation of decision trees,
also known s classification and regression trees or recursive partitioning. This
combined approach yields trees representing a recursive pattitioning of a
dataset into subgroups maximally differing with respect to their model-
Predicted distributions, SEM Trees allow an exploratory approach to finding
variables that influence the model parameters for any model that can be
described as 5 linear combination of observed and latent variables. This CIL}SS
of models includes, for instance, regression models (McArdle & Epstein,
1987), factor analytic models (Joreskog, 1969), autoregressive models
(Joreskog, 1979; McArdle & Aber, 1990), latent growth curve models
(McArdle & Epstein, 1987), latent difference score models (McArdle &
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Hamagami, 2001), or latent differential equation models (Boker, Neale, &
Rausch, 2004).

A typical workflow for empirical research in the behavioral sciences can
be described by the following steps. First, hypotheses about the population
are derived as tentative explanations of observed phenomena. Then, a study
is designed and conducted to collect a dataset with variables representing
concrete observations of the phenomena. Finally, each hypothesis is
formalized in a model and inference-statistical methods are used to gauge
the evidence of the data for or against the hypotheses. This is often called
the confirmatory approach of data analysis. Unfortunately, it is often found
that models describe the data inadequately. Consequently, researchers move
to an exploratory phase, in which they adapt hypotheses and models,
in order to find a better representation of the observed phenomena, for
instance, by adding variables or removing variables from their models.
As an alternative approach to improving the model as a description of
the complete dataset, a second approach can be followed: The dataset is
partitioned into groups that differ with respect to the parameter estimates
of the model. This multi-group approach assumes that the model is a valid
description of the phenomena, however, it does not require the sample to
be homogeneous with respect to the parameters of the model. SEM Trees
realize this approach by recursively partitioning a dataset into subgroups
that maximally differ in the model-predicted distributions.

In this chapter, we summarize the algorithm for inducing SEM Trees
and highlight details such as the estimation of parameters in the models,
the evaluation of split candidates, and the incorporation of measurement
invariance in the SEM Tree framework. We draw attention to the dual
motivation of the candidate selection procedure from a statistical and an
information-theoretic point of view. As a methodological innovation, we
discuss Hybrid SEM Trees that allow the specification of a set of different
SEMs representing competing hypotheses about the data. Hybrid SEM
Trees allow the retrieval of partitions of the dataset that are best described
by different models and, ultimately, by different hypotheses. In order to
illustrate the utility of SEM Trees, we conclude with an application of
regular SEM Trees and Hybrid SEM Trees on empirical datasets.

All reported analyses are based on the freely available semtree package
(Brandmaier, 2012b) for the statistical computing language R (Thaka &
Gentleman, 1996). The package is based on OpenMx (Boker et al., 2011)
for defining and estimating SEM:s.

Decision Trees

Decision trees are classifiers that discriminate between states of a response
variable based on a hierarchy of decisions on a set of covariates. Put in
a statistical context, a decision tree represents partitions of the covariate
space that are associated with significant differences in the response variable.
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The earliest representative, called the Automatic Intemct‘ion Det-ector (AID),\ 46
devised by Sonquist and Morgan' (1964).‘The paradigm gained populay;
hrough the seminal works of Breiman, Frl(’:d.man, Olshen, and Stone (19g 4)
. d Quinlan (1986). Many aspects of decision trees have been develo ed
i e then. We restrict ourselves to mentioning only a small selection of .
i/l:?rcious approaches available today: ID3 (Quinlan, 1986), C4.5 .(Quin]an’
1993), CART (Breiman et al., 1984), and QUEST (Loh & Shih, 1'997)‘
A more recent development are model-based trees. These trees Maximyze
differences of outcome variables with respect to a hypothe.sued moy],
e.g., logistic regression trees (Chan & Loh, 2004), multivarlat‘e adaptyye
regression splines (MARS; Friedman, 1991), or the comprehenmye modg]_
based partitioning framework by Zeileis, Hothorn, and Hornik (2008).
Decision trees are increasingly used in the context of ensemble learning. 1,
this paradigm, multiple decision trees, typically based on resampled subsy
of the original dataset, are aggregated into a decision forest, e.g., randqy,
forests (Breiman, 2001) or conditional random forests (Strobl, Boulesteix,
Zeileis, & Hothorn, 2007), thereby trading increased computation time aygq
decreased interpretability for increased stability and predictive accuracy of
the results.

In the machine learning community, the popularity of tree methags
gradually diminished in favor of more recent learning machine methags
that allowed learning about more complex decision boundaries. Neverthe._
less, decision trees can be helpful in the process of knowledge discovery
and scientific theory building due to their clear advantage in depicting the
predictive structure visually. Figure 4.1 illustrates decision boundaries of 5
two-class problem obtained from a logistic regression as a representative of
linear discriminating models and the corresponding boundaries produced
by a decision tree. From a decision-tree perspective, a linear model can
be thought of as an oblique tree restricted to a height of one. Oblique
trees (Murthy, Kasif, & Salzberg, 1994), sometimes referred to as multivariage
trees (Brodley & Utgoft, 1995), allow decisions to be represented as lineyy
combinations of covariates in inner nodes of the tree. While oblique trees
allow a larger number of possible splits, traditional decision tree approaches
with axis-parallel splits have the advantage of allowing a straightforward
interpretation of the decision tree as simple decision rules in naturg]
language, specifically in rule sets describing conditions on covariates, e.g,,
“IF a participant is younger than 25 AND works out regularly, THEN
she/he has a low risk of heart disease.”

The result of a recursive partitioning algorithm is typically visualized in a
dendrogram (cf. Figure 4.1). A dendrogram is a pictorial description of the
hierarchical differences in the model-implied predictions and the predictors
that determine these differences. Ovals represent decision nodes. The label
of a decision node contains the name of the covariate that is subject to
partitioning. If the partitioning is based on a statistical test, a corresponding
p-value or a test statistic is shown in the label. Each oval has two or more
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Figure 4.1 The top row shows two-dimensional decision boundaries on tv
hypothetical datasets with two classes depicted as empty and solid do
On the left, the solid lines depict the axis-parallel decision boundaries
the tree below that discriminates the two classes. The dotted line depi
the decision boundary of a logistic regression discriminating betwe
both classes. On the right, the solid lines represent axis-parallel decisic
boundaries of the decision tree below. In the example on the rigl
adequate discrimination is not possible using a linear model.

outgoing edges that represent the partitioning of the dataset into subse
corresponding to whether the covariate value of the oval node match
the condition that is depicted on the respective edge. Leaf nodes of tl
trees are depicted as rectangles that contain information about the predicte
outcome; in the case of SEM Trees, they contain parameter estimates f
the chosen SEM.

Structural Equation Model Trees

Hyafil and Rivest (1976) showed that finding an optimal tree is NP-ha
(which can only be solved in non-deterministic polynomial time), where
optimality is defined as a minimization of the expected number of decisior
and the underlying problem is computationally demanding to solve. Tt
motivates the widespread application of heuristics for the induction
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decision trees. When applying decision trees, the general idea is to chg
the covariate from a set of candidates that divides the dataset into gry,
that maximally increase the predictability of the outcome variable. Ty
process is recursively applied to each resulting partition of the datasey
long as meaningful covariates are found. The “goodness-of-split” can .
formalized in various ways, for example, based on information-theoretic .
statistical tests.

