
Timo von Oertzen & Timothy R. Brick

Published online: 3 October 2013
Psychonomic Society, Inc. 2013

Abstract This article proposes a new, more efficient method
to compute the minus two log likelihood, its gradient, and the
Hessian for structural equation models (SEMs) in reticular
action model (RAM) notation. The method exploits the
beneficial aspect of RAM notation that the matrix de-
rivatives used in RAM are sparse. For an SEM with K
variables, P parameters, and P ′ entries in the symmet-
rical or asymmetrical matrix of the RAM notation filled
with parameters, the asymptotical run time of the algo-
rithm is O (P ′K 2+P 2K 2+K 3). The naive implementation
and numerical implementations are both O (P 2K 3), so
that for typical applications of SEM, the proposed algo-
rithm is asymptotically K times faster than the best
previously known algorithm. A simulation comparison
with a numerical algorithm shows that the asymptotical
efficiency is transferred to an applied computational
advantage that is crucial for the application of maxi-
mum likelihood estimation, even in small, but especially
in moderate or large, SEMs.

Keywords RAMnotation .Minus two log likelihood .

Hessian . Sparse density algorithm

Introduction

In the last decade, models in psychology have become in-
creasingly larger and more complex, in terms of both the
number of parameters and the number of observations for
each data row (e.g., Voelkle, Oud, von Oertzen, &
Lindenberger, 2012). At the same time, the body of re-
searchers who use these complex models is also broadening.

Structural equation models (SEMs; cf. Baltes, Reese, &
Nesselroade, 1988) have been found to be a useful compro-
mise between model readability and model richness for a
broad range of models. At the beginning of SEMs, these
models were usually expressed in mathematically dense ma-
trix representations. These representations are convenient for
the design of efficient optimization routines for these models,
as, for example, those used in LISREL (Jöreskog, and
Sörbom, 1993), MPlus (Muthén & Muthén, 2004), or others.
As the SEM framework has come to be used more broadly,
path diagrams (McArdle & Boker, 1990; Stelzl, 1986; Wright,
1934) have emerged as a means of graphically representing
models. For example, Fig. 1 shows a path diagram
representing a latent growth curve. Path diagrams are intuitive
to understand and convenient for both the researcher using the
model and the reader of publications. However, path diagrams
are less useful as a computer representation. When fitting a
model to a data set with a suitable computer program, the path
diagram has to be converted to a matrix representation, either
by the computer or manually by the researcher (cf. Grimm &
McArdle, 2005).

Reticular action model (RAM) notation (McArdle, 2005;
McArdle & Boker, 1990; McArdle & McDonald, 1984) for
SEMs overcomes the conflict between simple accessibility

T. von Oertzen (*)
Department of Psychology, University of Virginia, 1023 Millmont
Street, Charlottesville, VA 22903, USA
e-mail: timo@virginia.edu

T. R. Brick
Center for Lifespan Psychology, Max Planck Institute for Human
Development, Berlin, Germany

Behav Res (2014) 46:385–395
DOI 10.3758/s13428-013-0384-4

Efficient Hessian computation using sparse matrix derivatives
in RAM notation

and computer efficiency. In RAM, two matrices (A for asym-
metric, one-headed arrows and S for symmetric, two-headed
arrows) directly represent the paths from a path diagram. The
covariance matrix of all variables is given by the simple
equation

I−Að Þ−1S I−Að Þ−T : ð1Þ

Both latent and manifest variables are described by
this matrix. A filter matrix F that selects the manifest
variables from the set of all variables is applied to the
equation to obtain the total model-predicted covariance
matrix

F I−Að Þ−1S I−Að Þ−T FT : ð2Þ

Modern statistical programs like OpenMx (Boker et al.,
2011) or Onyx (von Oertzen, Brandmaier, & Tsang, 2012) use
RAM to represent the data covariance matrix and to compute
the likelihood of a given data set. Since the matrix entries
directly represent path weights in a path diagram, OpenMx
allows both easy access to the SEM for researchers less
familiar with matrix notation and a direct implementation in
the software.

One main advantage of RAM is that since path diagrams
directly represent all polynomial dependencies between vari-
ables, all entries in the A and S matrices of the RAM notation
are either constants or single parameters. This is most critical
if one aims to compute the gradient and the Hessian of

likelihood analytically. In this case, we find that the first
derivatives of A and S ,

∂A
∂θ

and
∂S
∂θ

; ð3Þ

are both sparse, since only the entries of A and S that are the
parameter θ are one, while all other entries (all constants and
any other parameters in A and S) are zero. In addition, the
second derivatives

∂2A
∂2θ

and
∂2S
∂2θ

ð4Þ

are both zero.
However, current implementations of statistical optimizers

do not take advantage of this property. Usually, the gradient
and/or Hessian are not computed explicitly but numerically
approximated by the optimizer—for example, the NPSOL rou-
tine (Gill et al., 2001) in OpenMx. Other packages use a similar
strategy. The sem package (Fox, 2006) does not use the Hessian
in the optimization but computes it when requested by the user
or required for some summary calculations. It computes the
Hessian for all possible paths simultaneously and then selects
those elements that are free parameters from the complete
matrices. The lavaan (Rosseel, 2012) package also relies on a
Hessian-free optimizer for maximum likelihood. When a Hes-
sian is required for summary statistics, it uses a more precise
numerical approximation. Both methods are very effective, but
neither method takes into account the specific sparse structure
of the Hessian in RAM notation, which can further improve the
computation speed and precision.