SEM Trees are based on the idea that datasets can not only be partitioy,g
into subgroups that are homogeneous with respect to a single outcay,
variable, but into subgroups that are homogeneous with respect to .
parameters of an SEM. In the behavioral and social sciences, Structy,,|
Equation Models (SEMs) have become widely accepted as a statistical tq]
for modeling the relations between latent and observed variables. SEMs ...
based on an isomorphism between (a) a set of linear equations for obseryeg
and latent variables and distributional assumptions about these variables ;9
(b) a graphical representation of these equations and assumptions.

SEM Trees recover decision boundaries in the covariate space dividing
the dataset into multiple groups that are each represented by a differay
parameter set for an SEM. If Figure 4.1 represented covariate space
boundaries of an SEM Tree, one could imagine the solid and empty doys
representing participants with two different associated parameter sets.

The algorithm for the induction of an SEM Tree is geared to the
traditional decision tree algorithms. Thus, it is a greedy, top-down, recursjye
partitioning procedure that chooses the locally best split of the covariage
space. In each recursion step, it chooses the covariate that is maxirm]]Y
informative about the model-predicted distribution and, according to this
choice, permanently splits the dataset. Inputs of the algorithm are: (1) an
SEM that formalizes the researchers’ hypotheses about the data, which s
also referred to as template model; (2) an empirical dataset that is modeled
by the SEM; and (3) a set of covariates whose influence on the SEM is to
be explored. In a first step, parameters of the template model are estimated
from the complete dataset. This parameter set is associated with the root ofa
decision tree. For each covariate, the dataset is temporarily partitioned into
subgroups according to the values of the covariate. Then, parameters are
estimated for each partitioned dataset. We refer to the model that estimates
Parameters on the unsplit dataset as the pre-split model. The set of models
resulting from splitting the dataset into subgroups can be seen as a single
multiple-group model, which we refer to as the post-split model. If the
Parameter estimates are obtained with maximum likelihood estimation, the
pre-split model and the post-split model are algebraically nested models
and their log-likelihood ratio is asymptotically x2-distributed under the
null hypothesis that the covariate is uninformative about the model-
predicted distribution (Brandmaier, 2012a). At each level of the tree, the
covariate with the maximum log-likelihood ratio is chosen. This selection
procedure is recursively continued in each resulting partition. The known
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Algorithm 4.1 The elementary algorithm for the induction of SEM Trees with
discrete covariates and multi-way splits. Typically, a preprocessing step reduces all
covariates to sets of binary covariates yielding a binary tree.

InduceSEMTree (Dataset, Covariates, Model)
. Create a new node
. Estimate free parameters 6 from Dataset
. If Covariates is empty, return node
. For each covariate C; € Covariates,

a. For each value vy of the covariate G,

EEE I S

i. Estimate §,, from the subset D,;CD for which covariate C; has value vy
b. Calculate the log-likelihood ratio statistic A, for covariate C; as:

Ag = —2LL (M (é) |D) +Y 20 (M (é,,,j) |D,,,:,,)
5. Find best covariate candidate b = argmax; Ac,
6. If Ag, is above the critical value,

a. For each vy in Gy create a child node by recursively calling InduceSEMTree
(D,,,y, ,Covariates\ Cp,Model) and create an edge between node and the new child

node with label v,
7. Otherwise return node

distributional properties of the estimator under the null hypothesis allow the
usage of a hypothesis-testing framework to determine when to stop splitting
the dataset. If there is no covariate having a significantly large test statistic
such that the null hypothesis can be rejected, the induction algorithm
terminates. The elementary algorithm for the induction of an SEM Tree
with discrete covariates is shown in Algorithm 4.1. This algorithm allows
multi-way splits according to the levels of discrete covariates. In the
following, a generalization to continuous covariates is described.

Multi-valued Attributes

Drawing upon ideas of Breiman et al. (1984) and Loh and Shih (1997),
SEM Trees perform dichotomous splits in the covariates leading to binary
tree representations. Generally, trees with multiway splits can be represented
as binary trees. However, Kim and Loh (2001) illustrate an example that
yields different results depending on whether a multiway and a binary tree
are used.

To allow continuous, and multi-valued ordinal and discrete covariates, all
multi-valued covariates are transformed to sets of dichotomous covariates.
The conversion depends on the type of variable. Ordinal variables having
values from an ordered set are transformed into a set of dichotomous
variables, in which each variable represents a “smaller or equal” relation
on one of the possible split points. Continuous variables with values from
an ordered set imply cutpoints in the center between pairs of sorted
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observed values. Let N be the number of observations in a dataset. Wy,
the proposed procedure, ordinal and continuous variables can imply a
maximum of N — 1 dichotomous covariates. Categorical covariates imply’
dichotomous covariates representing splits corresponding to partitiong in
all possible pairs of non-empty subsets yielding a maximum of 2N=1 ~1

dichotomous covariates.

Model Estimation

Parameters in models of an SEM Tree are estimated using maXimyp
likelihood estimation, which is a common technique in SEM (e.g. vop
Oertzen, Ghisletta, & Lindenberger, 2009). Let X be a dataset. Let Af .
a template SEM that encodes researchers’ prior hypotheses about the day,.
Under the assumption of independence of the observations in the samp]e,
the likelihood of the model given the dataset with a total of N observatigys
is the product of the likelihoods of observing the model given individy,]
observations. Let  be the model-implied covariance matrix and let 4 b
the model-implied mean vector. Under the assumption that the variables
are normally distributed, the likelihood of the model given a single datyy
x is defined by the multivariate Gaussian distribution:

£, B = (@ 1ZD " exp -3 (v B! e~ o]

Given a set of observations, let m be the sample mean vector and S be the
sample covariance matrix. Furthermore, let @ be a vector parametrizing
and Z. The simplified log-likelihood function derived from Equation 1 is:

—2LL(u, Z,0|m,S)
= N[const+log || +tr (E“IS) +m—w)TZ =] @

The maximum likelihood estimate of the parameters 6 given the data m,
S, and the model u, ¥ is found by minimizing —2LL:

A

0 =argm€in—2£[,(/,¢, %,0|m,S) ©)

Becz?use it is difficult to find a closed-form solution for general models,
fr_lumgm procedures are employed to find the maximum of the likelihood
unction or the minimum of the negative function. There are a variety

it .,
SNPOSTIEEEY
W Ty
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of methods for the numerical solution of the problem. Most solutions
revolve around the Newton method in order to find the minimum of
the function numerically. The gradient, i.e., the partial derivatives of
the likelihood function with respect to the parameters, describes the
rate of increase or decrease of the likelihood function depending on
an infinitesimally small change of the free parameters. Gradient descent
methods propose iteratively calculating the gradient, and climbing or
descending the likelihood function until they arrive at a maximum or
minimum. An improvement of this approach also considers the matrix
of the partial second derivatives, the Hessian matrix. This comprises the
class of Newton methods. If the Hessian matrix is iteratively approximated
rather than fully approximated at each iteration, this is called a quasi-Newton
method. An important and widely used representative of the latter method
is the Broyden, Fletcher, Goldfarh, and Shanno method (BFGS), which was
independently suggested by each of the four authors. A comprehensive
overview of optimization algorithms is given by Fletcher (1994). OpenMx
(Boker et al., 2011), on which the semtree package is based, uses a general-
purpose optimization scheme that involves numerical estimation of the
gradient and the Hessian matrix. Von Qertzen et al. (2009) report that a
dampened Newton method, which fully calculates the gradient and the
Hessian at each step and adapts the step width by a line search, works well
in practice.