In addition to the fact that numerical approximation is, by
design, imprecise, for P parameters it needs P2 calls to the
likelihood computation. Since the derivatives of A and S are
not used for the likelihood computation, the sparseness of
these matrices is ignored. For K variables, K3 multiplications
need to be done to compute the matrix products in the likeli-
hood computation. In total, numerical approximation of the
Hessian requires O (P2K3) operations.1

The RAM representation is uniquely suited to this optimi-
zation. The smaller, denser matrices of the LISREL specifica-
tion require the same asymptotic runtime to compute, since
the computation time still scales up to larger numbers of
parameters and variables in roughly the same manner. At the
same time, the increased density of these smaller matrices and

1 Not all optimizers necessarily compute a full Hessian at each step of
optimization. Some trade precision in the Hessian against computation
time, even though they still do not benefit from the sparseness in RAM
notation.

Fig. 1 Latent growth curve model with M measurement occasions (for
mean centered data)

386 Behav Res (2014) 46:385–395

the increased complexity of the covariance equation make the
LISREL representation less suitable for the sparse derivative
method. While it might be possible to derive such a method
for the LISREL specification, the authors are aware of no such
algorithm at the time of printing.

In the present article, we suggest a method called the sparse
derivative algorithm to compute the likelihood, the gradient,
and the Hessian analytically and efficiently. In this method,
the derivatives of the likelihood are expressed in terms of the
derivatives of A and S . This permits efficient use of their
sparseness. Furthermore, the sum of all nonzero entries in all
derivatives of A and S is bounded by K2. This provides good
upper bounds to compute the running time.

The sparse derivative algorithm exploits these bounds to
precompute a number of matrices that depend on either ∂A

∂θ or
∂S
∂θ for all parameters θ in P ′K2 steps, where P ′ is the number
of nonconstant entries in A and S . Typically, this value is of
the same order of magnitude as K . Then the likelihood,
gradient, and Hessian are computed using these prepared
matrices in P2K2 steps.

The derivations required to express the likelihood, its gradi-
ent, and the Hessian in terms of the derivatives of A and S are
mathematically involved, but they are worth the effort. While
the speed gain of the Hessian computation is less important for
small models, we show that for models with a high number of
variables and parameters, the proposed method outperforms
classical methods by far. This allows a noticeable speedup in
fitting data to complex SEMs, which widens the horizon of
models psychologists can reasonably use in their research.

Mathematical methods

In RAM notation, SEMs are described by a symmetrical

matrix S∈RK�K, an asymmetrical matrix A∈RK�K, a filter

matrix F∈RM�K, and a mean vector m∈RK, where M is the
number of manifest variables and K the total number of
variables including the latent variables from the model. The
data in SEMs are normally distributed with covariance matrix
and mean

Σ ¼ F I−Að Þ−1S I−Að Þ−T FT μ ¼ F I−Að Þ−1m: ð5Þ

In general form, the minus two log likelihood divided by
the number of samples N for a data covariance matrix D and
mean d is

L ¼ ln 2πð ÞMdet Σð Þ
� �

þ Tr Σ−1D
� �þ d−μð ÞTΣ−1 d−μð Þ:

ð6Þ

In this section, we describe the mathematical processes
behind the algorithm (see Algorithm 1 below). In essence,
we define some helper matrices that allow us to reexpress the
second derivative of Equation 6 in different terms. In this new
formulation, the computationally expensive part of the second
derivative consists of products [XYZ] in which Y is sparse—
that is, has only a few nonzero elements. That permits efficient
computation of the terms [XYZ]. We will first introduce the
helper matrices and compute the derivatives of these matrices
and of Σ and μ , using the helper matrices. We then reexpress
the second derivative of Equation 6 in terms of these matrix
derivatives. Other than matrix derivatives, no mathematical
theorems are used. An expansion of all derivatives can be
found in the Appendix. In the next section, we continue by
describing the computational effects of this algorithm.

Behav Res (2014) 46:385–395 387

In the following, we will assume that all entries in A , S , and
m are either constant or a single parameter, such that the
entries of the first derivatives of these are either zero or one
and the second derivative is zero. We abbreviate