Split Candidate Evaluation

A recursive tree-inducing algorithm proceeds by selecting the best candidate
at each step of the recursion. There are natural stopping criteria for a
recursive tree-inducing algorithm, including the following: (1) there are no
remaining covariates to split the dataset; (2) the number of observations
in a leaf node is below a certain threshold; (3) a pre-determined height
of the tree has been reached; and (4) the best split candidate is not good
enough. The fourth criterion is introduced in order to avoid overfitting,
i.e., to avoid choosing an apparently adequate split candidate although its
aptitude is only due to random fluctuation in the sample. In SEM Trees,
split candidate selection can be based on the log-likelihood ratio that allows
a statistical test to determine when splitting the dataset and growing the
tree should be stopped.

Given a @-parametrized model M(0) and a dataset D, let 6 bea parameter
vector that minimizes the negative two log-likelihood of seeing the model
given the data, i.e., the maximum-likelihood estimate of M given D. Let
D,; be the partitions of a dataset with respect to the j =1,..., k values

of the ith covariate in the dataset and let 6,; be the parameter vector that
minimizes —2LL(M (0,;)|Dy;). For covariate i, the likelihood ratio of the
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pre-split model (left summand) and the post-split model of the j=1,...,k
resulting partitions (right summand) is:

Ai=—2LL (M(é) ID) + izﬁﬁ (M (6;) ID.,@,.) *)

j=1

Following Wilks’s (1938) theorem, A; is x 2-distributed with (k — 1)m
degrees of freedom with m being the number of free parameters in the
template SEM. Given the distributional properties of A; and a chosen &
level, a critical value ¢ can be calculated such that Pr(A > ¢) =a. Only spl
candidates for which A; > ¢ holds are considered potential split candidates,
The best split is chosen by selecting the covariate with the maximum log
likelihood ratio, that is, the covariate with the largest evidence against the
pre-split model.

It has been pointed out that any tree-structured algorithm carrying
out an exhaustive search in the split attribute space suffers from a
multiple comparison problem (Jensen & Cohen, 2000) that can lead to
overfitting (i.c., an over-representation of apparent structure in the sample
that is merely due to sampling fluctuations). Solutions for tackling this
problem include correcting the critical value under the assumption of
independence of covariates, known as Bonferroni correction, or using
cross-validation to obtain estimates of the expected log-likelihood ratio.
The first approach corrects the sampling distribution under independence
assumptions at low computational costs but is known to be ovetly
conservative. The latter approach yields a score that can be treated as
an individual score instead of a maximum score but requires additional
computations.

Several authors (Dobra & Gehrke, 2001; Jensen & Cohen, 2000; Loh
& Shih, 1997; Shih, 2004; Zeileis et al., 2008) have cautioned about the
problem of variable selection bias in the context of decision trees. By
definition, split candidate selection procedures that preferably select certain
types of variables over others under the null hypothesis that all variables
are uninformative, suffer from variable selection bias. A typical observation
is that categorical variables with a larger number of categories are more
likely to be chosen under the null hypothesis than those with less. An
unbiased variable selection algorithm is expected to have no preference
for any variable under the null hypothesis. Brandmaier et al. (2013)
showed that using the likelihood-ratio-based split selection procedure as
described above suffers from selection bias. This bias can be reduced
to a neglible amount if variable cutpoints and the selection between
variables are estimated in a two-step procedure (Kim & Loh, 2001). As
an alternative approach, Zeileis et al. (2008) suggested a unified framework
for unbiased model-based recursive partitioning that is based on tests for

parameter instability.



EDM with Structural Equation Model Trees 105
Missing Values

Under the assumption that variable values are missing at random (Rubin,
1976), SEM Trees can handle missing values in the observed variables of
the model as well as in the covariates. If values are missing in the covariates,
the likelihood calculation is performed with Full Information Maximum
Likelihood (FIML; Finkbeiner, 1979), which is equivalent to Equation 2
under the assumption of no missingness:

—2LL(u, X2

X15eeey XN)

N
=N.p-h@En+Y [1n|z,,| + o= ) T2 (= ,LL,')] 5)

i=1

where X; is the model-implied covariance matrix with rows and columns
deleted according to the pattern of missingness in the ith observation x;,
and p; the model-implied mean vector with elements deleted according
to the respective pattern of missingness.

Missing values in covariates can be handled by removing the respective
missing rows in the dataset during the evaluation of a split candidate,
effectively modifying only Equation 4 based on the patterns of missingness
in the dataset. Others, e.g., Hastie, Tibshirani, and Friedman (2001), employ
a surrogate approach, which is based on finding a surrogate covariate that
most closely describes the same partition of the dataset as the variable with
the missing value.

Measurement Invariance

A fundamental issue in psychometrics is measurement invariance.
A measurement is invariant if “under different conditions of observing and
studying phenomena, measurement operations yield measures of the same
attribute” (Horn & McArdle, 1992, p. 117). Measurement invariance is
traditionally examined through a sequence of hypothesis tests. Typically, a
set of statistical tests are carried out to determine what level of measurement
invariance is tenable. These tests are administered in the following order: (1)
configural invariance (also configuration invariance or pattern invariance) requires
the invariance of the pattern of zero and non-zero factor loadings across
groups; (2) metric invariance, weak invariance, or factor pattern invariance requires
the invariance of the values of factor loadings across groups; (3) strong
Jactorial invariance or scalar invariance requires intercepts of all indicators and
all factor loadings to be equal across groups; (4) strict invariance establishes
the additional restriction that the residual error variances are equal across
groups, in order to allow the interpretation of standardized coefficients
across groups.

SEM Trees incorporate the concept of measurement invariance if desired
by the researcher. Models with measurement invariance are integrated in
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the process of split candidate evaluation in the following way. Valid St
candidates must fulfill the user-specified level of measurement invariy, .,
and their log-likelihood ratio must exceed the chosen critical vay,,.
By construction, a measurement-invariant post-split model of configy,;
metric, strong, or strict invariance is algebraically nested in a non-invary, .
post-split model. Furthermore, the invariant model is nested in the ..
split model (Brandmaier, 2012a). Consolidating these observations, one ,,
determine valid split candidates by first performing a set of likelihood-ty;
tests in order to assure measurement invariance for the split candid
With the set of candidates for which measurement invariance could not .
rejected, the normal procedure of split candidate evaluation (see above)

then performed.

Information-Theoretic Interpretation

From a machine learning perspective, split candidate selection procedyyes
for traditional decision trees with a categorical outcome variable maxinyze
the predictability of the outcome variable conditional on the knowlegge
of the state of the selected predictors. This is often formalized as folloys,
Let H(X) be the Shannon entropy of a random variable X, let x1,...,xy
be observed outcomes of X, and let N, be the number of observations
for which Y = y. The information gain about X when knowing the styee

of Y is:

N,
Gain (x1,...,%N, Y) = H (X) — E WyH(xl,...,xnlY=y) ©)
y& Values(Y)

Let M be a model. The duality between the Gaussian log-likelihood and
the entropy of the model-predicted distribution can be formulated as:

N
lim % LL (x| M) = —H (X|M) )

N—=o0 ‘
=1

Estimating the parameters of an SEM by maximizing transformations
of the multivariate Gaussian fit function seen in Equation 2 minimizes
the entropy of the model-implied distribution. The likelihood-ratio test
statistic that is used to determine the significance of a split candidate js
the difference between the log-likelihood of the parent model and the
sum of the log-likelihoods of the potential child models. It can be shown
that the likelihood-ratio test statistic from Equation 4 is proportional to the
information gain shown in Equation 6 (see Brandmaier, 2012a, for a detailed
proof). This important relation motivates the variable selection approach in
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SEM Trees from both a statistical and an information-theoretic perspective.
At each level, an SEM Tree chooses the covariate that maximizes the
likelihood ratio statistic of the pre-split and the post-split model. This is
equivalent to choosing the covariate that maximizes the information gain
about the model-predicted distribution. The expected information gain is
the mutual information. By using cross-validation as a variable selection
procedure, the expected likelithood-ratio is estimated and, following the
same reasoning as above, the expected information gain is maximized at
each level of the decision tree.

Hybrid Trees

Thus far, SEM Trees were defined such that their goal is a recursive
partitioning of a dataset into subsets that maximize the difference of the
model-implied distributions. As an extension to that, Brandmaier et al.
(2013) suggested that it can make sense to allow not only a single template
model but a set of competing template models. This implies that leaf nodes
in the tree are associated with subgroups represented by both different
SEM and individual parameter estimates. We call these types of trees Hybrid
SEM Tices. Hybrid SEM Trees can answer research questions that involve
a choice between multiple candidate models for the representation of a
dataset. Instead of providing a single choice of a “best” model for the
complete dataset, Hybrid SEM Trees retrieve different models for different
subgroups in the sample.

Suppose a group of researchers is interested in cognitive development
over the life span. They suspect that some participants have a linear increase
in cognitive abilities that saturates at some point, whereas a competing
hypothesis assumes a simple linear change process without saturation, and
a third hypothesis proposes a drastic exponential decline in cognitive
change that was observed for very old participants. Rather than fitting
a single model to the complete dataset, which might imply an unfavorable
trade-off between the different observed phenomena of change, a Hybrid
SEM Tree can recover subgroups that are best described by individual
models.

We will outline the underlying model selection problem in Hybrid
SEM Trees in more detail. Comparing a set of different models for
subgroups renders the likelihood ratio test for model selection inappropriate
because, in general, the set of competing models is not algebraically nested.
However, the evaluation of split candidates by an estimate of their predictive
performance is still feasible. As suggested before in the context of SEM
Trees with a single template model, we employ k-fold cross-validation to
obtain an estimate of the expected likelihood ratio of a pair of candidate
models. The cross-validated test statistic CV is obtained by averaging
the k test statistics of a k-fold cross-validation. Let My and M be two
competing models and let x be an observation, and n be the sample size.
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‘We obtain:

A P (x|M;)
lim CV = E [log P (x|My) — log P (+|M)] = E [log P (x]]\/b)]

n—>00

where E () is the expectation. For model selection, we require a procedure
to determine the evidence for the model. Using Bayes’ formula, we cay

rewrite the test statistic as:

=l P(x|M1)]_E[O P(Mllx)P(Mz)P(x)]
[ogP(XIMz) =28 Do) P (M) P ()

Under the assumption that, a priori, all candidate models are equally
likely, P (M;) = P (Mz), we obtain a model selection procedure selecting
covariates that maximize the expected posterior probability of the post-split

model:

cv E [l b lx)]
. v =pias) = E | log ————r
A, CV py=pze) S Pl

Under the assumptions of non-identical priors for the models, a
correction term can be added to the cross-validation statistic that represents
the models’ prior ratio. Effectively this is the sum of the estimated
log—likelihood ratio and the difference of the log-priors.

Hybrid SEM Trees allow model selection between a set of competing
SEM:s representing competing hypotheses about the data, whereas recursive
partitioning elicits a hierarchy of covariates associated with differences in
the dataset. In the process of induction of a Hybrid SEM Tree, covariates are
selected that not only maximize differences with respect to a single model-
implied distribution but also select between parametrized distributions that
are the best representation for the observed phenomena.

With hybrid trees, we distinguish between heterogeneity with respect
to models and heterogeneity with respect to parameters. Common SEM
Trees find heterogeneity with respect to parameters assuming that the model
holds for all subgroups of the dataset. Additionally, Hybrid SEM Trees are
able to choose between competing models. When applying Hybrid SEM
Trees with a single template model, this is equivalent to applying a conunon
SEM Tree with cross-validation for variable selection.

Case Studies

In this section, we present applications of SEM Trees to selected datasets,
including a univariate SEM Tree, a regression SEM Tree, and a longitudinal
SEM Tree.



EDM with Structural Equation Model Trees 109
Univariate SEM Tiee and Regression SEM Tree

In order to illustrate the usage of univariate SEM Trees, we show an analysis
based on a freely available dataset from the psych package (Revelle, 2011)
for R. The dataset includes scores of 700 participants on the Scholastic
Aptitude Test (SAT) and the American College Test (ACT) that were
collected as part of the Synthetic Aperture Personality Assessment (Revelle,
Wilt, & Rosenthal, 2009). Three additional covariates are included for each
participant: sex (male/female), education (high school, high school graduate,
college, college graduate, or graduate degree), and age (u = 25.69.5).