B ¼ I−Að Þ−1 ð7Þ

C ¼ I−Σ−1D
� � ð8Þ

E ¼ BSBT ð9Þ

b ¼ d−μð Þ: ð10Þ
Observe that the derivatives of B , C , and E are given by

∂B
∂θ

¼ B
∂A
∂θ

B ð11Þ

∂C
∂θ

¼ Σ−1∂Σ
∂θ

Σ−1D ð12Þ

∂E
∂θ

¼ B
∂A
∂θ

E

� �sym
þ B

∂S
∂θ

BT ; ð13Þ

where Asym=A +AT. In terms of these matrices, Σ can be
expressed as

Σ ¼ FEFT ð14Þ

and

∂Σ
∂θ

¼ FB
∂A
∂θ

EFT

� �sym
þ FB

∂S
∂θ

BT FT ð15Þ

and

∂2Σ
∂θ1∂θ2

¼ FB
∂A
∂θ1

B
∂A
∂θ2

EFT þ FB
∂A
∂θ2

B
∂A
∂θ1

EFT

�
ð16Þ

þFB
∂A
∂θ1

B
∂S
∂θ2

BT FT þ FB
∂A
∂θ1

E
∂A
∂θ2

� 	T

BT FT ð17Þ

þFB
∂A
∂θ2

B
∂S
∂θ1

BT FT
isym

: ð18Þ

The means can be expressed in the same way as

μ ¼ FBm ð19Þ

with derivatives

∂μ
∂θ

¼ FB
∂A
∂θ

Bmþ FB
∂m
∂θ

ð20Þ

and

∂2μ
∂θ1∂θ2

¼ FB
∂A
∂θ2

B
∂A
∂θ1

Bmþ FB
∂A
∂θ1

B
∂A
∂θ2

Bmþ FB
∂A
∂θ2

B
∂m
∂θ1

þ FB
∂A
∂θ1

B
∂m
∂θ2
ð21Þ

The derivatives of A , S , and μ are sparse, since the entries
are zero everywhere, with the exception of those entries where
the parameter occurs. Even better, the nonzero entries of the
first derivatives of A , S , and μ for all parameters together are
bounded by the size of the matrices and the vector,
respectively.

The first derivative of L is given as (cf., e.g., Pinheiro &
Bates, 2000)

∂L
∂θ1

¼ Tr Σ−1 ∂Σ
∂θ1

C

� 	
− bTΣ−1 ∂Σ

∂θ1
þ 2

∂μ
∂θ1

� 	T
 !

Σ−1b;

ð22Þ

and the second derivative as

∂2L
∂θ1∂θ2

¼ Tr Σ−1 ∂2Σ
∂θ1∂θ2

C−Σ−1 ∂Σ
∂θ1

Σ−1 ∂Σ
∂θ2

C þ Σ−1 ∂Σ
∂θ2

Σ−1 ∂Σ
∂θ1

Σ−1D

� 	
ð23Þ

þbT 2Σ−1 ∂Σ
∂θ1

Σ−1 ∂Σ
∂θ2

Σ−1−Σ−1 ∂2Σ
∂θ1∂θ2

Σ−1
� 	

b ð24Þ

þ2
∂μ
∂θ1

� 	T

Σ−1 ∂Σ
∂θ2

Σ−1bþ 2
∂μ
∂θ2

� 	T

Σ−1 ∂Σ
∂θ1

Σ−1b

ð25Þ

þ2
∂μ
∂θ1

� 	T

Σ−1 ∂μ
∂θ2

−2
∂2μ

∂θ1∂θ2

� 	T

Σ−1b: ð26Þ

Considering computational efficiency, all terms outside the
traces in the first and second derivatives are a number of
matrix-vector multiplications, so they can be done efficiently
in P2K2 steps at most. We concentrate on computing the trace
in line 23. A close inspection reveals that the argument of the
trace is a sum of multiple matrices of the form

XYZ½ � or X 1Y 1Z1½ �⋅ X 2Y 2Z2½ �; ð27Þ

where the Xs and Zs are potentially full matrices (sometimes
the identity) and the Ys are the first derivative of either A or S
and, thus, sparse matrices, where the number of nonzero
entries for all parameters sum up to P ′. As a result, the
[XYZ] for all parameters can be computed by looping through
the parameters and (1) enumerating every position in Y that a
given parameter appears in and (2) performing an outer vector
multiplication on the corresponding row of X and column of

388 Behav Res (2014) 46:385–395

Z . Each outer vector multiplication requires K2 steps. This is
done for at most P ′ position of Y. As a result for all parameters
this process can be done in P ′K2 steps for each term [XYZ].

Once we have prepared all XYZ matrices, we compute the
trace either directly for the [XYZ] pairs or using

Tr X 1Y 1Z1½ �⋅ X 2Y 2Z2½ �ð Þ ¼
X
i; j¼1

K

X 1Y 1Z1ð Þij X 2Y 2Z2ð Þij ð28Þ

in K 2 steps for each parameter combination. As a result,
these multiplications can be done efficiently in P 2K 2 steps
in total.