Suppose a researcher is interested in performance differences on the SAT
verbal (SATV) scale. Therefore, the researcher sets up a fully saturated SEM
that measures the mean of the SATV score as ptsqry and the variance of
the score as GgATV'

For the analysis, the SAT scores were standardized by subtracting the
mean and dividing by the standard deviation. The SEM Tree that was
generated from these data with Bonferroni-corrected p values and an alpha
level of .01, is shown in Figure 4.2. The tree chooses education as the
first partition in a group depending on whether participants graduated
from college or not. For those who graduated from college, a second split
according to their age is the optimal partition. In order to estimate the
difference between the two age groups for graduates, we first calculated
the pooled standard deviation of both age groups 02 =0.70 and obtained
an effect size of d = 0.59 for a split at an age of 28. Naturally, the
question arises whether this particular age reflects a fixed change point
of the investigated phenomenon. In general, researchers should be careful

high school

colloge college graduate

graduate degree

N =421
0% 4py = 1.168 £0.08
pyary = —0.041 £0.053

Age,p = 0.008

< 28 years > 28 years
N =113 N = 166
o} apy = 0.565 £0.075 0% gy = 0.785 £0.086
ssary = 0.307 £0.071 psary = —0.106 £0.069

Figure 4.2 SEM Tree for the SAT dataset. Variables “education” and “age” are
chosen to split the dataset into subgroups that describe differences in
the SAT scores. Parameter estimates are given as point estimates with
standard error.
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Figure 4.3 The plot shows p values for the splits according to the variable “age”
conditioned on people with an education equivalent to college degree
or higher. This corresponds to the right subtree (?f th_e SEM Tpee
in Figure 4.2. The p values are shown on 2 logarithmic scale, The
horizontal, dotted line indicates a significance level of 5%. Values bejow
the threshold are potential split candidates. The minimum valye js
attained when a split at an age of 28 years is chosen (marked by the
vertical, dashed line). The set of significant split points of the age varjyple

ranges from ages 25 to 31.

when reifying continuous splits. We advise further inspection of the yree
and the dataset in order to determine an appropriate range of a continygus
covariate that supports significant splits. In this example, we inspected the p
values of all possible age-related splits. The p values were already corrected
for multiple testing. Figure 4.3 shows the log p values versus possible age-
related splits. A clear minimum is visible at an age of 28. However, the
range from 25 to 31 is below a significant threshold of .05. We conclyde
that this age range should be interpreted as a fuzzy partitioning or fuzzy
decision rule for describing the age-related subgroups instead of cresting
at 28. This type of ex-post analysis can be carried out for any covariate
with more than two ordered levels.

In the following, we use the same dataset to investigate a regression
model with SEM Trees. Beyond the verbal score of the SAT, the dataset
contains self-reports of the quantitative score on the SAT. Again, both
scores were normalized to obtain zero mean and unit variance. A regression
model between the two scores can reveal insights about how strongly these
two scores are correlated or how well one score can predict the other
score assuming a linear relationship between the two variables. The model
contains five parameters. A plot of the model’s path diagram is shown in
Figure 4.4.

The correlation between the verbal and the quantitative score was
r=0.64, p < 2.2 x 10716, Based on this measure, the proportion of
variance shared between the two variables in the sample is about 41% under
the assumption that the population is homogeneous with respect to the
correlation of these abilities. Applying an SEM Tree to this model allows the
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high school college graduate
college graduate degree

/< 20 > 20 /< 25 > 25
N =225 N = 196 N =64 N =215
B =0.725 By = 0.685 B =04 Bi = 0.462
Trerpat = 1.08 Taeypat = 1199 Tierpar = 0.598 Taopat = 0747
o? = 0.394 a? = 0.623 0% =0.218 07 =0.782
fuesbat = 0,126 Tuerbat = —0.232 ftverbat = 0.346 Jtverbal = —0.023
Jquane = 0.054 Hquang = —=0.101 Jiquant = 0.134 Hquant = 0.014

Huerbal Haquant

NA B A

2
Tverbal a¢

Figure 4.4 SEM Tree (upper panel) for a regression model (lower panel) of the
quantitative and the verbal SAT score.

detection of subgroups that differ in the strength of the linear relationship
between the two scores. Differences in the parameter Bi between groups
indicate a different strength of the linear relation between the two variables.
Differences between the parameter fLyepal OF fguan indicate differences in
the expected values of the scores between subgroups. Differences in the
residual error term, ‘752’ between groups indicate differences in the model
fitness, particularly, differences in the amount of variance unexplained by
the linear model. The SEM Tree was induced using a significance threshold
of .01. The resulting tree is shown in Figure 4.4. The subgroups that are
implied by the first-level split of the SEM Tree are shown as scatterplots
in Figure 4.5, in which solid and dotted regression lines indicate the linear
relation between the two variables as retrieved by the SEM Tree. The
variable “education” that was chosen as a first split explains differences in
the linear relation between the quantitative and the verbal SAT scores.
The better-educated subgroup shows a smaller linear relation between
the scores. Splits with respect to age are found in both education-related
subgroups. Generally, we can observe a decrease in the average performance
on both scales in each of the subgroups with higher age. The difference in
the cutpoint of the continuous variable “age” in the left and right subtree
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Figure 4.5 Regression plots of the quantitative and verbal SAT scores for e
by the first split of the SEM Tree. The split variahle

subgroups implied |
was_education and the two partitions were high school, high schoo}

graduation or college (left plot) and college graduation or graduge
degree (right plot). The regression lines depict the linear relatiop,
between both scores for the second-level splits of the SEM Tree, both

with respect to the covariate age.

might indicate a lag in the underlying age-related change process that js
explained by “education.”

Without SEM Trees, a researcher might have stopped when finding o
highly significant correlation between test scores. SEM Trees proved useful
here because they recovered subsets that differ with respect to the model
parameters. In the tree, we found hints that the covariate “age” predicts
lower average scores on both tests, whereas “education” predicts a difference

in the shared variance of the scores.

Longitudinal SEM Tree

Brandmaier et al. (2013) showed illustrations of SEM Trees based on a
factor model and a latent growth curve model. In the following, we
further demonstrate how SEM Trees can be employed to explore structure
in the data. We present an application of SEM Trees to data from the
Berlin Aging Study (BASE; cf. Baltes & Mayer, 1999; Lindenberger, Smith,
Mayer, & Baltes, 2010; Lovdén, Ghisletta, & Lindenberger, 2004). BASE
is a multidisciplinary study of aging with extensive measurements from
psychology, sociology and social policy, internal medicine and geriatrics,
and psychiatry. The first wave of measurements started in 1990. The sample
consisted of 516 participants who were recruited from the city registry
of Berlin, Germany. The initial sample was stratified by sex and by age
with a mean age of 84.9 years and an age range of 69.7-103.1 years. It
was followed up longitudinally in seven further waves until 2009. For our
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analysis, we relied on data from the first six waves, of which the last was
completed in 2005.

For illustration purposes, we focus the analysis on the digit letter test,
a measure of perceptual speed as a marker of cognitive functioning.
Participants performed the task on 11 occasions in six waves spread over
fifteen years. Ghisletta and Lindenberger (2004) have modeled the digit
letter task with latent growth curve models before. They report that the
digit letter task displayed both reliable fixed and random linear time effects
but no statistically significant quadratic effects of time for the mean and
variance of a quadratic slope factor. Therefore, a linear latent growth curve
model was used to model changes in the performance of individuals over
time. A latent intercept variable I with mean (¢ and variance 0,2 models the
baseline performance on the task, and a latent linear slope variable S with
mean (s and variance ag models the increase or decrease of performance
over time in the study. A correlation between the latent intercept and
the latent slope was estimated as 6125. The exact individual time points
of measurement were available for each participant and for each occasion
of measurement. This allowed accurate modeling of the cognitive change
process with individual but fixed slope loadings for each participant by
employing these individual time points as definition variables on the slope’s
loadings. Put differently, the SEM can be thought of as a multi-group
model with each participant being its own group, and each group being
characterized by individual but fixed slope loadings, whereas each freely
estimated parameter is restricted to be equal across groups. Furthermore, the
slope loadings were individually centered at the mean age of the observed
time span for each participant. Also, participants’ age was controlled for at
the latent level by adding age as a covariate with loadings onto intercept
and slope. The corresponding latent growth curve model is depicted in
Figure 4.6.

Due to the age of the participants, mortality led to high attrition and
61.67% of the measurements are missing. Therefore, FIML estimation was
used to estimate the parameters in the model.

Covariates included education and newspaper reading and book reading
habits, of each participant’s father and mother. The reading habit variables
were encoded on an ordinal scale with the values “often,” “sometimes,’
“seldom,” and “never.” The education index was encoded on an ordi-
nal scale with three values: “elementary school without apprenticeship,”
“elementary school with apprenticeship,” and “secondary school certificate.”

The resulting SEM Tree is depicted in Figure 4.7. The first chosen
covariate is the education variable. The decline in cognitive score is lower
for the higher-educated group (first-level split, left subtree). For the lower-
educated group, there is a difference based on their fathers’ reading behavior.
For participants whose fathers read newspapers sometimes or often, the
decline in perceptual speed is comparable to the decline in the better-
educated group. However, if fathers did not or seldom read newspapers,

3
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Figure 4.6 Linear latent growth curve model with individual time points for e
measurement occasions. Participants were measured on 11 octygigns
spread over six waves. The residual error for each measuremeyg |54
a variance of o2. Repeated measurements of the digit letter geqre
are represented as T; with i being the measurement occasion, The
measurement error for each observation is accordingly named E; T}e
latent trajectory is modeled with an intercept I~ N(,uI,o'I:Z apd 2
slope S ~ N(/,Ls,o’g). The correlation between intercept and slope

is modeled as U,?‘g. The factor loadings of the slope are marked ith
stars to indicate that they are individual but fixed for each participaye.
The variable age is controlled for with loadings or and g on the

latent level.

the decline is about 27% stronger than in the other group. Possibly, the
fathers’ reading behavior acts as a proxy for parents’ education and the tree
might depict an interaction of children’s and fathers’ educational leve] in

predicting cognitive decline in old age.

Factor-analytic SEM Tiee

For this example, we analyze a personality dataset available as “bfi” in the
psych package (Revelle, 2011) for R. The dataset includes 25 personality
self-report items taken from the International Personality Item Pool for
2,700 participants. For an illustration, we set up a single factor model
as an SEM that models the personality trait “extraversion” as follows:
five observed variables Xi, X2,...,Xs model five items related to the
factor extraversion with items including “make friends easily” or “find it
difficult to approach others.” Each score has an individual measurement
error E1, Bz, ..., Es with individual residual variances 0621 , 0622 Y eens 0525 . The
means of the items were modeled as fq, 2, ..., 4s5. The latent factor “ext”
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education, p = 0.000

secondary school
elementary school Y

N =114
father read newspapers, p = 0.004 pr = 51376

/ \ jts = —1.118

seldom often or
or never sometimes

/

A

N=25
r = 40.539
Hs = ~1.506

N =271
r =47.169
ng = —1.182

Figure 4.7 An SEM Tree based on a linear latent growth curve model. Candidate
covariates included four variables of parents’ reading behavior and a
variable about the participants’ education.

was modeled to have a mean of .y and a variance of 02,. Figure 4.8
depicts the factor model.

The resulting SEM Tree was constructed with the requirement of weak
invariance, that is, factor loadings were required to be equal in subgroups,
and by using the Bonferonni-corrected variable selection procedure.
Covariates include the variables gender, education, and age. The tree is
shown in Figure 4.9. It has two levels. The first split is with respect to the
age covariate, the second split is conditional on whether participants were
younger than thirty years. On the second level, only the younger group is
partitioned according to gender, whereas the older group is not. Comparing
the estimates of the nodes, we find a difference in the means of the latent
variable. Participants older than 30 years and females younger than 30
have comparable scores on the extraversion factor, both above average,
whereas the young males have a below-average value of “extraversion.”
The interpretation of the differences can be guided by inspecting the set
of estimates in the leaf nodes. For example, a comparison of the residual

. 2 . . . . .
errors of items (o7 ,0625) might show that variance in certain items

Yoo
is less well explairelcl:d by the common factor in one group than in the
other. In this example, this does not seem to be the case. Differences in the
mean values for the individual items (f4x2, ..., ix5) could hint at systematic
differences. Note that some researchers might recommend a stricter level
of measurement invariance to draw conclusions from the differences. This
could be a level of measurement error that does not allow differences in
the expected values of the items. Nevertheless, building a tree with weaker
constraints can give insights into which covariates induce subgroups that

maximally break this requirement.
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Figure 4.8 A single factor SEM for the personality factor “extraversion.” The fy ior
ext is measured by five items, X to Xs.

N = 1044
0% = 0.637 £0.032
02, = 0471 £0.028
o2 = 0.676 £0.031
o2 = 0.583 £0.032
a2 = 0.724 £0.035
a2, = 8.671 £0.505
1y = —0.075 £0.037
tte3 = —0.062 £0.035
female male 1124 = —0.059 £0.037
x5 == 0.094 £0.034

/ \ ezt = 0.204 £0.154

N =610
o2 = 0.645 £0.012
ok = 0427 £0.034
o2 = 0.697 £0.045
o2, = 0.466 £0.035

gender,p = 0.000

N = 1146
0% = 0.596 £0.029
o2 = 0.477 £0.027
0% = 0.639 £0.03
% = 0.491 £0.026

o2 = 0.754 £0.034
02, = 8.941 £0.487
foz = 0,144 £0.034
pz3 = ~0.023 £0.032
fies = —0.044 £0.033
pap = —0.102 £0.032
fexe = 0.324 +0.145

aZs = 0.669 £0.042
02, = 10.451 £0.747
yz = —0.137 £0.047
Jiz3 = 0.154 £0.046
g = 0.177 £0.046
iz = 0.031 £0.043
Jent = —1.105 £0.209

Figure 4.9 SEM Tree for an extraversion factor from a personality questionnaire,
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A Hybrid SEM Tree simulation