What remains is to identify the [XYZ] triplets in the trace.
Factorizing the trace term in Line 23 using the derivatives ofΣ
yields four terms to compute:

Σ−1 ∂2Σ
∂θ1∂θ2

C

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{4

−Σ−1 ∂Σ
∂θ1

zfflfflfflffl}|fflfflfflffl{1

Σ−1 ∂Σ
∂θ2

C

zfflfflfflfflffl}|fflfflfflfflffl{3

þΣ−1 ∂Σ
∂θ2

zfflfflfflffl}|fflfflfflffl{1

Σ−1 ∂Σ
∂θ1

Σ−1D

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{2

:

ð29Þ

These, in turn, factorize in terms of the derivatives of A and
S to

Σ−1∂Σ
∂θ

Z ¼ Σ−1FB
∂A
∂θ

EFTZ

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{1;2;3

þ Σ−1FE
∂A
∂θ

� 	T

BT FTZ

" #zffl}|ffl{4;5;6

ð30Þ

þ Σ−1FB
∂S
∂θ

BT FTZ

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{7;8;9

ð31Þ

Σ−1 ∂2Σ
∂θ1∂θ2

C ¼ Σ−1FB
∂A
∂θ1

� �zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{10

B
∂A
∂θ2

EFTC

� �zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{11

þ Σ−1FB
∂A
∂θ2

� �zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{10

B
∂A
∂θ1

EFTC

� �zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{11

ð32Þ

þ Σ−1FB
∂A
∂θ1

� �zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{10

B
∂S
∂θ2

BT FTC

� �zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{12

ð33Þ

þ Σ−1FB
∂A
∂θ1

� �zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{10

E
∂A
∂θ2

� 	T

BT FTC

" #zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{13

ð34Þ

þ Σ−1FB
∂A
∂θ2

� �zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{10

B
∂S
∂θ1

BT FTC

� �zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{12

ð35Þ

þ Σ−1FE
∂A
∂θ2

� 	T

BT

" #zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{14

∂A
∂θ1

� 	T

BT FTC

" #zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{15

ð36Þ

þ Σ−1FE
∂A
∂θ1

� 	T

BT

" #zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{14

∂A
∂θ2

� 	T

BT FTC

" #zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{15

ð37Þ

þ Σ−1FB
∂S
∂θ2

BT

� �zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{16

∂A
∂θ1

� 	T

BT FTC

" #zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{15

ð38Þ

þ Σ−1FB
∂A
∂θ2

E

� �zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{17

∂A
∂θ1

� 	T

BT FTC

" #zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{15

ð39Þ

þ Σ−1FB
∂S
∂θ1

BT

� �zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{16

∂A
∂θ2

� 	T

BT FTC

" #zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{15

ð40Þ

The Z in Lines 30 and 31 is either identity, Σ−1D , or C .
Only two of those three—that is, 6 [XYZ] terms—need to be
computed, sinceC =I −Σ−1D . The second derivative term has
8 unique [XYZ] terms. In total, 14 such terms need to be
prepared before starting the actual computation.

To summarize the algorithm, we first have to compute the
matrices B , C , E , and Σ. This takes O (K3) steps. We then
prepare the 14 [XYZ] terms in Lines 30–40 for all P param-
eters in parallel, which needsO (P ′K2) operations, where P ′ is
the number of nonconstant entries in A and S . Using these
matrices, we compute the trace in Equation 22 inO (PK) steps
and in Equation 23 in O (P2K2) steps. Finally, adding the
mean contributions to the gradient and Hessian requires a
number of matrix-vector multiplications. These computations
take O (PK2) and O (P2K2) steps, respectively. In total, the
running time of the algorithm is O (P2K2+K3+P ′K2).

Speed comparison in simulation

To validate the method and to test its efficiency, we simulated
data from a linear latent growth curve model (LGCM; Laird &

Behav Res (2014) 46:385–395 389

Ware, 1982;McArdle & Epstein, 1987). The model is shown in
Fig. 1. We systematically varied the number of observationsM
measured per participant in the LGCM from 10 to 100 in steps
of 10. Note that 100 observations per individual is realistic even
for behavioral data (Schmiedek & Lindenberger, 2010) and can
be considered rather small for multivariate analysis of neuro-
logical data (Schmitt et al., 2007). Note that while the power to
find an effect in the fitted model depends on the number of
participants observed (Prindle & McArdle, 2012), the Hessian
computation speed depends only on the number of variables in
the model.

The total number of variables is K =M +2, the M manifest
and the two latent variables. The total number of parameters is
P =M+3, the variances and covariance of intercept and slope,
and one variance parameter for the measurement error at each
measurement occasion. In this situation, the A matrix is con-
stant, and the S matrix contains the two by two covariance
matrix of the latent variables plus all measurement error vari-
ances as parameterized entries. As a result, we haveP ′=M +4=
K +2 in total.

We computed the Hessian of the minus two log likelihood
100 times using the free SEM software Onyx (von Oertzen

et al., 2012), either by numerical approximation via P2 calls
of the minus two log likelihood function or by the sparse
derivative analytical method. Figure 2 (top panel) shows
the resulting average time to compute these for the numerical
(dotted line) and the sparse derivative (solid line) method.
The lower panel shows the same graph with the lower
part of the y -axis enlarged to make the curvature of the
sparse derivative algorithm more visible. Table 1 gives the
numerical values of the computation times in milliseconds.
Even for only 10 observations, the sparse computation
method is already 10 times faster. It outperforms numerical
approximation by far for larger models, in addition to providing
a more precise result.

For increasing K , we expect the naive algorithm to run in
O (K5) steps and the sparse density algorithm to run in O(K4)
steps. To validate this, Fig. 3 gives a log-log plot of the same
results as Fig. 2. Again, the dotted line is the log-log line of the
numerical algorithm, the solid line the sparse derivative algo-
rithm. As was expected, we see straight lines for both
methods, since both are polynomial in K after K exceeds an
initial range. The average linear slope of the log-log plot for
the numerical algorithm is 4.70, indicating approximately the

20 40 60 80 100

0
50

00
0

15
00

00
25

00
00

Number of Variables

P
ro

ce
ss

in
g

T
im

e
[m

s]

numeric
sparse density

20 40 60 80 100

0
20

00
60

00
10

00
0

Number of Variables

P
ro

ce
ss

in
g

T
im

e
[m

s]

numeric
sparse density

Fig. 2 Average time needed to compute the Hessian of the minus two log
likelihood for a Latent growth curve model in reticular action model
specification in Onyx. The dotted line is the result for the numerical
computation, while the solid line gives the result with the sparse

derivative computation. The horizontal axis is the number of variables,
including two latent variables. The top panel gives the full range of values
for the vertical axis; the lower panel enlarges the lower range of the
vertical axis

390 Behav Res (2014) 46:385–395

expected result of 5. The log-log plot for the sparse derivative
algorithm is 3.84, also close to the expected result of 4.

To demonstrate the advantage of the sparse Hessian com-
putation for actual maximum likelihood optimization, we
simulated 100 data sets for the above models, with between
M =5 and M =40 observations, and performed a complete
maximum likelihood estimation both with a numerical

Hessian computation and with the sparse Hessian computa-
tion in Onyx. We expected a double gain for the sparse
Hessian computation, (1) since each single Hessian computa-
tion runs faster and (2) because of the higher precision of the
Hessian, fewer calls are needed for the estimates to converge.

Figure 4 shows the time needed for the maximum likeli-
hood optimizations. As was expected, the time differences are
even more pronounced in a complete estimation process than
in the single Hessian computation shown in Fig. 2.

To show the robustness of the method, we repeated the
Hessian computation from Fig. 2, using the free statistical
software OpenMx (Boker et al., 2011). OpenMx’s existing
Hessian computation method can perform the computation
in parallel and spread work across a number of computer
processors. We wanted to demonstrate that the advantage of
the sparse Hessian computation adds to the parallelization
advantage without negative interference. Figure 5 shows the
result of the Hessian computation for the same model as above
in OpenMx, without parallelization (dotted/gray solid line)
and with parallelization (dashed/dark solid line) on an 8-core
machine. While the asymptotic behavior of both algorithms is
not influenced by parallelization, the individual compute times
are 6 to 8 times faster when using parallelization both with and
without sparse Hessian computation. It can be seen that the
sparse Hessian computation outperforms numerical

20 50 100

1
10

0
10

00
0

Number of Variables (Log Scale)

P
ro

ce
ss

in
g

T
im

e
[m

s]
 (

Lo
g

S
ca

le
)

numeric
sparse density

Fig. 3 Log-log plot of the number of variables and the computation time for the numerical and the sparse derivative computation

Table 1 Average time in milliseconds needed to compute the Hessian of
a minus two log likelihood for a latent growth curve model in reticular
action model specification in Onyx. The numbers are graphically shown
in Fig. 2

Observations Numerical Sparse Derivative

10 10.7 1.1

20 153.5 9.4

30 891.2 37.6

40 3,289.0 126.6

50 9,705.0 307.4

60 22,320.0 628.6

70 46,410.0 1133.9

80 88,470.0 1982.0

90 154,100.0 2933.0

100 261,300.0 4723.2

Behav Res (2014) 46:385–395 391

approximation even if the sparse computation is done on a
single processor and the numerical approximation is done in
parallel.

The increase in speed provided by the sparse derivative
computation method is particularly important in processes with
repeated optimizations, as, for example, in a bootstrap method
(Efron, 1979) or a Monte Carlo simulation. Assume, for ex-
ample, a simulation with 1,000 repetitions on an LGCM as
in the above example with 20 observations. With numerical
Hessian computation, this process would take 1.5 h. With
the sparse derivative method, the time would be reduced to
12 min. For a larger LGCM with 40 observations, the
process would take 3.5 h, instead of 2.5 days.

Discussion

In this article, we presented the sparse derivative algorithm to
compute the minus two log likelihood for SEM specifications
in RAM notation and its first two derivatives more efficiently
than with previously known algorithms. In typical cases, the
method is one order of magnitude faster; in our example for an
LGCMwith 100 observations, it is about 50 times faster. This
speed increase is possible because of the sparse structure of
the derivatives of the A and S matrices in RAM notation,

which constitutes a major advantage of RAM that, so far, has
not been exploited computationally.

The speed gain for the sparse density algorithm is most
pronounced in large SEMs. Some of those are already used
today (Schmiedek & Lindenberger, 2010), and new uses for
SEMs that include large models are proposed that may exceed
100 observations by far (Voelkle et al., 2012). In addition,
there are multiple data sets—for example, large genome stud-
ies (Laird & Ware, 1982)—in which SEMs might provide
increased power and theoretical insights but which are, to
date, beyond the range of statistical programs (Evans, 2002;
Kaabi et al., 2006). For such applications, it is crucial to apply
all possible means of increasing efficiency of fitting algo-
rithms, including taking advantage of the sparsity of matrix
derivatives in RAM notation.