For an illustration of a Hybrid SEM Tree, we first simulated a dataset
measuring hypothetical cognitive decline in younger and older age. In
this hypothetical sample, participants are described by two dichotomous
covariates that carry the following meanings: (a) participants were sampled
from young and older adults, and (b) participants were either part of a
training program or a control group. Assume a group of researchers is
interested in finding a model that describes cognitive development in their
sample. Two template latent growth curve models were constructed for
the Hybrid SEM Tree, one describing a model of linear change and one
describing a model of quadratic change. The linear model assumes that
a datum x;, describing the score of individual i at time point ¢t is an
observation of the following generative model:

i = I+ (t —to) Si -+ E;

with I being an intercept term that is distributed with mean gy and 012, Sa
slope term being distributed with wg and 02, and E bcmg a residual error
term that is distributed with zero mean and a variance o2. The quadratic
growth curve model is analogously created with a quadratlc instead of a
linear growth term:

xig= L+ ({t—10)*Si+E

In our simulated dataset, younger adults have an approximately linear
decline in their cognitive abilities that is mitigated by the cognitive training
program, whereas older adults have an accelerating, quadratic decline over
time. Participants were either male or female, which had no effect on
cognitive development for any subgroup. The dataset was simulated with
the following values. For all participants the residual error had a variance

of 62 = .01 and the covariance between intercept and slope was set
at ojg = 0. The younger pqrt1c1pants without treatment were simulated
w1th an intercept of puy =0 and 0, =1, and a slope of p; = —0.8 and

0'5 =.25. The younger partmpants with treatment were simulated w1th an
intercept of puy =0 and U[ =1, and a slope of ;= ~1.6 and a =.25.
Independently of the received treatment, older participants were smlulated
with an intercept of = 0 and 07 =1, and a quadratic slope component
of iy = ~0.8 and o = .25.

An example SEM Tree that was obtained from randomly creating a
dataset with the given values is depicted in Figure 4.10. A graphical
representation of the expected growth curves of the subgroups, as they
were detected by the tree, is also shown in Figure 4.10. The tree finds
two subgroups with respect to age in the first split. In the young group,
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Figure 4.10 Analysis of a simulated dataset using a hybrid SEM Tree with two

template models: a linear latent growth curve model and a quadratic
latent growth curve model. Upper panel: the SEM Tree shows a first
partition with respect to the age group. Older participants experience
a quadratic decline, while younger participants are better described
by a linear decline. Treatment has an influence on the slope of the
change process for younger participants while no significant parameter
differences for the older group were found on the second level of the
tree. Lower panel: expected growth curves over time in the study for
the three subgroups of the simulated dataset that were recovered by

the tree.
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the tree partitions the sample according to treatment. Most noteworthy, the
hybrid tree correctly chose different models for the young and old subtrees.
Young participants are represented with a linear model of change and old
participants’ accelerating decline is represented by a quadratic change. Of
course, this example can also be phrased in a confirmatory setting, in which
group differences with respect to the polynomial growth are expected and
tested in a multi-group model. We expect Hybrid SEM Trees to work
well when (1) there are a number of competing hypotheses, (2) models are
complex, and (3) the number of covariates is large and their influence on
the individual models and the nature of their interactions is not known
(e.g., if researchers have additional sets of behavioral, cognitive, or genetic
covariates).

Hybrid SEM Tree with a Developmental Latent Growth Curve
Model: Wechsler Intelligence Score for Children

The data for the following illustration of an application of Hybrid SEM
Trees were originally obtained by Osborne and Suddick (1972) between
1961 and 1965. These data have been analyzed in depth before (e.g.,
McArdle & Epstein, 1987; McArdle, 1988). An analysis with SEM Trees
was performed by Brandmaier et al. (2013) using a linear latent growth
curve model. We extend this analysis to a Hybrid SEM Tree.

The dataset was created from measurements for 204 children on eleven
different items from the Wechsler Intelligence Scale for Children (WISC;
Wechsler, 1949). The children were repeatedly measured on four occasions,
at the ages of six, seven, nine, and eleven years. The raw scores of four
“verbal” subscales and four “performance” subscales were aggregated into
a composite score, which was rescaled to a range between 0 ‘and 100. In
this analysis, the covariates included the dichotomous variables “sex,” the
continuous variable “age,” and the continuous variable “years of education”
of each mother and father. The covariate “father’s education” had missing
values. We set up an equivalent latent growth curve model for an analysis
with SEM Trees based on the description by Brandmaier et al. (2013).
Then, we created modified versions of this model representing competing
hypotheses about the undetlying growth curve of cognitive development.
All candidate models were derived from the following baseline model (see
Figure 4.11), which we refer to as BASELINE. This model has four
observed variables representing the test scores at the four occasions of
measurement. Each occasion has independent errors of measurement. Five
freely estimated parameters describe the distribution at the latent level:
The intercept is assumed to be distributed as I NN(,(L[,O‘Iz), the slope
term is assumed to be distributed according to § NN(Ms,O’g'), and the
covariance between both is modeled as o7%. The first slope loading was
fixed at zero and the remaining slope loadings are parametrized as A Az,
and A3. The residual variance o2 is assumed to be equal for each occasion
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rowth curve model for the WISC dataset. 5
composite score of WISC is measured longitudinally on four occasioy
represented by variables Wi, Ws, Wa, and Wy with correspondiy,
errors of measurement Ep, .. 4. Model parameters represent the latey;
intercept I ~ N(/L[,G’Iz), the latent slope S ~ N (us,03), the
covariance between both GIZS’ the residual error terms at each occasiqy,

with variance o2 and the slope loadings beyond the first occasion of

measurement A, Az, and A3.

Figure 4.11 Longitudinal latent g

of measurement. We derived four candidate models that are nested in the

template model.

1 A linear latent growth curve model represents the hypothesis thy
cognitive development in this time period is approximately linear. Iy
order to obtain this model from BASELINE, we set Ay = 1, Ay =3,
and A3 =5. This model is referred to as LINEAR.

2 A hypothesis of no cognitive change s formalized in the FLAT mode],
by removing the slope component from BASELINE and thereby
eliminating the parameters \s, org‘, or[zs, A, A2, and As.

3 We assume that cognitive improvement Stops after an individugy]
maximum level of improvement that is attained at the third occasion,
This STOPPING model is achieved by setting A1 = 1 and adding the
constraint Az = A3 to BASELINE. '

4 The fourth model SATURATION is a variant of the previous mode]
that assumes a linear trajectory of cognitive development on the first
three occasions and allows a different slope for the fourth occasion
of measurement that can represent either a saturation of change or a
boost in change. This is achieved by setting A; =1, A2 = 3 and freely
estimating A3. '

A Hybrid SEM Tree was induced from the dataset using the set of all
four described template models, which reflect competing hypotheses about
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the expected trajectories of cognitive development. The resulting SEM
Tree with Bonferroni-corrected p values is shown in Figure 4.12 and the
expected growth trajectories that are implied by the models associated
with the four leaf nodes of the tree are plotted in Figure 4.13. The
covariate “father’s education” constitutes the primary partition. In each
subset, “mother’s education” is the second split covariate. The selection
of the split point is the same as reported by Brandmaier et al. (2013).

father’s education, Ir = 17.966

HS graduation

motlier’s education, Ir = 0,063 mother’s education, Ir = 0.843

1S graduation HS graduation

f:(lxvt\iu:;'(’)n Linear Lincar Linear

e 4756 40,128 N =26 N =11 N =100
::é - ;;;‘1’ jg;ig oF = 8,302 £1.646 oF = 13.703 :£4.132 o = 11786 £1.179
of = 19105 43,254 o} = 32461 £10.431 of = 1822 £:4.903 af = 19.379 £3.795
b L os6 £0.725 g - 5.087 £1.862 o}y = 1867 £1.773 iy = 2.006 £0.588
o L 161 40321 0% = 1276 £0.524 o} = 2,103 £1.323 % = 0.386 £0.136
2 L1828 £0.548 ftr = 18.888 £1.2 1 = 16,587 £0.951 pr = 23301 £0.514
};,’s:. 5.318 £0.212 g = 5.313 £0.266 15 = 5.691 £0,525 s = 5.903 £0,109

Figure 4.12 Hybrid SEM Tree on the WISC dataset. The LINEAR model
representing linear change throughout all occasions of measurement
is chosen for all subgroups with the exception of the subgroup in
which both parents did not graduate from high school (HS; leftmost
leaf). Parameter estimates are given with their standard deviations.
Ir indicates the expected log-likelihood ratio.