There are special cases in which the sparse derivative
method as described here is as bad as or even worse than the
naive method. The method is designed for cases in which the
numbers of parameters, P, is on the order of magnitude of the
number of variables, K . For small numbers of parameters, the
term O (P2K3) of standard algorithms approaches the O(K3)
term in the present method. Even worse, if P is very small
and P ′ is in the order of magnitude of K2 (i.e., most entries
of S are parameters that are used repeatedly), then O(P ′K2)
approaches O(K4), which is worse than the naive algorithm

0
50

00
0

15
00

00

Number of Variables

P
ro

ce
ss

in
g

T
im

e
[m

s]

numeric
sparse density

5 10 15 20 25 30 35 40

5 10 15 20 25 30 35 40

0
50

00
10

00
0

20
00

0

Number of Variables

P
ro

ce
ss

in
g

T
im

e
[m

s]

numeric
sparse density

Fig. 4 Average time for a complete maximum likelihood estimation with numerical Hessian computations (dotted line) and sparse Hessian computation
(solid line). The top panel gives the full range of values for the vertical axis; the lower panel enlarges the lower range of the vertical axis

392 Behav Res (2014) 46:385–395

for low P. However, these cases are easy to recognize
automatically. The sparse derivative methods should be used
only if either P is large or P ′ is low. In models typically used
in psychology, S and A are sparse themselves, which implies
small P ′ to begin with.

The present article concentrates on the theoretical deriva-
tion of the sparse derivative method. The algorithm has been
implemented in the SEM software Onyx based on a prototype
in LOGH (von Oertzen, Ghisletta, & Lindenberger, 2010) and
in the open-source OpenMx software. At time of writing, it is
expected that these advances will be available in the next
version of OpenMx.

Appendix

The purpose of this appendix is to expand computations
where the full expansion would impede reading in the main
article. The following derivative rules for matrices X is
used repeatedly:

∂X −1

∂θ
¼ −X −1∂X

∂θ
X −1: ð41Þ

The following is the expansion of the derivative of B in
Equation 11,

B ¼ I−Að Þ−1 ð42Þ
∂B
∂θ

¼ − I−Að Þ−1∂ I−Að Þ
∂θ

I−Að Þ−1 ð43Þ

¼ − I−Að Þ−1 −1ð Þ∂A
∂θ

I−Að Þ−1 ð44Þ

¼ B
∂A
∂θ

B; ð45Þ

C in Equation 12,

C ¼ I−Σ−1D
� � ð46Þ

∂C
∂θ

¼ −
∂Σ−1D

∂θ
ð47Þ

¼ −
∂Σ−1

∂θ
D ð48Þ

¼ Σ−1∂Σ
∂θ

Σ−1D; ð49Þ

10 20 30 40 50 60

0
10

00
20

00
30

00
40

00
50

00

Number of Variables

P
ro

ce
ss

in
g

T
im

e
[m

s]

numeric serial
numeric parallel
sparse density serial
sparse density parallel

Fig. 5 Comparison of Hessian computation time using a numerical and
sparse Hessian computation with (dashed/dark solid line) and without
(dotted/gray solid line) parallelization. The parallel versions are

consistently 6 to 8 times faster. This advantage does not interact with
the speed gain using the analytical sparse Hessian algorithm

Behav Res (2014) 46:385–395 393

and E in Equation 13,

E ¼ BSBT ð50Þ

∂E
∂θ

¼ ∂B
∂θ

SBT þ B
∂S
∂θ

BT þ BS
∂B
∂θ

� 	T

ð51Þ

¼ B
∂A
∂θ

BSBT

� �sym
þ B

∂S
∂θ

BT ð52Þ

¼ B
∂A
∂θ

E

� �sym
þ B

∂S
∂θ

BT ; ð53Þ

where, again, Xsym=X +XT. Since Σ and E are identical up to
the F on both sides, the derivative of Σ in Equation 15 is as
above with additional Fs on both sides. The first term in
Equation 15 in the [.]sym operator, differentiated for a second
parameter θ2 gives

∂ FB
∂A
∂θ1

EFT

� 	
∂θ2

¼ F
∂B
∂θ2

∂A
∂θ1

EFT þ FB
∂2A

∂θ1∂θ2
EFT þ FB

∂A
∂θ1

∂E
∂θ2

FT

ð54Þ

¼ FB
∂A
∂θ2

B
∂A
∂θ1

EFT þ FB
∂A
∂θ1

B
∂A
∂θ2

E

� �sym
FT

ð55Þ

þFB
∂A
∂θ1

B
∂S
∂θ2

BT FT ð56Þ

¼ FB
∂A
∂θ2

B
∂A
∂θ1

EFT þ FB
∂A
∂θ1

B
∂A
∂θ2

EFT ð57Þ

FB
∂A
∂θ1

E
∂A
∂θ2

� 	T

BT FT þ FB
∂A
∂θ1

B
∂S
∂θ2

BT FT : ð58Þ

The second derivative of the second term in Equation 15 is

∂ FB
∂S
∂θ1

BT FT

� 	
∂θ2

¼ F
∂B
∂θ2

∂S
∂θ1

BT FT þ FB
∂2S

∂θ1∂θ2
BT FT þ FB

∂S
∂θ1

∂BT

∂θ2
FT

ð59Þ

¼ FB
∂A
∂θ2

B
∂S
∂θ1

BT FT þ FB
∂S
∂θ1

BT ∂A
∂θ2

� 	T

BT FT

ð60Þ

¼ FB
∂A
∂θ2

B
∂S
∂θ1

BT FT

� �sym
: ð61Þ

Since the first term is in a [.]sym operator, the complete
second derivative of Σ is given as in Equations 16–18 (note
that θ1 and θ2 are exchanged for better readability):

∂2Σ
∂θ1∂θ2

¼
h
FB

∂A
∂θ1

B
∂A
∂θ2

EFT þ FB
∂A
∂θ2

B
∂A
∂θ1

EFT ð62Þ

þFB
∂A
∂θ1

B
∂S
∂θ2

BT FT þ FB
∂A
∂θ1

E
∂A
∂θ2

� 	T

BT FT ð63Þ

þFB
∂A
∂θ2

B
∂S
∂θ1

BT FT
isym

: ð64Þ

For the first derivative of Equation 6, we use the matrix
derivative

∂ logdet Σð Þ
∂θ

¼ Tr Σ−1∂Σ
∂θ

� 	
: ð65Þ

Using also b =(d −μ) as before, the first derivative of
Equation 6 is expanded as

L ¼ ln 2πð ÞMdet Σð Þ
� �

þ Tr Σ−1D
� �þ bTΣ−1b ð66Þ

∂L
∂θ

¼ Tr Σ−1∂Σ
∂θ

� 	
þ Tr −Σ−1∂Σ

∂θ
Σ−1D

� 	
ð67Þ

−
∂μ
∂θ

� 	T

Σ−1b−bTΣ−1∂Σ
∂θ

Σ−1b−bTΣ−1∂μ
∂θ

ð68Þ

¼ Tr Σ−1∂Σ
∂θ

I−Σ−1D
� �� 	

−bTΣ−1∂Σ
∂θ

Σ−1b−2
∂μ
∂θ

� 	T

Σ−1b

ð69Þ

¼ Tr Σ−1∂Σ
∂θ

C

� 	
− bTΣ−1∂Σ

∂θ
þ 2

∂μ
∂θ

� 	T
 !T

Σ−1b;

ð70Þ

which is Equation 22. The second derivative of the trace term
in this equation is

∂ Σ−1 ∂Σ
∂θ1

C

� 	
∂θ2

¼ −Σ−1 ∂Σ
∂θ2

Σ−1 ∂Σ
∂θ1

C þ Σ−1 ∂2Σ
∂θ1∂θ2

C þ Σ−1 ∂Σ
∂θ1

Σ−1 ∂Σ
∂θ2

Σ−1D:

ð71Þ

394 Behav Res (2014) 46:385–395

To separate the remaining computation in two parts, we
concentrate on the two remaining terms in Line 69. The
second derivative of the middle term is

∂ bTΣ−1 ∂Σ
∂θ1

Σ−1b

� 	
∂θ2

¼ −2
∂μ
∂θ2

� 	T

Σ−1 ∂Σ
∂θ1

Σ−1b−bTΣ−1 ∂Σ
∂θ2

Σ−1 ∂Σ
∂θ1

Σ−1b

ð72Þ

þbTΣ−1 ∂2Σ
∂θ1∂θ2

Σ−1b−bTΣ−1 ∂Σ
∂θ1

Σ−1 ∂Σ
∂θ2

Σ−1b: ð73Þ

The second and fourth terms are identical because Σ is
symmetrical and bTXb =bTXTb . This allows us to exchange
the derivative terms while leaving the quantities equivalent.

The derivative of the third term in line 69 expands to

∂ 2
∂μ
∂θ1

� 	T

Σ−1b

 !
∂θ2

¼ 2
∂2μ

∂θ1∂θ2

� 	T

Σ−1b−2
∂μ
∂θ1

� 	T

Σ−1 ∂Σ
∂θ2

Σ−1b ð74Þ

−2
∂μ
∂θ1

� 	T

Σ−1 ∂μ
∂θ2

� 	T

: ð75Þ

Note that the second and third terms in Line 69 are negative.
Taking the second derivative ofL together gives Lines 23–26:

∂2L
∂θ1∂θ2

¼ Tr −Σ−1 ∂Σ
∂θ2

Σ−1 ∂Σ
∂θ1

C þ Σ−1 ∂2Σ
∂θ1∂θ2

C þ Σ−1 ∂Σ
∂θ1

Σ−1 ∂Σ
∂θ2

Σ−1D

� 	
ð76Þ

þbT 2Σ−1 ∂Σ
∂θ1

Σ−1 ∂Σ
∂θ2

Σ−1−Σ−1 ∂2Σ
∂θ1∂θ2

Σ−1
� 	

b ð77Þ

þ2
∂μ
∂θ1

� 	T

Σ−1 ∂Σ
∂θ2

Σ−1bþ 2
∂μ
∂θ2

� 	T

Σ−1 ∂Σ
∂θ1

Σ−1b

ð78Þ

þ2
∂μ
∂θ1

� 	T

Σ−1 ∂μ
∂θ2

� 	T

−2
∂2μ

∂θ1∂θ2

� 	T

Σ−1b: ð79Þ

References

Baltes, P. B., Reese, H. W., & Nesselroade, J. R. (1988). Life-span develop-
mental psychology: Introduction to research methods (reprint of
(1977th ed.). Hillsdale: Lawrence Erlbaum Associates.