2 -] e=——— parents with HS
=~ == = fathers with HS; mothers wio HS
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Figure 4.13 Expected growth trajectories for the subgroups retrieved by an SEM
Tree with a height of two. The trajectories differ in their intercepts
depending on whether parents graduated from high school (HS) or
not. The linear growth of the dot-dashed trajectory exhibits a slight
saturation at time point 3, as marked by a vertical line.
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Among the ordinal values representing different qualities of educatioy
the maximally informative split for both variables is related to whethe;
parents graduated from high school or not. The difference in effect size
of the slope difference between both extreme groups, the group wig,
the higher-educated parents and the group with the less-educated pareny
is quite high with an effect size of d = .76. However, they seem to be
dominated by differences in the mean trajectories (see Figure 4.13). Whijls
previous analyses have focussed on the assumption of an approximately
linear developmental change, we discovered an interesting effect with the
hybrid analysis. The cognitive trajectory of children with parents thy
did not graduate from high school (leftmost leaf in the tree, see Figuge
4.12) is better represented by the SATURATION model that allows ,
change of slope between the last two occasions of measurement. Thig
hints that the cognitive development of the children from this subgroup
saturates earlier than for those from the remaining groups, for which the
linear model assumes a fixed A3 = 5, while it is estimated as A3 = 4.76
for the low-performing group, representing a less pronounced increase
between the last two occasions. This can be observed as a slight flattening
of the expected developmental trajectory of this subgroup, shown in

Figure 4.13.

Conclusion

In this chapter we have reviewed the SEM Tree methodology and high-
lighted important methodological and algorithmic aspects. Furthermore,
we have contributed an extension to the paradigm: outlining a Hybrid
SEM Tree methodology that not only allows model parameters to differ
across subgroups but also across model specification. We have concluded
with empirical examples to demonstrate how SEM Trees can be used to
find influences of covariates on models and model parameters.

We have provided several examples of how SEM Trees can be applied
to empirical data. Based on SAT scores, we have shown trees with 2
univariate and a bivariate regression model as template models. In the
former tree, the continuous covariate “age” was chosen as the split variable.
We presented an analysis of the different possible age-related split points that
discourages reification of the binary age-split but rather suggests reporting
a range of changes. Furthermore, we have presented a longitudinal SEM
Tree based on cognitive data from the BASE study and showed the
influence of parents’ reading behavior, presumably as a proxy of educational
background, on children’s cognitive development in old age. In addition,
we have shown a factor-analytic SEM Tree that identifies an interaction
of age and gender in the extraversion score on a personality test. We have
concluded with a demonstration of Hybrid SEM Trees that allow a set of
potentially non-nested template models instead of a single model. First, we
illustrated the method with simulated data and proceeded to demonstrate
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it on an empirical dataset of the Wechsler Intelligence Score for Children.
Between a set of longitudinal SEMs that represent competing hypothesis
of cognitive change, the SEM Tree selects a linear model that has been
similarly described before but also hints that there is a subgroup for which
a change point model could be a better representation.

In the context of longitudinal data, SEM Trees are related to longi-
tudinal recursive partitioning, as introduced by Segal (1992), including
the extension presented by Zhang and Singer (1999). Su, Wang, and Fan
(2004) suggested building trees based on models estimated with maximum-
likelihood procedures. An alternative framework for SEM Trees is provided
in the R package pathmox (Sanchez & Aluja, 2012) by Sanchez (2009) that
is based on partial least squares estimation of linear models. Zeileis et al.
(2008) proposed a general framework for recursive partitioning based on
permutation tests available in the package party (Hothorn, Hornik, Strobl,
Zeileis, & Hothorn, 2011). Merkle and Zeileis (2011) suggested use of
the R package strucchange (Zeileis, Leisch, Hornik, & Kleiber, 2002) to
create trees based on factor models that recover subgroups that maximally
break specified invariance assumptions. Further research comparing the
different estimation methods and covariate selection procedures remains to
be done.

Not all datasets are equally suited for the application of recursive
partitioning. Due to the successive partitioning of the dataset, the resulting
subsets quickly reduce in size. Generally, the larger a dataset, the better it
is suited to recursive partitioning. As a rule of thumb, Hawkins (1999)
has suggested that the sample size should have at least three digits in
order to apply a recursive partitioning algorithm. However, the required
sample size depends on many factors including number and type of free
parameters, effect size, missingness, normality of the data, and choice of
estimator. Also, if decision boundaries are linear but not orthogonal to the
axes, or if decision boundaries are complex, decision trees tend to yield
large and overly complex tree descriptions. Furthermore, the framework
assumes that heterogeneity in the dataset is observed, that is, that covariates
were obtained that elicit meaningful group difference with respect to the
model. If unobserved heterogeneity is assumed, latent mixture models
(McLachlan & Peel, 2000; Lee & Song, 2003) might provide a good starting
point for further analyses. However, the clear advantage of trees is their
straightforward interpretability as a “white box” model and the possibility of
searching a large space of covariates and covariate interactions for influences
on the model-predicted distribution.

Critics tend to allege that researchers reporting exploratory results
cannibalize chance and are simply dredging data instead of carefully
excavating reliable patterns. They claim that the exploitation of a large
hypothesis space generates results that are merely random fluctuations and
that exploration compromises their confirmatory results. Addressing the
former problem, SEM Trees are equipped with procedures that support
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the generalizability of findings, for example, by controlling statistical ey, -
or employing cross-validation for model and variable selection. The htter
criticism is addressed in the propositions of ethical data analysis by McAy .
(2010), in which he advocates performing exploratory analysis affer .
confirmatory analysis,

To conclude, SEM Trees provide a versatile exploratory data analysis
for SEM given that a set of covariates is available whose influence on y,.
model is as yet unclear. The method combines exploratory detection ¢
influences of these covariates on parameter estimates for observed variaby,g
latent variables, and their relations, and formal confirmatory mechanig
to ensure generalizability. An 1mplementat10n of SEM Trees prov1d1nq a
range of features described in this article is available as the semfree pacl\]ge

(Brandmaier, 2012b).

Note
We would like to thank Julia Delius for her helpful assistance in language and Style
editing.
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