Boker, S., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T.,… Fox,
J. (2011). OpenMx: An open source extended structural equation
modeling software. Psychometrika, 76(2), 306–317.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife.
Annals of Statistics, 7(1), 1–26.

Evans, D. (2002). The power of multivariate quantitative-trait loci
linkage analysis is influenced by the correlation between
variables. American Journal of Human Genetics, 70 (6),
1599–1602.

Fox, J. (2006). Structural equation modeling with the sem package in r.
Structural Equation Modeling, 13, 465–486.

Gill, P. E., Murray, W., Saunders, M. A., Wright, M. H. (2001). User's
guide for NPSOL 5.0: A Fortran package for nonlinear program-
ming. San Diego: University of California.

Grimm,K. J., &McArdle, J. J. (2005). A note on the computer generation
ofmean and covariance expectations in latent growth curve analysis.
In F. Danserau & F. Yammarino (Eds.),Multi-level issues in strategy
and methods (pp. 335–364). New York: Elsiver.

Jöreskog, K. G., & Sörbom, D. (1993). New features in LISREL 8 .
Chicago: Scientific Software.

Kaabi, B., Gelernter, J., Woods, S., Goddard, A., Page, G., & Elston, R.
(2006). Genome scan for loci predisposing to anxiety disorders
using a novel multivariate approach: Strong evidence for a chromo-
some 4 risk locus. American Journal of Human Genetics, 78(4),
543–553.

Laird, N. M., & Ware, J. H. (1982). Random effect models for longitu-
dinal data. Biometrics, 38, 963–974.

McArdle, J., & McDonald, R. (1984). Some algebraic properties of the
reticular action model for moment structures. British Journal of
Mathematical and Statistical Psychology, 37, 234–251.

McArdle, J. J. (2005). The development of RAM rules for latent variable
structural equation modeling. In A. Madeau (Ed.), Contemporary
advances in psychometrics (pp. 225–273). Mahwah: Lawrence
Erlbaum Associates, Inc.

McArdle, J. J., & Boker, S.M. (1990).Rampath: A computer program for
automatic path diagrams . Hillsdale: Lawrence Erlbaum Publishers.

McArdle, J. J., & Epstein, D. B. (1987). Latent growth curves within
developmental structural equation models. Child Development, 58,
110–133.

Muthén, L. K., & Muthén, B. O. (2004). MPlus user’s guide . Los
Angeles: Muthén and Muthén.

von Oertzen, T., Brandmaier, A. M., & Tsang, S. (2012). The onyx manual.
Onyx Developer Team. (to be found at onyx.brandmaier.de)

von Oertzen, T., Ghisletta, P., & Lindenberger, U. (2010). Simulating
statistical power in latent growth curve modeling: A strategy for
evaluating age-based changes in cognitive resources. In M. Crocker
& J. Siekmann (Eds.), Resource adaptive cognitive processes (pp.
95–117). Heidelberg: Springer–Verlag.

Pinheiro, J. C., & Bates, D. M. (2000).Mixed-effects models in S and
S-Plus (1st ed.). New York: Springer.

Prindle, J., & McArdle, J. (2012). An analysis of statistical power in
dynamic structural equation models. Structural Equation Modeling,
19(3), 351–371.

Rosseel, Y. (2012). lavaan: An R package for structural equation model-
ing. Journal of Statistical Software, 48(2), 1–36.

Schmiedek, F., & Lindenberger, U. (2010). of cognitive training enhance
broad cognitive abilities in adulthood: Findings from the cogito
study. Frontiers in Aging Neuroscience, 2, 1–10.

Schmitt, J. E., Wallce, G., Rosenthal, M., Molloy, E., Ordaz, S., Lenroot,
R.,…, Giedd, J. (2007). multivariate analysis of neuroanatomic rela-
tionships in a genetically infromative pediatric sample. Neuroimage ,
35 , 70–82.

Stelzl, I. (1986). Changing a causal hypothesis without changing the fit:
Some rules for generating equivalent path models. Multivariate
Behavioral Research, 21, 309–331.

Voelkle, M., Oud, J., von Oertzen, T., & Lindenberger, U. (2012).
Maximum likelihood dynamic factor modeling for arbitrary N
and T using SEM. Structural Equation Modeling, 19 (3),
329–350.

Wright, S. (1934). The method of path coefficients. Annals of
Mathematical Statistics, 5, 161–215.

Behav Res (2014) 46:385–395 395

	Efficient Hessian computation using sparse matrix derivatives in RAM notation
	Abstract
	Introduction
	Mathematical methods
	Speed comparison in simulation
	Discussion
	Appendix
	References

